
Package ‘spatialFDA’
February 2, 2026

Title A Tool for Spatial Multi-sample Comparisons

Version 1.3.1

URL https://github.com/mjemons/spatialFDA

BugReports https://github.com/mjemons/spatialFDA/issues

Description spatialFDA is a package to calculate spatial statistics metrics.
The package takes a SpatialExperiment object and calculates spatial statistics metrics us-
ing the package spatstat.
Then it compares the resulting functions across samples/conditions using functional addi-
tive models as implemented in the package refund.
Furthermore, it provides exploratory visualisations using functional principal component analy-
sis, as well implemented in refund.

License GPL (>= 3) + file LICENSE

Encoding UTF-8

Depends R (>= 4.3.0)

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Imports dplyr, ggplot2, parallel, patchwork, purrr, refund,
SpatialExperiment, spatstat.explore, spatstat.geom,
SummarizedExperiment, methods, stats, fda, tidyr, graphics,
ExperimentHub, scales, S4Vectors

biocViews Software, Spatial, Transcriptomics

VignetteBuilder knitr

Suggests stringr, knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0),
mgcv

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/spatialFDA

git_branch devel

git_last_commit bd8c241

git_last_commit_date 2025-11-03

Repository Bioconductor 3.23

1

https://github.com/mjemons/spatialFDA
https://github.com/mjemons/spatialFDA/issues

2 .dfToppp

Date/Publication 2026-02-01

Author Martin Emons [aut, cre] (ORCID:
<https://orcid.org/0009-0000-5219-5311>),

Samuel Gunz [aut] (ORCID: <https://orcid.org/0000-0002-8909-0932>),
Fabian Scheipl [aut] (ORCID: <https://orcid.org/0000-0001-8172-3603>),
Mark D. Robinson [aut, fnd] (ORCID:

<https://orcid.org/0000-0002-3048-5518>)

Maintainer Martin Emons <martin.emons@uzh.ch>

Contents
.dfToppp . 2
.extractMetric . 3
.loadExample . 4
.speToDf . 5
calcCrossMetricPerFov . 6
calcMetricPerFov . 7
crossSpatialInference . 8
extractCrossInferenceData . 10
functionalGam . 11
functionalPCA . 13
plotCrossFOV . 14
plotCrossHeatmap . 15
plotCrossMetricPerFov . 16
plotFbPlot . 18
plotFpca . 19
plotMdl . 20
plotMetricPerFov . 21
prepData . 23
print.fpca . 24
rMaxHeuristic . 25
spatialInference . 26

Index 29

.dfToppp Convert SpatialExperiment object to ppp object

Description

Convert SpatialExperiment object to ppp object

Usage

.dfToppp(df, marks = NULL, continuous = FALSE, window = NULL)

https://orcid.org/0009-0000-5219-5311
https://orcid.org/0000-0002-8909-0932
https://orcid.org/0000-0001-8172-3603
https://orcid.org/0000-0002-3048-5518

.extractMetric 3

Arguments

df A dataframe with the x and y coordinates from the corresponding SpatialExper-
iment and the ColData

marks A vector of marks to be associated with the points, has to be either named
’cell_type’ if you want to compare discrete celltypes or else continous gene
expression measurements are assumed as marks.

continuous A boolean indicating whether the marks are continuous defaults to FALSE

window An observation window of the point pattern of class owin.

Value

A ppp object for use with spatstat functions

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
speSub <- subset(spe, , image_number == "138")
dfSub <- .speToDf(speSub)
pp <- .dfToppp(dfSub, marks = "cell_type")

.extractMetric Compute a spatial metric on a SpatialExperiment object

Description

A function that takes a SpatialExperiment object and computes a spatial statistics function as
implemented in spatstat. The output is a spatstat object.

Usage

.extractMetric(
df,
selection,
fun,
marks = NULL,
rSeq = NULL,
by = NULL,
continuous = FALSE,
window = NULL,
...

)

4 .loadExample

Arguments

df A dataframe with the x and y coordinates from the corresponding SpatialExperiment
and the colData

selection the mark(s) you want to compare

fun the spatstat function to compute on the point pattern object

marks the marks to consider e.g. cell types

rSeq the range of r values to compute the function over

by the spe colData variable(s) to add to the meta data

continuous A boolean indicating whether the marks are continuous defaults to FALSE

window a observation window for the point pattern of class owin.

... Other parameters passed to spatstat.explore functions

Value

a spatstat metric object with the fov number, the number of points and the centroid of the image

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
speSub <- subset(spe, , image_number == "138")
dfSub <- .speToDf(speSub)
metricRes <- .extractMetric(dfSub, c("alpha", "Tc"),

fun = "Gcross",
marks = "cell_type", rSeq = seq(0, 50, length.out = 50),
by = c("patient_stage", "patient_id", "image_number")

)

.loadExample load Example dataset from Damond et al. (2019)

Description

load Example dataset from Damond et al. (2019)

Usage

.loadExample(full = FALSE)

Arguments

full a boolean indicating whether to load the entire Damond et al. (2019) or only a
subset

.speToDf 5

Value

A SpatialExperiment object as uploaded to ExperimentHub()

Examples

retrieve the Damond et al. (2019) dataset
spe <- .loadExample()

.speToDf Transform a SpatialExperiment into a dataframe

Description

Transform a SpatialExperiment into a dataframe

Usage

.speToDf(spe)

Arguments

spe A SpatialExperiment object subset to a single image

Value

A dataframe with the x and y coordinates from the corresponding SpatialExperiment and the col-
Data

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
speSub <- subset(spe, , image_number == "138")
dfSub <- .speToDf(speSub)

6 calcCrossMetricPerFov

calcCrossMetricPerFov Calculate cross spatial metrics for all combinations per FOV

Description

A function that takes a SpatialExperiment object as input and calculates a cross spatial metric as
implemented by spatstat per field of view for all combinations provided by the user.

Usage

calcCrossMetricPerFov(
spe,
selection,
subsetby = NULL,
fun,
marks = NULL,
rSeq = NULL,
by = NULL,
ncores = 1,
continuous = FALSE,
assay = "exprs",
...

)

Arguments

spe a SpatialExperiment object

selection the mark(s) you want to compare

subsetby the spe colData variable to subset the data by

fun the spatstat function to compute on the point pattern object

marks the marks to consider e.g. cell types

rSeq the range of r values to compute the function over

by the spe colData variable(s) to add to the meta data

ncores the number of cores to use for parallel processing, default = 1

continuous A boolean indicating whether the marks are continuous defaults to FALSE

assay the assay which is used if continuous = TRUE

... Other parameters passed to spatstat.explore functions

Value

a dataframe of the spatstat metric objects with the radius r, the theoretical value of a Poisson
process, the different border corrections the fov number, the number of points and the centroid of
the image

calcMetricPerFov 7

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcCrossMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), by = c(

"patient_stage", "patient_id",
"image_number"

),
ncores = 1

)

calcMetricPerFov Calculate a spatial metric on a SpatialExperiment object per field
of view

Description

A function that takes a SpatialExperiment object as input and calculates a spatial metric as im-
plemented by spatstat per field of view.

Usage

calcMetricPerFov(
spe,
selection,
subsetby,
fun,
marks = NULL,
rSeq = NULL,
by = NULL,
continuous = FALSE,
assay = "exprs",
ncores = 1,
verbose = TRUE,
...

)

Arguments

spe a SpatialExperiment object

selection the mark(s) you want to compare. NOTE: This is directional. c(A,B) is not the
same result as c(B,A).

subsetby the spe colData variable to subset the data by. This variable has to be provided,
even if there is only one sample.

fun the spatstat function to compute on the point pattern object

8 crossSpatialInference

marks the marks to consider e.g. cell types

rSeq the range of r values to compute the function over

by the spe colData variable(s) to add to the meta data

continuous A boolean indicating whether the marks are continuous defaults to FALSE

assay the assay which is used if continuous = TRUE

ncores the number of cores to use for parallel processing, default = 1

verbose logical indicating whether to print all information or not

... Other parameters passed to spatstat.explore functions

Value

a dataframe of the spatstat metric objects with the radius r, the theoretical value of a Poisson
process, the different border corrections the fov number, the number of points and the centroid of
the image

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), by = c(

"patient_stage", "patient_id",
"image_number"

),
ncores = 1

)

crossSpatialInference Function for Cross Spatial Inference

Description

This function is a wrappere function around spatialInference. It calculates spatialInference
results either for all cell types in marks (if selection == NULL) or for a custom subset defined in
selection.

Usage

crossSpatialInference(
spe,
selection = NULL,
fun,
marks = NULL,
rSeq = NULL,
correction,

crossSpatialInference 9

sample_id,
image_id,
condition,
continuous = FALSE,
assay = "exprs",
transformation = NULL,
eps = NULL,
delta = 0,
family = stats::gaussian(link = "log"),
verbose = TRUE,
ncores = 1,
...

)

Arguments

spe a SpatialExperiment object

selection the mark(s) you want to compare. NOTE: This is directional. c(A,B) is not the
same result as c(B,A).

fun the spatstat function to compute on the point pattern object

marks the marks to consider e.g. cell types

rSeq the range of r values to compute the function over

correction the edge correction to be applied

sample_id the spe colData variable to mark the sample, if not NULL this will result in a
mixed model estimation

image_id the spe colData variable to mark the image

condition the spe colData variable to mark the condition

continuous A boolean indicating whether the marks are continuous defaults to FALSE

assay the assay which is used if continuous = TRUE

transformation the transformation to be applied as exponential e.g. 1/2 for sqrt

eps some distributional families fail if the response is zero, therefore, zeros can be
replaced with a very small value eps

delta the delta value to remove from the beginning of the spatial statistics functions.
Can be reasonable if e.g. cells are always spaced by 10 µm. If set to "minNnDist"
it will take the mean of the minimum nearest neighbour distance across all im-
ages for this cell type pair.

family the distributional family for the functional GAM

verbose logical indicating whether to print all information or not

ncores the number of cores to use for parallel processing, default = 1

... Other parameters passed to spatstat.explore functions for parameters con-
cerning the spatial function calculation and to refund::pffr for the functional
additive mixed model inference

10 extractCrossInferenceData

Value

a list of objects created by the function spatialInference with three objects: i) the dataframe with
the spatial statistics results, ii) the designmatrix of the inference and iii) the fitted pffr object

Examples

spe <- .loadExample()
#make the condition a factor variable
colData(spe)[["patient_stage"]] <- factor(colData(spe)[["patient_stage"]])
#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage"]] <- relevel(colData(spe)[["patient_stage"]],
"Non-diabetic")

selection <- c("acinar", "ductal")
resLs <- crossSpatialInference(spe, selection, fun = "Gcross",

marks = "cell_type", rSeq = seq(0, 50, length.out = 50),
correction = "rs", sample_id = "patient_id",
image_id = "image_number", condition = "patient_stage",
algorithm = "bam",
ncores = 1

)

extractCrossInferenceData

Reshaping the Result of a Cross Spatial Inference to a Dataframe

Description

Reshaping the Result of a Cross Spatial Inference to a Dataframe

Usage

extractCrossInferenceData(
resLs,
QCMetric = "medianMinIntensity",
QCThreshold = 0.1

)

Arguments

resLs a list with four objects: i) the dataframe with the spatial statistics results trans-
formed and filtered as used for fitting, ii) the raw spatial statistics results, iii) the
designmatrix of the inference and iv) the fitted pffr object v) the residual stan-
dard error per condition defined as the residual sum of squares divided by the
number of datapoints - sum of the estimated degrees of freedom for the model
parameters as well as other QC metrics

QCMetric the metric to relate the quality of the fit too.
QCThreshold the threshold on the QC metric. Depends on the function used.

functionalGam 11

Value

a dataframe for plotting with ggplot2

Examples

spe <- .loadExample()
#make the condition a factor variable
colData(spe)[["patient_stage"]] <- factor(colData(spe)[["patient_stage"]])
#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage"]] <- relevel(colData(spe)[["patient_stage"]],
"Non-diabetic")

selection <- c("acinar", "ductal")
resLs <- crossSpatialInference(spe, selection,

fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), correction = "rs",
sample_id = "patient_id",
image_id = "image_number", condition = "patient_stage",
algorithm = "bam",
ncores = 1

)
df <- extractCrossInferenceData(resLs)

functionalGam General additive model with functional response

Description

A function that takes the output of a metric calculation as done by calcMetricPerFov. The data
has to be prepared into the correct format for the functional analysis by the prepData function. The
output is a pffr object as implemented by refund.

Usage

functionalGam(
data,
x,
designmat,
weights,
formula,
family = stats::gaussian(link = "log"),
H = NULL,
...

)

12 functionalGam

Arguments

data a dataframe with the following columns: Y = functional response; sample_id =
sample ID; image_id = image ID;

x the x-axis values of the functional response

designmat a design matrix as defined by model.matrix()

weights weights as the number of points per image. These weights are normalised by the
mean of the weights in the fitting process

formula the formula for the model. The colnames of the designmatrix have to correspond
to the variables in the formula.

family the distributional family as implemented in family.mgcv. For fast computation
the default is set to gaussian with a log link. other interesting options can be
betar and scat

• for more information see family.mgcv.

H the ridge penalty matrix passed to mgcv::gam

... Other parameters passed to pffr

Value

a fitted pffr object which inherits from gam

Examples

load the pancreas dataset
library("tidyr")
library("dplyr")
retrieve example data from Damond et al. (2019)
spe <- .loadExample()
calculate the Gcross metric for alpha and Tc cells
metricRes <- calcMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross",
marks = "cell_type", rSeq = seq(0, 50, length.out = 50),
c("patient_stage", "patient_id", "image_number"), ncores = 1

)
metricRes$ID <- paste0(

metricRes$patient_stage, "|", metricRes$patient_id,
"|", metricRes$image_number

)
dat <- prepData(metricRes, "r", "rs", sample_id = "patient_id",

image_id = "image_number", condition = "patient_stage")

#' # drop rows with NA
dat <- dat |> drop_na()

create a designmatrix
condition <- dat$patient_stage
relevel the condition - can set explicit contrasts here
condition <- relevel(condition, "Non-diabetic")
designmat <- model.matrix(~condition)

functionalPCA 13

colnames don't work with the '-' sign
colnames(designmat) <- c(

"(Intercept)", "conditionLong_duration",
"conditionOnset"

)
fit the model
mdl <- functionalGam(

data = dat, x = metricRes$r |> unique(),
designmat = designmat, weights = dat$npoints,
formula = formula(Y ~ conditionLong_duration +

conditionOnset + s(patient_id, bs = "re")),
algorithm = "bam"

)
summary(mdl)

functionalPCA Functional Principal Component Analysis

Description

A function that takes as input the output of calcMetricPerFov which has to be converted into the
correct format by prepData. The output is a list with the fpca.face output from refund.

Usage

functionalPCA(data, r, ...)

Arguments

data a data object for functional data analysis containing at least the functional re-
sponse Y.

r the functional domain

... Other parameters passed to fpca.sc functions

Value

a list with components of fpca.sc

Examples

load the pancreas dataset
library("tidyr")
library("stringr")
library("dplyr")
retrieve example data from Damond et al. (2019)
spe <- .loadExample()
calculate the Gcross metric for alpha and Tc cells
metricRes <- calcMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross",

14 plotCrossFOV

marks = "cell_type", rSeq = seq(0, 50, length.out = 50),
c("patient_stage", "patient_id", "image_number"), ncores = 1

)
metricRes$ID <- paste0(

metricRes$patient_stage, "|", metricRes$patient_id,
"|", metricRes$image_number

)
prepare data for FDA
dat <- prepData(metricRes, "r", "rs")

drop rows with NA
dat <- dat |> drop_na()
create meta info of the IDs
splitData <- str_split(dat$ID, "x")
dat$condition <- factor(sapply(splitData, function(x) x[1]))
dat$patient_id <- factor(sapply(splitData, function(x) x[2]))
dat$image_id <- factor(sapply(splitData, function(x) x[3]))
calculate fPCA
mdl <- functionalPCA(

data = dat, r = metricRes$r |> unique()
)

plotCrossFOV Creates a nXn plot of the cross metrics per sample

Description

Helper function for plotCrossMetricPerFov. It applies plotMetricPerFov to all n marks defined
in the variable selection. This gives an nxn plot of all marks.

Usage

plotCrossFOV(
subFov,
theo,
correction,
x,
imageId,
ID = NULL,
ncol = NULL,
nrow = NULL,
legend.position = "none",
...

)

Arguments

subFov a subset of the dataframe to the respective fov

theo logical; if the theoretical line should be plotted

plotCrossHeatmap 15

correction the border correction to plot

x the x-axis variable to plot

imageId the ID of the image/fov

ID the (optional) ID for plotting combinations

ncol the number of columns for the facet wrap

nrow the number of rows for the facet wrap
legend.position

the position of the legend of the plot

... Other parameters passed to ggplot2 functions

Value

a ggplot object

plotCrossHeatmap Plotting the Result of a Cross Spatial Inference

Description

Plotting the Result of a Cross Spatial Inference

Usage

plotCrossHeatmap(
resLs,
adj.pvalue = "BH",
coefficientsToPlot = NULL,
QCThreshold = 1e-05,
QCMetric = "medianMinIntensity",
...

)

Arguments

resLs a list with four objects: i) the dataframe with the spatial statistics results trans-
formed and filtered as used for fitting, ii) the raw spatial statistics results, iii) the
designmatrix of the inference and iv) the fitted pffr object v) the residual stan-
dard error per condition defined as the residual sum of squares divided by the
number of datapoints - sum of the estimated degrees of freedom for the model
parameters as well as other QC metrics

adj.pvalue a pvalue adjustment method as passed to stats::p.adjust defaults to Benjamini-
Hochberg correction of the false discovery rate.

coefficientsToPlot

list of which coefficients to plot in the heatmap defaults to NULL in which case
all coefficients are plotted

16 plotCrossMetricPerFov

QCThreshold the threshold on the Quality control metric. Depends on the function used.

QCMetric the metric to relate the quality of the fit too.

... other parameters passed to ggplot2 functions

Value

a ggplot2 object

Examples

spe <- .loadExample()
#make the condition a factor variable
colData(spe)[["patient_stage"]] <- factor(colData(spe)[["patient_stage"]])
#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage"]] <- relevel(colData(spe)[["patient_stage"]],
"Non-diabetic")

selection <- c("acinar", "ductal")
resLs <- crossSpatialInference(spe, selection,

fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), correction = "rs",
sample_id = "patient_id",
image_id = "image_number", condition = "patient_stage",
algorithm = "bam",
ncores = 1

)
p <- plotCrossHeatmap(resLs, adj.pvalue = "BH")

plotCrossMetricPerFov Plot a cross type spatial metric per field of view

Description

This function plots the cross function between two marks output from calcMetricPerFov. It wraps
around helper function and applies this function to all samples.

Usage

plotCrossMetricPerFov(
metricDf,
theo = NULL,
correction = NULL,
x = NULL,
imageId = NULL,
ID = NULL,
nrow = NULL,
ncol = NULL,

plotCrossMetricPerFov 17

legend.position = "none",
...

)

Arguments

metricDf the metric dataframe as calculated by calcMetricPerFov

theo logical; if the theoretical line should be plotted

correction the border correction to plot

x the x-axis variable to plot

imageId the ID of the image/fov

ID the (optional) ID for plotting combinations

nrow the number of rows for the facet wrap

ncol the number of columns for the facet wrap
legend.position

the position of the legend of the plot

... Other parameters passed to ggplot2 functions

Value

a ggplot object

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcCrossMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), by = c(

"patient_stage", "patient_id",
"image_number"

),
ncores = 1

)

metricRes$ID <- paste0(
metricRes$patient_stage, "|", metricRes$patient_id

)

metricRes <- subset(metricRes, image_number %in% c(138, 139, 140))
p <- plotCrossMetricPerFov(metricRes,

theo = TRUE, correction = "rs",
x = "r", imageId = "image_number", ID = "ID"

)
print(p)

18 plotFbPlot

plotFbPlot Functional boxplot of spatstat curves

Description

This function creates a functional boxplot of the spatial statistics curves. It creates one functional
boxplot per aggregation category, e.g. condition.

Usage

plotFbPlot(metricDf, x, y, aggregateBy)

Arguments

metricDf the metric dataframe as calculated by calcMetricPerFov

x the name of the x-axis of the spatial metric

y the name of the y-axis of the spatial metric

aggregateBy the criterion by which to aggregate the curves into a functional boxplot. Can be
e.g. the condition of the different samples.

Value

a list of base R plots

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), by = c(

"patient_stage", "patient_id",
"image_number"

),
ncores = 1

)
create a unique ID for the data preparation
metricRes$ID <- paste0(

metricRes$patient_stage, "|", metricRes$patient_id,
"|", metricRes$image_number

)

plotFbPlot(metricRes, 'r', 'rs', 'patient_stage')

plotFpca 19

plotFpca Plot a biplot from an fPCA analysis

Description

A function that takes the output from the functionalPCA function and returns a ggplot object of
the first two dimensions of the PCA as biplot.

Usage

plotFpca(data, res, colourby = NULL, labelby = NULL)

Arguments

data a data object for functional data analysis containing at least the functional re-
sponse Y.

res the output from the fPCA calculation

colourby the variable by which to colour the PCA plot by

labelby the variable by which to label the PCA plot by

Value

a list with components of fpca.face

Examples

load the pancreas dataset
library("tidyr")
library("stringr")
library("dplyr")
retrieve example data from Damond et al. (2019)
spe <- .loadExample()
calculate the Gcross metric for alpha and beta cells
metricRes <- calcMetricPerFov(spe, c("alpha", "beta"),

subsetby = "image_number", fun = "Gcross",
marks = "cell_type", rSeq = seq(0, 50, length.out = 50),
c("patient_stage", "patient_id", "image_number"), ncores = 1

)
metricRes$ID <- paste0(

metricRes$patient_stage, "|", metricRes$patient_id,
"|", metricRes$image_number

)

prepare data for FDA
dat <- prepData(metricRes, "r", "rs")

drop rows with NA
dat <- dat |> drop_na()

20 plotMdl

create meta info of the IDs
splitData <- str_split(dat$ID, "|")
dat$condition <- factor(sapply(splitData, function(x) x[1]))
dat$patient_id <- factor(sapply(splitData, function(x) x[2]))
dat$image_id <- factor(sapply(splitData, function(x) x[3]))
calculate fPCA
mdl <- functionalPCA(

data = dat, r = metricRes$r |> unique()
)
p <- plotFpca(

data = dat, res = mdl, colourby = "condition",
labelby = "patient_id"

)
print(p)

plotMdl Plot a pffr model object

Description

A function that takes a pffr object as calculated in functionalGam and plots the functional coef-
ficients. The functions are centered such that their expected value is zero. Therefore, the scalar
intercept has to be added to the output with the argument shift in order to plot the coefficients in
their original range.

Usage

plotMdl(mdl, predictor, shift = NULL)

Arguments

mdl a pffr model object

predictor predictor to plot

shift the value by which to shift the centered functional intercept. this will most often
be the constant intercept

Value

ggplot object of the functional estimate

Examples

library("tidyr")
library("stringr")
library("dplyr")
retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross", marks = "cell_type",

plotMetricPerFov 21

rSeq = seq(0, 50, length.out = 50), by = c(
"patient_stage", "patient_id",
"image_number"

),
ncores = 1

)
create a unique ID for each row
metricRes$ID <- paste0(

metricRes$patient_stage, "x", metricRes$patient_id,
"x", metricRes$image_number

)

dat <- prepData(metricRes, "r", "rs", sample_id = "patient_id",
image_id = "image_number", condition = "patient_stage")

#' # drop rows with NA
dat <- dat |> drop_na()

create a designmatrix
condition <- dat$patient_stage
relevel the condition - can set explicit contrasts here
condition <- relevel(condition, "Non-diabetic")
designmat <- model.matrix(~condition)
colnames don't work with the '-' sign
colnames(designmat) <- c(

"(Intercept)", "conditionLong_duration",
"conditionOnset"

)
fit the model
mdl <- functionalGam(

data = dat, x = metricRes$r |> unique(),
designmat = designmat, weights = dat$npoints,
formula = formula(Y ~ conditionLong_duration +

conditionOnset + s(patient_id, bs = "re")),
algorithm = "bam"

)
summary(mdl)
plotLs <- lapply(colnames(designmat), plotMdl,

mdl = mdl,
shift = mdl$coefficients[["(Intercept)"]]

)

plotMetricPerFov Plot a spatial metric per field of view

Description

A function that plots the output of the function calcMetricPerFov. The plot contains one curve
per FOV and makes subplots by samples.

22 plotMetricPerFov

Usage

plotMetricPerFov(
metricDf,
theo = FALSE,
correction = NULL,
x = NULL,
imageId = NULL,
ID = NULL,
nrow = NULL,
ncol = NULL,
legend.position = "none",
...

)

Arguments

metricDf the metric dataframe as calculated by calcMetricPerFov

theo logical; if the theoretical line should be plotted

correction the border correction to plot

x the x-axis variable to plot

imageId the ID of the image/fov

ID the (optional) ID for plotting combinations

nrow the number of rows for the facet wrap

ncol the number of columns for the facet wrap
legend.position

the position of the legend of the plot

... Other parameters passed to ggplot2 functions

Value

a ggplot object

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), by = c(

"patient_stage", "patient_id",
"image_number"

),
ncores = 1

)
ceate a unique plotting ID
metricRes$ID <- paste0(
metricRes$patient_stage, "|", metricRes$patient_id

prepData 23

)

p <- plotMetricPerFov(metricRes,
correction = "rs", x = "r",
imageId = "image_number", ID = "ID"

)
print(p)

prepData Prepare data from calcMetricRes to be in the right format for FDA

Description

Prepare data from calcMetricRes to be in the right format for FDA

Usage

prepData(metricRes, x, y, sample_id = NULL, image_id = NULL, condition = NULL)

Arguments

metricRes a dataframe as calculated by calcMetricRes - requires the columns ID (unique
identifier of each row)

x the name of the x-axis of the spatial metric

y the name of the y-axis of the spatial metric

sample_id the spe colData variable to mark the sample

image_id the spe colData variable to mark the image

condition the spe colData variable to mark the condition

Value

returns a list with three entries, the unique ID, the functional response Y and the weights

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
metricRes <- calcMetricPerFov(spe, c("alpha", "Tc"),

subsetby = "image_number", fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), by = c(

"patient_stage", "patient_id",
"image_number"

),
ncores = 1

)

create a unique ID for each row
metricRes$ID <- paste0(

24 print.fpca

metricRes$patient_stage, "|", metricRes$patient_id,
"|", metricRes$image_number

)
dat <- prepData(metricRes, "r", "rs", sample_id = "patient_id",
image_id = "image_number", condition = "patient_stage")

print.fpca print the fPCA results

Description

this is a function that prints a summary of the fPCA result of class fpca

Usage

S3 method for class 'fpca'
print(x, ...)

Arguments

x the result of function functionalPCA

... other parameters passed to base generic function print

Value

a formatted overview of the fPCA result

Examples

load the pancreas dataset
library("tidyr")
library("stringr")
library("dplyr")
retrieve example data from Damond et al. (2019)
spe <- .loadExample()
calculate the Gcross metric for alpha and beta cells
metricRes <- calcMetricPerFov(spe, c("alpha", "beta"),

subsetby = "image_number", fun = "Gcross",
marks = "cell_type", rSeq = seq(0, 50, length.out = 50),
c("patient_stage", "patient_id", "image_number"), ncores = 1

)
metricRes$ID <- paste0(

metricRes$patient_stage, "|", metricRes$patient_id,
"|", metricRes$image_number

)
prepare data for FDA
dat <- prepData(metricRes, "r", "rs")

drop rows with NA

rMaxHeuristic 25

dat <- dat |> drop_na()

create meta info of the IDs
splitData <- strsplit(dat$ID, "|", fixed = TRUE)
dat$condition <- factor(sapply(splitData, function(x) x[1]))
dat$patient_id <- factor(sapply(splitData, function(x) x[2]))
dat$image_id <- factor(sapply(splitData, function(x) x[3]))
calculate fPCA
mdl <- functionalPCA(

data = dat, r = metricRes$r |> unique()
)
mdl

rMaxHeuristic Heuristic for the choice of rMax

Description

Heuristic for the choice of rMax

Usage

rMaxHeuristic(spe, subsetby, marks)

Arguments

spe a SpatialExperiment object

subsetby the spe colData variable to subset the data by. This variable has to be provided,
even if there is only one sample.

marks the marks to consider e.g. cell types

Value

a ggplot histogram of the bounding radius of all the

Examples

retrieve example data from Damond et al. (2019)
spe <- .loadExample()
p <- rMaxHeuristic(spe,
subsetby = "image_number", marks = "cell_type"
)

26 spatialInference

spatialInference Statistical Inference on Spatial Statistics Functions

Description

A function to perform spatial statistical inference on spatial omics data. This function works so far
only on functions of radius "r".

Usage

spatialInference(
spe,
selection,
fun,
marks = NULL,
rSeq = NULL,
correction,
sample_id,
image_id,
condition,
continuous = FALSE,
assay = "exprs",
transformation = NULL,
weights = "total",
eps = NULL,
delta = 0,
family = stats::gaussian(link = "log"),
verbose = TRUE,
ridgepenalty = 0,
upperDeltaProb = NULL,
weightTransform = FALSE,
ncores = 1,
...

)

Arguments

spe a SpatialExperiment object

selection the mark(s) you want to compare. NOTE: This is directional. c(A,B) is not the
same result as c(B,A).

fun the spatstat function to compute on the point pattern object

marks the marks to consider e.g. cell types

rSeq the range of r values to compute the function over

correction the edge correction to be applied

spatialInference 27

sample_id the spe colData variable to mark the sample, if not NULL this will result in a
mixed model estimation

image_id the spe colData variable to mark the image

condition the spe colData variable to mark the condition

continuous A boolean indicating whether the marks are continuous defaults to FALSE

assay the assay which is used if continuous = TRUE

transformation the transformation to be applied as exponential e.g. 1/2 for sqrt or Fisher’s
variance-stabilising transformation if "Fisher"

weights the weighting to be applied to the functional GAM. Either NULL (equal weights),
total (npoints of total pattern), min (npoints of the smaller subpattern) or max
(npoints of the larger subpattern) or a user defined value of same length as the
number of curves to be estimated

eps some distributional families fail if the response is zero, therefore, zeros can be
replaced with a very small value eps

delta the delta value to remove from the beginning of the spatial statistics functions.
Can be reasonable if e.g. cells are always spaced by 10 µm. If set to "minNnDist"
it will take the mean of the minimum nearest neighbour distance across all im-
ages for this cell type pair.

family the distributional family for the functional GAM

verbose logical indicating whether to print all information or not

ridgepenalty a numeric value defining a ridge penalty parameter which is added to the matrix
H as defined in mgcv::gam

upperDeltaProb the quantile to filter out the constant 1 part for Gest and Gcross. If NULL no
upper filtering is applied.

weightTransform

logical indicating whether the weights (number of points) should be sqrt trans-
formed

ncores the number of cores to use for parallel processing, default = 1

... Other parameters passed to spatstat.explore functions for parameters con-
cerning the spatial function calculation and to refund::pffr for the functional
additive mixed model inference

Value

a list with four objects: i) the dataframe with the spatial statistics results transformed and filtered
as used for fitting, ii) the raw spatial statistics results, iii) the designmatrix of the inference and
iv) the fitted pffr object v) the residual standard error per condition defined as the residual sum
of squares divided by the number of datapoints - sum of the estimated degrees of freedom for the
model parameters as well as other QC metrics

Examples

spe <- .loadExample()
#make the condition a factor variable
colData(spe)[["patient_stage"]] <- factor(colData(spe)[["patient_stage"]])

28 spatialInference

#relevel to have non-diabetic as the reference category
colData(spe)[["patient_stage"]] <- relevel(colData(spe)[["patient_stage"]],
"Non-diabetic")
res <- spatialInference(spe, c("alpha", "Tc"),

fun = "Gcross", marks = "cell_type",
rSeq = seq(0, 50, length.out = 50), correction = "rs",
sample_id = "patient_id",
image_id = "image_number", condition = "patient_stage",
ncores = 1,
algorithm = "bam"

)

Index

.dfToppp, 2

.extractMetric, 3

.loadExample, 4

.speToDf, 5

calcCrossMetricPerFov, 6
calcMetricPerFov, 7
crossSpatialInference, 8

extractCrossInferenceData, 10

functionalGam, 11
functionalPCA, 13

plotCrossFOV, 14
plotCrossHeatmap, 15
plotCrossMetricPerFov, 16
plotFbPlot, 18
plotFpca, 19
plotMdl, 20
plotMetricPerFov, 21
prepData, 23
print.fpca, 24

rMaxHeuristic, 25

spatialInference, 26

29

	.dfToppp
	.extractMetric
	.loadExample
	.speToDf
	calcCrossMetricPerFov
	calcMetricPerFov
	crossSpatialInference
	extractCrossInferenceData
	functionalGam
	functionalPCA
	plotCrossFOV
	plotCrossHeatmap
	plotCrossMetricPerFov
	plotFbPlot
	plotFpca
	plotMdl
	plotMetricPerFov
	prepData
	print.fpca
	rMaxHeuristic
	spatialInference
	Index

