
Package ‘splatter’
February 2, 2026

Type Package

Title Simple Simulation of Single-cell RNA Sequencing Data

Version 1.35.0

Date 2025-10-30

Description Splatter is a package for the simulation of single-cell RNA
sequencing count data. It provides a simple interface for creating
complex simulations that are reproducible and well-documented.
Parameters can be estimated from real data and functions are provided
for comparing real and simulated datasets.

License GPL-3 + file LICENSE

URL https://bioconductor.org/packages/splatter/,

https://github.com/Oshlack/splatter,

http://oshlacklab.com/splatter/

BugReports https://github.com/Oshlack/splatter/issues

Depends R (>= 4.0), SingleCellExperiment

Imports BiocGenerics, BiocParallel, checkmate (>= 2.0.0), crayon,
edgeR, fitdistrplus, grDevices, locfit, matrixStats, methods,
rlang, S4Vectors, scuttle, stats, SummarizedExperiment, utils,
withr

Suggests BASiCS (>= 1.7.10), BiocManager, BiocSingular, BiocStyle,
Biostrings, covr, cowplot, GenomeInfoDb, GenomicRanges, ggplot2
(>= 3.4.0), igraph, IRanges, knitr, limSolve, lme4, magick,
mfa, phenopath, preprocessCore, progress, pscl, rmarkdown,
scales, scater (>= 1.15.16), scDD, scran, SparseDC, spelling,
testthat, VariantAnnotation, zinbwave

VignetteBuilder knitr

biocViews SingleCell, RNASeq, Transcriptomics, GeneExpression,
Sequencing, Software, ImmunoOncology

Encoding UTF-8

Language en-GB

1

https://bioconductor.org/packages/splatter/
https://github.com/Oshlack/splatter
http://oshlacklab.com/splatter/
https://github.com/Oshlack/splatter/issues

2 Contents

LazyData FALSE

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/splatter

git_branch devel

git_last_commit 646e458

git_last_commit_date 2025-11-01

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Luke Zappia [aut, cre] (ORCID: <https://orcid.org/0000-0001-7744-8565>,
GitHub: lazappi),

Belinda Phipson [aut] (ORCID: <https://orcid.org/0000-0002-1711-7454>,
GitHub: bphipson),

Christina Azodi [ctb] (ORCID: <https://orcid.org/0000-0002-6097-606X>,
GitHub: azodichr),

Alicia Oshlack [aut] (ORCID: <https://orcid.org/0000-0001-9788-5690>)

Maintainer Luke Zappia <luke@lazappi.id.au>

Contents
splatter-package . 5
addGeneLengths . 5
BASiCSEstimate . 6
BASiCSParams . 9
BASiCSSimulate . 9
compareSCEs . 10
diffSCEs . 12
expandParams . 13
getLNormFactors . 14
getParam . 15
getParams . 15
kersplatEstBCV . 16
kersplatEstimate . 17
kersplatEstLib . 18
kersplatEstMean . 18
kersplatGenNetwork . 19
KersplatParams . 20
kersplatSample . 21
kersplatSelectRegs . 22
kersplatSetup . 23
kersplatSimAmbientCounts . 24
kersplatSimCellCounts . 25
kersplatSimCellMeans . 25
kersplatSimCounts . 26
kersplatSimGeneMeans . 27
kersplatSimLibSizes . 28

https://orcid.org/0000-0001-7744-8565
https://orcid.org/0000-0002-1711-7454
https://orcid.org/0000-0002-6097-606X
https://orcid.org/0000-0001-9788-5690

Contents 3

kersplatSimPaths . 28
kersplatSimulate . 29
listSims . 30
lun2Estimate . 31
Lun2Params . 32
lun2Simulate . 33
lunEstimate . 34
LunParams . 35
lunSimulate . 36
makeCompPanel . 37
makeDiffPanel . 38
makeOverallPanel . 38
mfaEstimate . 39
MFAParams . 40
mfaSimulate . 41
minimiseSCE . 42
mockBulkeQTL . 43
mockBulkMatrix . 43
mockEmpiricalSet . 44
mockGFF . 45
mockVCF . 45
newParams . 46
Params . 47
phenoEstimate . 47
PhenoParams . 48
phenoSimulate . 49
scDDEstimate . 50
SCDDParams . 51
scDDSimulate . 52
setParam . 53
setParams . 55
setParamsUnchecked . 56
setParamUnchecked . 56
simpleEstimate . 57
SimpleParams . 58
simpleSimulate . 58
sparseDCEstimate . 59
SparseDCParams . 61
sparseDCSimulate . 61
splatEstBCV . 62
splatEstDropout . 63
splatEstimate . 64
splatEstLib . 65
splatEstMean . 65
splatEstOutlier . 66
SplatParams . 66
splatPopAssignMeans . 68
splatPopCleanSCE . 69

4 Contents

splatPopConditionalEffects . 69
splatPopConditionEffects . 70
splatPopDesignBatches . 70
splatPopDesignConditions . 71
splatPopeQTLEffects . 71
splatPopEstimate . 72
splatPopEstimateEffectSize . 73
splatPopEstimateMeanCV . 73
splatPopGroupEffects . 74
SplatPopParams . 75
splatPopParseEmpirical . 76
splatPopParseGenes . 77
splatPopParseVCF . 77
splatPopQuantNorm . 78
splatPopQuantNormKey . 79
splatPopSimBatchEffects . 79
splatPopSimConditionalEffects . 80
splatPopSimEffects . 80
splatPopSimGeneMeans . 81
splatPopSimMeans . 82
splatPopSimulate . 82
splatPopSimulateMeans . 84
splatPopSimulateSample . 86
splatPopSimulateSC . 87
splatSimBatchCellMeans . 88
splatSimBatchEffects . 89
splatSimBCVMeans . 89
splatSimCellMeans . 90
splatSimDE . 90
splatSimDropout . 91
splatSimGeneMeans . 91
splatSimLibSizes . 92
splatSimTrueCounts . 92
splatSimulate . 93
summariseDiff . 95
zinbEstimate . 96
ZINBParams . 98
zinbSimulate . 98

Index 100

splatter-package 5

splatter-package splatter: Simple Simulation of Single-cell RNA Sequencing Data

Description

Splatter is a package for the simulation of single-cell RNA sequencing count data. It provides
a simple interface for creating complex simulations that are reproducible and well-documented.
Parameters can be estimated from real data and functions are provided for comparing real and
simulated datasets.

Author(s)

Maintainer: Luke Zappia <luke@lazappi.id.au> (ORCID) (lazappi)

Authors:

• Belinda Phipson <belinda.phipson@petermac.org> (ORCID) (bphipson)
• Alicia Oshlack <alicia.oshlack@petermac.org> (ORCID)

Other contributors:

• Christina Azodi <cazodi@svi.edu.au> (ORCID) (azodichr) [contributor]

See Also

Useful links:

• https://bioconductor.org/packages/splatter/

• https://github.com/Oshlack/splatter

• http://oshlacklab.com/splatter/

• Report bugs at https://github.com/Oshlack/splatter/issues

addGeneLengths Add gene lengths

Description

Add gene lengths to an SingleCellExperiment object

Usage

addGeneLengths(
sce,
method = c("generate", "sample"),
loc = 7.9,
scale = 0.7,
lengths = NULL

)

https://orcid.org/0000-0001-7744-8565
https://orcid.org/0000-0002-1711-7454
https://orcid.org/0000-0001-9788-5690
https://orcid.org/0000-0002-6097-606X
https://bioconductor.org/packages/splatter/
https://github.com/Oshlack/splatter
http://oshlacklab.com/splatter/
https://github.com/Oshlack/splatter/issues

6 BASiCSEstimate

Arguments

sce SingleCellExperiment to add gene lengths to.

method Method to use for creating lengths.

loc Location parameter for the generate method.

scale Scale parameter for the generate method.

lengths Vector of lengths for the sample method.

Details

This function adds simulated gene lengths to the rowData slot of a SingleCellExperiment object
that can be used for calculating length normalised expression values such as TPM or FPKM. The
generate method simulates lengths using a (rounded) log-normal distribution, with the default loc
and scale parameters based on human protein-coding genes. Alternatively the sample method can
be used which randomly samples lengths (with replacement) from a supplied vector.

Value

SingleCellExperiment with added gene lengths

Examples

Default generate method
sce <- simpleSimulate()
sce <- addGeneLengths(sce)
head(rowData(sce))
Sample method (human coding genes)
Not run:
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(GenomicFeatures)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
tx.lens <- transcriptLengths(txdb, with.cds_len = TRUE)
tx.lens <- tx.lens[tx.lens$cds_len > 0,]
gene.lens <- max(splitAsList(tx.lens$tx_len, tx.lens$gene_id))
sce <- addGeneLengths(sce, method = "sample", lengths = gene.lens)

End(Not run)

BASiCSEstimate Estimate BASiCS simulation parameters

Description

Estimate simulation parameters for the BASiCS simulation from a real dataset.

BASiCSEstimate 7

Usage

BASiCSEstimate(
counts,
spike.info = NULL,
batch = NULL,
n = 20000,
thin = 10,
burn = 5000,
regression = TRUE,
params = newBASiCSParams(),
verbose = TRUE,
progress = TRUE,
...

)

S3 method for class 'SingleCellExperiment'
BASiCSEstimate(
counts,
spike.info = NULL,
batch = NULL,
n = 20000,
thin = 10,
burn = 5000,
regression = TRUE,
params = newBASiCSParams(),
verbose = TRUE,
progress = TRUE,
...

)

S3 method for class 'matrix'
BASiCSEstimate(
counts,
spike.info = NULL,
batch = NULL,
n = 20000,
thin = 10,
burn = 5000,
regression = TRUE,
params = newBASiCSParams(),
verbose = TRUE,
progress = TRUE,
...

)

8 BASiCSEstimate

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

spike.info data.frame describing spike-ins with two columns: "Name" giving the names of
the spike-in features (must match rownames(counts)) and "Input" giving the
number of input molecules.

batch vector giving the batch that each cell belongs to.

n total number of MCMC iterations. Must be >= max(4, thin) and a multiple of
thin.

thin thining period for the MCMC sampler. Must be >= 2.

burn burn-in period for the MCMC sampler. Must be in the range 1 <= burn < n and
a multiple of thin.

regression logical. Whether to use regression to identify over-dispersion. See BASiCS_MCMC
for details.

params BASiCSParams object to store estimated values in.

verbose logical. Whether to print progress messages.

progress logical. Whether to print additional BASiCS progress messages.

... Optional parameters passed to BASiCS_MCMC.

Details

This function is just a wrapper around BASiCS_MCMC that takes the output and converts it to a BA-
SiCSParams object. Either a set of spike-ins or batch information (or both) must be supplied. If
only batch information is provided there must be at least two batches. See BASiCS_MCMC for details.

Value

BASiCSParams object containing the estimated parameters.

Examples

Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE()

spike.info <- data.frame(
Name = rownames(sce)[1:10],
Input = rnorm(10, 500, 200),
stringsAsFactors = FALSE

)
params <- BASiCSEstimate(sce[1:100, 1:30], spike.info)
params

BASiCSParams 9

BASiCSParams The BASiCSParams class

Description

S4 class that holds parameters for the BASiCS simulation.

Parameters

The BASiCS simulation uses the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

Batch parameters nBatches Number of batches to simulate.
batchCells Number of cells in each batch.

Gene parameters gene.params A data.frame containing gene parameters with two columns:
Mean (mean expression for each biological gene) and Delta (cell-to-cell heterogeneity
for each biological gene).

Spike-in parameters nSpikes The number of spike-ins to simulate.
spike.means Input molecules for each spike-in.

Cell parameters cell.params A data.frame containing gene parameters with two columns: Phi
(mRNA content factor for each cell, scaled to sum to the number of cells in each batch)
and S (capture efficient for each cell).

Variability parameters theta Technical variability parameter for each batch.

The parameters not shown in brackets can be estimated from real data using BASiCSEstimate. For
details of the BASiCS simulation see BASiCSSimulate.

BASiCSSimulate BASiCS simulation

Description

Simulate counts using the BASiCS method.

Usage

BASiCSSimulate(
params = newBASiCSParams(),
sparsify = TRUE,
verbose = TRUE,
...

)

10 compareSCEs

Arguments

params BASiCSParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

... any additional parameter settings to override what is provided in params.

Details

This function is just a wrapper around BASiCS_Sim that takes a BASiCSParams, runs the simulation
then converts the output to a SingleCellExperiment object. See BASiCS_Sim for more details of
how the simulation works.

Value

SingleCellExperiment containing simulated counts

References

Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian Analysis of Single-Cell Sequencing
data. PLoS Computational Biology (2015).

Paper: 10.1371/journal.pcbi.1004333

Code: https://github.com/catavallejos/BASiCS

Examples

if (requireNamespace("BASiCS", quietly = TRUE)) {
sim <- BASiCSSimulate()

}

compareSCEs Compare SingleCellExperiment objects

Description

Combine the data from several SingleCellExperiment objects and produce some basic plots com-
paring them.

Usage

compareSCEs(
sces,
point.size = 0.1,
point.alpha = 0.1,
fits = TRUE,
colours = NULL

)

10.1371/journal.pcbi.1004333
https://github.com/catavallejos/BASiCS

compareSCEs 11

Arguments

sces named list of SingleCellExperiment objects to combine and compare.

point.size size of points in scatter plots.

point.alpha opacity of points in scatter plots.

fits whether to include fits in scatter plots.

colours vector of colours to use for each dataset.

Details

The returned list has three items:

RowData Combined row data from the provided SingleCellExperiments.

ColData Combined column data from the provided SingleCellExperiments.

Plots Comparison plots

Means Boxplot of mean distribution.

Variances Boxplot of variance distribution.

MeanVar Scatter plot with fitted lines showing the mean-variance relationship.

LibrarySizes Boxplot of the library size distribution.

ZerosGene Boxplot of the percentage of each gene that is zero.

ZerosCell Boxplot of the percentage of each cell that is zero.

MeanZeros Scatter plot with fitted lines showing the mean-zeros relationship.

VarGeneCor Heatmap of correlation of the 100 most variable genes.

The plots returned by this function are created using ggplot and are only a sample of the kind of
plots you might like to consider. The data used to create these plots is also returned and should be
in the correct format to allow you to create further plots using ggplot.

Value

List containing the combined datasets and plots.

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
names(comparison)
names(comparison$Plots)

12 diffSCEs

diffSCEs Diff SingleCellExperiment objects

Description

Combine the data from several SingleCellExperiment objects and produce some basic plots com-
paring them to a reference.

Usage

diffSCEs(
sces,
ref,
point.size = 0.1,
point.alpha = 0.1,
fits = TRUE,
colours = NULL

)

Arguments

sces named list of SingleCellExperiment objects to combine and compare.

ref string giving the name of the SingleCellExperiment to use as the reference

point.size size of points in scatter plots.

point.alpha opacity of points in scatter plots.

fits whether to include fits in scatter plots.

colours vector of colours to use for each dataset.

Details

This function aims to look at the differences between a reference SingleCellExperiment and one or
more others. It requires each SingleCellExperiment to have the same dimensions. Properties are
compared by ranks, for example when comparing the means the values are ordered and the differ-
ences between the reference and another dataset plotted. A series of Q-Q plots are also returned.

The returned list has five items:

Reference The SingleCellExperiment used as the reference.

RowData Combined feature data from the provided SingleCellExperiments.

ColData Combined column data from the provided SingleCellExperiments.

Plots Difference plots

Means Boxplot of mean differences.
Variances Boxplot of variance differences.
MeanVar Scatter plot showing the difference from the reference variance across expression

ranks.

expandParams 13

LibraeySizes Boxplot of the library size differences.
ZerosGene Boxplot of the differences in the percentage of each gene that is zero.
ZerosCell Boxplot of the differences in the percentage of each cell that is zero.
MeanZeros Scatter plot showing the difference from the reference percentage of zeros across

expression ranks.

QQPlots Quantile-Quantile plots

Means Q-Q plot of the means.
Variances Q-Q plot of the variances.
LibrarySizes Q-Q plot of the library sizes.
ZerosGene Q-Q plot of the percentage of zeros per gene.
ZerosCell Q-Q plot of the percentage of zeros per cell.

The plots returned by this function are created using ggplot and are only a sample of the kind of
plots you might like to consider. The data used to create these plots is also returned and should be
in the correct format to allow you to create further plots using ggplot.

Value

List containing the combined datasets and plots.

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
names(difference)
names(difference$Plots)

expandParams Expand parameters

Description

Expand the parameters that can be vectors so that they are the same length as the number of
groups. Work is done by paramsExpander called from each method. Expansions are stored us-
ing setParamsUnchecked.

Usage

expandParams(object, ...)

S4 method for signature 'BASiCSParams'
expandParams(object)

S4 method for signature 'LunParams'
expandParams(object)

14 getLNormFactors

S4 method for signature 'Params'
expandParams(object, vectors, n)

S4 method for signature 'SplatParams'
expandParams(object)

S4 method for signature 'SplatPopParams'
expandParams(object)

paramsExpander(object, vectors, n)

Arguments

object object to expand.

... additional arguments.

vectors names of vector parameters to expand

n number of times to repeat each parameter

Value

Expanded object.

getLNormFactors Get log-normal factors

Description

Randomly generate multiplication factors from a log-normal distribution.

Usage

getLNormFactors(n.facs, sel.prob, neg.prob, fac.loc, fac.scale)

Arguments

n.facs Number of factors to generate.

sel.prob Probability that a factor will be selected to be different from 1.

neg.prob Probability that a selected factor is less than one.

fac.loc Location parameter for the log-normal distribution.

fac.scale Scale factor for the log-normal distribution.

Value

Vector containing generated factors.

getParam 15

getParam Get a parameter

Description

Accessor function for getting parameter values.

Usage

getParam(object, name)

S4 method for signature 'Params'
getParam(object, name)

Arguments

object object to get parameter from.

name name of the parameter to get.

Value

The extracted parameter value

Examples

params <- newSimpleParams()
getParam(params, "nGenes")

getParams Get parameters

Description

Get multiple parameter values from a Params object.

Usage

getParams(params, names)

Arguments

params Params object to get values from.

names vector of names of the parameters to get.

16 kersplatEstBCV

Value

List with the values of the selected parameters.

Examples

params <- newSimpleParams()
getParams(params, c("nGenes", "nCells", "mean.rate"))

kersplatEstBCV Estimate Kersplat BCV parameters

Description

Estimate Biological Coefficient of Variation (BCV) parameters for the Kersplat simulation

Usage

kersplatEstBCV(counts, params, verbose)

Arguments

counts counts matrix.

params KersplatParams object to store estimated values in.

verbose logical. Whether to print progress messages

Details

The estimateDisp function is used to estimate the common dispersion across the dataset. An
exponential correction is applied based on fitting an exponential relationship between simulated
and estimated values. If this results in a negative dispersion a simpler linear correction is applied
instead.

Value

KersplatParams object with estimated BCV parameters

kersplatEstimate 17

kersplatEstimate Estimate Kersplat simulation parameters

Description

Estimate simulation parameters for the Kersplat simulation from a real dataset. See the individual
estimation functions for more details on how this is done.

Usage

kersplatEstimate(counts, params = newKersplatParams(), verbose = TRUE)

S3 method for class 'SingleCellExperiment'
kersplatEstimate(counts, params = newKersplatParams(), verbose = TRUE)

S3 method for class 'matrix'
kersplatEstimate(counts, params = newKersplatParams(), verbose = TRUE)

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

params KersplatParams object to store estimated values in.

verbose logical. Whether to print progress messages.

Value

KersplatParams object containing the estimated parameters.

See Also

kersplatEstMean, kersplatEstBCV, kersplatEstLib

Examples

if (requireNamespace("igraph", quietly = TRUE)) {
Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE()

params <- kersplatEstimate(sce)
params

}

18 kersplatEstMean

kersplatEstLib Estimate Kersplat library size parameters

Description

Estimate the library size parameters for the Kersplat simulation

Usage

kersplatEstLib(counts, params, verbose)

Arguments

counts counts matrix.

params KersplatParams object to store estimated values in.

verbose logical. Whether to print progress messages

Details

Parameters for the log-normal distribution are estimated by fitting the library sizes using fitdist.
All the fitting methods are tried and the fit with the best Cramer-von Mises statistic is selected. The
density of the library sizes is also estimated using density.

Value

KersplatParams object with library size parameters

kersplatEstMean Estimate Kersplat means

Description

Estimate mean parameters for the Kersplat simulation

Usage

kersplatEstMean(norm.counts, params, verbose)

Arguments

norm.counts library size normalised counts matrix.

params KersplatParams object to store estimated values in.

verbose logical. Whether to print progress messages

kersplatGenNetwork 19

Details

Parameters for the gamma distribution are estimated by fitting the mean normalised counts using
fitdist. All the fitting methods are tried and the fit with the best Cramer-von Mises statistic is
selected. The density of the means is also estimated using density.

Expression outlier genes are detected using the Median Absolute Deviation (MAD) from median
method. If the log2 mean expression of a gene is greater than two MADs above the median log2
mean expression it is designated as an outlier. The proportion of outlier genes is used to estimate
the outlier probability. Factors for each outlier gene are calculated by dividing mean expression by
the median mean expression. A log-normal distribution is then fitted to these factors in order to
estimate the outlier factor location and scale parameters using the fitdist MLE method.

Value

KersplatParams object with estimated means

kersplatGenNetwork Generate Kersplat gene network

Description

Generate a gene network for the Kersplat simulation

Usage

kersplatGenNetwork(params, verbose)

Arguments

params KersplatParams object containing simulation parameters.

verbose logical. Whether to print progress messages

Details

Currently a very simple approach is used which needs to be improved. A network is generated
using the sample_forestfire function and edge weights are sampled from a standard normal
distribution.

Value

KersplatParams object with gene network

20 KersplatParams

KersplatParams The KersplatParams class

Description

S4 class that holds parameters for the Kersplat simulation.

Parameters

The Kersplat simulation uses the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

Mean parameters mean.shape Shape parameter for the mean gamma distribution.
mean.rate Rate parameter for the mean gamma distribution.
mean.outProb Probability that a gene is an expression outlier.
mean.outFacLoc Location (meanlog) parameter for the expression outlier factor log-normal

distribution.
mean.outFacScale Scale (sdlog) parameter for the expression outlier factor log-normal dis-

tribution.
mean.dens density object describing the log gene mean density.
[mean.method] Method to use for simulating gene means. Either "fit" to sample from a

gamma distribution (with expression outliers) or "density" to sample from the provided
density object.

[mean.values] Vector of means for each gene.

Biological Coefficient of Variation parameters bcv.common Underlying common dispersion across
all genes.

[bcv.df] Degrees of Freedom for the BCV inverse chi-squared distribution.

Network parameters [network.graph] Graph containing the gene network.
[network.nRegs] Number of regulators in the network.

Paths parameters [paths.programs] Number of expression programs.
[paths.design] data.frame describing path structure. See kersplatSimPaths for details.

Library size parameters lib.loc Location (meanlog) parameter for the library size log-normal
distribution, or mean parameter if a normal distribution is used.

lib.scale Scale (sdlog) parameter for the library size log-normal distribution, or sd param-
eter if a normal distribution is used.

lib.dens density object describing the library size density.
[lib.method] Method to use for simulating library sizes. Either "fit" to sample from a log-

normal distribution or "density" to sample from the provided density object.

Design parameters [cells.design] data.frame describing cell structure. See kersplatSimCellMeans
for details.

kersplatSample 21

Doublet parameters [doublet.prop] Proportion of cells that are doublets.

Ambient parameters [ambient.scale] Scaling factor for the library size log-normal distribution
when generating ambient library sizes.

[ambient.nEmpty] Number of empty cells to simulate.

The parameters not shown in brackets can be estimated from real data using kersplatEstimate.
For details of the Kersplat simulation see kersplatSimulate.

kersplatSample Kersplat sample

Description

Sample cells for the Kersplat simulation

Usage

kersplatSample(params, sparsify = TRUE, verbose = TRUE)

Arguments

params KersplatParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

Details

The second stage is a two-step Kersplat simulation is to generate cells based on a complete KersplatParams
object. intermediate parameters.

The sampling process involves the following steps:

1. Simulate library sizes for each cell

2. Simulate means for each cell

3. Simulate endogenous counts for each cell

4. Simulate ambient counts for each cell

5. Simulate final counts for each cell

The final output is a SingleCellExperiment object that contains the simulated counts but also the
values for various intermediate steps. These are stored in the colData (for cell specific information),
rowData (for gene specific information) or assays (for gene by cell matrices) slots. This additional
information includes:

colData Cell Unique cell identifier.
Type Whether the cell is a Cell, Doublet or Empty.
CellLibSize The expected number of endogenous counts for that cell.

22 kersplatSelectRegs

AmbientLibSize The expected number of ambient counts for that cell.
Path The path the cell belongs to.
Step How far along the path each cell is.
Path1 For doublets the path of the first partner in the doublet (otherwise NA).
Step1 For doublets the step of the first partner in the doublet (otherwise NA).
Path2 For doublets the path of the second partner in the doublet (otherwise NA).
Step2 For doublets the step of the second partner in the doublet (otherwise NA).

rowData Gene Unique gene identifier.
BaseMean The base expression level for that gene.
AmbientMean The ambient expression level for that gene.

assays CellMeans The mean expression of genes in each cell after any differential expression
and adjusted for expected library size.

CellCounts Endogenous count matrix.
AmbientCounts Ambient count matrix.
counts Final count matrix.

Values that have been added by Splatter are named using UpperCamelCase in order to differentiate
them from the values added by analysis packages which typically use underscore_naming.

Value

SingleCellExperiment object containing the simulated counts and intermediate values.

See Also

kersplatSimLibSizes, kersplatSimCellMeans, kersplatSimCellCounts, kersplatSimAmbientCounts,
kersplatSimCounts

Examples

if (requireNamespace("igraph", quietly = TRUE)) {
params <- kersplatSetup()
sim <- kersplatSample(params)

}

kersplatSelectRegs Select Kersplat regulators

Description

Select regulator genes in the gene network for a Kersplat simulation

Usage

kersplatSelectRegs(params, verbose)

kersplatSetup 23

Arguments

params KersplatParams object containing simulation parameters.

verbose logical. Whether to print progress messages

Details

Regulators are randomly selected, weighted according to the difference between their out degree
and in degree. This is an arbitrary weighting and may be improved or replace in the future.

Value

KersplatParams object with gene regulators

kersplatSetup Kersplat setup

Description

Setup the parameters required for the Kersplat simulation

Usage

kersplatSetup(params = newKersplatParams(), verbose = TRUE, ...)

Arguments

params KersplatParams object containing simulation parameters.

verbose logical. Whether to print progress messages

... any additional parameter settings to override what is provided in params.

Details

The first stage is a two-step Kersplat simulation is to generate some of the intermediate parameters.
The resulting parameters allow multiple simulated datasets to be generated from the same biological
structure (using kersplatSample). As with all the other parameters these values can be manually
overwritten if desired.

The setup involves the following steps:

1. Generate a gene network (if not already present)

2. Select regulator genes (if not already present)

3. Simulate gene means (if not already present)

4. Simulate cell paths

The resulting KersplatParams object will have the following parameters set (if they weren’t al-
ready).

24 kersplatSimAmbientCounts

• mean.values

• network.graph

• network.regsSet

• paths.means

See KersplatParams for more details about these parameters and the functions for the individual
steps for more details about the process.

Value

A complete KersplatParams object

See Also

kersplatGenNetwork, kersplatSelectRegs, kersplatSimGeneMeans, kersplatSimPaths, KersplatParams

Examples

if (requireNamespace("igraph", quietly = TRUE)) {
params <- kersplatSetup()

}

kersplatSimAmbientCounts

Simulate Kersplat ambient counts

Description

Simulate Kersplat ambient counts

Usage

kersplatSimAmbientCounts(sim, params, verbose)

Arguments

sim SingleCellExperiment containing simulation.
params KersplatParams object with simulation parameters.
verbose logical. Whether to print progress messages

Details

The overall expression profile to calculated by averaging the cell counts of the (non-empty) cells.
This is then multiplied by the ambient library sizes to get a mean for each cell. Counts are then
sampled from a Poisson distribution using these means.

Value

SingleCellExperiment with ambient counts

kersplatSimCellCounts 25

kersplatSimCellCounts Simulate Kersplat cell counts

Description

Simulate cell counts for the Kersplat simulation

Usage

kersplatSimCellCounts(sim, params, verbose)

Arguments

sim SingleCellExperiment containing simulation.

params KersplatParams object with simulation parameters.

verbose logical. Whether to print progress messages

Details

Counts are sampled from a Poisson distribution with lambda equal to the cell means matrix.

Value

SingleCellExperiment with cell counts

kersplatSimCellMeans Simulate Kersplat cell means

Description

Simulate endogenous counts for each cell in a Kersplat simulation

Usage

kersplatSimCellMeans(sim, params, verbose)

Arguments

sim SingleCellExperiment containing simulation.

params KersplatParams object with simulation parameters.

verbose logical. Whether to print progress messages

26 kersplatSimCounts

Details

Cells are first assigned to a path and a step along that path. This is controlled by the cells.design
parameter which is a data.frame with the columns "Path", "Probability", "Alpha" and "Beta". The
Path field is an ID for each path and the Probability field is the probability that a cell will come from
that path (must sum to 1). The Alpha and Beta parameters control the density of cells along the path.
After they are assigned to paths the step for each cell is sampled from a Beta distribution with param-
eters shape1 equals Alpha and shape2 equals beta. This approach is very flexible and allows almost
any distribution of cells along a path. The distribution can be viewed using hist(rbeta(10000,
Alpha, Beta), breaks = 100). Some useful combinations of parameters are:

Alpha = 1, Beta = 1 Uniform distribution along the path
Alpha = 0, Beta = 1 All cells at the start of the path.
Alpha = 1, Beta = 0 All cells at the end of the path.
Alpha = 0, Beta = 0 Cells only at each end of the path.
Alpha = 1, Beta = 2 Linear skew towards the start of the path
Alpha = 0.5, Beta = 1 Curved skew towards the start of the path
Alpha = 2, Beta = 1 Linear skew towards the end of the path
Alpha = 1, Beta = 0.5 Curved skew towards the end of the path
Alpha = 0.5, Beta = 0.5 Curved skew towards both ends of the path
Alpha = 0.5, Beta = 0.5 Curved skew away from both ends of the path

Once cells are assigned to paths and steps the correct means are extracted from the paths.means
parameter and adjusted based on each cell’s library size. An adjustment for BCV is then applied.
Doublets are also simulated at this stage by selecting two path/step combinations and averaging the
means.

Value

SingleCellExperiment with cell means

kersplatSimCounts Simulate Kersplat final counts

Description

Simulate the final counts matrix for a Kersplat simulation

Usage

kersplatSimCounts(sim, params, verbose)

Arguments

sim SingleCellExperiment containing simulation.
params KersplatParams object with simulation parameters.
verbose logical. Whether to print progress messages

kersplatSimGeneMeans 27

Details

The cell counts matrix and ambient counts matrix are added together. The result is then downsam-
pled to the cell library size (for cells and doublets) or the ambient library size (for empty cells) using
the downsampleMatrix function.

Value

SingleCellExperiment with counts matrix

See Also

downsampleMatrix

kersplatSimGeneMeans Simulate Kersplat gene means

Description

Simulate Kersplat gene means

Usage

kersplatSimGeneMeans(params, verbose)

Arguments

params KersplatParams object containing simulation parameters.

verbose logical. Whether to print progress messages

Details

Gene means are simulated in one of two ways depending on the value of the mean.method param-
eter.

If mean.method is "fit" (default) then means are sampled from a Gamma distribution with shape
equals mean.shape and rate equals mean.rate. Expression outliers are then added by replacing
some values with the median multiplied by a factor from a log-normal distribution. This is the same
process used for the Splat simulation.

If mean.method is "density" then means are sampled from the density object in the mean.density
parameter using a rejection sampling method. This approach is more flexible but may violate some
statistical assumptions.

Value

KersplatParams object with gene means

28 kersplatSimPaths

kersplatSimLibSizes Simulate Kersplat library sizes

Description

Generate library sizes for cells in the Kersplat simulation

Usage

kersplatSimLibSizes(sim, params, verbose)

Arguments

sim SingleCellExperiment containing simulation.

params KersplatParams object with simulation parameters.

verbose logical. Whether to print progress messages

Details

Library sizes are simulated in one of two ways depending on the value of the lib.method parameter.

If lib.method is "fit" (default) then means are sampled from a log-normal distribution with mean-
log equals lib.loc and sdlog equals lib.scale.

If mean.method is "density" then library sizes are sampled from the density object in the lib.density
parameter using a rejection sampling method. This approach is more flexible but may violate some
statistical assumptions.

Ambient library sizes are also generated from a log-normal distribution based on the parameters for
the cell library size and adjusted using the ambient.scale parameter.

Value

SingleCellExperiment with library sizes

kersplatSimPaths Simulate Kersplat paths

Description

Simulate gene means for each step along each path of a Kersplat simulation

Usage

kersplatSimPaths(params, verbose)

kersplatSimulate 29

Arguments

params KersplatParams object containing simulation parameters.
verbose logical. Whether to print progress messages

Details

The method of simulating paths is inspired by the method used in the PROSSTT simulation.
Changes in expression are controlled by paths.nPrograms regulatory programs. Each of the reg-
ulatory genes in the gene network has some association with each program. This is analogous to
there being changes in the environment (the programs) which are sensed by receptors (regulatory
genes) and cause changes in expression downstream. For each path a random walk is generated
for each program and the changes passed on to the regulatory genes. At each step the changes
propagate through the network according to the weights on edges between genes. This algorithm is
fairly simple but should result in correlation relationships between genes. However it is likely to be
improved and adjusted in the future.

The path structure itself is specified by the paths.design parameter. This is a data.frame with
three columns: "Path", "From", and "Steps". The Path field is an ID for each path while the Steps
field controls the length of each path. Increasing the number of steps will increase the difference
in expression between the ends of the paths. The From field sets the originating point of each path.
For example a From of 0, 0, 0 would indicate three paths from the origin while a From of 0, 1, 1
would give a branching structure with Path 1 beginning at the origin and Path 2 and Path 3 beginning
at the end of Path 1.

Value

KersplatParams object with path means

References

Papadopoulos N, Parra RG, Söding J. PROSSTT: probabilistic simulation of single-cell RNA-seq
data for complex differentiation processes. Bioinformatics (2019). https://doi.org/10.1093/
bioinformatics/btz078.

kersplatSimulate Kersplat simulation

Description

Simulate scRNA-seq count data using the Kersplat model

Usage

kersplatSimulate(
params = newKersplatParams(),
sparsify = TRUE,
verbose = TRUE,
...

)

https://doi.org/10.1093/bioinformatics/btz078
https://doi.org/10.1093/bioinformatics/btz078

30 listSims

Arguments

params KersplatParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

... any additional parameter settings to override what is provided in params.

Details

This functions is for simulating data in a single step. It consists of a call to kersplatSetup followed
by a call to kersplatSample. Please see the documentation for those functions for more details of
the individual steps.

Value

SingleCellExperiment containing simulated counts and intermediate values

See Also

kersplatSetup, kersplatSample

Examples

if (requireNamespace("igraph", quietly = TRUE)) {
sim <- kersplatSimulate

}

listSims List simulations

Description

List all the simulations that are currently available in Splatter with a brief description.

Usage

listSims(print = TRUE)

Arguments

print logical. Whether to print to the console.

Value

Invisibly returns a data.frame containing the information that is displayed.

lun2Estimate 31

Examples

listSims()

lun2Estimate Estimate Lun2 simulation parameters

Description

Estimate simulation parameters for the Lun2 simulation from a real dataset.

Usage

lun2Estimate(
counts,
plates,
params = newLun2Params(),
min.size = 200,
verbose = TRUE,
BPPARAM = SerialParam()

)

S3 method for class 'SingleCellExperiment'
lun2Estimate(
counts,
plates,
params = newLun2Params(),
min.size = 200,
verbose = TRUE,
BPPARAM = SerialParam()

)

S3 method for class 'matrix'
lun2Estimate(
counts,
plates,
params = newLun2Params(),
min.size = 200,
verbose = TRUE,
BPPARAM = SerialParam()

)

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

plates integer vector giving the plate that each cell originated from.

32 Lun2Params

params Lun2Params object to store estimated values in.

min.size minimum size of clusters when identifying group of cells in the data.

verbose logical. Whether to show progress messages.

BPPARAM A BiocParallelParam instance giving the parallel back-end to be used. Default
is SerialParam which uses a single core.

Details

See Lun2Params for more details on the parameters.

Value

LunParams object containing the estimated parameters.

Examples

Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE()

plates <- as.numeric(factor(colData(sce)$Mutation_Status))
params <- lun2Estimate(sce, plates, min.size = 20)
params

Lun2Params The Lun2Params class

Description

S4 class that holds parameters for the Lun2 simulation.

Parameters

The Lun2 simulation uses the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

Gene parameters gene.params A data.frame containing gene parameters with two columns:
Mean (mean expression for each gene) and Disp (dispersion for each gene).

zi.params A data.frame containing zero-inflated gene parameters with three columns: Mean
(mean expression for each gene), Disp (dispersion for each, gene), and Prop (zero pro-
portion for each gene).

[nPlates] The number of plates to simulate.

lun2Simulate 33

Plate parameters plate.ingroup Character vector giving the plates considered to be part of the
"ingroup".

plate.mod Plate effect modifier factor. The plate effect variance is divided by this value.

plate.var Plate effect variance.

Cell parameters cell.plates Factor giving the plate that each cell comes from.

cell.libSizes Library size for each cell.

cell.libMod Modifier factor for library sizes. The library sizes are multiplied by this value.

Differential expression parameters de.nGenes Number of differentially expressed genes.

de.fc Fold change for differentially expressed genes.

The parameters not shown in brackets can be estimated from real data using lun2Estimate. For
details of the Lun2 simulation see lun2Simulate.

lun2Simulate Lun2 simulation

Description

Simulate single-cell RNA-seq count data using the method described in Lun and Marioni "Over-
coming confounding plate effects in differential expression analyses of single-cell RNA-seq data".

Usage

lun2Simulate(
params = newLun2Params(),
zinb = FALSE,
sparsify = TRUE,
verbose = TRUE,
...

)

Arguments

params Lun2Params object containing simulation parameters.

zinb logical. Whether to use a zero-inflated model.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages.

... any additional parameter settings to override what is provided in params.

34 lunEstimate

Details

The Lun2 simulation uses a negative-binomial distribution where the means and dispersions have
been sampled from a real dataset (using lun2Estimate). The other core feature of the Lun2 sim-
ulation is the addition of plate effects. Differential expression can be added between two groups
of plates (an "ingroup" and all other plates). Library size factors are also applied and optionally a
zero-inflated negative-binomial can be used.

If the number of genes to simulate differs from the number of provided gene parameters or the
number of cells to simulate differs from the number of library sizes the relevant parameters will be
sampled with a warning. This allows any number of genes or cells to be simulated regardless of the
number in the dataset used in the estimation step but has the downside that some genes or cells may
be simulated multiple times.

Value

SingleCellExperiment containing simulated counts.

References

Lun ATL, Marioni JC. Overcoming confounding plate effects in differential expression analyses of
single-cell RNA-seq data. Biostatistics (2017).

Paper: dx.doi.org/10.1093/biostatistics/kxw055

Code: https://github.com/MarioniLab/PlateEffects2016

Examples

sim <- lun2Simulate()

lunEstimate Estimate Lun simulation parameters

Description

Estimate simulation parameters for the Lun simulation from a real dataset.

Usage

lunEstimate(counts, params = newLunParams())

S3 method for class 'SingleCellExperiment'
lunEstimate(counts, params = newLunParams())

S3 method for class 'matrix'
lunEstimate(counts, params = newLunParams())

dx.doi.org/10.1093/biostatistics/kxw055
https://github.com/MarioniLab/PlateEffects2016

LunParams 35

Arguments

counts either a counts matrix or an SingleCellExperiment object containing count data
to estimate parameters from.

params LunParams object to store estimated values in.

Details

The nGenes and nCells parameters are taken from the size of the input data. No other parameters
are estimated. See LunParams for more details on the parameters.

Value

LunParams object containing the estimated parameters.

Examples

Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE()

params <- lunEstimate(sce)
params

LunParams The LunParams class

Description

S4 class that holds parameters for the Lun simulation.

Parameters

The Lun simulation uses the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[nGroups] The number of groups to simulate.

[groupCells] Vector giving the number of cells in each simulation group/path.

[seed] Seed to use for generating random numbers.

Mean parameters [mean.shape] Shape parameter for the mean gamma distribution.
[mean.rate] Rate parameter for the mean gamma distribution.

Counts parameters [count.disp] The dispersion parameter for the counts negative binomial dis-
tribution.

Differential expression parameters [de.nGenes] The number of genes that are differentially ex-
pressed in each group

36 lunSimulate

[de.upProp] The proportion of differentially expressed genes that are up-regulated in each
group

[de.upFC] The fold change for up-regulated genes
[de.downFC] The fold change for down-regulated genes

The parameters not shown in brackets can be estimated from real data using lunEstimate. For
details of the Lun simulation see lunSimulate.

lunSimulate Lun simulation

Description

Simulate single-cell RNA-seq count data using the method described in Lun, Bach and Marioni
"Pooling across cells to normalize single-cell RNA sequencing data with many zero counts".

Usage

lunSimulate(params = newLunParams(), sparsify = TRUE, verbose = TRUE, ...)

Arguments

params LunParams object containing Lun simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages.

... any additional parameter settings to override what is provided in params.

Details

The Lun simulation generates gene mean expression levels from a gamma distribution with shape
= mean.shape and rate = mean.rate. Counts are then simulated from a negative binomial distri-
bution with mu = means and size = 1 / bcv.common. In addition each cell is given a size factor (2 ^
rnorm(nCells, mean = 0, sd = 0.5)) and differential expression can be simulated with fixed fold
changes.

See LunParams for details of the parameters.

Value

SingleCellExperiment object containing the simulated counts and intermediate values.

References

Lun ATL, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data
with many zero counts. Genome Biology (2016).

Paper: dx.doi.org/10.1186/s13059-016-0947-7

Code: https://github.com/MarioniLab/Deconvolution2016

dx.doi.org/10.1186/s13059-016-0947-7
https://github.com/MarioniLab/Deconvolution2016

makeCompPanel 37

Examples

sim <- lunSimulate()

makeCompPanel Make comparison panel

Description

Combine the plots from compareSCEs into a single panel.

Usage

makeCompPanel(
comp,
title = "Comparison",
labels = c("Means", "Variance", "Mean-variance relationship", "Library size",
"Zeros per gene", "Zeros per cell", "Mean-zeros relationship")

)

Arguments

comp list returned by compareSCEs.

title title for the panel.

labels vector of labels for each of the seven plots.

Value

Combined panel plot

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
panel <- makeCompPanel(comparison)

38 makeOverallPanel

makeDiffPanel Make difference panel

Description

Combine the plots from diffSCEs into a single panel.

Usage

makeDiffPanel(
diff,
title = "Difference comparison",
labels = c("Means", "Variance", "Library size", "Zeros per cell", "Zeros per gene",

"Mean-variance relationship", "Mean-zeros relationship")
)

Arguments

diff list returned by diffSCEs.

title title for the panel.

labels vector of labels for each of the seven sections.

Value

Combined panel plot

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
panel <- makeDiffPanel(difference)

makeOverallPanel Make overall panel

Description

Combine the plots from compSCEs and diffSCEs into a single panel.

mfaEstimate 39

Usage

makeOverallPanel(
comp,
diff,
title = "Overall comparison",
row.labels = c("Means", "Variance", "Mean-variance relationship", "Library size",

"Zeros per cell", "Zeros per gene", "Mean-zeros relationship")
)

Arguments

comp list returned by compareSCEs.

diff list returned by diffSCEs.

title title for the panel.

row.labels vector of labels for each of the seven rows.

Value

Combined panel plot

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
panel <- makeOverallPanel(comparison, difference)

mfaEstimate Estimate mfa simulation parameters

Description

Estimate simulation parameters for the mfa simulation from a real dataset.

Usage

mfaEstimate(counts, params = newMFAParams())

S3 method for class 'SingleCellExperiment'
mfaEstimate(counts, params = newMFAParams())

S3 method for class 'matrix'
mfaEstimate(counts, params = newMFAParams())

40 MFAParams

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

params MFAParams object to store estimated values in.

Details

The nGenes and nCells parameters are taken from the size of the input data. The dropout lambda
parameter is estimate using empirical_lambda. See MFAParams for more details on the parameters.

Value

MFAParams object containing the estimated parameters.

Examples

Load example data
if (requireNamespace("mfa", quietly = TRUE)) {

library(mfa)
synth <- create_synthetic(

C = 20, G = 5, zero_negative = TRUE,
model_dropout = TRUE

)

params <- mfaEstimate(synth$X)
params

}

MFAParams The MFAParams class

Description

S4 class that holds parameters for the mfa simulation.

Parameters

The mfa simulation uses the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

[trans.prop] Proportion of genes that show transient expression. These genes are briefly up or
down-regulated before returning to their initial state

[zero.neg] Logical. Whether to set negative expression values to zero. This will zero-inflate the
data.

[dropout.present] Logical. Whether to simulate dropout.

mfaSimulate 41

dropout.lambda Lambda parameter for the exponential dropout function.

The parameters not shown in brackets can be estimated from real data using mfaEstimate. See
create_synthetic for more details about the parameters. For details of the Splatter implementa-
tion of the mfa simulation see mfaSimulate.

mfaSimulate MFA simulation

Description

Simulate a bifurcating pseudotime path using the mfa method.

Usage

mfaSimulate(params = newMFAParams(), sparsify = TRUE, verbose = TRUE, ...)

Arguments

params MFAParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose Logical. Whether to print progress messages.

... any additional parameter settings to override what is provided in params.

Details

This function is just a wrapper around create_synthetic that takes a MFAParams, runs the simula-
tion then converts the output from log-expression to counts and returns a SingleCellExperiment
object. See create_synthetic and the mfa paper for more details about how the simulation works.

Value

SingleCellExperiment containing simulated counts

References

Campbell KR, Yau C. Probabilistic modeling of bifurcations in single-cell gene expression data
using a Bayesian mixture of factor analyzers. Wellcome Open Research (2017).

Paper: 10.12688/wellcomeopenres.11087.1

Code: https://github.com/kieranrcampbell/mfa

Examples

if (requireNamespace("mfa", quietly = TRUE)) {
sim <- mfaSimulate()

}

10.12688/wellcomeopenres.11087.1
https://github.com/kieranrcampbell/mfa

42 minimiseSCE

minimiseSCE Minimise SCE

Description

Reduce the size of a SingleCellExperiment object by unneeded information.

Usage

minimiseSCE(
sce,
rowData.keep = FALSE,
colData.keep = FALSE,
metadata.keep = FALSE,
assays.keep = "counts",
sparsify = c("auto", "all", "none"),
verbose = TRUE

)

Arguments

sce SingleCellExperiment object

rowData.keep Either TRUE (keep all rowData columns), FALSE (remove all rowData columns)
or a character vector with the names of the rowData columns to keep

colData.keep Either TRUE (keep all colData columns), FALSE (remove all colData columns)
or a character vector with the names of the colData columns to keep

metadata.keep Either TRUE (keep all metadata), FALSE (remove all metadata) or a character
vector with the names of the metadata items to keep

assays.keep Either TRUE (keep all assays), FALSE (remove all assays) or a character vector
with the names of the assays to keep

sparsify Whether to convert assay matrices to sparse format. Either "all", "none" or
"auto" (default) to only convert those matrices that will result in a size reduction

verbose Whether to print status messages

Value

SingleCellExperiment object

Examples

sce <- splatSimulate(verbose = FALSE)
sce.min <- minimiseSCE(sce, verbose = FALSE)
object.size(sce)
object.size(sce.min)

mockBulkeQTL 43

mockBulkeQTL Generate mock eQTL mapping results

Description

Quick function to generate mock eQTL mapping results, with parameters estimated using real eQTL
mapping results from GTEx using thyroid tissue.

Usage

mockBulkeQTL(n.genes = 500, seed = NULL)

Arguments

n.genes Number of genes in mock eQTL data.

seed Optional: seed for random seed

Value

data.frame containing mock bulk eQTL mapping results.

Examples

eqtl <- mockBulkeQTL()

mockBulkMatrix Generate mock bulk population scale expression data

Description

Quick function to generate mock bulk expression data for a population, with parameters estimated
using real thyroid tissue data from GTEx.

Usage

mockBulkMatrix(n.genes = 100, n.samples = 50, seed = NULL)

Arguments

n.genes Number of genes in mock bulk data.

n.samples Number of samples in mock bulk data.

seed Optional: seed for random seed

44 mockEmpiricalSet

Value

matrix containing mock bulk expression data.

Examples

bulk <- mockBulkMatrix

mockEmpiricalSet Generate set of "empirical" mock data

Description

Quick function to generate matching mock VCF, bulk expression, and eQTL data, useful for running
splatPopEmpiricalMeans

Usage

mockEmpiricalSet(
n.genes = 20,
n.snps = 1000,
n.samples = 10,
chromosome = 1,
chr.length = 2e+06,
seed = NULL

)

Arguments

n.genes Number of genes in mock eQTL data.

n.snps Number of SNPs in mock vcf file.

n.samples Number of samples in mock bulk data.

chromosome Chromosome name

chr.length Length of mock chromosome

seed Optional: seed for random seed

Value

list(gff=mockGFF, vcf=mockVCF, means=mockMEANS, eqtl=mockEQTL)

Examples

empirical <- mockEmpiricalSet()

mockGFF 45

mockGFF Generate mock gff

Description

Quick function to generate a mock gff.

Usage

mockGFF(n.genes = 50, chromosome = 1, chr.length = 2e+06, seed = NULL)

Arguments

n.genes Number of genes in mock gff file

chromosome Chromosome name

chr.length Length of mock chromosome

seed Optional: seed for random seed

Value

data.frame containing mock gff data.

Examples

gff <- mockGFF()

mockVCF Generate mock vcf

Description

Quick function to generate mock vcf file. Note this data has unrealistic population structure.

Usage

mockVCF(
n.snps = 200,
n.samples = 5,
chromosome = 1,
chr.length = 2e+06,
seed = NULL

)

46 newParams

Arguments

n.snps Number of SNPs in mock vcf file.
n.samples Number of samples in mock bulk data.
chromosome Chromosome name
chr.length Length of mock chromosome
seed Optional: seed for random seed

Value

data.frame containing mock vcf data.

Examples

vcf <- mockVCF()

newParams New Params

Description

Create a new Params object. Functions exist for each of the different Params subtypes.

Usage

newBASiCSParams(...)

newKersplatParams(...)

newLun2Params(...)

newLunParams(...)

newMFAParams(...)

newPhenoParams(...)

newSCDDParams(...)

newSimpleParams(...)

newSparseDCParams(...)

newSplatParams(...)

newSplatPopParams(...)

newZINBParams(...)

Params 47

Arguments

... additional parameters passed to setParams.

Value

New Params object.

Examples

params <- newSimpleParams()
params <- newSimpleParams(nGenes = 200, nCells = 10)

Params The Params virtual class

Description

Virtual S4 class that all other Params classes inherit from.

Parameters

The Params class defines the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

The parameters not shown in brackets can be estimated from real data.

phenoEstimate Estimate PhenoPath simulation parameters

Description

Estimate simulation parameters for the PhenoPath simulation from a real dataset.

Usage

phenoEstimate(counts, params = newPhenoParams())

S3 method for class 'SingleCellExperiment'
phenoEstimate(counts, params = newPhenoParams())

S3 method for class 'matrix'
phenoEstimate(counts, params = newPhenoParams())

48 PhenoParams

Arguments

counts either a counts matrix or an SingleCellExperiment object containing count data
to estimate parameters from.

params PhenoParams object to store estimated values in.

Details

The nGenes and nCells parameters are taken from the size of the input data. The total number of
genes is evenly divided into the four types. See PhenoParams for more details on the parameters.

Value

PhenoParams object containing the estimated parameters.

Examples

if (requireNamespace("phenopath", quietly = TRUE)) {
Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE()

params <- phenoEstimate(sce)
params

}

PhenoParams The PhenoParams class

Description

S4 class that holds parameters for the PhenoPath simulation.

Parameters

The PhenoPath simulation uses the following parameters:

nGenes The number of genes to simulate.
nCells The number of cells to simulate.
[seed] Seed to use for generating random numbers.
[n.de] Number of genes to simulate from the differential expression regime
[n.pst] Number of genes to simulate from the pseudotime regime
[n.pst.beta] Number of genes to simulate from the pseudotime + beta interactions regime
[n.de.pst.beta] Number of genes to simulate from the differential expression + pseudotime +

interactions regime

The parameters not shown in brackets can be estimated from real data using phenoEstimate. For
details of the PhenoPath simulation see phenoSimulate.

phenoSimulate 49

phenoSimulate PhenoPath simulation

Description

Simulate counts from a pseudotime trajectory using the PhenoPath method.

Usage

phenoSimulate(params = newPhenoParams(), sparsify = TRUE, verbose = TRUE, ...)

Arguments

params PhenoParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

... any additional parameter settings to override what is provided in params.

Details

This function is just a wrapper around simulate_phenopath that takes a PhenoParams, runs the
simulation then converts the output from log-expression to counts and returns a SingleCellExperiment
object. The original simulated log-expression values are returned in the LogExprs assay. See
simulate_phenopath and the PhenoPath paper for more details about how the simulation works.

Value

SingleCellExperiment containing simulated counts

References

Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic and environmen-
tal backgrounds across single-cells and populations. bioRxiv (2017).

Paper: 10.1101/159913

Code: https://github.com/kieranrcampbell/phenopath

Examples

if (requireNamespace("phenopath", quietly = TRUE)) {
sim <- phenoSimulate()

}

10.1101/159913
https://github.com/kieranrcampbell/phenopath

50 scDDEstimate

scDDEstimate Estimate scDD simulation parameters

Description

Estimate simulation parameters for the scDD simulation from a real dataset.

Usage

scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
...

)

S3 method for class 'matrix'
scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
conditions,
...

)

S3 method for class 'SingleCellExperiment'
scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
condition = "condition",
...

)

Default S3 method:
scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
condition,
...

)

SCDDParams 51

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

params SCDDParams object to store estimated values in.

verbose logical. Whether to show progress messages.

BPPARAM A BiocParallelParam instance giving the parallel back-end to be used. Default
is SerialParam which uses a single core.

... further arguments passed to or from other methods.

conditions Vector giving the condition that each cell belongs to. Conditions can be 1 or 2.

condition String giving the column that represents biological group of interest.

Details

This function applies preprocess to the counts then uses scDD to estimate the numbers of each
gene type to simulate. The output is then converted to a SCDDParams object. See preprocess and
scDD for details.

Value

SCDDParams object containing the estimated parameters.

Examples

if (requireNamespace("scDD", quietly = TRUE)) {
library(scuttle)
set.seed(1)
sce <- mockSCE(ncells = 20, ngenes = 100)

colData(sce)$condition <- sample(1:2, ncol(sce), replace = TRUE)
params <- scDDEstimate(sce, condition = "condition")
params

}

SCDDParams The SCDDParams class

Description

S4 class that holds parameters for the scDD simulation.

52 scDDSimulate

Parameters

The SCDD simulation uses the following parameters:

nGenes The number of genes to simulate (not used).

nCells The number of cells to simulate in each condition.

[seed] Seed to use for generating random numbers.

SCdat SingleCellExperiment containing real data.

nDE Number of DE genes to simulate.

nDP Number of DP genes to simulate.

nDM Number of DM genes to simulate.

nDB Number of DB genes to simulate.

nEE Number of EE genes to simulate.

nEP Number of EP genes to simulate.

[sd.range] Interval for fold change standard deviations.

[modeFC] Values for DP, DM and DB mode fold changes.

[varInflation] Variance inflation factors for each condition. If all equal to 1 will be set to NULL
(default).

[condition] String giving the column that represents biological group of interest.

The parameters not shown in brackets can be estimated from real data using scDDEstimate. See
simulateSet for more details about the parameters. For details of the Splatter implementation of
the scDD simulation see scDDSimulate.

scDDSimulate scDD simulation

Description

Simulate counts using the scDD method.

Usage

scDDSimulate(
params = newSCDDParams(),
plots = FALSE,
plot.file = NULL,
sparsify = TRUE,
verbose = TRUE,
BPPARAM = SerialParam(),
...

)

setParam 53

Arguments

params SCDDParams object containing simulation parameters.

plots logical. whether to generate scDD fold change and validation plots.

plot.file File path to save plots as PDF.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

BPPARAM A BiocParallelParam instance giving the parallel back-end to be used. Default
is SerialParam which uses a single core.

... any additional parameter settings to override what is provided in params.

Details

This function is just a wrapper around simulateSet that takes a SCDDParams, runs the simulation
then converts the output to a SingleCellExperiment object. See simulateSet for more details
about how the simulation works.

Value

SingleCellExperiment containing simulated counts

References

Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A statistical approach for
identifying differential distributions in single-cell RNA-seq experiments. Genome Biology (2016).

Paper: 10.1186/s13059-016-1077-y

Code: https://github.com/kdkorthauer/scDD

Examples

sim <- scDDSimulate()

setParam Set a parameter

Description

Function for setting parameter values.

10.1186/s13059-016-1077-y
https://github.com/kdkorthauer/scDD

54 setParam

Usage

setParam(object, name, value)

S4 method for signature 'BASiCSParams'
setParam(object, name, value)

S4 method for signature 'KersplatParams'
setParam(object, name, value)

S4 method for signature 'Lun2Params'
setParam(object, name, value)

S4 method for signature 'LunParams'
setParam(object, name, value)

S4 method for signature 'Params'
setParam(object, name, value)

S4 method for signature 'PhenoParams'
setParam(object, name, value)

S4 method for signature 'SCDDParams'
setParam(object, name, value)

S4 method for signature 'SplatParams'
setParam(object, name, value)

S4 method for signature 'SplatPopParams'
setParam(object, name, value)

S4 method for signature 'ZINBParams'
setParam(object, name, value)

Arguments

object object to set parameter in.

name name of the parameter to set.

value value to set the parameter to.

Value

Object with new parameter value.

Examples

params <- newSimpleParams()
setParam(params, "nGenes", 100)

setParams 55

setParams Set parameters

Description

Set multiple parameters in a Params object.

Usage

setParams(object, update = NULL, ...)

S4 method for signature 'KersplatParams'
setParams(object, update = NULL, ...)

S4 method for signature 'Params'
setParams(object, update = NULL, ...)

S4 method for signature 'SplatParams'
setParams(object, update = NULL, ...)

Arguments

object Params object to set parameters in.
update list of parameters to set where names(update) are the names of the parameters

to set and the items in the list are values.
... additional parameters to set. These are combined with any parameters specified

in update.

Details

Each parameter is set by a call to setParam. If the same parameter is specified multiple times it will
be set multiple times. Parameters can be specified using a list via update (useful when collecting
parameter values in some way) or individually (useful when setting them manually), see examples.

Value

Params object with updated values.

Examples

params <- newSimpleParams()
params
Set individually
params <- setParams(params, nGenes = 1000, nCells = 50)
params
Set via update list
params <- setParams(params, list(mean.rate = 0.2, mean.shape = 0.8))
params

56 setParamUnchecked

setParamsUnchecked Set parameters UNCHECKED

Description

Set multiple parameters in a Params object.

Usage

setParamsUnchecked(params, update = NULL, ...)

Arguments

params Params object to set parameters in.

update list of parameters to set where names(update) are the names of the parameters
to set and the items in the list are values.

... additional parameters to set. These are combined with any parameters specified
in update.

Details

Each parameter is set by a call to setParam. If the same parameter is specified multiple times it will
be set multiple times. Parameters can be specified using a list via update (useful when collecting
parameter values in some way) or individually (useful when setting them manually), see examples.
THE FINAL OBJECT IS NOT CHECKED FOR VALIDITY!

Value

Params object with updated values.

setParamUnchecked Set a parameter UNCHECKED

Description

Function for setting parameter values. THE OUTPUT IS NOT CHECKED FOR VALIDITY!

Usage

setParamUnchecked(object, name, value)

S4 method for signature 'Params'
setParamUnchecked(object, name, value)

simpleEstimate 57

Arguments

object object to set parameter in.

name name of the parameter to set.

value value to set the parameter to.

Value

Object with new parameter value.

simpleEstimate Estimate simple simulation parameters

Description

Estimate simulation parameters for the simple simulation from a real dataset.

Usage

simpleEstimate(counts, params = newSimpleParams())

S3 method for class 'SingleCellExperiment'
simpleEstimate(counts, params = newSimpleParams())

S3 method for class 'matrix'
simpleEstimate(counts, params = newSimpleParams())

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

params SimpleParams object to store estimated values in.

Details

The nGenes and nCells parameters are taken from the size of the input data. The mean parameters
are estimated by fitting a gamma distribution to the library size normalised mean expression level
using fitdist. See SimpleParams for more details on the parameters.

Value

SimpleParams object containing the estimated parameters.

58 simpleSimulate

Examples

Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE()

params <- simpleEstimate(sce)
params

SimpleParams The SimpleParams class

Description

S4 class that holds parameters for the simple simulation.

Parameters

The simple simulation uses the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

mean.shape The shape parameter for the mean gamma distribution.

mean.rate The rate parameter for the mean gamma distribution.

[count.disp] The dispersion parameter for the counts negative binomial distribution.

The parameters not shown in brackets can be estimated from real data using simpleEstimate. For
details of the simple simulation see simpleSimulate.

simpleSimulate Simple simulation

Description

Simulate counts from a simple negative binomial distribution without simulated library sizes, dif-
ferential expression etc.

Usage

simpleSimulate(
params = newSimpleParams(),
sparsify = TRUE,
verbose = TRUE,
...

)

sparseDCEstimate 59

Arguments

params SimpleParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

... any additional parameter settings to override what is provided in params.

Details

Gene means are simulated from a gamma distribution with shape = mean.shape and rate = mean.rate.
Counts are then simulated from a negative binomial distribution with mu = means and size = 1 /
counts.disp. See SimpleParams for more details of the parameters.

Value

SingleCellExperiment containing simulated counts

Examples

sim <- simpleSimulate()
Override default parameters
sim <- simpleSimulate(nGenes = 1000, nCells = 50)

sparseDCEstimate Estimate SparseDC simulation parameters

Description

Estimate simulation parameters for the SparseDC simulation from a real dataset.

Usage

sparseDCEstimate(
counts,
conditions,
nclusters,
norm = TRUE,
params = newSparseDCParams()

)

S3 method for class 'SingleCellExperiment'
sparseDCEstimate(
counts,
conditions,
nclusters,
norm = TRUE,

60 sparseDCEstimate

params = newSparseDCParams()
)

S3 method for class 'matrix'
sparseDCEstimate(
counts,
conditions,
nclusters,
norm = TRUE,
params = newSparseDCParams()

)

Arguments

counts either a counts matrix or an SingleCellExperiment object containing count data
to estimate parameters from.

conditions numeric vector giving the condition each cell belongs to.

nclusters number of cluster present in the dataset.

norm logical, whether to library size normalise counts before estimation. Set this to
FALSE if counts is already normalised.

params PhenoParams object to store estimated values in.

Details

The nGenes and nCells parameters are taken from the size of the input data. The counts are
preprocessed using pre_proc_data and then parameters are estimated using sparsedc_cluster
using lambda values calculated using lambda1_calculator and lambda2_calculator.

See SparseDCParams for more details on the parameters.

Value

SparseParams object containing the estimated parameters.

Examples

if (requireNamespace("SparseDC", quietly = TRUE)) {
Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE(ncells = 20, ngenes = 100)

conditions <- sample(1:2, ncol(sce), replace = TRUE)

params <- sparseDCEstimate(sce, conditions, nclusters = 3)
params

}

SparseDCParams 61

SparseDCParams The SparseDCParams class

Description

S4 class that holds parameters for the SparseDC simulation.

Parameters

The SparseDC simulation uses the following parameters:

nGenes The number of genes to simulate in each condition.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

markers.n Number of marker genes to simulate for each cluster.

markers.shared Number of marker genes for each cluster shared between conditions. Must be
less than or equal to markers.n.

[markers.same] Logical. Whether each cluster should have the same set of marker genes.

clusts.c1 Numeric vector of clusters present in condition 1. The number of times a cluster is
repeated controls the proportion of cells from that cluster.

clusts.c2 Numeric vector of clusters present in condition 2. The number of times a cluster is
repeated controls the proportion of cells from that cluster.

[mean.lower] Lower bound for cluster gene means.

[mean.upper] Upper bound for cluster gene means.

The parameters not shown in brackets can be estimated from real data using sparseDCEstimate.
For details of the SparseDC simulation see sparseDCSimulate.

sparseDCSimulate SparseDC simulation

Description

Simulate counts from cluster in two conditions using the SparseDC method.

Usage

sparseDCSimulate(
params = newSparseDCParams(),
sparsify = TRUE,
verbose = TRUE,
...

)

62 splatEstBCV

Arguments

params SparseDCParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

... any additional parameter settings to override what is provided in params.

Details

This function is just a wrapper around sim_data that takes a SparseDCParams, runs the simula-
tion then converts the output from log-expression to counts and returns a SingleCellExperiment
object. The original simulated log-expression values are returned in the LogExprs assay. See
sim_data and the SparseDC paper for more details about how the simulation works.

Value

SingleCellExperiment containing simulated counts

References

Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic and environmen-
tal backgrounds across single-cells and populations. bioRxiv (2017).

Barron M, Zhang S, Li J. A sparse differential clustering algorithm for tracing cell type changes via
single-cell RNA-sequencing data. Nucleic Acids Research (2017).

Paper: 10.1093/nar/gkx1113

Examples

if (requireNamespace("SparseDC", quietly = TRUE)) {
sim <- sparseDCSimulate()

}

splatEstBCV Estimate Splat Biological Coefficient of Variation parameters

Description

Parameters are estimated using the estimateDisp function in the edgeR package.

Usage

splatEstBCV(counts, params)

Arguments

counts counts matrix to estimate parameters from.

params SplatParams object to store estimated values in.

10.1093/nar/gkx1113

splatEstDropout 63

Details

The estimateDisp function is used to estimate the common dispersion and prior degrees of free-
dom. See estimateDisp for details. When estimating parameters on simulated data we found a
broadly linear relationship between the true underlying common dispersion and the edgR estimate,
therefore we apply a small correction, disp = 0.1 + 0.25 * edgeR.disp.

Value

SplatParams object with estimated values.

splatEstDropout Estimate Splat dropout parameters

Description

Estimate the midpoint and shape parameters for the logistic function used when simulating dropout.

Usage

splatEstDropout(norm.counts, params)

Arguments

norm.counts library size normalised counts matrix.

params SplatParams object to store estimated values in.

Details

Logistic function parameters are estimated by fitting a logistic function to the relationship between
log2 mean gene expression and the proportion of zeros in each gene. See nls for details of fitting.
Note this is done on the experiment level, more granular (eg. group or cell) level dropout is not
estimated.

Value

SplatParams object with estimated values.

64 splatEstimate

splatEstimate Estimate Splat simulation parameters

Description

Estimate simulation parameters for the Splat simulation from a real dataset. See the individual
estimation functions for more details on how this is done.

Usage

splatEstimate(counts, params = newSplatParams())

S3 method for class 'SingleCellExperiment'
splatEstimate(counts, params = newSplatParams())

S3 method for class 'matrix'
splatEstimate(counts, params = newSplatParams())

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

params SplatParams object to store estimated values in.

Value

SplatParams object with estimated values.

See Also

splatEstMean, splatEstLib, splatEstOutlier, splatEstBCV, splatEstDropout

Examples

Load example data
library(scuttle)
set.seed(1)
sce <- mockSCE()

params <- splatEstimate(sce)
params

splatEstLib 65

splatEstLib Estimate Splat library size parameters

Description

The Shapiro-Wilks test is used to determine if the library sizes are normally distributed. If so a
normal distribution is fitted to the library sizes, if not (most cases) a log-normal distribution is fitted
and the estimated parameters are added to the params object. See fitdist for details on the fitting.

Usage

splatEstLib(counts, params)

Arguments

counts counts matrix to estimate parameters from.

params splatParams object to store estimated values in.

Value

SplatParams object with estimated values.

splatEstMean Estimate Splat mean parameters

Description

Estimate rate and shape parameters for the gamma distribution used to simulate gene expression
means.

Usage

splatEstMean(norm.counts, params)

Arguments

norm.counts library size normalised counts matrix.

params SplatParams object to store estimated values in.

Details

Parameters for the gamma distribution are estimated by fitting the mean normalised counts using
fitdist. The ’maximum goodness-of-fit estimation’ method is used to minimise the Cramer-von
Mises distance. This can fail in some situations, in which case the ’method of moments estimation’
method is used instead. Prior to fitting the means are winsorized by setting the top and bottom 10
percent of values to the 10th and 90th percentiles.

66 SplatParams

Value

SplatParams object containing the estimated parameters.

splatEstOutlier Estimate Splat expression outlier parameters

Description

Parameters are estimated by comparing means of individual genes to the median mean expression
level.

Usage

splatEstOutlier(norm.counts, params)

Arguments

norm.counts library size normalised counts matrix.

params SplatParams object to store estimated values in.

Details

Expression outlier genes are detected using the Median Absolute Deviation (MAD) from median
method. If the log2 mean expression of a gene is greater than two MADs above the median log2
mean expression it is designated as an outlier. The proportion of outlier genes is used to estimate
the outlier probability. Factors for each outlier gene are calculated by dividing mean expression by
the median mean expression. A log-normal distribution is then fitted to these factors in order to
estimate the outlier factor location and scale parameters using fitdist.

Value

SplatParams object with estimated values.

SplatParams The SplatParams class

Description

S4 class that holds parameters for the Splat simulation.

SplatParams 67

Parameters

The Splat simulation requires the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

Batch parameters [nBatches] The number of batches to simulate.
[batchCells] Vector giving the number of cells in each batch.
[batch.facLoc] Location (meanlog) parameter for the batch effect factor log-normal distri-

bution. Can be a vector.
[batch.facScale] Scale (sdlog) parameter for the batch effect factor log-normal distribu-

tion. Can be a vector.
[batch.rmEffect] Logical, removes the batch effect and continues with the simulation when

TRUE. This allows the user to test batch removal algorithms without having to calculate
the new expected cell means with batch removed.

Mean parameters mean.shape Shape parameter for the mean gamma distribution.
mean.rate Rate parameter for the mean gamma distribution.

Library size parameters lib.loc Location (meanlog) parameter for the library size log-normal
distribution, or mean parameter if a normal distribution is used.

lib.scale Scale (sdlog) parameter for the library size log-normal distribution, or sd param-
eter if a normal distribution is used.

lib.norm Logical. Whether to use a normal distribution for library sizes instead of a log-
normal.

Expression outlier parameters out.prob Probability that a gene is an expression outlier.
out.facLoc Location (meanlog) parameter for the expression outlier factor log-normal dis-

tribution.
out.facScale Scale (sdlog) parameter for the expression outlier factor log-normal distribu-

tion.

Group parameters [nGroups] The number of groups or paths to simulate.
[group.prob] Probability that a cell comes from a group.

Differential expression parameters [de.prob] Probability that a gene is differentially expressed
in a group. Can be a vector.

[de.downProb] Probability that a differentially expressed gene is down-regulated. Can be a
vector.

[de.facLoc] Location (meanlog) parameter for the differential expression factor log-normal
distribution. Can be a vector.

[de.facScale] Scale (sdlog) parameter for the differential expression factor log-normal dis-
tribution. Can be a vector.

Biological Coefficient of Variation parameters bcv.common Underlying common dispersion across
all genes.

bcv.df Degrees of Freedom for the BCV inverse chi-squared distribution.

68 splatPopAssignMeans

Dropout parameters dropout.type The type of dropout to simulate. "none" indicates no dropout,
"experiment" is global dropout using the same parameters for every cell, "batch" uses the
same parameters for every cell in each batch, "group" uses the same parameters for every
cell in each groups and "cell" uses a different set of parameters for each cell.

dropout.mid Midpoint parameter for the dropout logistic function.
dropout.shape Shape parameter for the dropout logistic function.

Differentiation path parameters [path.from] Vector giving the originating point of each path.
This allows path structure such as a cell type which differentiates into an intermediate
cell type that then differentiates into two mature cell types. A path structure of this form
would have a "from" parameter of c(0, 1, 1) (where 0 is the origin). If no vector is given
all paths will start at the origin.

[path.nSteps] Vector giving the number of steps to simulate along each path. If a sin-
gle value is given it will be applied to all paths. This parameter was previously called
path.length.

[path.skew] Vector giving the skew of each path. Values closer to 1 will give more cells
towards the starting population, values closer to 0 will give more cells towards the final
population. If a single value is given it will be applied to all paths.

[path.nonlinearProb] Probability that a gene follows a non-linear path along the differ-
entiation path. This allows more complex gene patterns such as a gene being equally
expressed at the beginning an end of a path but lowly expressed in the middle.

[path.sigmaFac] Sigma factor for non-linear gene paths. A higher value will result in more
extreme non-linear variations along a path.

The parameters not shown in brackets can be estimated from real data using splatEstimate. For
details of the Splat simulation see splatSimulate.

splatPopAssignMeans Sample expression mean and variance for each gene

Description

A mean and coefficient of variation is assigned to each gene by sampling from gamma distributions
parameterized from real data in ‘splatPopEstimate‘. The cv gamma distributions are binned by
gene mean because the distribution of variance in real data is not independent from the mean. The
degree of similarity between individuals can be further tuned using the similarity.scale parameter in
‘SplatPopParams‘.

Usage

splatPopAssignMeans(params, key)

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

key Partial splatPop key data.frame.

splatPopCleanSCE 69

Value

The key updated with assigned means and variances.

splatPopCleanSCE Clean up the population-scale SCE to remove redundant information

Description

Clean up the population-scale SCE to remove redundant information

Usage

splatPopCleanSCE(sim.all)

Arguments

sim.all SingleCellExperiment object with counts for all samples

Value

SingleCellExperiment with simulated sc counts.

splatPopConditionalEffects

Add conditional DE effects to means matrix

Description

Add conditional DE effects to means matrix

Usage

splatPopConditionalEffects(id, key, vcf, means.pop)

Arguments

id The group ID (e.g. "global" or "g1")

key Partial splatPop key data.frame.

vcf VariantAnnotation object containing genotypes of samples.

means.pop Population mean gene expression matrix

Value

data.frame of gene mean expression levels WITH eQTL effects.

70 splatPopDesignBatches

splatPopConditionEffects

Assign Condition-specific eQTL and DEGs.

Description

If nConditions > 1, n eSNP-eGene pairs (n = ’eqtl.condition.specific’) are randomly assigned as
condition specific.

Usage

splatPopConditionEffects(params, key, conditions)

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

key Partial splatPop key data.frame.

conditions array of condition names

Value

The key updated with conditional eQTL and DE effects.

splatPopDesignBatches Set up pooled experimental design

Description

Set up pooled experimental design

Usage

splatPopDesignBatches(params, samples, verbose)

Arguments

params SplatParams object with simulation parameters.

samples List of samples from vcf.

verbose logical. Whether to print progress messages.

Value

Vector with batch assignments for each sample.

splatPopDesignConditions 71

splatPopDesignConditions

Set up designed experiments conditions

Description

Set up designed experiments conditions

Usage

splatPopDesignConditions(params, samples)

Arguments

params SplatParams object with simulation parameters.

samples List of samples from vcf.

Value

Vector with condition assignments for each sample.

splatPopeQTLEffects Assign eGenes-eSNPs pairs and effect sizes.

Description

Randomly pairs N genes (eGene) a SNP (eSNP) within the window size (eqtl.dist) and assigns each
pair an effect size sampled from a gamma distribution parameterized using the effect sizes from a
real eQTL study.

Usage

splatPopeQTLEffects(params, key, vcf)

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

key Partial splatPop key data.frame.

vcf VariantAnnotation object containing genotypes of samples.

Value

The key updated with assigned eQTL effects.

72 splatPopEstimate

splatPopEstimate Estimate population/eQTL simulation parameters

Description

Estimate simulation parameters for the eQTL population simulation from real data. See the indi-
vidual estimation functions for more details on how this is done.

Usage

splatPopEstimate(
counts = NULL,
means = NULL,
eqtl = NULL,
params = newSplatPopParams()

)

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

means Matrix of real gene means across a population, where each row is a gene and
each column is an individual in the population.

eqtl data.frame with all or top eQTL pairs from a real eQTL analysis. Must include
columns: ’gene_id’, ’pval_nominal’, and ’slope’.

params SplatPopParams object containing parameters for the simulation of the mean
expression levels for the population. See SplatPopParams for details.

Value

SplatPopParams object containing the estimated parameters.

See Also

splatPopEstimateEffectSize, splatPopEstimateMeanCV

Examples

if (requireNamespace("VariantAnnotation", quietly = TRUE) &&
requireNamespace("preprocessCore", quietly = TRUE)) {
Load example data
library(scuttle)

sce <- mockSCE()
params <- splatPopEstimate(sce)

}

splatPopEstimateEffectSize 73

splatPopEstimateEffectSize

Estimate eQTL Effect Size parameters

Description

Estimate rate and shape parameters for the gamma distribution used to simulate eQTL (eSNP-
eGene) effect sizes.

Usage

splatPopEstimateEffectSize(params, eqtl)

Arguments

params SplatPopParams object containing parameters for the simulation of the mean
expression levels for the population. See SplatPopParams for details.

eqtl data.frame with all or top eQTL pairs from a real eQTL analysis. Must include
columns: gene_id, pval_nominal, and slope.

Details

Parameters for the gamma distribution are estimated by fitting the top eSNP- eGene pair effect
sizes using fitdist. The maximum goodness-of-fit estimation method is used to minimise the
Cramer-von Mises distance. This can fail in some situations, in which case the method of moments
estimation method is used instead.

Value

params object with estimated values.

splatPopEstimateMeanCV

Estimate gene mean and gene mean variance parameters

Description

Estimate gene mean and gene mean variance parameters

Usage

splatPopEstimateMeanCV(params, emp.gene.means)

74 splatPopGroupEffects

Arguments

params SplatPopParams object containing parameters for the simulation of the mean
expression levels for the population. See SplatPopParams for details.

emp.gene.means data.frame of empirical gene means across a population, where rows are genes
and columns are individuals.

Details

Parameters for the mean gamma distribution are estimated by fitting the mean (across the popula-
tion) expression of genes that meet the criteria (<50 samples have exp <0.1) and parameters for the
cv gamma distribution are estimated for each bin of mean expression using the cv of expression
across the population for genes in that bin. Both are fit using fitdist. The "Nelder-Mead" method
is used to fit the mean gamma distribution and the maximum goodness-of-fit estimation method is
used to minimise the Cramer-von Mises distance for the CV distribution.

Value

params object with estimated values.

splatPopGroupEffects Assign group-specific eQTL and DEGs.

Description

If groups > 1, n eSNP-eGene pairs (n = ’eqtl.group.specific’) are randomly assigned as group spe-
cific.

Usage

splatPopGroupEffects(params, key, groups)

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

key Partial splatPop key data.frame.

groups array of group names

Value

The key updated with group eQTL and DE effects.

SplatPopParams 75

SplatPopParams The SplatPopParams class

Description

S4 class that holds parameters for the splatPop simulation.

Parameters

In addition to the SplatParams parameters, splatPop simulation requires the following parameters:

[similarity.scale] Scaling factor for pop.cv.param.rate, where values larger than 1 increase the
similarity between individuals in the population and values less than one make the individuals
less similar.

[eqtl.n] The number (>1) or percent (<=1) of genes to assign eQTL effects.

[eqtl.dist] Maximum distance between eSNP and eGene

[eqtl.maf.min] Minimum Minor Allele Frequency of eSNPs.

[eqtl.maf.max] Maximum Minor Allele Frequency of eSNPs.

[eqtl.coreg] Proportion of eGenes to have a shared eSNP (i.e., co-regulated genes)

[eqtl.group.specific] Percent of eQTL effects to simulate as group specific.

[eqtl.condition.specific] Percent of eQTL effects to simulate as condition specific.

eQTL Effect size distribution parameters. Defaults estimated from GTEx eQTL mapping results, see vignette for more information. eqtl.ES.shape
Shape parameter for the effect size gamma distribution.

eqtl.ES.rate Rate parameter for the effect size gamma distribution.

Bulk Mean Expression distribution parameters. Defaults estimated from GTEx data, see vignette for more information. pop.mean.shape
Shape parameter for the mean (i.e. bulk) expression gamma distribution

pop.mean.rate Rate parameter for the mean (i.e. bulk) expression gamma distribution

Bulk Expression Coefficient of Variation distribution parameters binned. Defaults estimated from GTEx data, see vignette for more information. pop.cv.param
Dataframe containing gene mean bin range, and the CV shape, and CV rate parameters
for each of those bins.

Specify number of samples per batch. Note that splatPop will randomly assign donors to be present in multiple batches to fulfill the specified nBatches and batch.size parameters. For example, if 10 samples are simulated with batchPool.n=4 and batchPool.size= 4, then 6 samples will be randomly chosen to be replicated in two pools. batch.size
The number of donors in each pool/batch.

Specify shape and rate of gamma distribution to sample number of cells per batch per donor. Will only be used if nCells parameter is set to 0. nCells.sample
True/False if nCells should be set as nCells or sampled from a gamma distribution for
each batch/donor.

nCells.shape Shape parameter for the nCells per batch per donor distribution.
nCells.rate Rate parameter for the nCells per batch per donor distribution.

Condition/treatment differential expression parameters [nConditions] The number of conditions/treatments
to divide samples into.

[condition.prob] Probability that a sample belongs to each condition/treatment group. Can
be a vector.

76 splatPopParseEmpirical

[cde.prob] Probability that a gene is differentially expressed in a condition group. Can be a
vector.

[cde.downProb] Probability that a conditionally differentially expressed gene is down-regulated.
Can be a vector.

[cde.facLoc] Location (meanlog) parameter for the conditional differential expression fac-
tor log-normal distribution. Can be a vector.

[cde.facScale] Scale (sdlog) parameter for the conditional differential expression factor
log-normal distribution. Can be a vector.

The parameters not shown in brackets can be estimated from real data using splatPopEstimate.
For details of the eQTL simulation see splatPopSimulate.

splatPopParseEmpirical

splatPopParseEmpirical

Description

Parse splatPop key information from empirical data provided.

Usage

splatPopParseEmpirical(
vcf = vcf,
gff = gff,
eqtl = eqtl,
means = means,
params = params

)

Arguments

vcf VariantAnnotation object containing genotypes of samples.

gff Either NULL or a data.frame object containing a GFF/GTF file.

eqtl Either NULL or if simulating population parameters directly from empirical
data, a data.frame with empirical/desired eQTL results. To see required format,
run ‘mockEmpiricalSet()‘ and see eqtl output.

means Either NULL or if simulating population parameters directly from empirical
data, a Matrix of real gene means across a population, where each row is a gene
and each column is an individual in the population. To see required format, run
‘mockEmpiricalSet()‘ and see means output.

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

splatPopParseGenes 77

Details

NOTE: This function will cause some of the parameters in the splatPopParams object to be ignored,
such as population level gene mean and variance and eQTL parameters.

This function will ignore a number of parameters defined in splatPopParams, instead pulling key in-
formation directly from provided VCF, GFF, gene means, and eQTL mapping result data provided.

Value

A partial splatPop ‘key‘

splatPopParseGenes Generate population key matrix from random or gff provided gene in-
formation

Description

Generate population key matrix from random or gff provided gene information

Usage

splatPopParseGenes(params, gff)

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

gff Either NULL or a data.frame object containing a GFF/GTF file.

Value

The Partial splatPop key data.frame.

splatPopParseVCF Format and subset genotype data from a VCF file.

Description

Extract numeric alleles from vcf object and filter out SNPs missing genotype data or outside the
Minor Allele Frequency range in ‘SplatPopParams‘.

Usage

splatPopParseVCF(vcf, params)

78 splatPopQuantNorm

Arguments

vcf VariantAnnotation object containing genotypes of samples.

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

Value

Genotype data.frame

splatPopQuantNorm Quantile normalize by sample to fit sc expression distribution.

Description

For each sample, expression values are quantile normalized (qgamma) using the gamma distribution
parameterized from splatEstimate(). This ensures the simulated gene means reflect the distribution
expected from a sc dataset and not a bulk dataset.

Usage

splatPopQuantNorm(params, means)

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

means Mean gene expression matrix with eQTL effects.

Value

matrix of quantile normalized gene mean expression levels.

Examples

if (requireNamespace("VariantAnnotation", quietly = TRUE) &&
requireNamespace("preprocessCore", quietly = TRUE)) {
bulk.means <- mockBulkMatrix(n.genes = 100, n.samples = 100)
bulk.qnorm <- splatPopQuantNorm(newSplatPopParams(), bulk.means)

}

splatPopQuantNormKey 79

splatPopQuantNormKey Add quantile normalized gene mean and cv info the eQTL key.

Description

Add quantile normalized gene mean and cv info the eQTL key.

Usage

splatPopQuantNormKey(key, means)

Arguments

key Partial splatPop key data.frame.

means matrix or list of matrices containing means from ‘splatPopQuantNorm‘

Value

Final eQTL key.

splatPopSimBatchEffects

Simulate batch effects

Description

Simulate batch effects. Batch effect factors for each batch are produced using getLNormFactors
and these are added along with updated means for each batch.

Usage

splatPopSimBatchEffects(sim, params)

Arguments

sim SingleCellExperiment to add batch effects to.

params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated batch effects.

80 splatPopSimEffects

splatPopSimConditionalEffects

Add conditional DE effects to means matrix

Description

Add conditional DE effects to means matrix

Usage

splatPopSimConditionalEffects(key, means.pop, conditions)

Arguments

key Partial splatPop key data.frame.

means.pop matrix or list of matrices with gene means.

conditions array of condition assignments for each sample

Value

data.frame of gene mean expression levels WITH conditional DE effects.

splatPopSimEffects Add eQTL effects to means matrix

Description

Add eQTL effects and non-eQTL group effects to simulated means matrix. The eQTL effects are
incorporated using the following equation:

Y gs = (ESgxMgsxGs) +Mgs

Where Ygs is the mean for gene g and sample s, ESg is the effect size assigned to g, Mgs is the mean
expression assigned to g for s, and Gs is the genotype (number of minor alleles) for s. Non-eQTL
group effects are incorporated as:

Y gs = MgsxGEg

Where GEg is the group effect (i.e. differential expression) assigned to g. To simulate multiple
gene mean matrices with different group effects, this function can be run with ‘id‘ designating the
group id.

Usage

splatPopSimEffects(id, key, conditions, vcf, means.pop)

splatPopSimGeneMeans 81

Arguments

id The group ID (e.g. "global" or "g1")

key Partial splatPop key data.frame.

conditions array of condition assignments for each sample

vcf VariantAnnotation object containing genotypes of samples.

means.pop Population mean gene expression matrix

Value

data.frame of gene mean expression levels WITH eQTL effects.

splatPopSimGeneMeans Simulate gene means for splatPop

Description

Simulate outlier expression factors for splatPop. Genes with an outlier factor not equal to 1 are
replaced with the median mean expression multiplied by the outlier factor.

Usage

splatPopSimGeneMeans(sim, params, base.means.gene)

Arguments

sim SingleCellExperiment to add gene means to.

params SplatParams object with simulation parameters.

base.means.gene

List of gene means for sample from matrix generated by ‘splatPopSimulate-
Means‘ and with the sample specified in ‘splatPopSimulateSC‘.

Value

SingleCellExperiment with simulated gene means.

82 splatPopSimulate

splatPopSimMeans Simulate mean gene expression matrix without eQTL effects

Description

Gene mean expression levels are assigned to each gene for each pair randomly from a normal
distribution parameterized using the mean and cv assigned to each gene in the key. If gene means
matrix is provided, those will be used instead.

Usage

splatPopSimMeans(vcf, key, means)

Arguments

vcf VariantAnnotation object containing genotypes of samples.

key Partial splatPop key data.frame.

means Null or matrix of gene means to use

Value

matrix of gene mean expression levels WITHOUT eQTL effects.

splatPopSimulate splatPop simulation

Description

Simulate scRNA-seq count data using the splat model for a population of individuals with correla-
tion structure.

Usage

splatPopSimulate(
params = newSplatPopParams(nGenes = 50),
vcf = mockVCF(),
method = c("single", "groups", "paths"),
gff = NULL,
eqtl = NULL,
means = NULL,
key = NULL,
counts.only = FALSE,
sparsify = TRUE,
verbose = TRUE,
...

)

splatPopSimulate 83

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

vcf VariantAnnotation object containing genotypes of samples.

method which simulation method to use. Options are "single" which produces a single
population, "groups" which produces distinct groups (eg. cell types), "paths"
which selects cells from continuous trajectories (eg. differentiation processes).

gff Either NULL or a data.frame object containing a GFF/GTF file.

eqtl Either NULL or if simulating population parameters directly from empirical
data, a data.frame with empirical/desired eQTL results. To see required format,
run ‘mockEmpiricalSet()‘ and see eqtl output.

means Either NULL or if simulating population parameters directly from empirical
data, a Matrix of real gene means across a population, where each row is a gene
and each column is an individual in the population. To see required format, run
‘mockEmpiricalSet()‘ and see means output.

key Either NULL or a data.frame object containing a full or partial splatPop key.

counts.only logical. Whether to save only counts in sce object.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages.

... any additional parameter settings to override what is provided in params.

Details

This functions is for simulating data in a single step. It consists of a call to splatPopSimulateMeans,
which simulates a mean expression level per gene per sample, followed by a call to splatPopSimulateSC,
which uses the splat model to simulate single-cell counts per individual. Please see the documenta-
tion for those functions for more details.

Value

SingleCellExperiment object containing simulated counts, intermediate values like the gene means
simulated in ‘splatPopSimulateMeans‘, and information about the differential expression and eQTL
effects assigned to each gene.

See Also

splatPopSimulateMeans, splatPopSimulateSC

Examples

if (requireNamespace("VariantAnnotation", quietly = TRUE) &&
requireNamespace("preprocessCore", quietly = TRUE)) {
vcf <- mockVCF()
gff <- mockGFF()
sim <- splatPopSimulate(vcf = vcf, gff = gff, sparsify = FALSE)

84 splatPopSimulateMeans

}

splatPopSimulateMeans splatPopSimulateMeans

Description

Simulate mean expression levels for all genes for all samples, with between sample correlation
structure simulated with eQTL effects and with the option to simulate multiple groups (i.e. cell-
types).

Usage

splatPopSimulateMeans(
vcf = mockVCF(),
params = newSplatPopParams(nGenes = 1000),
verbose = TRUE,
key = NULL,
gff = NULL,
eqtl = NULL,
means = NULL,
...

)

Arguments

vcf VariantAnnotation object containing genotypes of samples.

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

verbose logical. Whether to print progress messages.

key Either FALSE or a data.frame object containing a full or partial splatPop key.

gff Either NULL or a data.frame object containing a GFF/GTF file.

eqtl Either NULL or if simulating population parameters directly from empirical
data, a data.frame with empirical/desired eQTL results. To see required format,
run ‘mockEmpiricalSet()‘ and see eqtl output.

means Either NULL or if simulating population parameters directly from empirical
data, a Matrix of real gene means across a population, where each row is a gene
and each column is an individual in the population. To see required format, run
‘mockEmpiricalSet()‘ and see means output.

... any additional parameter settings to override what is provided in params.

splatPopSimulateMeans 85

Details

SplatPopParams can be set in a variety of ways. 1. If not provided, default parameters are used.
2. Default parameters can be overridden by supplying desired parameters using setParams. 3.
Parameters can be estimated from real data of your choice using splatPopEstimate.

‘splatPopSimulateMeans‘ involves the following steps:

1. Load population key or generate random or GFF/GTF based key.

2. Format and subset genotype data from the VCF file.

3. If not in key, assign expression mean and variance to each gene.

4. If not in key, assign eGenes-eSNPs pairs and effect sizes.

5. If not in key and groups >1, assign subset of eQTL associations as group-specific and assign
DEG group effects.

6. Simulate mean gene expression matrix without eQTL effects

7. Quantile normalize by sample to fit single-cell expression distribution as defined in ‘splatEs-
timate‘.

8. Add quantile normalized gene mean and cv info the eQTL key.

9. Add eQTL effects to means matrix.

Value

A list containing: ‘means‘ a matrix (or list of matrices if n.groups > 1) with the simulated mean
gene expression value for each gene (row) and each sample (column), ‘key‘ a data.frame with
population information including eQTL and group effects, and ‘condition‘ a named array containing
conditional group assignments for each sample.

See Also

splatPopParseVCF, splatPopParseGenes, splatPopAssignMeans, splatPopQuantNorm, splatPopQuantNormKey
splatPopeQTLEffects, splatPopGroupEffects, splatPopSimMeans, splatPopSimEffects,

Examples

if (requireNamespace("VariantAnnotation", quietly = TRUE) &&
requireNamespace("preprocessCore", quietly = TRUE)) {
means <- splatPopSimulateMeans()

}

86 splatPopSimulateSample

splatPopSimulateSample

splatPopSimulateSample simulation

Description

Simulate count data for one sample from a fictional single-cell RNA-seq experiment using the Splat
method.

Usage

splatPopSimulateSample(
params = newSplatPopParams(),
method = c("single", "groups", "paths"),
batch = "batch1",
counts.only = FALSE,
verbose = TRUE,
sample.means,
...

)

Arguments

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

method which simulation method to use. Options are "single" which produces a single
population, "groups" which produces distinct groups (eg. cell types), "paths"
which selects cells from continuous trajectories (eg. differentiation processes).

batch Batch number.

counts.only logical. Whether to return only the counts.

verbose logical. Whether to print progress messages.

sample.means Gene means to use if running splatSimulatePop().

... any additional parameter settings to override what is provided in params.

Details

This function closely mirrors splatSimulate. The main difference is that it takes the means sim-
ulated by splatPopSimulateMeans instead of randomly sampling a mean for each gene. For details
about this function see the documentation for splatSimulate.

Value

SingleCellExperiment object containing the simulated counts and intermediate values for one sam-
ple.

splatPopSimulateSC 87

See Also

splatSimLibSizes, splatPopSimGeneMeans, splatSimBatchEffects, splatSimBatchCellMeans,
splatSimDE, splatSimCellMeans, splatSimBCVMeans, splatSimTrueCounts, splatSimDropout,
splatPopSimulateSC

splatPopSimulateSC splatPopSimulateSC

Description

Simulate count data for a population from a fictional single-cell RNA-seq experiment using the
Splat method.

Usage

splatPopSimulateSC(
sim.means,
params,
key,
method = c("single", "groups", "paths"),
counts.only = FALSE,
conditions = NULL,
sparsify = TRUE,
verbose = TRUE,
...

)

Arguments

sim.means Matrix or list of matrices of gene means for the population. Output from ‘splat-
PopSimulateMeans()‘.

params SplatPopParams object containing parameters for population scale simulations.
See SplatPopParams for details.

key data.frame object containing a full or partial splatPop key. Output from ‘splat-
PopSimulateMeans()‘.

method which simulation method to use. Options are "single" which produces a single
cell population for each sample, "groups" which produces distinct groups (eg.
cell types) for each sample (note, this creates separate groups from those created
in ‘popSimulate‘ with only DE effects), and "paths" which selects cells from
continuous trajectories (eg. differentiation processes).

counts.only logical. Whether to return only the counts.
conditions named array with conditional group assignment for each sample. Output from

‘splatPopSimulateMeans()‘.
sparsify logical. Whether to automatically convert assays to sparse matrices if there will

be a size reduction.
verbose logical. Whether to print progress messages.
... any additional parameter settings to override what is provided in params.

88 splatSimBatchCellMeans

Value

SingleCellExperiment object containing simulated counts, intermediate values like the gene means
simulated in ‘splatPopSimulateMeans‘, and information about the differential expression and eQTL
effects assigned to each gene.

Examples

if (requireNamespace("VariantAnnotation", quietly = TRUE) &&
requireNamespace("preprocessCore", quietly = TRUE)) {
params <- newSplatPopParams()
sim.means <- splatPopSimulateMeans()
sim <- splatPopSimulateSC(sim.means$means, params, sim.means$key)

}

splatSimBatchCellMeans

Simulate batch means

Description

Simulate a mean for each gene in each cell incorporating batch effect factors.

Usage

splatSimBatchCellMeans(sim, params)

Arguments

sim SingleCellExperiment to add batch means to.

params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated batch means.

splatSimBatchEffects 89

splatSimBatchEffects Simulate batch effects

Description

Simulate batch effects. Batch effect factors for each batch are produced using getLNormFactors
and these are added along with updated means for each batch.

Usage

splatSimBatchEffects(sim, params)

Arguments

sim SingleCellExperiment to add batch effects to.

params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated batch effects.

splatSimBCVMeans Simulate BCV means

Description

Simulate means for each gene in each cell that are adjusted to follow a mean-variance trend using
Biological Coefficient of Variation taken from and inverse gamma distribution.

Usage

splatSimBCVMeans(sim, params)

Arguments

sim SingleCellExperiment to add BCV means to.

params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated BCV means.

90 splatSimDE

splatSimCellMeans Simulate cell means

Description

Simulate a gene by cell matrix giving the mean expression for each gene in each cell. Cells start with
the mean expression for the group they belong to (when simulating groups) or cells are assigned
the mean expression from a random position on the appropriate path (when simulating paths). The
selected means are adjusted for each cell’s expected library size.

Usage

splatSimSingleCellMeans(sim, params)

splatSimGroupCellMeans(sim, params)

splatSimPathCellMeans(sim, params)

Arguments

sim SingleCellExperiment to add cell means to.

params SplatParams object with simulation parameters.

Value

SingleCellExperiment with added cell means.

splatSimDE Simulate group differential expression

Description

Simulate differential expression. Differential expression factors for each group are produced using
getLNormFactors and these are added along with updated means for each group. For paths care is
taken to make sure they are simulated in the correct order.

Usage

splatSimGroupDE(sim, params)

splatSimPathDE(sim, params)

Arguments

sim SingleCellExperiment to add differential expression to.

params splatParams object with simulation parameters.

splatSimDropout 91

Value

SingleCellExperiment with simulated differential expression.

splatSimDropout Simulate dropout

Description

A logistic function is used to form a relationship between the expression level of a gene and the
probability of dropout, giving a probability for each gene in each cell. These probabilities are used
in a Bernoulli distribution to decide which counts should be dropped.

Usage

splatSimDropout(sim, params)

Arguments

sim SingleCellExperiment to add dropout to.
params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated dropout and observed counts.

splatSimGeneMeans Simulate gene means

Description

Simulate gene means from a gamma distribution. Also simulates outlier expression factors. Genes
with an outlier factor not equal to 1 are replaced with the median mean expression multiplied by the
outlier factor.

Usage

splatSimGeneMeans(sim, params)

Arguments

sim SingleCellExperiment to add gene means to.
params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated gene means.

92 splatSimTrueCounts

splatSimLibSizes Simulate library sizes

Description

Simulate expected library sizes. Typically a log-normal distribution is used but there is also the
option to use a normal distribution. In this case any negative values are set to half the minimum
non-zero value.

Usage

splatSimLibSizes(sim, params)

Arguments

sim SingleCellExperiment to add library size to.

params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated library sizes.

splatSimTrueCounts Simulate true counts

Description

Simulate a true counts matrix. Counts are simulated from a poisson distribution where Each gene
in each cell has it’s own mean based on the group (or path position), expected library size and BCV.

Usage

splatSimTrueCounts(sim, params)

Arguments

sim SingleCellExperiment to add true counts to.

params SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated true counts.

splatSimulate 93

splatSimulate Splat simulation

Description

Simulate count data from a fictional single-cell RNA-seq experiment using the Splat method.

Usage

splatSimulate(
params = newSplatParams(),
method = c("single", "groups", "paths"),
sparsify = TRUE,
verbose = TRUE,
...

)

splatSimulateSingle(params = newSplatParams(), verbose = TRUE, ...)

splatSimulateGroups(params = newSplatParams(), verbose = TRUE, ...)

splatSimulatePaths(params = newSplatParams(), verbose = TRUE, ...)

Arguments

params SplatParams object containing parameters for the simulation. See SplatParams
for details.

method which simulation method to use. Options are "single" which produces a single
population, "groups" which produces distinct groups (eg. cell types), or "paths"
which selects cells from continuous trajectories (eg. differentiation processes).

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages.

... any additional parameter settings to override what is provided in params.

Details

Parameters can be set in a variety of ways. If no parameters are provided the default parameters are
used. Any parameters in params can be overridden by supplying additional arguments through a
call to setParams. This design allows the user flexibility in how they supply parameters and allows
small adjustments without creating a new SplatParams object. See examples for a demonstration
of how this can be used.

The simulation involves the following steps:

1. Set up simulation object

2. Simulate library sizes

94 splatSimulate

3. Simulate gene means
4. Simulate groups/paths
5. Simulate BCV adjusted cell means
6. Simulate true counts
7. Simulate dropout
8. Create final dataset

The final output is a SingleCellExperiment object that contains the simulated counts but also the
values for various intermediate steps. These are stored in the colData (for cell specific information),
rowData (for gene specific information) or assays (for gene by cell matrices) slots. This additional
information includes:

colData Cell Unique cell identifier.
Group The group or path the cell belongs to.
ExpLibSize The expected library size for that cell.
Step (paths only) how far along the path each cell is.

rowData Gene Unique gene identifier.
BaseGeneMean The base expression level for that gene.
OutlierFactor Expression outlier factor for that gene. Values of 1 indicate the gene is not an

expression outlier.
GeneMean Expression level after applying outlier factors.
BatchFac[Batch] The batch effects factor for each gene for a particular batch.
DEFac[Group] The differential expression factor for each gene in a particular group. Values

of 1 indicate the gene is not differentially expressed.
SigmaFac[Path] Factor applied to genes that have non-linear changes in expression along a

path.
assays BatchCellMeans The mean expression of genes in each cell after adding batch effects.

BaseCellMeans The mean expression of genes in each cell after any differential expression
and adjusted for expected library size.

BCV The Biological Coefficient of Variation for each gene in each cell.
CellMeans The mean expression level of genes in each cell adjusted for BCV.
TrueCounts The simulated counts before dropout.
Dropout Logical matrix showing which values have been dropped in which cells.

Values that have been added by Splatter are named using UpperCamelCase in order to differentiate
them from the values added by analysis packages which typically use underscore_naming.

Value

SingleCellExperiment object containing the simulated counts and intermediate values.

References

Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome
Biology (2017).

Paper: 10.1186/s13059-017-1305-0

Code: https://github.com/Oshlack/splatter

10.1186/s13059-017-1305-0
https://github.com/Oshlack/splatter

summariseDiff 95

See Also

splatSimLibSizes, splatSimGeneMeans, splatSimBatchEffects, splatSimBatchCellMeans,
splatSimDE, splatSimCellMeans, splatSimBCVMeans, splatSimTrueCounts, splatSimDropout

Examples

Simulation with default parameters
sim <- splatSimulate()

Simulation with different number of genes
sim <- splatSimulate(nGenes = 1000)
Simulation with custom parameters
params <- newSplatParams(nGenes = 100, mean.rate = 0.5)
sim <- splatSimulate(params)
Simulation with adjusted custom parameters
sim <- splatSimulate(params, mean.rate = 0.6, out.prob = 0.2)
Simulate groups
sim <- splatSimulate(method = "groups")
Simulate paths
sim <- splatSimulate(method = "paths")

summariseDiff Summarise diffSCEs

Description

Summarise the results of diffSCEs. Calculates the Median Absolute Deviation (MAD), Mean Ab-
solute Error (MAE), Root Mean Squared Error (RMSE) and Kolmogorov-Smirnov (KS) statistics
for the various properties and ranks them.

Usage

summariseDiff(diff)

Arguments

diff Output from diffSCEs

Value

data.frame with MADs, MAEs, RMSEs, scaled statistics and ranks

96 zinbEstimate

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
summary <- summariseDiff(difference)
head(summary)

zinbEstimate Estimate ZINB-WaVE simulation parameters

Description

Estimate simulation parameters for the ZINB-WaVE simulation from a real dataset.

Usage

zinbEstimate(
counts,
design.samples = NULL,
design.genes = NULL,
common.disp = TRUE,
iter.init = 2,
iter.opt = 25,
stop.opt = 1e-04,
params = newZINBParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
...

)

S3 method for class 'SingleCellExperiment'
zinbEstimate(
counts,
design.samples = NULL,
design.genes = NULL,
common.disp = TRUE,
iter.init = 2,
iter.opt = 25,
stop.opt = 1e-04,
params = newZINBParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
...

)

S3 method for class 'matrix'
zinbEstimate(

zinbEstimate 97

counts,
design.samples = NULL,
design.genes = NULL,
common.disp = TRUE,
iter.init = 2,
iter.opt = 25,
stop.opt = 1e-04,
params = newZINBParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
...

)

Arguments

counts either a counts matrix or a SingleCellExperiment object containing count data
to estimate parameters from.

design.samples design matrix of sample-level covariates.

design.genes design matrix of gene-level covariates.

common.disp logical. Whether or not a single dispersion for all features is estimated.

iter.init number of iterations to use for initialization.

iter.opt number of iterations to use for optimization.

stop.opt stopping criterion for optimization.

params ZINBParams object to store estimated values in.

verbose logical. Whether to print progress messages.

BPPARAM A BiocParallelParam instance giving the parallel back-end to be used. Default
is SerialParam which uses a single core.

... additional arguments passes to zinbFit.

Details

The function is a wrapper around zinbFit that takes the fitted model and inserts it into a ZINBParams
object. See ZINBParams for more details on the parameters and zinbFit for details of the estima-
tion procedure.

Value

ZINBParams object containing the estimated parameters.

Examples

if (requireNamespace("zinbwave", quietly = TRUE)) {
library(scuttle)
set.seed(1)
sce <- mockSCE(ncells = 20, ngenes = 100)

params <- zinbEstimate(sce)

98 zinbSimulate

params
}

ZINBParams The ZINBParams class

Description

S4 class that holds parameters for the ZINB-WaVE simulation.

Parameters

The ZINB-WaVE simulation uses the following parameters:

nGenes The number of genes to simulate.

nCells The number of cells to simulate.

[seed] Seed to use for generating random numbers.

model Object describing a ZINB model.

The majority of the parameters for this simulation are stored in a ZinbModel object. Please refer to
the documentation for this class and its constructor(zinbModel) for details about all the parameters.

The parameters not shown in brackets can be estimated from real data using zinbEstimate. For
details of the ZINB-WaVE simulation see zinbSimulate.

zinbSimulate ZINB-WaVE simulation

Description

Simulate counts using the ZINB-WaVE method.

Usage

zinbSimulate(params = newZINBParams(), sparsify = TRUE, verbose = TRUE, ...)

Arguments

params ZINBParams object containing simulation parameters.

sparsify logical. Whether to automatically convert assays to sparse matrices if there will
be a size reduction.

verbose logical. Whether to print progress messages

... any additional parameter settings to override what is provided in params.

zinbSimulate 99

Details

This function is just a wrapper around zinbSim that takes a ZINBParams, runs the simulation then
converts the output to a SingleCellExperiment object. See zinbSim and the ZINB-WaVE paper
for more details about how the simulation works.

Value

SingleCellExperiment containing simulated counts

References

Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic and environmen-
tal backgrounds across single-cells and populations. bioRxiv (2017).

Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. ZINB-WaVE: A general and flexible method
for signal extraction from single-cell RNA-seq data bioRxiv (2017).

Paper: 10.1101/125112

Code: https://github.com/drisso/zinbwave

Examples

if (requireNamespace("zinbwave", quietly = TRUE)) {
sim <- zinbSimulate()

}

10.1101/125112
https://github.com/drisso/zinbwave

Index

∗ internal
expandParams, 13
getLNormFactors, 14
kersplatEstBCV, 16
kersplatEstLib, 18
kersplatEstMean, 18
kersplatGenNetwork, 19
kersplatSelectRegs, 22
kersplatSimAmbientCounts, 24
kersplatSimCellCounts, 25
kersplatSimCellMeans, 25
kersplatSimCounts, 26
kersplatSimGeneMeans, 27
kersplatSimLibSizes, 28
kersplatSimPaths, 28
setParamsUnchecked, 56
setParamUnchecked, 56
splatEstBCV, 62
splatEstDropout, 63
splatEstLib, 65
splatEstMean, 65
splatEstOutlier, 66
splatPopAssignMeans, 68
splatPopCleanSCE, 69
splatPopConditionalEffects, 69
splatPopConditionEffects, 70
splatPopDesignBatches, 70
splatPopDesignConditions, 71
splatPopeQTLEffects, 71
splatPopEstimateEffectSize, 73
splatPopEstimateMeanCV, 73
splatPopGroupEffects, 74
splatPopParseGenes, 77
splatPopParseVCF, 77
splatPopQuantNormKey, 79
splatPopSimBatchEffects, 79
splatPopSimConditionalEffects, 80
splatPopSimEffects, 80
splatPopSimGeneMeans, 81

splatPopSimMeans, 82
splatPopSimulateSample, 86
splatSimBatchCellMeans, 88
splatSimBatchEffects, 89
splatSimBCVMeans, 89
splatSimCellMeans, 90
splatSimDE, 90
splatSimDropout, 91
splatSimGeneMeans, 91
splatSimLibSizes, 92
splatSimTrueCounts, 92
splatter-package, 5

addGeneLengths, 5
assays, 21, 94

BASiCS_MCMC, 8
BASiCS_Sim, 10
BASiCSEstimate, 6, 9
BASiCSParams, 9, 10
BASiCSParams-class (BASiCSParams), 9
BASiCSSimulate, 9, 9
BiocParallelParam, 32, 51, 53, 97

colData, 21, 94
compareSCEs, 10, 37, 39
create_synthetic, 41

density, 18–20
diffSCEs, 12, 38, 39, 95
downsampleMatrix, 27

empirical_lambda, 40
estimateDisp, 16, 62, 63
expandParams, 13
expandParams,BASiCSParams-method

(expandParams), 13
expandParams,LunParams-method

(expandParams), 13
expandParams,Params-method

(expandParams), 13

100

INDEX 101

expandParams,SplatParams-method
(expandParams), 13

expandParams,SplatPopParams-method
(expandParams), 13

fitdist, 18, 19, 57, 65, 66, 73, 74

getLNormFactors, 14, 79, 89, 90
getParam, 15
getParam,Params-method (getParam), 15
getParams, 15
ggplot, 11, 13

kersplatEstBCV, 16, 17
kersplatEstimate, 17, 21
kersplatEstLib, 17, 18
kersplatEstMean, 17, 18
kersplatGenNetwork, 19, 24
KersplatParams, 20, 21, 23, 24
KersplatParams-class (KersplatParams),

20
kersplatSample, 21, 23, 30
kersplatSelectRegs, 22, 24
kersplatSetup, 23, 30
kersplatSimAmbientCounts, 22, 24
kersplatSimCellCounts, 22, 25
kersplatSimCellMeans, 20, 22, 25
kersplatSimCounts, 22, 26
kersplatSimGeneMeans, 24, 27
kersplatSimLibSizes, 22, 28
kersplatSimPaths, 20, 24, 28
kersplatSimulate, 21, 29

lambda1_calculator, 60
lambda2_calculator, 60
listSims, 30
lun2Estimate, 31, 33, 34
Lun2Params, 32, 32
Lun2Params-class (Lun2Params), 32
lun2Simulate, 33, 33
lunEstimate, 34, 36
LunParams, 35, 35, 36
LunParams-class (LunParams), 35
lunSimulate, 36, 36

makeCompPanel, 37
makeDiffPanel, 38
makeOverallPanel, 38
mfaEstimate, 39, 41

MFAParams, 40, 40, 41
MFAParams-class (MFAParams), 40
mfaSimulate, 41, 41
minimiseSCE, 42
mockBulkeQTL, 43
mockBulkMatrix, 43
mockEmpiricalSet, 44
mockGFF, 45
mockVCF, 45

newBASiCSParams (newParams), 46
newKersplatParams (newParams), 46
newLun2Params (newParams), 46
newLunParams (newParams), 46
newMFAParams (newParams), 46
newParams, 46
newPhenoParams (newParams), 46
newSCDDParams (newParams), 46
newSimpleParams (newParams), 46
newSparseDCParams (newParams), 46
newSplatParams (newParams), 46
newSplatPopParams (newParams), 46
newZINBParams (newParams), 46
nls, 63

Params, 47
Params-class (Params), 47
paramsExpander, 13
paramsExpander (expandParams), 13
phenoEstimate, 47, 48
PhenoParams, 48, 48, 49
PhenoParams-class (PhenoParams), 48
phenoSimulate, 48, 49
pre_proc_data, 60
preprocess, 51

rowData, 6, 21, 94

sample_forestfire, 19
scDD, 51
scDDEstimate, 50, 52
SCDDParams, 51, 53
SCDDParams-class (SCDDParams), 51
scDDSimulate, 52, 52
SerialParam, 32, 51, 53, 97
setParam, 53, 55, 56
setParam,BASiCSParams-method

(setParam), 53
setParam,KersplatParams-method

(setParam), 53

102 INDEX

setParam,Lun2Params-method (setParam),
53

setParam,LunParams-method (setParam), 53
setParam,Params-method (setParam), 53
setParam,PhenoParams-method (setParam),

53
setParam,SCDDParams-method (setParam),

53
setParam,SplatParams-method (setParam),

53
setParam,SplatPopParams-method

(setParam), 53
setParam,ZINBParams-method (setParam),

53
setParams, 47, 55, 85, 93
setParams,KersplatParams-method

(setParams), 55
setParams,Params-method (setParams), 55
setParams,SplatParams-method

(setParams), 55
setParamsUnchecked, 13, 56
setParamUnchecked, 56
setParamUnchecked,Params-method

(setParamUnchecked), 56
sim_data, 62
simpleEstimate, 57, 58
SimpleParams, 57, 58, 59
SimpleParams-class (SimpleParams), 58
simpleSimulate, 58, 58
simulate_phenopath, 49
simulateSet, 52, 53
SingleCellExperiment, 6, 10, 21, 41, 49, 52,

53, 62, 94, 99
sparsedc_cluster, 60
sparseDCEstimate, 59, 61
SparseDCParams, 60, 61, 62
SparseDCParams-class (SparseDCParams),

61
sparseDCSimulate, 61, 61
splatEstBCV, 62, 64
splatEstDropout, 63, 64
splatEstimate, 64, 68
splatEstLib, 64, 65
splatEstMean, 64, 65
splatEstOutlier, 64, 66
SplatParams, 66, 75, 93
SplatParams-class (SplatParams), 66
splatPopAssignMeans, 68, 85

splatPopCleanSCE, 69
splatPopConditionalEffects, 69
splatPopConditionEffects, 70
splatPopDesignBatches, 70
splatPopDesignConditions, 71
splatPopeQTLEffects, 71, 85
splatPopEstimate, 72, 76, 85
splatPopEstimateEffectSize, 72, 73
splatPopEstimateMeanCV, 72, 73
splatPopGroupEffects, 74, 85
SplatPopParams, 68, 70–74, 75, 76–78, 83,

84, 86, 87
SplatPopParams-class (SplatPopParams),

75
splatPopParseEmpirical, 76
splatPopParseGenes, 77, 85
splatPopParseVCF, 77, 85
splatPopQuantNorm, 78, 85
splatPopQuantNormKey, 79, 85
splatPopSimBatchEffects, 79
splatPopSimConditionalEffects, 80
splatPopSimEffects, 80, 85
splatPopSimGeneMeans, 81, 87
splatPopSimMeans, 82, 85
splatPopSimulate, 76, 82
splatPopSimulateMeans, 83, 84
splatPopSimulateSample, 86
splatPopSimulateSC, 83, 87, 87
splatSimBatchCellMeans, 87, 88, 95
splatSimBatchEffects, 87, 89, 95
splatSimBCVMeans, 87, 89, 95
splatSimCellMeans, 87, 90, 95
splatSimDE, 87, 90, 95
splatSimDropout, 87, 91, 95
splatSimGeneMeans, 91, 95
splatSimGroupCellMeans

(splatSimCellMeans), 90
splatSimGroupDE (splatSimDE), 90
splatSimLibSizes, 87, 92, 95
splatSimPathCellMeans

(splatSimCellMeans), 90
splatSimPathDE (splatSimDE), 90
splatSimSingleCellMeans

(splatSimCellMeans), 90
splatSimTrueCounts, 87, 92, 95
splatSimulate, 68, 86, 93
splatSimulateGroups (splatSimulate), 93
splatSimulatePaths (splatSimulate), 93

INDEX 103

splatSimulateSingle (splatSimulate), 93
splatter (splatter-package), 5
splatter-package, 5
summariseDiff, 95

zinbEstimate, 96, 98
zinbFit, 97
ZinbModel, 98
zinbModel, 98
ZINBParams, 97, 98, 99
ZINBParams-class (ZINBParams), 98
zinbSim, 99
zinbSimulate, 98, 98

	splatter-package
	addGeneLengths
	BASiCSEstimate
	BASiCSParams
	BASiCSSimulate
	compareSCEs
	diffSCEs
	expandParams
	getLNormFactors
	getParam
	getParams
	kersplatEstBCV
	kersplatEstimate
	kersplatEstLib
	kersplatEstMean
	kersplatGenNetwork
	KersplatParams
	kersplatSample
	kersplatSelectRegs
	kersplatSetup
	kersplatSimAmbientCounts
	kersplatSimCellCounts
	kersplatSimCellMeans
	kersplatSimCounts
	kersplatSimGeneMeans
	kersplatSimLibSizes
	kersplatSimPaths
	kersplatSimulate
	listSims
	lun2Estimate
	Lun2Params
	lun2Simulate
	lunEstimate
	LunParams
	lunSimulate
	makeCompPanel
	makeDiffPanel
	makeOverallPanel
	mfaEstimate
	MFAParams
	mfaSimulate
	minimiseSCE
	mockBulkeQTL
	mockBulkMatrix
	mockEmpiricalSet
	mockGFF
	mockVCF
	newParams
	Params
	phenoEstimate
	PhenoParams
	phenoSimulate
	scDDEstimate
	SCDDParams
	scDDSimulate
	setParam
	setParams
	setParamsUnchecked
	setParamUnchecked
	simpleEstimate
	SimpleParams
	simpleSimulate
	sparseDCEstimate
	SparseDCParams
	sparseDCSimulate
	splatEstBCV
	splatEstDropout
	splatEstimate
	splatEstLib
	splatEstMean
	splatEstOutlier
	SplatParams
	splatPopAssignMeans
	splatPopCleanSCE
	splatPopConditionalEffects
	splatPopConditionEffects
	splatPopDesignBatches
	splatPopDesignConditions
	splatPopeQTLEffects
	splatPopEstimate
	splatPopEstimateEffectSize
	splatPopEstimateMeanCV
	splatPopGroupEffects
	SplatPopParams
	splatPopParseEmpirical
	splatPopParseGenes
	splatPopParseVCF
	splatPopQuantNorm
	splatPopQuantNormKey
	splatPopSimBatchEffects
	splatPopSimConditionalEffects
	splatPopSimEffects
	splatPopSimGeneMeans
	splatPopSimMeans
	splatPopSimulate
	splatPopSimulateMeans
	splatPopSimulateSample
	splatPopSimulateSC
	splatSimBatchCellMeans
	splatSimBatchEffects
	splatSimBCVMeans
	splatSimCellMeans
	splatSimDE
	splatSimDropout
	splatSimGeneMeans
	splatSimLibSizes
	splatSimTrueCounts
	splatSimulate
	summariseDiff
	zinbEstimate
	ZINBParams
	zinbSimulate
	Index

