
Package ‘struct’
February 2, 2026

Type Package

Title Statistics in R Using Class-based Templates

Version 1.23.1

Description Defines and includes a set of class-based templates for developing
and implementing data processing and analysis workflows, with a strong
emphasis on statistics and machine learning. The templates can be used and
where needed extended to 'wrap' tools and methods from other packages into a
common standardised structure to allow for effective and fast integration.
Model objects can be combined into sequences, and sequences nested in
iterators using overloaded operators to simplify and improve readability of
the code. Ontology lookup has been integrated and implemented
to provide standardised definitions for methods, inputs and outputs wrapped
using the class-based templates.

License GPL-3

Encoding UTF-8

Collate 'generics.R' 'ontology_term_class.R' 'struct_class.R'
'parameter_class.R' 'chart_class.R' 'stato_class.R'
'DatasetExperiment_class.R' 'entity_class.R'
'entity_stato_class.R' 'enum_class.R' 'enum_stato_class.R'
'output_class.R' 'model_class.R' 'example_objects.R'
'model_list_class.R' 'metric_class.R' 'iterator_class.R'
'optimiser_class.R' 'preprocess_class.R' 'resampler_class.R'
'struct-package.R' 'struct_templates.R' 'zzz.R'

RoxygenNote 7.3.3

Depends R (>= 4.0)

Suggests testthat, rstudioapi, rmarkdown, covr, BiocStyle, openxlsx,
ggplot2, magick

VignetteBuilder knitr

Imports methods,ontologyIndex, datasets, graphics, stats, utils,
knitr, SummarizedExperiment, S4Vectors, rols

biocViews WorkflowStep

git_url https://git.bioconductor.org/packages/struct

1

2 Contents

git_branch devel

git_last_commit 2bb0608

git_last_commit_date 2025-12-19

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Gavin Rhys Lloyd [aut, cre],
Ralf Johannes Maria Weber [aut]

Maintainer Gavin Rhys Lloyd <g.r.lloyd@bham.ac.uk>

Contents
struct-package . 3
.DollarNames.struct_class . 4
as.code . 5
as.DatasetExperiment . 6
as.DatasetExperiment,SummarizedExperiment-method 7
as.SummarizedExperiment . 7
as.SummarizedExperiment,DatasetExperiment-method 8
as_data_frame . 8
c,ontology_list-method . 9
calculate . 9
chart . 11
chart_names . 11
chart_plot . 12
citations . 13
DatasetExperiment . 14
entity_stato . 15
enum . 16
enum_stato . 17
example_chart . 18
example_iterator-class . 19
example_model . 20
export_xlsx . 21
get_description . 21
iris_DatasetExperiment . 22
is_output . 22
is_param . 23
libraries . 24
max_length . 24
model . 26
models . 28
model_apply . 29
model_predict . 30
model_reverse . 30
model_seq . 31
model_train . 33

struct-package 3

new_struct . 34
ontology . 35
optimiser . 37
output_ids . 37
output_list . 38
output_name . 39
output_obj . 39
output_value . 40
param_ids . 41
param_list . 42
param_name . 42
param_obj . 43
param_value . 44
predicted . 45
predicted_name . 45
preprocess . 46
resampler . 47
result . 47
result_name . 48
run . 49
seq_in . 51
set_obj_method . 52
set_obj_show . 53
set_struct_obj . 54
stato_id . 54
struct_class . 56
struct_class-class . 57
struct_template . 58
test_metric-class . 58
$,ontology_list-method . 59
$,ontology_term-method . 60
$,struct_class-method . 61
$<-,struct_class-method . 61

Index 63

struct-package struct: Statistics in R Using Class-based Templates

Description

Defines and includes a set of class-based templates for developing and implementing data pro-
cessing and analysis workflows, with a strong emphasis on statistics and machine learning. The
templates can be used and where needed extended to ’wrap’ tools and methods from other packages
into a common standardised structure to allow for effective and fast integration. Model objects can
be combined into sequences, and sequences nested in iterators using overloaded operators to sim-
plify and improve readability of the code. Ontology lookup has been integrated and implemented

4 .DollarNames.struct_class

to provide standardised definitions for methods, inputs and outputs wrapped using the class-based
templates.

Author(s)

Maintainer: Gavin Rhys Lloyd <g.r.lloyd@bham.ac.uk>

Authors:

• Ralf Johannes Maria Weber <r.j.weber@bham.ac.uk>

.DollarNames.struct_class

autocompletion

Description

This function returns slotnames for autocompletion when using $ syntax

Usage

S3 method for class 'struct_class'
.DollarNames(x, pattern = "")

S4 method for signature 'struct_class'
.DollarNames(x, pattern = "")

S3 method for class 'chart'
.DollarNames(x, pattern = "")

S4 method for signature 'chart'
.DollarNames(x, pattern = "")

S3 method for class 'DatasetExperiment'
.DollarNames(x, pattern = "")

S4 method for signature 'DatasetExperiment'
.DollarNames(x, pattern = "")

S3 method for class 'model'
.DollarNames(x, pattern = "")

S4 method for signature 'model'
.DollarNames(x, pattern = "")

S3 method for class 'metric'
.DollarNames(x, pattern = "")

as.code 5

S4 method for signature 'metric'
.DollarNames(x, pattern = "")

S3 method for class 'iterator'
.DollarNames(x, pattern = "")

S4 method for signature 'iterator'
.DollarNames(x, pattern = "")

S3 method for class 'optimiser'
.DollarNames(x, pattern = "")

S4 method for signature 'optimiser'
.DollarNames(x, pattern = "")

S3 method for class 'preprocess'
.DollarNames(x, pattern = "")

S4 method for signature 'preprocess'
.DollarNames(x, pattern = "")

S3 method for class 'resampler'
.DollarNames(x, pattern = "")

S4 method for signature 'resampler'
.DollarNames(x, pattern = "")

Arguments

x a struct_class object

pattern the text used to compare against the slot names

Value

A vector of slot names

as.code Convert to code

Description

Prints a block of code that can be used to replicate the input object.

6 as.DatasetExperiment

Usage

as.code(M, start = "M = ", mode = "compact", quiet = FALSE)

S4 method for signature 'struct_class'
as.code(M, start = "M = ", mode = "compact", quiet = FALSE)

S4 method for signature 'model_seq'
as.code(M, start = "M = ", mode = "compact", quiet = FALSE)

S4 method for signature 'iterator'
as.code(M, start = "M = ", mode = "compact", quiet = FALSE)

Arguments

M a struct model, model_seq or iterator object
start text prepended to the code. Default is "M = "
mode "compact" will use the least amount of lines, "expanded" will put each object

and input on a new line. "neat" will produce an output somewhere between
"compact" and "expanded".

quiet TRUE or FALSE to print code to console

Value

A string of code to reproduce the input object.

a string of code to reproduce the model

a string of code to reproduce the model sequence

a string of code to reproduce the iterator

Examples

M = example_model(value_1 = 10)
as.code(M)
M = example_model()
as.code(M)
M = example_model()
as.code(M)
M = example_model()
as.code(M)

as.DatasetExperiment Convert a SummarizedExperiment to DatasetExperiment

Description

Converts a SummarizedExperiment to DatasetExperiment. The assay data is transposed, and col-
Data and rowData switched to match. struct specific slots such as "name" and "description" are
extracted from the metaData.

as.DatasetExperiment,SummarizedExperiment-method 7

Usage

as.DatasetExperiment(obj)

Arguments

obj a SummarizedExperiment object

Value

a DatasetExperiment object

as.DatasetExperiment,SummarizedExperiment-method

Convert a SummarizedExperiment to DatasetExperiment

Description

The assay data is transposed, and colData and rowData switched to match. struct specific slots
such as "name" and "description" are extracted from the metaData if available. NB Any additional
metadata will be lost during this conversion.

Usage

S4 method for signature 'SummarizedExperiment'
as.DatasetExperiment(obj)

Arguments

obj a SummarizedExperiment object

Value

a DatasetExperiment object

as.SummarizedExperiment

Convert a DatasetExperiment to a SummarizedExperiment

Description

Converts a DatasetExperiment to SummarizedExperiment. The assay data is transposed, and col-
Data and rowData switched to match. struct specific slots such as "name" and "description" are
stored in the metaData.

8 as_data_frame

Usage

as.SummarizedExperiment(obj)

Arguments

obj a DatasetExperiment object

Value

a SummarizedExperiment object

as.SummarizedExperiment,DatasetExperiment-method

Convert a DatasetExperiment to SummarizedExperiment

Description

Converts a DatasetExperiment to SummarizedExperiment. The assay data is transposed, and col-
Data and rowData switched to match. struct specific slots such as "name" and "description" are
stored in the metaData.

Usage

S4 method for signature 'DatasetExperiment'
as.SummarizedExperiment(obj)

Arguments

obj a DatasetExperiment object

Value

a SummarizedExperiment object

as_data_frame convert to data.frame

Description

Most often used with univariate statistics to gather all the different outputs in a consistent format.

Usage

as_data_frame(M, ...)

c,ontology_list-method 9

Arguments

M a struct object

... other inputs passed through this function

Value

a data.frame containing outputs from an object

c,ontology_list-method

catenate ontology_lists

Description

ontology_lists can be catenated with other ontology lists or with ontology_items.

Usage

S4 method for signature 'ontology_list'
c(x, ...)

Arguments

x an ontology_list()

... any number of ontology_list() or ontology_item() objects to catenate

Value

an ontology_list()

calculate Calculate metric

Description

A class for metrics to assess performance of e.g. models, iterators. Not intended to be called
directly, this class should be inherited to provide functionality for method-specific classes.

10 calculate

Usage

calculate(obj, ...)

value(obj)

value(obj) <- value

max_length(obj) <- value

metric(...)

S4 method for signature 'metric'
calculate(obj, Y, Yhat)

S4 method for signature 'metric'
value(obj)

S4 replacement method for signature 'metric'
value(obj) <- value

Arguments

obj a metric object

... named slots and their values.

value value

Y the true class labels

Yhat the predicted class labels

Value

value the calculated value of a metric

a metric object

Examples

MET = metric()
calculate(MET)
MET = metric()
M = metric()
calculate(M,Y,Yhat)
MET = metric()
value(MET)
MET = metric()
value(MET) = 10

chart 11

chart Constructor for struct chart objects

Description

A base class in the struct package. Should not be called directly.

Usage

chart(...)

Arguments

... named slots and their values that get passed to struct_class

Details

The chart class provides a template for figures, charts and plots associated with other objects. For
example, a DatasetExperiment object could have a histogram plotted for a specified column.

Charts can have parameters but not outputs (other than the figure itself), as chart objects are not
intended to be used for calculations. The chart_plot method can be used to display a chart for an
object, and chart_names can be used to list all chart objects associated with an object.

Classes that inherit the stato class have STATO integration enabled, allowing stato_id to be set and
formal names and descriptions pulled from the STATO ontology database.

Value

a chart object

a struct_class object

Examples

C = example_chart()

chart_names chart names

Description

Returns a list of valid charts for a struct object

Usage

chart_names(obj, ret = "char")

S4 method for signature 'struct_class'
chart_names(obj, ret = "char")

12 chart_plot

Arguments

obj An object derived from the struct_class object

ret A string indicating whether a list of objects (’obj’) or a list of chart names
(’char’) is returned. ’char’ is default.

Details

The chart_names method searches for chart objects associated with the unput object.

Value

list of chart names, or a list of chart objects

Examples

M = example_model()
chart_names(M) # 'example_chart'
chart_names(M,'char') # as above
chart_names(M,'obj') # returns a list of chart objects

chart_plot chart_plot

Description

Plots a chart object

Usage

chart_plot(obj, dobj, ...)

S4 method for signature 'chart,ANY'
chart_plot(obj, dobj)

Arguments

obj A chart object

dobj An object derived from struct_class

... optional inputs

Details

The optional optional inputs depend on the input object/chart, but might include an additional
dataset object or a second model object, for example.

Value

a plot object

citations 13

Methods (by class)

• chart_plot(obj = chart, dobj = ANY):

Examples

C = example_chart()
chart_plot(C,iris_DatasetExperiment())

citations Citations for an object

Description

All struct objects have a "citations" slot, which is a list of references in bibtex format. The
citations method gathers citations from an object and all struct objects that it inherits to generate
a complete list.

Usage

citations(obj)

S4 method for signature 'struct_class'
citations(obj)

Arguments

obj a struct object

Value

a character array of citations

Examples

D = iris_DatasetExperiment()
D$citations # the list specifically defined for this object
citations(D) # the list for this object and all inherited ones

14 DatasetExperiment

DatasetExperiment DatasetExperiment class

Description

An object for holding raw data and associated meta data

Usage

DatasetExperiment(
data = data.frame(),
sample_meta = data.frame(),
variable_meta = data.frame(),
...

)

S4 method for signature 'DatasetExperiment'
x$name

S4 replacement method for signature 'DatasetExperiment'
x$name <- value

Arguments

data A data frame with samples in rows and features in columns

sample_meta A data frame with samples in rows and meta data in columns

variable_meta A data frame with features in rows and meta data in columns

... named slot values to pass through to struct_class

x A DatasetExperiment object

name DatasetExperiment slot to get/set

value the value to assign to the named slot

Details

The DatasetExperiment object is an extension of the SummarizedExperiment object from the Sum-
marizedExperiment package (found on Bioconductor). It incorporates the basic functionality of
struct objects, containing fields such as Description, Name and Type with features of Summarized-
Experiment such as subsetting.

There are some important differences between DatasetExperiment and SummarizedExperiment:

• In DatasetExperiment data is stored as Samples (rows) x Features (columns)

• DatasetExperiment currently only supports a single assay

• length(DatasetExperiment) returns the number of samples

entity_stato 15

Value

DatasetExperiment

Slots

name Name of the dataset

description Brief description of the dataset

type The type of dataset e.g. single_block

entity_stato entity_stato class

Description

A base class in the struct package. Should not be called directly.

Usage

entity_stato(
name,
description = character(0),
type = "character",
value = NULL,
max_length = Inf,
stato_id

)

Arguments

name the name of the object

description a description of the object

type the type of the struct object

value The value of the parameter/outputs

max_length Maximum length of value vector (default 1)

stato_id The STATO ID for the entity

Details

Extends the entity class to include stato functionality.

Value

an entity_stato object

16 enum

See Also

Refer to entity and stato for further info.

Examples

E = entity_stato(
name = 'example',
description = 'this is an example',
type = 'numeric',
value = 1,
stato_id='XYZ000001'

)

enum Enum objects

Description

A base class in the struct package. Not normally called directly.

Usage

enum(
name,
description = character(0),
type = "character",
value = character(0),
max_length = 1,
allowed,
...

)

S4 replacement method for signature 'enum'
value(obj) <- value

Arguments

name the name of the object

description a description of the object

type the type of the struct object

value value of the enum

max_length Maximum length of value vector (default 1)

allowed A list of allowed values

... additional inputs to the struct_class object

obj an enum object

enum_stato 17

Details

An enum object is a special type of entity object that ensures the value must be one from a list of
allowed values.

Enum objects are usually defined in the prototype of another object, but can be extracted using
param_obj and output_obj.

Value

an enum object

Examples

Create a new enum object
E = enum(

name = 'example',
description = 'this is an example',
type = 'character',
value = 'hello',
allowed = c('hello','world')

)

Get/set the value of the entity object
value(E)
value(E) = 'world'

enum_stato enum_stato class

Description

A base class in the struct package. Should not be called directly.

Usage

enum_stato(
name,
description = character(0),
type = "character",
value = character(0),
max_length = 1,
allowed,
stato_id

)

18 example_chart

Arguments

name the name of the object

description a description of the object

type the type of the struct object

value The value of the parameter/outputs

max_length Maximum length of value vector (default 1)

allowed A list of allowed values

stato_id The STATO ID for the entity

Details

Extends the enum class to include stato functionality.

Value

an enum_stato object

See Also

Refer to enum and stato for further info.

Examples

E = enum_stato(
name='example',
allowed=list('choice_1','choice_2'),
value='choice_1',
type='character',
stato_id='XYZ000001'

)

example_chart example chart object

Description

an example of a chart object for documentation purposes

Usage

example_chart(...)

S4 method for signature 'example_chart,example_model'
chart_plot(obj, dobj)

example_iterator-class 19

Arguments

... named slots and their values.
obj a chart object
dobj a example_model object

Value

a chart object

Examples

C = example_chart()
chart_plot(C,example_model())

example_iterator-class

Example iterator

Description

An example iterator for testing

runs the example iterator, which just returns a value of 3.142

Usage

S4 method for signature 'example_iterator,DatasetExperiment,metric'
run(I, D, MET)

Arguments

I example_iterator object
D dataset object
MET metric object

Value

test iterator object

dataset object

Examples

I = example_iterator()

I = example_iterator()
D = iris_DatasetExperiment()
MET = metric()
I = run(I,D,MET)

20 example_model

example_model Example model

Description

An example model for testing. Training this model adds value_1 to a data set, and prediction using
this model adds value_2.

trains the example model, which adds value_1 to the raw data of a dataset

predicts using the example model, which adds value_2 to the raw data of a dataset

Usage

example_model(value_0 = 0, value_1 = 10, value_2 = 20, ...)

S4 method for signature 'example_model,DatasetExperiment'
model_train(M, D)

S4 method for signature 'example_model,DatasetExperiment'
model_predict(M, D)

Arguments

value_0 a numeric value

value_1 a numeric value

value_2 a numeric value

... named slots and their values.

M A struct model object

D A DatasetExperiment object

Value

modified example_model object

dataset object

dataset object

Examples

M = example_model()
M = example_model(value_1 = 10, value_2 = 20)
D = iris_DatasetExperiment()
M = example_model(value_1 = 10, value_2 = 20)
M = model_train(M,D)
D = iris_DatasetExperiment()
M = example_model(value_1 = 10, value_2 = 20)
M = model_predict(M,D)

export_xlsx 21

export_xlsx write a dataset object to file

Description

Exports a dataset object to an excel file with sheets for data, sample_meta and variable_meta

Usage

export_xlsx(object, outfile, transpose = TRUE)

S4 method for signature 'DatasetExperiment'
export_xlsx(object, outfile, transpose = TRUE)

Arguments

object a dataset object

outfile the filename (including path) to write the data to

transpose TRUE (default) or FALSE to transpose the output data

Value

an excel file with sheets for data and meta data

Examples

Not run:
D = iris_DatasetExperiment() # example dataset
export_xlsx(D,'iris_DatasetExperiment.xlsx')

End(Not run)

get_description Get struct object help description

Description

This function is to help developers including struct objects in their own R packages, and isnt in-
tended for general use. Use with roxygen 2 ‘@eval‘ tags this function generates a detailed de-
scription of a struct object generated by extracting names, descriptions etc from slots in a suitable
format.

Usage

get_description(id)

22 is_output

Arguments

id (character) the name of a struct object to generate documentation for

Value

a character string of roxygen formatted documentation for the object

Examples

get_description('example_model')

iris_DatasetExperiment

Fisher’s Iris data

Description

Fisher’s Iris data as a DatasetExperiment object

Usage

iris_DatasetExperiment()

Value

DatasetExperiment object

Examples

D = iris_DatasetExperiment()

is_output Verify output

Description

Verify that the name of a output is valid for an object

Usage

is_output(obj, name)

S4 method for signature 'struct_class'
is_output(obj, name)

is_param 23

Arguments

obj A model or iterator object derived from the *struct* class

name Name of output

Value

TRUE if output name is valid, FALSE if not

Examples

M = example_model()
is_output(M,'result_1') # TRUE
is_output(M,'result_0') # FALSE

is_param Verify parameter

Description

Verify that the input name is a valid input parameter for an object

Usage

is_param(obj, name)

S4 method for signature 'struct_class'
is_param(obj, name)

Arguments

obj An object derived from struct_class

name Name of parameter

Value

TRUE if parameter name is valid, FALSE if not

Examples

M = example_model()
is_param(M,'value_1') # TRUE
is_param(M,'alpha') # FALSE

24 max_length

libraries Libraries for an object

Description

All struct objects have a "libraries" slot, which is a character array of libraries required to use
the object. The libraries method gathers libraries from an object and all struct objects that it
inherits to generate a complete list.

Usage

libraries(obj)

S4 method for signature 'struct_class'
libraries(obj)

Arguments

obj a struct object

Value

a character array of R packages needed by the object

Examples

M = example_model()
libraries(M)

max_length get the max value vector length for an entity

Description

A base class in the struct package. Not normally called directly. An entity object is used to store
information about a parameter or output_ The standard ’name’,’description’ and ’type’ slots are
included, along with ’value’ for storing the value of the parameter and ’max_length’ for restricting
the length of ’value’ if needed.

max_length 25

Usage

max_length(obj)

entity(
name,
description = character(0),
type = "character",
value = NULL,
max_length = Inf,
...

)

S4 method for signature 'entity'
value(obj)

S4 replacement method for signature 'entity'
value(obj) <- value

S4 method for signature 'entity'
max_length(obj)

S4 replacement method for signature 'entity'
max_length(obj) <- value

Arguments

obj An entity object

name the name of the object

description a description of the object

type the type of the struct object

value The value of the parameter/outputs

max_length Maximum length of value vector (default 1)

... additional inputs to the struct_class object

Details

Entity objects are usually defined in the prototype of another object, but can be extracted using
param_obj and output_obj.

Value

max value vector length for an entity

An entity object

26 model

Examples

Create a new entity object
E = entity(

name = 'example',
description = 'this is an example',
type = 'numeric',
value = 1

)

Get/set the value of the entity object
value(E)
value(E) = 10

model model class

Description

A class for models that can be trained/applied to datasets e.g. PCA, PLS etc. Also used for prepro-
cessing steps that require application to test sets. not intended to be called directly, this class should
be inherited to provide functionality for method-specific classes.

Usage

model(
predicted = character(0),
seq_in = "data",
seq_fcn = function(x) {

return(x)
},
...

)

S4 method for signature 'model,DatasetExperiment'
model_train(M, D)

S4 method for signature 'model,DatasetExperiment'
model_predict(M, D)

S4 method for signature 'model,DatasetExperiment'
model_apply(M, D)

S4 method for signature 'model,DatasetExperiment'
model_reverse(M, D)

S4 method for signature 'model'
predicted(M)

model 27

S4 method for signature 'model'
seq_in(M)

S4 replacement method for signature 'model,character'
seq_in(M) <- value

S4 method for signature 'model'
predicted_name(M)

S4 replacement method for signature 'model,character'
predicted_name(M) <- value

Arguments

predicted The name of an output slot to return when using predicted() (see details)

seq_in the name of an output slot to connect with the "predicted" output of another
model (see details)

seq_fcn a function to apply to seq_in before inputting into the next model. Typically
used to extract a single column, or convert from factor to char etc.

... named slots and their values.

M A struct model object

D A DatasetExperiment object

value The value to assign

Value

trained model object

model object with test set results

trained model object

dataset dataset object with the reverse model applied

the predicted output, as specified by predicted_name

the id of the input parameter to be replaced by the predicted output of the previous model in
a model sequence. Reserved keyword ’data’ means that the input data used by model_train,
model_apply etc is used. seq_in = 'data' is the default setting.

the modified model object

the id of the output returned by predicted()

the modified model object

predicted slot

The "predicted" slot is a slots for use by users to control the flow of model sequences. The
predicted() function is used to return a default output and from a model. Typically it is a Datase-
tExperiment object that is passed directly into the next model in a sequence as the data for that
model.

28 models

seq_in slot

In a sequence of models (see model_seq) the "predicted" slot is connected to the DatasetExperiment
input of the next model. seq_in can be used to control flow and connect the "predicted" output to
the input parameter of the next model. Default is the keyword ’data’, and can otherwise be replaced
by any input slot from the model. The slot seq_fcn can be used to apply a transformation to the
output before it is used as an input. This allows you to e.g. convert between types, extract a single
column from a data.frame etc.

Examples

M = model()
D = DatasetExperiment()
M = model()
M = model_train(M,D)
D = DatasetExperiment()
M = model()
M = model_train(M,D)
M = model_predict(M,D)
D = DatasetExperiment()
M = model()
M = model_apply(M,D)
D = DatasetExperiment()
M = model()
M = model_train(M,D)
M = model_predict(M,D)
M = model_reverse(M,D)
D = DatasetExperiment()
M = example_model()
M = model_train(M,D)
M = model_predict(M,D)
p = predicted(M)
D = DatasetExperiment()
M = example_model()
seq_in(M) = 'data'
M = example_model()
seq_in(M) = 'value_1'
M = example_model()
predicted_name(M)
M = example_model()
predicted_name(M) = 'result_2'

models Get/set models of a model_seq

Description

Returns the list of models in a model_seq object

model_apply 29

Usage

models(ML)

models(ML) <- value

Arguments

ML a model_seq object

value a list containing only model objects

Value

models(ML) returns a list of models in the model sequence

models(ML)<- sets the list of models in the model sequence

Examples

Create a model sequence
ML = model_seq()
models(ML) = list(example_model(), example_model())
models(ML)

model_apply Apply a model

Description

Applies a method to the input dataset

Usage

model_apply(M, D, ...)

Arguments

M a ‘method‘ object

D another object used by the first

... other optional inputs

Value

Returns a modified method object

Examples

M = example_model()
M = model_apply(M,iris_DatasetExperiment())

30 model_reverse

model_predict Model prediction

Description

Apply a model using the input dataset. Assumes the model is trained first.

Usage

model_predict(M, D, ...)

Arguments

M a model object

D a dataset object

... other optional inputs

Value

Returns a modified model object

Examples

M = example_model()
M = model_predict(M,iris_DatasetExperiment())

model_reverse Reverse preprocessing

Description

Reverse the effect of a preprocessing step on a dataset_

Usage

model_reverse(M, D, ...)

Arguments

M a model object

D a dataset object

... other optional inputs

Value

Returns a modified dataset object

model_seq 31

Examples

M = example_model()
D = model_reverse(M,iris_DatasetExperiment())

model_seq model_seq class

Description

A class for (ordered) lists of models

Usage

model_seq(...)

S4 method for signature 'model_seq,DatasetExperiment'
model_train(M, D)

S4 method for signature 'model_seq,DatasetExperiment'
model_predict(M, D)

S4 method for signature 'model_seq,ANY,ANY,ANY'
x[i]

S4 replacement method for signature 'model_seq,ANY,ANY,ANY'
x[i] <- value

S4 method for signature 'model_seq'
models(ML)

S4 replacement method for signature 'model_seq,list'
models(ML) <- value

S4 method for signature 'model_seq'
length(x)

S4 method for signature 'model,model_seq'
e1 + e2

S4 method for signature 'model_seq,model'
e1 + e2

S4 method for signature 'model,model'
e1 + e2

S4 method for signature 'model_seq'
predicted(M)

32 model_seq

S4 method for signature 'model_seq,DatasetExperiment'
model_apply(M, D)

Arguments

... named slots and their values.

M a model object

D a dataset object

x a model_seq object

i index

value value

ML a model_seq object

e1 a model or model_seq object

e2 a model or model_seq object

Value

model sequence

model sequence

model at the given index in the sequence

model sequence with the model at index i replaced

a list of models in the sequence

a model sequence containing the input models

the number of models in the sequence

a model sequence with the additional model appended to the front of the sequence

a model sequence with the additional model appended to the end of the sequence

a model sequence

the predicted output of the last model in the sequence

Examples

MS = model_seq()
MS = model() + model()
MS = example_model() + example_model()
MS = model_train(MS,DatasetExperiment())
D = DatasetExperiment()
MS = example_model() + example_model()
MS = model_train(MS,D)
MS = model_predict(MS,D)
MS = model() + model()
MS[2]

MS = model() + model()

model_train 33

MS[3] = model()

MS = model() + model()
L = models(MS)

MS = model_seq()
L = list(model(),model())
models(MS) = L

MS = model() + model()
length(MS) # 2

MS = model() + model()
M = model()
MS = M + MS

MS = model() + model()
M = model()
MS = MS + M

MS = model() + model()

D = DatasetExperiment()
M = example_model()
M = model_train(M,D)
M = model_predict(M,D)
p = predicted(M)
D = DatasetExperiment()
MS = example_model() + example_model()
MS = model_apply(MS,D)

model_train Train a model

Description

Trains a model using the input dataset

Usage

model_train(M, D, ...)

Arguments

M a model object

D a dataset object

... other optional inputs

34 new_struct

Value

Returns a modified model object

Examples

M = example_model()
M = model_train(M,iris_DatasetExperiment())

new_struct Generate a struct object from a Class

Description

This function creates a newly allocated object from the class identified by the first argument. It
works almost identically to new but is specific to objects from the struct package and ensures
that entity slots have their values assigned correctly. This function is usually called by class
constructors and not used directly.

Usage

new_struct(class, ...)

Arguments

class The class of struct object to create

... named slots and values to assign

Value

An object derived from struct_class

Examples

S = new_struct('struct_class')

ontology 35

ontology Ontology for an object

Description

All struct objects have an "ontology" slot, which is a list of ontology items for the object. The
ontology method gathers ontology items from an object and all struct objects that it inherits to
generate a complete list.

A base class in the struct package. Stores ontology information e.g. term, description, id etc for
struct objects and provides methods for populating these fields using the ‘rols‘ package.

A base class in the struct package. Stores multiple ‘ontology_term‘ objects.

Usage

ontology(obj, cache = NULL)

ontology_term(
id,
ontology = character(),
label = character(),
description = character(),
iri = character(),
rols = TRUE

)

ontology_list(terms = list())

S4 method for signature 'ontology_list,ANY,ANY,ANY'
x[i]

S4 replacement method for signature 'ontology_list,ANY,ANY,ANY'
x[i] <- value

S4 method for signature 'ontology_list'
length(x)

S4 method for signature 'struct_class'
ontology(obj, cache = NULL)

Arguments

obj a struct object

cache a named list of ontology_terms for offline use. Terms from the cache are search
based on the name of the list items matching the ontology id. If cache=NULL
then the OLS API is used to lookup terms.

id (character) The ontology term id e.g. ’STATO:0000555’

36 ontology

ontology (character) The ontology the term is a member of e.g. ’stato’

label (character) The label for the ontology term

description (character) The description of the term

iri (character) The Internationalized Resource Identifier for the term

rols (logical) TRUE or FALSE to query the Ontology Lookup Service for missing
label, description or iri if not provided as input. Default rols = TRUE

terms A list of ontology_term objects.

x the list

i The list item index

value an ontology_term() object

Value

model at the given index in the sequence

model sequence with the model at index i replaced

the number of models in the sequence

Examples

M = example_model()
ontology(M,cache=NULL)
Not run:
OT = ontology_term(id='STATO:0000555')

End(Not run)
Not run:
OT = ontology_list(terms=list(

ontology_term(ontology='obi',id = 'OBI:0200051'),
ontology_term(ontology='stato',id ='STATO:0000555')

)

End(Not run)
Not run:
OL = ontology_list('STATO:0000555')
OL[1]

End(Not run)

Not run:
OL = ontology_list('STATO:0000555')
OL[1] = ontology_term('STATO:0000302')

End(Not run)
Not run:
OL = ontology_list()
length(OL) # 0

End(Not run)

optimiser 37

optimiser optimiser class

Description

A special class of iterator for selecting optimal parameter values not intended to be called directly,
this class should be inherited to provide functionality for method-specific classes.

Usage

optimiser(...)

Arguments

... named slots and their values.

Value

an optimiser object

Examples

OPT = optimiser()

output_ids Output identifiers

Description

return a list of valid output ids for an object

Usage

output_ids(obj)

S4 method for signature 'struct_class'
output_ids(obj)

Arguments

obj A model or iterator object derived from the *struct* class

Value

list of output ids

38 output_list

Examples

M = example_model()
output_ids(M)

output_list output list

Description

get/set a named list of outputs and their current value for an object

Usage

output_list(obj)

output_list(obj) <- value

S4 method for signature 'struct_class'
output_list(obj)

S4 replacement method for signature 'struct_class,list'
output_list(obj) <- value

Arguments

obj An object derived from struct_class

value A named list of outputs and corresponding values

Value

A named list of outputs and corresponding values

struct object

Examples

M = example_model()
L = output_list(M)
M = example_model()
output_list(M) = list('result_1' = DatasetExperiment(),'result_2' = DatasetExperiment())

output_name 39

output_name output name

Description

return a the name for a output, if available

Usage

output_name(obj, name)

S4 method for signature 'struct_class,character'
output_name(obj, name)

Arguments

obj A model or iterator object derived from the *struct* class

name Name of output

Value

name of output

Examples

M = example_model()
output_name(M,'result_1')

output_obj Output objects

Description

Gets or sets the object of an output e.g. to an entity() object.

Usage

output_obj(obj, name)

output_obj(obj, name) <- value

S4 method for signature 'struct_class,character'
output_obj(obj, name)

S4 replacement method for signature 'struct_class,character'
output_obj(obj, name) <- value

40 output_value

Arguments

obj A model or iterator object derived from the *struct* class

name Name of output

value A valid value for the output being set

Value

output_obj(M,name) returns the named output as an object

output_obj(M,name)<- sets the named output of an object

the modified object

Examples

get the output as an object
M = example_model()
obj = output_obj(M, 'result_1')

set a output as an object
output_obj(M, 'result_1') = entity(value = 15,type = 'numeric',name = 'result_1')

output_value output values

Description

get/set the values for an output_

Usage

output_value(obj, name)

output_value(obj, name) <- value

S4 method for signature 'struct_class,character'
output_value(obj, name)

S4 replacement method for signature 'struct_class,character'
output_value(obj, name) <- value

Arguments

obj A model or iterator object derived from the *struct* class

name Name of output

value A valid value for the output being set

param_ids 41

Value

Value of output

struct object

Examples

M = example_model()
output_value(M,'result_1')
M = example_model()
output_value(M,'result_1') = DatasetExperiment()

param_ids Parameter identifiers

Description

return a list of valid parameter ids for an object

Usage

param_ids(obj)

S4 method for signature 'struct_class'
param_ids(obj)

Arguments

obj An object derived from struct_class

Value

list of parameter ids

Examples

M = example_model()
param_ids(M)

42 param_name

param_list Parameter list

Description

get/set a named list of parameters and thier current value for an object

Usage

param_list(obj)

param_list(obj) <- value

S4 method for signature 'struct_class'
param_list(obj)

S4 replacement method for signature 'struct_class,list'
param_list(obj) <- value

Arguments

obj An object derived from struct_class

value A named list of parameters and corresponding values

Value

A named list of parameters names and corresponding values

Examples

M = example_model()
L = param_list(M)

M = example_model()
param_list(M) = list('value_1' = 15,'value_2' = 20)

param_name Parameter name

Description

Returns the name for a parameter, if available

param_obj 43

Usage

param_name(obj, name)

S4 method for signature 'struct_class,character'
param_name(obj, name)

Arguments

obj An object derived from struct_class

name Name of parameter

Value

name of parameter

Examples

M = example_model()
param_name(M,'value_1')

param_obj Parameter objects

Description

Gets or sets the object of a parameter e.g. to an entity() object.

Usage

param_obj(obj, name)

param_obj(obj, name) <- value

S4 replacement method for signature 'struct_class,character'
param_obj(obj, name) <- value

S4 method for signature 'struct_class,character'
param_obj(obj, name)

Arguments

obj An object derived from struct_class

name Name of parameter

value A valid value for the parameter being set

44 param_value

Value

param_obj(M,name) Returns the named parameter as an object

param_obj(M,name)<- Sets the named parameter of an object

Examples

get the parameter as an object
M = example_model()
obj = param_obj(M, 'value_0')

set a parameter as an object
param_obj(M, 'value_0') = entity(value = 15,type = 'numeric',name='value_0')

param_value Parameter values

Description

get/set the values for a parameter.

Usage

param_value(obj, name)

param_value(obj, name) <- value

S4 method for signature 'struct_class,character'
param_value(obj, name)

S4 replacement method for signature 'struct_class,character'
param_value(obj, name) <- value

Arguments

obj A model or iterator object derived from structclass

name Name of parameter

value A valid value for the parameter being set

Value

Value of parameter

predicted 45

Examples

M = example_model()
param_value(M,'value_1')

M = example_model()
param_value(M,'value_1') = 0.95

predicted Prediction output

Description

returns the prediction output for a model_ This is supplied as input to the next model when used in
a model_seq

Usage

predicted(M)

Arguments

M a model object

Value

The value returned varies depending on the output_

Examples

M = example_model()
M = model_train(M, iris_DatasetExperiment())
M = model_predict(M, iris_DatasetExperiment())
predicted(M)

predicted_name Predicted output name

Description

get/set the prediction output for a model_ This determines which outputs from this model are sup-
plied as inputs to the next model when used in a model_seq

Usage

predicted_name(M)

predicted_name(M) <- value

46 preprocess

Arguments

M a model object

value name of an output for this model

Value

predicted_name returns the name of the predicted output

predicted_name<- sets the name of the predicted output

Examples

M = example_model()
predicted_name(M)
predicted_name(M) = 'result_2'

preprocess preprocessing class

Description

A class used for preprocessing steps that require application to test sets. not intended to be called
directly, this class should be inherited to provide functionality for method-specific classes.

Usage

preprocess(...)

S4 method for signature 'preprocess,DatasetExperiment'
model_reverse(M, D)

Arguments

... named slots and their values.

M a model object

D a dataset object

Value

dataset object

Examples

M = preprocess()
D = DatasetExperiment()
M = model()
D2 = model_reverse(M,D)

resampler 47

resampler resampler class

Description

A class for resampling methods such as cross-validation. not intended to be called directly.

Usage

resampler(...)

Arguments

... named slots and their values.

Value

a resampler object

Examples

R = resampler()

result Iterator result

Description

Returns the results of an iterator. This is used to control model flow in a similar way to predict for
model and model_seq objects.

Usage

result(M)

Arguments

M an iterator object

Value

the returned output varies with the algorithm implemented

48 result_name

Examples

D = iris_DatasetExperiment() # get some data
MET = metric() # use a metric
I = example_iterator() # initialise iterator
models(I) = example_model() # set the model
I = run(I,D,MET) # run
result(I)

result_name get/set output name as prediction output for a model

Description

get/set the prediction output for a model_ This determines which outputs from this model are sup-
plied as inputs to the next model when used in a model_seq

Usage

result_name(M)

result_name(I) <- value

Arguments

M an iterator object

I an iterator object

value name of an output for iterator M

Value

result_name(M) returns the name of the output for this iterator (equivalent to predicted for
model objects)

result_name(I)<- sets the default output for an iterator

Examples

I = example_iterator() # initialise iterator
result_name(I)
result_name(I) = 'result_1'

run 49

run Run iterator

Description

Runs an iterator, applying the chosen model multiple times.

Evaluates an iterator by e.g. averaging over all iterations. May be deprecated in a future release as
evaluate is applied by run anyway.

A class for iterative approaches that involve the training/prediction of a model multiple times. Not
intended to be called directly, this class should be inherited to provide functionality for method-
specific classes.

Usage

run(I, D, MET)

evaluate(I, MET)

iterator(...)

S4 method for signature 'iterator,DatasetExperiment,metric'
run(I, D, MET = NULL)

S4 method for signature 'iterator,metric'
evaluate(I, MET)

S4 method for signature 'iterator'
models(ML)

S4 replacement method for signature 'iterator,model_OR_iterator'
models(ML) <- value

S4 replacement method for signature 'iterator,character'
result_name(I) <- value

S4 method for signature 'iterator'
result(M)

S4 method for signature 'iterator'
result_name(M)

S4 method for signature 'iterator,model_OR_iterator'
e1 * e2

S4 method for signature 'iterator,ANY,ANY,ANY'
x[i]

50 run

S4 replacement method for signature 'iterator,ANY,ANY,ANY'
x[i] <- value

Arguments

I an iterator object

D a dataset object

MET a metric object

... named slots and their values.

ML a model sequence object

value value

M a model object

e1 an iterator object

e2 an iterator or a model object

x a sequence object

i index into sequence

Details

Running an iterator will apply the iterator a number of times to a dataset_ For example, in cross-
validation the same model is applied multiple times to the same data, splitting it into training and
test sets. The input metric object can be calculated and collected for each iteration as an output_

Value

Modified iterator object

Modified iterator object

the modified model object

model at the given index in the sequence

iterator with the model at index i replaced

Examples

D = iris_DatasetExperiment() # get some data
MET = metric() # use a metric
I = example_iterator() # initialise iterator
models(I) = example_model() # set the model
I = run(I,D,MET) # run
D = iris_DatasetExperiment() # get some data
MET = metric() # use a metric
I = example_iterator() # initialise iterator
models(I) = example_model() # set the model
I = run(I,D,MET) # run
I = evaluate(I,MET) # evaluate
I = iterator()

seq_in 51

I = iterator() * model()
D = DatasetExperiment()
MET = metric()
I = iterator() * model()
I = run(I,D,MET)

I = iterator()
result_name(I) = 'example'
MS = model() + model()
I = iterator() * MS
I[2] # returns the second model() object

MS = model() + model()
I = iterator() * MS
I[2] = model() # sets the second model to model()

seq_in Sequence input

Description

get/set the input parameter replaced by the output of the previous model in a model sequence.
Default is "data" which passes the output as the data input for methods such as model_train and
model_apply.

Usage

seq_in(M)

seq_in(M) <- value

Arguments

M a model object

value name of an output for this model

Value

seq_in returns the name of the input parameter replaced when used in a model sequence

seq_in<- sets the name of the input parameter replaced when used in a model sequence

Examples

M = example_model()
seq_in(M)
seq_in(M) = 'value_1'

52 set_obj_method

set_obj_method update method for a struct object

Description

a helper function to update methods for a struct object

Usage

set_obj_method(
class_name,
method_name,
definition,
where = topenv(parent.frame()),
signature = c(class_name, "DatasetExperiment")

)

Arguments

class_name the name of the to update the method for

method_name the name of the method to update. Must be an existing method for the object.

definition the function to replace the method with. This function will be used when the
method is called on the object.

where the environment to create the object in. default where = topenv(parent.frame())

signature a list of classes that this object requires as inputs. Default is c(class_name,’DatasetExperiment’)

Value

a method is created in the specified environment

Examples

set_struct_obj(
class_name = 'add_two_inputs',
struct_obj = 'model',
params = c(input_1 = 'numeric', input_2 = 'numeric'),
outputs = c(result = 'numeric'),
prototype = list(

input_1 = 0,
input_2 = 0,
name = 'Add two inputs',
description = 'example class that adds two values together')

)

set_obj_show 53

set_obj_show a helper function to update the show method for a struct object

Description

a helper function to update the show method for a struct object

Usage

set_obj_show(class_name, extra_string, where = topenv(parent.frame()))

Arguments

class_name the name of the to update the method for

extra_string a function that returns an extra string using the input object as an input e.g.
function(object)return = ’extra_string’

where the environment to create the object in. default where = topenv(parent.frame())

Value

a method is created in the specified environment

Examples

create an example object first
set_struct_obj(
class_name = 'add_two_inputs',
struct_obj = 'model',
params = c(input_1 = 'numeric', input_2 = 'numeric'),
outputs = c(result = 'numeric'),
prototype = list(

input_1 = 0,
input_2 = 0,
name = 'Add two inputs',
description = 'example class that adds two values together')

)

now update the method
set_obj_show(
class_name = 'add_two_inputs',
extra_string = function(object) {return('The extra text')}
)

54 stato_id

set_struct_obj define a new struct object

Description

a helper function to create new struct objects

Usage

set_struct_obj(
class_name,
struct_obj,
params = character(0),
outputs = character(0),
private = character(0),
prototype = list()

)

Arguments

class_name the name of the new class to create

struct_obj the struct obj to inherit e.g. ’model’, ’metric’ etc

params a named character vector of input parameters where each element specifies the
type of value that will be in the slot e.g. c(example = ’character’)

outputs a named character vector of outputs where each element specifies the type of
value that will be in the slot e.g. c(example = ’character’)

private a named character vector of private slots where each element specifies the type
of value that will be in the slot e.g. c(example = ’character’). These are intended
for internal use by the object and generally not available to the user.

prototype a named list with initial values for slots.

Value

a new class definition. to create a new object from this class use X = new_class_name()

stato_id get the stato_id for an object

Description

A base class in the struct package. Provides several fundamental methods and should not be called
directly.

stato_id 55

Usage

stato_id(obj)

stato_name(obj)

stato_definition(obj)

stato_summary(obj)

stato(stato_id)

S4 method for signature 'stato'
stato_id(obj)

S4 method for signature 'stato'
stato_name(obj)

S4 method for signature 'stato'
stato_definition(obj)

S4 method for signature 'stato'
stato_summary(obj)

Arguments

obj An object derived from the stato object

stato_id A STATO ID e.g. OBI:0000001

Details

STATO is the statistical methods ontology. It contains concepts and properties related to statisti-
cal methods, probability distributions and other concepts related to statistical analysis, including
relationships to study designs and plots (see http://stato-ontology.org/).

This class provides access to a version of the STATO ontology database that can be searched by
ontology id to provide formal names and definitions for methods, models, iterators, metrics and
charts.

This class makes use of the ontologyIndex package to search a copy of the STATO database
included in this package.

Value

id the stato id

name the stato name

def the stato description

Value returned depends on the method used.

http://stato-ontology.org/

56 struct_class

Examples

M = example_model()
stato_id(M)
stato_name(M)
stato_definition(M)
stato_summary(M)
an example stato object
M = example_model()

the stato id assigned to object M
stato_id(M) # OBI:0000011

the name associated with that id
stato_name(M)

the STATO definition for that id
stato_definition(M)

a summary of the STATO database entry for the id, and any parameters or
outputs that also have stato ids.
stato_summary(M)

struct_class Constructor for struct_class objects

Description

Creates a new struct_class object and populates the slots. Not intended for direct use.

Usage

struct_class(
name = character(0),
description = character(0),
type = character(0),
citations = list(),
ontology = character(0)

)

Arguments

name the name of the object

description a description of the object

type the type of the struct object

citations a list of citations for the object in "bibentry" format

ontology a list of ontology items for the object in "ontology_item" format

struct_class-class 57

Value

a struct_class object

struct_class-class struct_class object definition

Description

Defines the struct class base template. This class is inherited by other objects and not intended for
direct use. It defines slots and methods common to all struct objects.

Value

Returns a struct object

Public slots

Public slots can be accessed using shorthand $ notation and are intended for users building work-
flows.

name character() A short descriptive name of the struct object

description character() A longer description of the struct object and what it does

type character() A keyword that describes the type of struct object

libraries character() A (read only) list of R packages used by this struct object

citations list of bibentry A (read only) list of citations relevant to this struct object, in Bibtex
format.

Private slots

Private slots are not readily accessible to users and are intended for developers creating their own
struct objects. Any slot not listed within ‘.params‘ or ‘.outputs‘ is considered a private slot.

.params character() A list of additional slot names that can be get/set by the user for a specific
struct object. These are used as input parameters for different methods.

.outputs character() a list of additional slot names that can be get by the user. These are used
to store the results of a method.

Examples

S = struct_class(name = 'Example',description = 'An example object')

58 test_metric-class

struct_template StRUCT templates

Description

Create a struct template

Usage

struct_template(
template = "model",
output,
in_editor = TRUE,
overwrite = FALSE

)

Arguments

template the type of object you want a template for e.g. ’model’

output the name/path of the output file

in_editor TRUE/FALSE to open the created file in the default editor

overwrite = TRUE/FALSE to overwrite file if exists already

Value

A template is created at the output location specified

Examples

Not run:
struct_template('model','example.R',FALSE)

End(Not run)

test_metric-class Example metric

Description

An example metric for testing

calculates a metric, which just returns a value of 3.142

$,ontology_list-method 59

Usage

S4 method for signature 'test_metric'
calculate(obj)

Arguments

obj metric object

Value

test metric object

dataset object

Examples

MET = test_metric()

MET = test_metric()
MET = calculate(MET)

$,ontology_list-method

Get/set ontology_list slots

Description

Dollar syntax can be used to as a shortcut for getting values for ontology_list objects.

Usage

S4 method for signature 'ontology_list'
x$name

Arguments

x An ontology_term object

name The name of the slot to access

Value

Slot value

60 $,ontology_term-method

Examples

Not run:
OL = ontology_list('STATO:0000555')
OL$terms

End(Not run)

$,ontology_term-method

Get/set ontology term slots

Description

Dollar syntax can be used to as a shortcut for getting values for ontology_term objects.

Usage

S4 method for signature 'ontology_term'
x$name

Arguments

x An ontology_term object

name The name of the slot to access

Value

Slot value

Examples

Not run:
OT = ontology_term(ontology='stato',id='STATO:0000555')

End(Not run)

$,struct_class-method 61

$,struct_class-method Get/set parameter or output values

Description

Dollar syntax can be used to as a shortcut for getting/setting input parameter and output values for
struct objects.

Usage

S4 method for signature 'struct_class'
x$name

Arguments

x An object derived from struct_class
name The name of the slot to access

Value

Parameter/output value

Examples

M = example_model()
M$value_1 = 10
M$value_1 # 10

$<-,struct_class-method

Get/set parameter or output values

Description

Dollar syntax can be used to as a shortcut for getting/setting input parameter and output values for
struct objects.

Usage

S4 replacement method for signature 'struct_class'
x$name <- value

Arguments

x An object derived from struct_class
name The name of the slot to access
value The value to assign

62 $<-,struct_class-method

Value

Parameter/output value

Examples

M = example_model()
M$value_1 = 10
M$value_1 # 10

Index

∗ internal
struct-package, 3

*,iterator,model_OR_iterator-method
(run), 49

+,model,model-method (model_seq), 31
+,model,model_seq-method (model_seq), 31
+,model_seq,model-method (model_seq), 31
.DollarNames,DatasetExperiment-method

(.DollarNames.struct_class), 4
.DollarNames,chart-method

(.DollarNames.struct_class), 4
.DollarNames,iterator-method

(.DollarNames.struct_class), 4
.DollarNames,metric-method

(.DollarNames.struct_class), 4
.DollarNames,model-method

(.DollarNames.struct_class), 4
.DollarNames,optimiser-method

(.DollarNames.struct_class), 4
.DollarNames,preprocess-method

(.DollarNames.struct_class), 4
.DollarNames,resampler-method

(.DollarNames.struct_class), 4
.DollarNames,struct_class-method

(.DollarNames.struct_class), 4
.DollarNames.DatasetExperiment

(.DollarNames.struct_class), 4
.DollarNames.chart

(.DollarNames.struct_class), 4
.DollarNames.iterator

(.DollarNames.struct_class), 4
.DollarNames.metric

(.DollarNames.struct_class), 4
.DollarNames.model

(.DollarNames.struct_class), 4
.DollarNames.optimiser

(.DollarNames.struct_class), 4
.DollarNames.preprocess

(.DollarNames.struct_class), 4

.DollarNames.resampler
(.DollarNames.struct_class), 4

.DollarNames.struct_class, 4

.struct_class (struct_class-class), 57
[,iterator,ANY,ANY,ANY-method (run), 49
[,model_seq,ANY,ANY,ANY-method

(model_seq), 31
[,ontology_list,ANY,ANY,ANY-method

(ontology), 35
[<-,iterator,ANY,ANY,ANY-method (run),

49
[<-,model_seq,ANY,ANY,ANY-method

(model_seq), 31
[<-,ontology_list,ANY,ANY,ANY-method

(ontology), 35
$,DatasetExperiment-method

(DatasetExperiment), 14
$,ontology_list-method, 59
$,ontology_term-method, 60
$,struct_class-method, 61
$<-,struct_class-method, 61
$<-,DatasetExperiment-method

(DatasetExperiment), 14

as.code, 5
as.code,iterator-method (as.code), 5
as.code,model_seq-method (as.code), 5
as.code,struct_class-method (as.code), 5
as.DatasetExperiment, 6
as.DatasetExperiment,SummarizedExperiment-method,

7
as.SummarizedExperiment, 7
as.SummarizedExperiment,DatasetExperiment-method,

8
as_data_frame, 8

c,ontology_list-method, 9
calculate, 9
calculate,metric-method (calculate), 9

63

64 INDEX

calculate,test_metric-method
(test_metric-class), 58

chart, 11
chart_names, 11
chart_names,struct_class-method

(chart_names), 11
chart_plot, 12
chart_plot,chart,ANY-method

(chart_plot), 12
chart_plot,example_chart,example_model-method

(example_chart), 18
citations, 13
citations,struct_class-method

(citations), 13

DatasetExperiment, 14

entity, 16
entity (max_length), 24
entity_stato, 15
enum, 16, 18
enum_stato, 17
evaluate (run), 49
evaluate,iterator,metric-method (run),

49
example_chart, 18
example_iterator

(example_iterator-class), 19
example_iterator-class, 19
example_model, 20
export_xlsx, 21
export_xlsx,DatasetExperiment-method

(export_xlsx), 21

get_description, 21

iris_DatasetExperiment, 22
is_output, 22
is_output,struct_class-method

(is_output), 22
is_param, 23
is_param,struct_class-method

(is_param), 23
iterator (run), 49

length,model_seq-method (model_seq), 31
length,ontology_list-method (ontology),

35
libraries, 24

libraries,struct_class-method
(libraries), 24

max_length, 24
max_length,entity-method (max_length),

24
max_length<- (calculate), 9
max_length<-,entity-method

(max_length), 24
metric (calculate), 9
model, 26
model_apply, 29
model_apply,model,DatasetExperiment-method

(model), 26
model_apply,model_seq,DatasetExperiment-method

(model_seq), 31
model_predict, 30
model_predict,example_model,DatasetExperiment-method

(example_model), 20
model_predict,model,DatasetExperiment-method

(model), 26
model_predict,model_seq,DatasetExperiment-method

(model_seq), 31
model_reverse, 30
model_reverse,model,DatasetExperiment-method

(model), 26
model_reverse,preprocess,DatasetExperiment-method

(preprocess), 46
model_seq, 31
model_train, 33
model_train,example_model,DatasetExperiment-method

(example_model), 20
model_train,model,DatasetExperiment-method

(model), 26
model_train,model_seq,DatasetExperiment-method

(model_seq), 31
models, 28
models,iterator-method (run), 49
models,model_seq-method (model_seq), 31
models<- (models), 28
models<-,iterator,model_OR_iterator-method

(run), 49
models<-,model_seq,list-method

(model_seq), 31

new_struct, 34

ontology, 35

INDEX 65

ontology,struct_class-method
(ontology), 35

ontology_list (ontology), 35
ontology_term (ontology), 35
optimiser, 37
output_ids, 37
output_ids,struct_class-method

(output_ids), 37
output_list, 38
output_list,struct_class-method

(output_list), 38
output_list<- (output_list), 38
output_list<-,struct_class,list-method

(output_list), 38
output_name, 39
output_name,struct_class,character-method

(output_name), 39
output_obj, 39
output_obj,struct_class,character-method

(output_obj), 39
output_obj<- (output_obj), 39
output_obj<-,struct_class,character-method

(output_obj), 39
output_value, 40
output_value,struct_class,character-method

(output_value), 40
output_value<- (output_value), 40
output_value<-,struct_class,character-method

(output_value), 40

param_ids, 41
param_ids,struct_class-method

(param_ids), 41
param_list, 42
param_list,struct_class-method

(param_list), 42
param_list<- (param_list), 42
param_list<-,struct_class,list-method

(param_list), 42
param_name, 42
param_name,struct_class,character-method

(param_name), 42
param_obj, 43
param_obj,struct_class,character-method

(param_obj), 43
param_obj<- (param_obj), 43
param_obj<-,struct_class,character-method

(param_obj), 43
param_value, 44

param_value,struct_class,character-method
(param_value), 44

param_value<- (param_value), 44
param_value<-,struct_class,character-method

(param_value), 44
predicted, 45
predicted,model-method (model), 26
predicted,model_seq-method (model_seq),

31
predicted_name, 45
predicted_name,model-method (model), 26
predicted_name<- (predicted_name), 45
predicted_name<-,model,character-method

(model), 26
preprocess, 46

resampler, 47
result, 47
result,iterator-method (run), 49
result_name, 48
result_name,iterator-method (run), 49
result_name<- (result_name), 48
result_name<-,iterator,character-method

(run), 49
run, 49
run,example_iterator,DatasetExperiment,metric-method

(example_iterator-class), 19
run,iterator,DatasetExperiment,metric-method

(run), 49

seq_in, 51
seq_in,model-method (model), 26
seq_in<- (seq_in), 51
seq_in<-,model,character-method

(model), 26
set_obj_method, 52
set_obj_show, 53
set_struct_obj, 54
stato, 16, 18
stato (stato_id), 54
stato_definition (stato_id), 54
stato_definition,stato-method

(stato_id), 54
stato_id, 54
stato_id,stato-method (stato_id), 54
stato_name (stato_id), 54
stato_name,stato-method (stato_id), 54
stato_summary (stato_id), 54

66 INDEX

stato_summary,stato-method (stato_id),
54

struct (struct-package), 3
struct-package, 3
struct_class, 56, 56
struct_class-class, 57
struct_template, 58

test_metric (test_metric-class), 58
test_metric-class, 58

value (calculate), 9
value,entity-method (max_length), 24
value,metric-method (calculate), 9
value<- (calculate), 9
value<-,entity-method (max_length), 24
value<-,enum-method (enum), 16
value<-,metric-method (calculate), 9

	struct-package
	.DollarNames.struct_class
	as.code
	as.DatasetExperiment
	as.DatasetExperiment,SummarizedExperiment-method
	as.SummarizedExperiment
	as.SummarizedExperiment,DatasetExperiment-method
	as_data_frame
	c,ontology_list-method
	calculate
	chart
	chart_names
	chart_plot
	citations
	DatasetExperiment
	entity_stato
	enum
	enum_stato
	example_chart
	example_iterator-class
	example_model
	export_xlsx
	get_description
	iris_DatasetExperiment
	is_output
	is_param
	libraries
	max_length
	model
	models
	model_apply
	model_predict
	model_reverse
	model_seq
	model_train
	new_struct
	ontology
	optimiser
	output_ids
	output_list
	output_name
	output_obj
	output_value
	param_ids
	param_list
	param_name
	param_obj
	param_value
	predicted
	predicted_name
	preprocess
	resampler
	result
	result_name
	run
	seq_in
	set_obj_method
	set_obj_show
	set_struct_obj
	stato_id
	struct_class
	struct_class-class
	struct_template
	test_metric-class
	$,ontology_list-method
	$,ontology_term-method
	$,struct_class-method
	$<-,struct_class-method
	Index

