Package ‘speckle’

February 2, 2026
Type Package
Title Statistical methods for analysing single cell RNA-seq data
Version 1.11.0
Date 2025-10-14
LazyData FALSE
Depends R (>=4.2.0)

Imports limma, edgeR, SingleCellExperiment, Seurat, ggplot2, methods,
stats, grDevices, graphics

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, statmod, CellBench, scater,
patchwork, jsonlite, vdiffr, testthat (>= 3.0.0)

Description The speckle package contains functions for the analysis of single cell RNA-
seq data. The speckle package currently contains functions to analyse differ-
ences in cell type proportions. There are also functions to estimate the parameters of the Beta dis-
tribution based on a given counts matrix, and a function to normalise a counts matrix to the me-
dian library size. There are plotting functions to visualise cell type proportions and the mean-
variance relationship in cell type proportions and counts. As our research into specialised analy-
ses of single cell data continues we anticipate that the package will be updated with new functions.

License GPL-3

biocViews SingleCell, RNASeq, Regression, GeneExpression
RoxygenNote 7.2.2

Encoding UTF-8

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/speckle
git_branch devel

git_last_commit 36f86ad

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Belinda Phipson [aut, cre]

Maintainer Belinda Phipson <phipson.b@wehi.edu.au>

1

2 speckle-package
Contents
speckle-package L 2
extractSCE e 3
BXtractSeuratol e e e e e 3
convertDataToList 4
estimateBetaParam Lo 5
estimateBetaParamsFromCounts L o oL 6
getTransformedProps L 7
ggplotColors e 9
normCOUNES o e e e e e e 10
POIMC_Props o o e e 11
plotCellTypeMeanVar o it e e e 12
plotCellTypeProps« . . e 13
plotCellTypePropsMeanVar i ittt 14
propellero 15
propelleranova L e 18
propellerttest e 20
speckle_example_data 22
Index 24
speckle-package speckle: Statistical methods for analysing single cell RNA-seq data
Description
The speckle package contains functions for the analysis of single cell RNA-seq data. The speckle
package currently contains functions to analyse differences in cell type proportions. There are also
functions to estimate the parameters of the Beta distribution based on a given counts matrix, and
a function to normalise a counts matrix to the median library size. There are plotting functions
to visualise cell type proportions and the mean-variance relationship in cell type proportions and
counts. As our research into specialised analyses of single cell data continues we anticipate that the
package will be updated with new functions.
Author(s)

Maintainer: Belinda Phipson <phipson.b@wehi.edu.au>

.extractSCE

.extractSCE Extract metadata from SingleCellExperiment object

Description

This is an accessor function that extracts cluster, sample and group information for each cell.

Usage
.extractSCE(x)

Arguments

X object of class SingleCellExperiment

Value

a dataframe containing clusters, sample and group

Author(s)
Belinda Phipson

.extractSeurat Extract metadata from Seurat object

Description

This is an accessor function that extracts cluster, sample and group information for each cell.

Usage

.extractSeurat(x)
Arguments

X object of class Seurat
Value

a dataframe containing clusters, sample and group

Author(s)

Belinda Phipson

4 convertDataToList
convertDataTolList Convert counts or proportions matrix to list object for propeller
Description
This function takes a matrix of counts or proportions, and returns a list object that is expected from
the propeller.ttest and propeller.anova functions. This allows the propeller framework to
be applied to any proportions data, not just single cell data.
Usage
convertDataTolList(
X,
data.type = c("proportions”, "counts”),
transform = NULL,
scale.fac = NULL
)
Arguments
X a matrix of counts or proportions, where the columns correspond to samples and
the rows correspond to cell types, or entities for which proportions are calcu-
lated.
data.type a character scalar specifying whether the data matrix contains counts or propor-
tions. Possible values include "proportions" or "counts". Defaults to "propor-
tions".
transform a character scalar specifying which transformation of the proportions to perform.
Possible values include "asin" or "logit". Defaults to "logit".
scale.fac the total number of cells N for each sample. Can be a scalar or a vector of the
same length as the number of samples. If NULL, a default of 5000 cells per
sample is assumed.
Value

outputs a list object with the following components

Counts

A matrix of cell type counts with the rows corresponding to the clusters/cell
types and the columns corresponding to the biological replicates/samples.

TransformedProps

Proportions

A matrix of transformed cell type proportions with the rows corresponding to
the clusters/cell types and the columns corresponding to the biological repli-
cates/samples.

A matrix of cell type proportions with the rows corresponding to the clusters/cell
types and the columns corresponding to the biological replicates/samples.

estimateBetaParam 5

Author(s)

Belinda Phipson

See Also

getTransformedProps propeller.ttest propeller.anova

Examples

library(speckle)

library(limma)

Make up some data with two groups, two biological replicates in each
group and three cell types

True cell type proportions for 4 samples

props <- matrix(c(0.5,0.3,0.2,0.6,0.3,0.1,0.3,0.4,0.3,0.4,0.3,0.3),
ncol=4, nrow=3, byrow=FALSE)

rownames(props) <- c("Co@","C1","C2")

colnames(props) <- paste("”S",c(1,2,3,4),sep="")

Total numbers of cells per sample

numcells <- c(1000,1500,900,1200)

Get data into list object to use as input to propeller.ttest
propslist <- convertDataTolList(props, data.type="proportions”,
transform="asin",f scale.fac=numcells)

Run propeller.ttest to test for differences between 2 groups
Assume s1 and s2 belong to group 1 and s3 and s4 belong to group 2
grp <- rep(c("A","B"), each=2)

design <- model.matrix(~@+grp)
design

Compare Grp A to B
contrasts <- c(1,-1)

propeller.ttest(propslist, design=design, contrasts=contrasts,
robust=TRUE, trend=FALSE, sort=TRUE)

estimateBetaParam Estimate the parameters of a Beta distribution

Description

This function estimates the two parameters of the Beta distribution, alpha and beta, given a vector
of proportions. It uses the method of moments to do this.

6 estimateBetaParamsFromCounts

Usage

estimateBetaParam(x)

Arguments

X a vector of proportions.

Value

a list object with the estimate of alpha in a and beta in b.

Author(s)

Belinda Phipson

Examples

Generate proportions from a beta distribution
props <- rbeta(1000, shapel=2, shape2=10)
estimateBetaParam(props)

estimateBetaParamsFromCounts
Estimate parameters of a Beta distribution from counts

Description

This function estimates the two parameters of the Beta distribution, alpha and beta for each cell
type. The input is a matrix of cell type counts, where the rows are the cell types/clusters and the
columns are the samples.

Usage

estimateBetaParamsFromCounts(x)

Arguments

X a matrix of counts

Details

This function is called from the plotting function plotCellTypeMeanVar in order to estimate the
variance for the Beta-Binomial distribution for each cell type.

getTransformedProps 7

Value

outputs a list object with the following components

n Normalised library size
alpha a vector of alpha parameters for the Beta distribution for each cell type
beta vector of beta parameters for the Beta distribution for each cell type
pi Estimate of the true proportion for each cell type
dispersion Dispersion estimates for each cell type
var Variance estimates for each cell type
Author(s)
Belinda Phipson
Examples

data <- speckle_example_data()
x <- table(data$clusters, data$samples)
estimateBetaParamsFromCounts(x)

getTransformedProps Calculates and transforms cell type proportions

Description
Calculates cell types proportions based on clusters/cell types and sample information and performs
a variance stabilising transformation on the proportions.

Usage

getTransformedProps(clusters = clusters, sample = sample, transform = NULL)

Arguments
clusters a factor specifying the cluster or cell type for every cell.
sample a factor specifying the biological replicate for every cell.
transform a character scalar specifying which transformation of the proportions to perform.
Possible values include "asin" or "logit". Defaults to "asin".
Details

This function is called by the propeller function and calculates cell type proportions and performs
an arcsin-square root transformation.

8 getTransformedProps

Value

outputs a list object with the following components

Counts A matrix of cell type counts with the rows corresponding to the clusters/cell
types and the columns corresponding to the biological replicates/samples.
TransformedProps
A matrix of transformed cell type proportions with the rows corresponding to
the clusters/cell types and the columns corresponding to the biological repli-
cates/samples.

Proportions A matrix of cell type proportions with the rows corresponding to the clusters/cell
types and the columns corresponding to the biological replicates/samples.

Author(s)

Belinda Phipson

See Also
propeller

Examples

library(speckle)
library(ggplot2)
library(limma)

Make up some data

True cell type proportions for 4 samples
p_sl <- ¢(0.5,0.3,0.2)

p_s2 <- ¢(0.6,0.3,0.1)
p_s3 <- ¢(0.3,0.4,0.3)
p_s4 <- c(0.4,0.3,0.3)

Total numbers of cells per sample
numcells <- c(1000,1500,900,1200)

Generate cell-level vector for sample info
biorep <- rep(c(”s1","s2","s3","s4"),numcells)
length(biorep)

Numbers of cells for each of 3 clusters per sample
n_s1 <- p_sl1*numcells[1]
n_s2 <- p_s2*numcells[2]
n_s3 <- p_s3*numcells[3]
n_s4 <- p_s4*numcells[4]

cl_s1 <- rep(c(”"c@","c1","c2"),n_s1)
cl_s2 <- rep(c(”"c@”,"c1","c2"),n_s2)
cl_s3 <- rep(c("c@","c1","c2"),n_s3)
cl_s4 <- rep(c(”"c@","c1","c2"),n_s4)

ggplotColors 9

Generate cell-level vector for cluster info
clust <- c(cl_s1,cl_s2,cl_s3,cl_s4)
length(clust)

getTransformedProps(clusters = clust, sample = biorep)

ggplotColors Output a vector of colours based on the ggplot colour scheme

Description
This function takes as input the number of colours the user would like, and outputs a vector of
colours in the ggplot colour scheme.

Usage

ggplotColors(g)

Arguments

g the number of colours to be generated.

Value

a vector with the names of the colours.

Author(s)

Belinda Phipson

Examples

Generate a palette of 6 colours
cols <- ggplotColors(6)
cols

Generate some count data
y <- matrix(rnbinom(600, mu=100, size=1), ncol=6)

par(mfrow=c(1,1))
boxplot(y, col=cols)

10 normCounts

normCounts Normalise a counts matrix to the median library size

Description

This function takes a DGEList object or matrix of counts and normalises the counts to the median
library size. This puts the normalised counts on a similar scale to the original counts.

Usage

normCounts(x, log = FALSE, prior.count = 0.5, lib.size = NULL)

Arguments
X a DGEList object or matrix of counts.
log logical, indicates whether the output should be on the log2 scale or counts scale.
Default is FALSE.
prior.count The prior count to add if the data is log2 normalised. Default is a small count of
0.5.
lib.size a vector of library sizes to be used during the normalisation step. Default is
NULL and will be computed from the counts matrix.
Details

If the input is a DGEList object, the normalisation factors in norm. factors are taken into account
in the normalisation. The prior counts are added proportionally to the library size

Value

a matrix of normalised counts

Author(s)

Belinda Phipson

Examples

Simulate some data from a negative binomial distribution with mean equal
to 100 and dispersion set to 1. Simulate 1000 genes and 6 samples.
y <- matrix(rnbinom(600@, mu = 100, size = 1), ncol = 6)

Normalise the counts
norm.y <- normCounts(y)

Return log2 normalised counts
lnorm.y <- normCounts(y, log=TRUE)

Return log2 normalised counts with prior.count = 2

pbmc_props 11

lnorm.y2 <- normCounts(y, log=TRUE, prior.count=2)

par(mfrow=c(1,2))
boxplot(norm.y, main="Normalised counts")
boxplot(lnorm.y, main="Log2-normalised counts")

pbmc_props Cell type proportions from single cell PBMC data

Description

This dataset is from a paper published in PNAS that looked at differences in immune functioning
between young and old, male and female samples: \ Huang Z. et al. (2021) Effects of sex and aging
on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl. Acad.
Sci. USA, 118, €2023216118.

Usage

pbmc_props

Format

‘pbmc_props‘ A list object with the following components:

proportions A data frame of cell type proportions, where the rows are cell types and the columns
are the samples. There are 24 rows and 20 columns

sample_info A data frame with age and sex information for each sample

total_cells Numeric, the total number of cells profiled across all samples in the single cell experi-
ment

Details

The cell type proportions were extracted from the Supplementary Material "Dataset_S02". The
sample information was extracted from the sample names (Y=young, M=male, O=old, F=female).
The total number of cells profiled across all samples is 174684, but the number of cells per sample
is unknown.

Source

<https://www.pnas.org/doi/10.1073/pnas.2023216118>, <https://www.pnas.org/doi/suppl/10.1073/pnas.2023216118/suppl_

12 plotCellTypeMean Var

plotCellTypeMeanVar Plot cell type counts means versus variances

Description

This function returns a plot of the log10(mean) versus log10(variance) of the cell type counts. The
function takes a matrix of cell type counts as input. The rows are the clusters/cell types and the
columns are the samples.

Usage
plotCellTypeMeanVar(x)

Arguments

X a matrix or table of counts

Details

The expected variance under a binomial distribution is shown in the solid line, and the points repre-
sent the observed variance for each cell type/row in the counts table. The expected variance under
different model assumptions are shown in the different coloured lines.

The mean and variance for each cell type is calculated across all samples.

Value

a base R plot

Author(s)
Belinda Phipson

Examples

library(edgeR)

Generate some data

Total number of samples
nsamp <- 10

True cell type proportions
p <- c(0.05, 0.15, 0.35, 0.45)

Parameters for beta distribution
a <- 40
b <- ax(1-p)/p

Sample total cell counts per sample from negative binomial distribution

numcells <- rnbinom(nsamp,size=20,mu=5000)

true.p <- matrix(c(rbeta(nsamp,a,b[1]),rbeta(nsamp,a,b[2]),
rbeta(nsamp,a,b[3]),rbeta(nsamp,a,b[4])),byrow=TRUE, ncol=nsamp)

plotCellTypeProps 13

counts <- matrix(NA,ncol=nsamp, nrow=nrow(true.p))
rownames(counts) <- paste(”c",0:(nrow(true.p)-1), sep="")
for(j in 1:length(p)){

counts[j,] <- rbinom(nsamp, size=numcells, prob=true.p[j,])

}

plotCellTypeMeanVar (counts)

plotCellTypeProps Plot cell type proportions for each sample

Description

This is a plotting function that shows the cell type composition for each sample as a stacked barplot.
The plotCellTypeProps returns a ggplot2 object enabling the user to make style changes as
required.

Usage

plotCellTypeProps(x = NULL, clusters = NULL, sample = NULL)

Arguments
X object of class SingleCellExperiment or Seurat
clusters a factor specifying the cluster or cell type for every cell. For SingleCellExperiment
objects this should correspond to a column called clusters in the colData as-
say. For Seurat objects this will be extracted by a call to Idents(x).
sample a factor specifying the biological replicate for each cell. For SingleCellExperiment
objects this should correspond to a column called sample in the colData assay
and for Seurat objects this should correspond to x$sample.
Value
a ggplot2 object
Author(s)
Belinda Phipson
Examples
library(speckle)
library(ggplot2)
library(limma)

Generate some fake data from a multinomial distribution

14

plotCellTypePropsMean Var

Group A, 4 samples, 1000 cells in each sample
countsA <- rmultinom(4, size=1000, prob=c(0.1,0.3,0.6))
colnames(countsA) <- paste("s"”,1:4,sep="")

Group B, 3 samples, 800 cells in each sample

countsB <- rmultinom(3, size=800, prob=c(0.2,0.05,0.75))
colnames(countsB) <- paste("s",5:7,sep="")
rownames (countsA) <- rownames(countsB) <- paste(”c",0:2,sep="")

allcounts <- cbind(countsA, countsB)

sample <- c(rep(colnames(allcounts),allcounts[1,]),
rep(colnames(allcounts),allcounts[2,]),
rep(colnames(allcounts),allcounts[3,]))

clust <- rep(rownames(allcounts),rowSums(allcounts))

plotCellTypeProps(clusters=clust, sample=sample)

plotCellTypePropsMeanVar
Plot cell type proportions versus variances

Description

This function returns a plot of the log10(proportion) versus log10(variance) given a matrix of cell
type counts. The rows are the clusters/cell types and the columns are the samples.

Usage

plotCellTypePropsMeanVar (x)

Arguments

X a matrix or table of counts

Details

The expected variance under a binomial distribution is shown in the solid line, and the points rep-
resent the observed variance for each cell type/row in the counts table. The blue line shows the
empirical Bayes variance that is used in propeller.

The mean and variance for each cell type is calculated across all samples.

Value

a base R plot

Author(s)

Belinda Phipson

propeller 15

Examples

library(limma)

Generate some data

Total number of samples
nsamp <- 10

True cell type proportions
p <- c(0.05, 0.15, 0.35, 0.45)

Parameters for beta distribution
a <- 40
b <- ax(1-p)/p

Sample total cell counts per sample from negative binomial distribution

numcells <- rnbinom(nsamp,size=20,mu=5000)

true.p <- matrix(c(rbeta(nsamp,a,b[1]),rbeta(nsamp,a,bl[2]),
rbeta(nsamp,a,b[3]),rbeta(nsamp,a,b[4])),byrow=TRUE, ncol=nsamp)

counts <- matrix(NA,ncol=nsamp, nrow=nrow(true.p))
rownames(counts) <- paste(”c",0:(nrow(true.p)-1), sep="")
for(j in 1:length(p)){

counts[j,] <- rbinom(nsamp, size=numcells, prob=true.p[j,])

}

plotCellTypePropsMeanVar(counts)

propeller Finding statistically significant differences in cell type proportions

Description

Calculates cell type proportions, performs a variance stabilising transformation on the propor-
tions and determines whether the cell type proportions are statistically significant between different
groups using linear modelling.

Usage

propeller(
x = NULL,
clusters = NULL,
sample = NULL,
group = NULL,
trend = FALSE,
robust = TRUE,
transform = "logit"

propeller

Arguments
X object of class SingleCellExperiment or Seurat
clusters a factor specifying the cluster or cell type for every cell. For SingleCellExperiment
objects this should correspond to a column called clusters in the colData as-
say. For Seurat objects this will be extracted by a call to Idents(x).
sample a factor specifying the biological replicate for each cell. For SingleCellExperiment
objects this should correspond to a column called sample in the colData assay
and for Seurat objects this should correspond to x$sample.
group a factor specifying the groups of interest for performing the differential propor-
tions analysis. For SingleCellExperiment objects this should correspond to
a column called group in the colData assay. For Seurat objects this should
correspond to x$group.
trend logical, if true fits a mean variance trend on the transformed proportions
robust logical, if true performs robust empirical Bayes shrinkage of the variances
transform a character scalar specifying which transformation of the proportions to perform.
Possible values include "asin" or "logit". Defaults to "logit".
Details

This function will take a SingleCellExperiment or Seurat object and extract the group, sample
and clusters cell information. The user can either state these factor vectors explicitly in the call
to the propeller function, or internal functions will extract them from the relevants objects. The
user must ensure that group and sample are columns in the metadata assays of the relevant objects
(any combination of upper/lower case is acceptable). For Seurat objects the clusters are extracted
using the Idents function. For SingleCellExperiment objects, clusters needs to be a column
in the colData assay.

The propeller function calculates cell type proportions for each biological replicate, performs a
variance stabilising transformation on the matrix of proportions and fits a linear model for each cell
type or cluster using the 1imma framework. There are two options for the transformation: arcsin
square root or logit. Propeller tests whether there is a difference in the cell type proportions between
multiple groups. If there are only 2 groups, a t-test is used to calculate p-values, and if there are
more than 2 groups, an F-test (ANOVA) is used. Cell type proportions of 1 or 0 are accommodated.
Benjamini and Hochberg false discovery rates are calculated to account to multiple testing of cell
types/clusters.

Value

produces a dataframe of results

Author(s)

Belinda Phipson

propeller 17

References

Smyth, G.K. (2004). Linear models and empirical Bayes methods for assessing differential ex-
pression in microarray experiments. Statistical Applications in Genetics and Molecular Biology,
Volume 3, Article 3.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

See Also

propeller.ttest propeller.anova ImFit, eBayes, getTransformedProps

Examples

library(speckle)
library(ggplot2)
library(limma)

Make up some data

True cell type proportions for 4 samples
p_sl <- ¢c(0.5,0.3,0.2)

p_s2 <- ¢(0.6,0.3,0.1)

p_s3 <- c(0.3,0.4,0.3)

p_s4 <- c(0.4,0.3,0.3)

Total numbers of cells per sample
numcells <- c(1000,1500,900,1200)

Generate cell-level vector for sample info
biorep <- rep(c(”s1","s2","s3","s4"),numcells)
length(biorep)

Numbers of cells for each of the 3 clusters per sample
n_s1 <- p_sI*numcells[1]
n_s2 <- p_s2*numcells[2]
n_s3 <- p_s3*numcells[3]
n_s4 <- p_s4xnumcells[4]

Assign cluster labels for 4 samples
cl_s1 <- rep(c(”"c@","c1","c2"),n_s1)
cl_s2 <- rep(c("c@"”,"c1","c2"),n_s2)
cl_s3 <- rep(c(”"c@”,"c1","c2"),n_s3)
cl_s4 <- rep(c(”"c@","c1","c2"),n_s4)

Generate cell-level vector for cluster info
clust <- c(cl_s1,cl_s2,cl_s3,cl_s4)

length(clust)

Assume s1 and s2 belong to group 1 and s3 and s4 belong to group 2
grp <- rep(c("grp1”,"grp2"),c(sum(numcells[1:2]),sum(numcells[3:4])))

propeller(clusters = clust, sample = biorep, group = grp,

18 propeller.anova

robust = FALSE, trend = FALSE, transform="asin")

propeller.anova Performs F-tests for transformed cell type proportions

Description

This function is called by propeller and performs F-tests between multiple experimental groups
or conditions (> 2) on transformed cell type proportions.

Usage

propeller.anova(
prop.list = prop.list,
design = design,
coef = coef,
robust = robust,
trend = trend,
sort = sort

)
Arguments
prop.list a list object containing two matrices: TransformedProps and Proportions
design a design matrix with rows corresponding to samples and columns to coefficients
to be estimated
coef a vector specifying which the columns of the design matrix corresponding to the
groups to test
robust logical, should robust variance estimation be used. Defaults to TRUE.
trend logical, should a trend between means and variances be accounted for. Defaults
to FALSE.
sort logical, should the output be sorted by P-value.
Details

In order to run this function, the user needs to run the getTransformedProps function first. The
output from getTransformedProps is used as input. The propeller.anova function expects that
the design matrix is not in the intercept format. This coef vector will identify the columns in
the design matrix that correspond to the groups being tested. Note that additional confounding
covariates can be accounted for as extra columns in the design matrix, but need to come after the
group-specific columns.

The propeller.anova function uses the 1imma functions ImFit and eBayes to extract F statistics
and p-values. This has the additional advantage that empirical Bayes shrinkage of the variances are
performed.

propeller.anova

Value

produces a dataframe of results

Author(s)

Belinda Phipson

See Also

propeller, getTransformedProps, ImFit, eBayes

Examples

library(speckle)
library(ggplot2)
library(limma)

Make up some data

True cell type proportions for 4 samples

p_sl <- ¢c(0.5,0.3,0.2)
p_s2 <- ¢(0.6,0.3,0.1)
p_s3 <- c(0.3,0.4,0.3)
p_s4 <- c(0.4,0.3,0.3)
p_s5 <- ¢(0.8,0.1,0.1)

p_s6 <- c(0.75,0.2,0.05)

Total numbers of cells per sample
numcells <- c(1000,1500,900,1200,1000,800)

Generate cell-level vector for sample info
biorep <- rep(c(”s1","s2","s3","s4" "s5" "s6"),numcells)
length(biorep)

Numbers of cells for each of 3 clusters per sample
n_s1 <- p_sl*numcells[1]
n_s2 <- p_s2*numcells[2]
n_s3 <- p_s3*numcells[3]
n_s4 <- p_s4*numcells[4]
n_s5 <- p_s5*numcells[5]
n_s6 <- p_s6*numcells[6]

cl_s1 <- rep(c(”"c@”,"c1","c2"),n_s1)
cl_s2 <- rep(c("c@”,"c1","c2"),n_s2)
cl_s3 <- rep(c("c@","c1","c2"),n_s3)
cl_s4 <- rep(c(”"c@","c1","c2"),n_s4)
cl_s5 <- rep(c(”"c@"”,"c1","c2"),n_s5)
cl_s6 <- rep(c("c@","c1","c2"),n_s6)

Generate cell-level vector for cluster info
clust <- c(cl_s1,cl_s2,cl_s3,cl_s4,cl_s5,cl_s6)
length(clust)

20 propeller.ttest

prop.list <- getTransformedProps(clusters = clust, sample = biorep)

Assume s1 and s2 belong to group A, s3 and s4 belong to group B, s5 and
s6 belong to group C
grp <- rep(c("A","B","C"), each=2)

Make sure design matrix does not have an intercept term
design <- model.matrix(~0+grp)
design

propeller.anova(prop.list, design=design, coef=c(1,2,3), robust=TRUE,
trend=FALSE, sort=TRUE)

propeller.ttest Performs t-tests of transformed cell type proportions

Description

This function is called by propeller and performs t-tests between two experimental groups or
conditions on the transformed cell type proportions.

Usage

propeller.ttest(
prop.list = prop.list,
design = design,
contrasts = contrasts,
robust = robust,
trend = trend,
sort = sort

)
Arguments

prop.list a list object containing two matrices: TransformedProps and Proportions

design a design matrix with rows corresponding to samples and columns to coefficients
to be estimated

contrasts a vector specifying which columns of the design matrix correspond to the two
groups to test

robust logical, should robust variance estimation be used. Defaults to TRUE.

trend logical, should a trend between means and variances be accounted for. Defaults

to FALSE.
sort logical, should the output be sorted by P-value.

propeller.ttest 21

Details

In order to run this function, the user needs to run the getTransformedProps function first. The
output from getTransformedProps is used as input. The propeller.ttest function expects that
the design matrix is not in the intercept format and a contrast vector needs to be supplied. This
contrast vector will identify the two groups to be tested. Note that additional confounding covariates
can be accounted for as extra columns in the design matrix after the group-specific columns.

The propeller.ttest function uses the limma functions 1mFit, contrasts.fit and eBayes
which has the additional advantage that empirical Bayes shrinkage of the variances are performed.

Value

produces a dataframe of results

Author(s)

Belinda Phipson

See Also

propeller, getTransformedProps, ImFit, contrasts.fit, eBayes

Examples

library(speckle)
library(ggplot2)
library(limma)

Make up some data

True cell type proportions for 4 samples
p_sl <- ¢(0.5,0.3,0.2)
p_s2 <- ¢(0.6,0.3,0.1)
p_s3 <- ¢(0.3,0.4,0.3)
p_s4 <- c(0.4,0.3,0.3)

Total numbers of cells per sample
numcells <- c(1000,1500,900,1200)

Generate cell-level vector for sample info
biorep <- rep(c(”s1","s2","s3","s4"),numcells)
length(biorep)

Numbers of cells for each of 3 clusters per sample
n_s1 <- p_sl*numcells[1]
n_s2 <- p_s2*numcells[2]
n_s3 <- p_s3*numcells[3]
n_s4 <- p_s4xnumcells[4]

cl_s1 <- rep(c(”c@”,"c1","c2"),n_s1)
cl_s2 <- rep(c("c@","c1","c2"),n_s2)
cl_s3 <- rep(c(”"c@","c1","c2"),n_s3)

22 speckle_example_data

cl_s4 <- rep(c(”"c@”,"c1","c2"),n_s4)

Generate cell-level vector for cluster info
clust <- c(cl_s1,cl_s2,cl_s3,cl_s4)
length(clust)

prop.list <- getTransformedProps(clusters = clust, sample = biorep)

Assume s1 and s2 belong to group 1 and s3 and s4 belong to group 2
grp <- rep(c("A","B"), each=2)

design <- model.matrix(~0+grp)
design

Compare Grp A to B
contrasts <- c(1,-1)

propeller.ttest(prop.list, design=design, contrasts=contrasts, robust=TRUE,
trend=FALSE, sort=TRUE)

Pretend additional sex variable exists and we want to control for it
in the linear model

sex <- rep(c(0,1),2)

des.sex <- model.matrix(~0+grp+sex)

des. sex

Compare Grp A to B
cont.sex <- c(1,-1,0)

propeller.ttest(prop.list, design=des.sex, contrasts=cont.sex, robust=TRUE,
trend=FALSE, sort=TRUE)

speckle_example_data Generate example data

Description

Generate example data

Usage

speckle_example_data()

Value

a dataframe containing cell-level information for sample, group and clusters

speckle_example_data

Examples

speckle_example_data()

23

Index

+ datasets
pbmc_props, 11

* internal
speckle-package, 2

.extractSCE, 3

.extractSeurat, 3

contrasts.fit, 2/
convertDataTolList, 4

eBayes, 17, 19, 21
estimateBetaParam, 5
estimateBetaParamsFromCounts, 6

getTransformedProps, 5,7, 17, 19, 21
ggplotColors, 9

InFit, 17, 19, 21
normCounts, 10

pbmc_props, 11
plotCellTypeMeanVar, 12
plotCellTypeProps, 13
plotCellTypePropsMeanVar, 14
propeller, 8, 15, 19, 21
propeller.anova, 5, 17, 18
propeller.ttest, 5, 17,20

speckle (speckle-package), 2
speckle-package, 2
speckle_example_data, 22

24

	speckle-package
	.extractSCE
	.extractSeurat
	convertDataToList
	estimateBetaParam
	estimateBetaParamsFromCounts
	getTransformedProps
	ggplotColors
	normCounts
	pbmc_props
	plotCellTypeMeanVar
	plotCellTypeProps
	plotCellTypePropsMeanVar
	propeller
	propeller.anova
	propeller.ttest
	speckle_example_data
	Index

