Package ‘scrapper’

February 2, 2026

Version 1.5.11
Date 2026-01-23
Title Bindings to C++ Libraries for Single-Cell Analysis

Description Implements R bindings to C++ code for analyzing single-
cell (expression) data, mostly from various libscran libraries.
Each function performs an individual step in the single-
cell analysis workflow, ranging from quality control to clustering and marker detection.
Additional wrappers are provided for easy construction of end-to-
end workflows involving Bioconductor objects like SingleCellExperiments.

License MIT + file LICENSE

Imports methods, Repp, beachmat (>= 2.25.1), Matrix, S4Vectors,
SparseArray, DelayedArray, BiocNeighbors (>= 1.99.0), parallel

Suggests testthat, knitr, rmarkdown, BiocStyle, MatrixGenerics,
sparseMatrixStats, IRanges, SummarizedExperiment,
SingleCellExperiment, scRNAseq, org.Mm.eg.db, scater, igraph

LinkingTo Rcpp, assorthead (>= 1.5.3), beachmat, BiocNeighbors,
Rigraphlib

biocViews Normalization, RNASeq, Software, GeneExpression,
Transcriptomics, SingleCell, BatchEffect, QualityControl,
DifferentialExpression, FeatureExtraction, Principal Component,
Clustering

SystemRequirements C++17, GNU make
VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/scrapper
git_branch devel

git_last commit d3366a9

git_last_commit_date 2026-01-23

Repository Bioconductor 3.23

2 Contents

Date/Publication 2026-02-01
Author Aaron Lun [cre, aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents
adt_quality_control L 3
aggregateAcrossCells 6
aggregateAcrossCells.se 7
aggregate AcrossGenesl e 10
aggregate ACrosSSGenes.S€ i e e e e e e e e e e e 11
analyze e 13
analyze.se e e e e 18
buildSnnGraph e 23
centerSizeFactors 25
chooseHighlyVariableGenes 27
choosePseudoCount L 28
chooseRnaHvgs.se e 29
clusterGraph e 31
clusterGraph.se e 33
clusterKmeans 34
clusterKmeans.se 37
combineFactors 38
computeBlockWeights 39
computeClrm1Factors L 40
convertAnalyzeResults 41
correctMNN L e e 42
correctMNN.Se e e 44
countGroupsByBlock oo 45
crispr_quality_control e 47
fitVarianceTrend 49
getTestData.se 51
LogNormalizedMatrix i 52
modelGeneVariances e 53
normalizeAdtCounts.se e e 56
normalizeCounts 58
normalizeCrisprCounts.se e 60
normalizeRnaCounts.se 61
quickAdtQc.Se e e 63
quickCrisprQC.se 64
quickRnaQec.se 66
reportGroupMarkerStatistics Lo 68
rna_quality_control L e e 69
runAllNeighborSteps 71
runAllNeighborSteps.se L 73
runPcao 75

runPca.se e e 78

adt_quality_control 3

Index

runTsne 79
runTsne.se e e e 82
runUmap o e e e e e e e e e e e 83
runUmap.S€ o o e e e e e e e e 87
sanitizeSizeFactors 88
scaleByNeighbors 89
scaleByNeighbors.se 91
scoreGeneSet e e e e e 92
SCOreGeNeSet.S€ e e e e e e e e e e 94
scoreMarkers e e e e 96
scoreMarkers.se 101
subsampleByNeighbors oL o 103
summarizeEffects 105
testEnrichment 107

109

adt_quality_control Quality control for ADT count data

Description

Compute per-cell QC metrics from an initialized matrix of ADT counts, and use the metrics to
suggest filter thresholds to retain high-quality cells.

Usage

computeAdtQcMetrics(x, subsets, num.threads = 1)

suggestAdtQcThresholds(

)

metrics,

block = NULL,
min.detected.drop = 0.1,
num.mads = 3

filterAdtQcMetrics(thresholds, metrics, block = NULL)

Arguments
X A matrix-like object where rows are ADTs and columns are cells. Values are
expected to be counts.
subsets Named list of vectors specifying tag subsets of interest, typically control tags

like IgGs. Each vector may be logical (whether to keep each row), integer (row
indices) or character (row names). For character vectors, strings not present in
rownames(x) are ignored.

num. threads Integer scalar specifying the number of threads to use.

4 adt_quality_control

metrics DataFrame of per-cell QC metrics. This should have the same structure as the
return value of computeAdtQcMetrics.

block Factor specifying the block of origin (e.g., batch, sample) for each cell inmetrics.
Alternatively NULL if all cells are from the same block.
For filterAdtQcMetrics, a blocking factor should be provided if block was
used to construct thresholds.

min.detected.drop
Minimum drop in the number of detected features from the median, in order to
consider a cell to be of low quality.

num.mads Number of median from the median, to define the threshold for outliers in each
metric.
thresholds List with the same structure as produced by suggestAdtQcThresholds.
Value

For computeAdtQcMetrics, a DataFrame is returned with one row per cell in x. This contains the
following columns:

* sum, a numeric vector containing the total ADT count for each cell. In theory, this represents
the efficiency of library preparation and sequencing. Compared to RNA, the sum is less use-
ful as a QC metric for ADT data as it is strongly influenced by biological variation in the
abundance of the targeted features. Nonetheless, we compute it for diagnostic purposes.

* detected, an integer vector containing the number of detected tags per cell. Even though
ADTs are typically used in situations where few features are highly abundant (e.g., cell type-
specific markers), we still expect detectable coverage of most features due to ambient contam-
ination, non-specific binding or some background expression. Low numbers of detected tags
indicates that library preparation or sequencing depth was suboptimal.

* subsets, a nested DataFrame where each column corresponds to a control subset and is a
numeric vector containing the total count in that subset. The exact interpretation depends on
the nature of the feature subset but the most common use case involves isotype control (IgG)
features. IgG antibodies should not bind to anything so a high subset sum suggests that non-
specific binding is a problem, e.g., due to antibody conjugates. (Unlike RNA quality control,
we do not use proportions here as it is entirely possible for a cell to have low counts for other
tags due to the absence of their targeted features; this would result in a high proportion even
if the cell has a "normal" level of non-specific binding.)

Each vector is of length equal to the number of cells.

For suggestAdtQcThresholds, a named list is returned:

e If block=NULL, the list contains:

— detected, a numeric scalar containing the lower bound on the number of detected tags.
This is defined as the lower of (i) num.mads MADs below the median for the log-transformed
values across all cells, and (ii) the product of 1 - min.detected.drop and the median
across all cells. The latter avoids overly aggressive filtering when the MAD is zero.

— subsets, a numeric vector containing the upper bound on the sum of counts in each con-
trol subset. This is defined as num.mads MADs above the median of the log-transformed
metrics across all cells.

adt_quality_control 5

* Otherwise, if block is supplied, the list contains:

— detected, a numeric vector containing the lower bound on the number of detected tags
for each blocking level. Here, the threshold is computed independently for each block,
using the same method as the unblocked case.

— subsets, a list of numeric vectors containing the upper bound on the sum of counts in
each control subset for each blocking level. Here, the threshold is computed indepen-
dently for each block, using the same method as the unblocked case.

— block.ids, a vector containing the identities of the unique blocks.

Each vector is of length equal to the number of levels in block and is named accordingly.

For filterAdtQcMetrics, alogical vector of length ncol (x) is returned indicating which cells are
of high quality. High-quality cells are defined as those with numbers of detected tags above the
detected threshold and control subset sums below the subsets threshold.

Author(s)

Aaron Lun

See Also

The compute_adt_qgc_metrics, compute_adt_qc_filtersand compute_adt_qc_filters_blocked
functions in https://libscran.github.io/scran_qc/.

quickAdtQc. se, to run all of the ADT-related QC functions on a SummarizedExperiment.

Examples

Mocking a matrix:
library(Matrix)
X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))

Mocking up a control set.
sub <- list(IgG=rbinom(nrow(x), 1, @.1) > @)

gc <- computeAdtQcMetrics(x, sub)
qc

filt <- suggestAdtQcThresholds(qc)
str(filt)

keep <- filterAdtQcMetrics(filt, qc)
summary (keep)

https://libscran.github.io/scran_qc/

aggregateAcrossCells

aggregateAcrossCells Aggregate expression across cells

Description

Aggregate expression values across cells based on one or more grouping factors. This is usually
applied to a count matrix to create pseudo-bulk profiles for each cluster/sample combination. These
profiles can then be used as if they were counts from bulk data, e.g., for differential analyses with
edgeR.

Usage

aggregateAcrossCells(x, factors, num.threads = 1)

Arguments

X

A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Values are typically expected to be counts.

factors A list or data frame (or their equivalents from S4Vectors) containing one or

more grouping factors, see combineFactors.

num. threads Integer specifying the number of threads to be used for aggregation.

Value

A list containing:

sums, a numeric matrix where each row corresponds to a gene and each column corresponds
to a unique combination of levels from factors. Each entry contains the summed expression
across all cells with that combination.

detected, an integer matrix where each row corresponds to a gene and each column corre-
sponds to a unique combination of levels from factors. Each entry contains the number of
cells with detected expression in that combination.

combinations, a DataFrame containing the unique combination of levels from factors.
Rows correspond to columns of sums and detected, while columns correspond to the fac-
tors in factors.

counts, the number of cells associated with each combination. Each entry corresponds to a
row of combinations.

index, an integer vector of length equal to the number of cells in x. This specifies the combi-
nation in combinations to which each cell was assigned.

Author(s)

Aaron Lun

aggregateAcrossCells.se 7

See Also

The aggregate_across_cells function in https://libscran.github.io/scran_aggregate/.
aggregateAcrossCells. se, to perform aggregation on a SummarizedExperiment.

aggregateAcrossGenes, to aggregate expression values across gene sets.

Examples

Mocking a matrix:
library(Matrix)
x <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))

Simple aggregation:

clusters <- sample(LETTERS, 100, replace=TRUE)

agg <- aggregateAcrossCells(x, list(cluster=clusters))
str(agg)

Multi-factor aggregation

samples <- sample(1:5, 100, replace=TRUE)

agg?2 <- aggregateAcrossCells(x, list(cluster=clusters, sample=samples))
str(agg2)

aggregateAcrossCells.se
Aggregate expression across cells in a SummarizedExperiment

Description

Aggregate expression values across groups of cells for each gene, by calling aggregateAcrossCells
on an assay in a SummarizedExperiment.

Usage

aggregateAcrossCells. se(
X)
factors,
num.threads = 1,
more.aggr.args = list(),

assay.type = "counts”,
output.prefix = "factor.",
counts.name = "counts”,
meta.name = "aggregated”,

include.coldata = TRUE,
more.coldata.args = list(),
altexps = NULL,
copy.altexps = FALSE

aggregateColData(coldata, index, number, only.atomic = TRUE, placeholder = NA)

https://libscran.github.io/scran_aggregate/

8 aggregateAcrossCells.se

Arguments
X A SummarizedExperiment object or one of its subclasses. Rows correspond to
genes and columns correspond to cells.
factors List or data frame (or their equivalents from S4Vectors) containing grouping
factors, see aggregateAcrossCells for more details.
Alternatively, an atomic vector or factor representing a single variable.
num. threads Number of threads, passed to aggregateAcrossCells.

more.aggr.args Named list of additional arguments to pass to aggregateAcrossCells.
assay.type Integer or string specifying the assay of x to be aggregated.

output.prefix String specifying a prefix to add to the names of the 1ink[SummarizedExperiment]{colData}
columns storing the factor combinations. If NULL, no prefix is added.

counts.name String specifying the name of the colData column in which to store the cell
count for each factor combination. If NULL, the cell counts are not reported.

meta.name String specifying the name of the metadata entry in which to store additional
outputs like the combination indices. If NULL, additional outputs are not re-
ported.

include.coldata
Logical scalar indicating whether to add the aggregated colData from x to the
output.

more.coldata.args
Named list of additional arguments to pass to aggregateColData. Only relevant
if include.coldata=TRUE.

altexps Unnamed integer or character vector specifying the indices/names of alterna-
tive experiments of x to aggregate. The aggregated assay from each alternative
experiment is determined by assay. type.

Alternatively, this may be a named integer or character vector. Each name spec-
ifies an alternative experiment while each value is the index/name of the assay
to aggregate from that experiment.

Only relevant if x is a SingleCellExperiment.

copy.altexps Logical scalar indicating whether to copy the colData and metadata of the
output SingleCellExperiment into each of its alternative experiments.

coldata DataFrame of column data, containing one row for each cell.

index Integer vector containing the index of the factor combination to which each cell
in coldata was assigned.

number Integer specifying the total number of unique factor combinations. All elements
of index should be less than number.

only.atomic Logical scalar specifying whether to skip non-atomic, non-factor columns.

placeholder Placeholder value to store in the output column when a factor combination does
not have a single unique value.

aggregateAcrossCells.se 9

Value

For aggregateAcrossCells. se, a SummarizedExperiment is returned where each column corre-
sponds to a factor combination. Each row corresponds to a gene in x and the rowData is taken from
x. The assays contain the sum of counts ("sums") and the number of detected cells ("detected”)
in each combination for each gene. The colData contains:

* The factor combinations, with column names prefixed by output.prefix.
* The cell count for each combination, named by counts.name.

* Additional colData from x if include.coldata=TRUE. This is aggregated with aggregateColData
on the combination indices.

The metadata contains a list named as meta.name, containing a index integer vector of length
equal to the number of cells in x. Each entry of this vector is an index of the factor combination
(i.e., column of the output object) to which the corresponding cell was assigned.

If altexps is specified, a SingleCellExperiment is returned instead. The same aggregation for the
main experiment is applied to each alternative experiment. If copy.altexps=TRUE, the colData
for each alternative experiment will contain a copy of the factor combinations and cell counts, and
the metadata will contain a copy of the index vector.

For aggregateColData, a DataFrame is returned with number of rows equal to number. Each

atomic or factor column in coldata is represented by a column in the output DataFrame. In each

column, the j-th entry is equal to the unique value of all rows where index == j, or placeholder if

there is not exactly one unique value. If only.atomic=FALSE, any non-atomic/non-factor columns

of coldata are represented in the output DataFrame by a vector of placeholder values. If only.atomic=TRUE,
any non-atomic/non-factor columns of coldata are skipped.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("start")

aggr <- aggregateAcrossCells.se(sce, sce$leveliclass)
head(assay(aggr))

colData(aggr)

We can also aggregate within alternative experiments.
aggr2 <- aggregateAcrossCells.se(sce, sce$leveliclass, altexps="ERCC")
head(assay(altExp(aggr2, "ERCC")))

10 aggregateAcrossGenes

aggregateAcrossGenes Aggregate expression across genes

Description

Aggregate expression values across genes, potentially with weights. This is typically used to sum-
marize expression values for gene sets into a single per-cell score.

Usage

aggregateAcrossGenes(x, sets, average = FALSE, convert = TRUE, num.threads = 1)

Arguments

X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Values are usually normalized expression values,
possibly log-transformed depending on the application.

sets List of vectors where each entry corresponds to a gene set. Each entry may be
an integer vector of row indices, a logical vector of length equal to the number
of rows, or a character vector of row names. For integer and character vectors,
duplicate elements are ignored. For character vectors, any strings not present in
rownames(x) are ignored.
Alternatively, each entry may be a list of two vectors. The first vector should
be either integer (row indices) or character (row names), specifying the genes in
the set. The second vector should be numeric and of the same length as the first
vector, specifying the weight associated with each gene. If duplicate genes are
present, only the first occurrence is used. If the first vector contains gene names
not present in x, those genes are ignored.

average Logical scalar indicating whether to compute the average rather than the sum.

convert Logical scalar indicating whether to convert gene identities to non-duplicate row
indices in each entry of sets. Can be set to FALSE for greater efficiency if the
sets already contains non-duplicated integer vectors.

num. threads Integer specifying the number of threads to be used for aggregation.

Value

A list of length equal to that of sets. Each entry is a numeric vector of length equal to the number
of columns in x, containing the (weighted) sum/mean of expression values for the corresponding
set across all cells.

Author(s)

Aaron Lun

aggregateAcrossGenes.se 11

See Also

The aggregate_across_genes function in https://libscran.github.io/scran_aggregate/.
aggregateAcrossGenes. se, to perform aggregation on a SummarizedExperiment.

aggregateAcrossCells, to aggregate expression values across groups of cells.

Examples

Mocking a matrix:
library(Matrix)
X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))

Unweighted aggregation:
sets <- list(
foo = sample(nrow(x), 20),
bar = sample(nrow(x), 10)

)
agg <- aggregateAcrossGenes(x, sets)
str(agg)

Weighted aggregation:

sets <- list(
foo = list(sample(nrow(x), 20), runif(20)),
bar = list(sample(nrow(x), 10), runif(10))

)
agg2 <- aggregateAcrossGenes(x, sets, average = TRUE)
str(agg2)

aggregateAcrossGenes. se
Aggregate expression across gene sets in a SummarizedExperiment

Description

Aggregate expression values across sets of genes for each cell, by calling aggregateAcrossGenes
on an assay in a SummarizedExperiment.

Usage

aggregateAcrossGenes. se(
X,
sets,
num.threads = 1,
more.aggr.args = list(),
assay.type = "logcounts”,
output.name = NULL

https://libscran.github.io/scran_aggregate/

12

Arguments

X

sets

num. threads
more.aggr.args
assay.type

output.name

Value

aggregateAcrossGenes.se

A SummarizedExperiment object or one of its subclasses. Rows correspond to
genes and columns correspond to cells.

List of gene sets, see aggregateAcrossGenes for more details.

Alternatively, sets may be a List subclass, in which case the mcols are used
as the rowData of the output object. Weighted gene sets can be represented by
a list of DataFrames or a DataFrameList, where each DataFrame contains two
columns, i.e., the gene identities and the associated weights.

Number of threads, passed to aggregateAcrossGenes.
Named list of additional arguments to pass to aggregateAcrossGenes.
Integer or string specifying the assay of x to be aggregated.

String specifying the assay name in the output object. Defaults to assay. type
if it is a string, otherwise "aggregated”.

A SummarizedExperiment with number of rows equal to the number of gene sets. The lone assay
contains the aggregated values for each gene set for all cells. The colData is the same as that of x.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("norm")

library(org.Mm.eg.db)
set.df <- select(

org.Mm.eg.db,
keytype="G0",
keys=c(

"G0:0048709", # oligodendrocyte differentiation
"G0:0048699", # neuron development
"G0:0048143" # astrocyte activation

),

columns="SYMBOL"

)
sets <- splitAsList(set.df$SYMBOL, set.df$GO)

aggregated <- aggregateAcrossGenes.se(sce, sets)
aggregated
assay(aggregated)[,1:10]

analyze 13

analyze Analyze single-cell data

Description

Execute a simple single-cell analysis pipeline, starting from a count matrix and ending with clusters,
visualizations and markers. This also supports integration of multiple modalities and correction of
batch effects.

Usage
analyze(
rna.x,
adt.x = NULL,
crispr.x = NULL,
block = NULL,

rna.subsets = list(),

adt.subsets = list(),
suggestRnaQcThresholds.args = list(),
suggestAdtQcThresholds.args = list(),
suggestCrisprQcThresholds.args = list(),
filter.cells = TRUE,
centerSizeFactors.args = list(),
computeClrmiFactors.args = list(),
normalizeCounts.args = list(),
modelGeneVariances.args = list(),
chooseHighlyVariableGenes.args = list(),
runPca.args = list(),

use.rna.pcs = TRUE,

use.adt.pcs = TRUE,

use.crispr.pcs = TRUE,
scaleByNeighbors.args = list(),
correctMnn.args = list(),
runUmap.args = list(),

runTsne.args = list(),
buildSnnGraph.args = list(),
clusterGraph.args = list(),
runAllNeighborSteps.args = list(),
kmeans.clusters = NULL,
clusterKmeans.args = list(),
clusters.for.markers = c("graph”, "kmeans"),
scoreMarkers.args = list(),

BNPARAM = AnnoyParam(),

rna.assay = 1L,

adt.assay = 1L,

crispr.assay = 1L,

num.threads = 3L

14

Arguments

rna.x

adt.x

crispr.x

block

rna.subsets

adt.subsets

analyze

Matrix-like object containing RNA counts. This should have the same number
of columns as the other *. x arguments.

Alternatively, a SummarizedExperiment instance containing such a matrix in its
rna.assay.

Alternatively NULL, if no RNA counts are available.
Matrix-like object containing ADT counts. This should have the same number
of columns as the other *.x arguments.

Alternatively, a SummarizedExperiment instance containing such a matrix in its
adt.assay.

Alternatively NULL, if no ADT counts are available.
Matrix-like object containing ADT counts. This should have the same number
of columns as the other *. x arguments.

Alternatively, a SummarizedExperiment instance containing such a matrix in its
crispr.assay.

Alternatively NULL, if no ADT counts are available.

Factor specifying the block of origin (e.g., batch, sample) for each cell in the
*_x matrices. Alternatively NULL, if all cells are from the same block.

Gene subsets for quality control, typically used for mitochondrial genes. See the
subsets arguments in computeRnaQcMetrics for details.

ADT subsets for quality control, typically used for IgG controls. See the subsets
arguments in computeAdtQcMetrics for details.

suggestRnaQcThresholds.args

Named list of arguments to pass to suggestRnaQcThresholds.

suggestAdtQcThresholds.args

Named list of arguments to pass to suggestAdtQcThresholds.

suggestCrisprQcThresholds.args

filter.cells

Named list of arguments to pass to suggestCrisprQcThresholds.

Logical scalar indicating whether to filter the count matrices to only retain high-
quality cells in all modalities. If FALSE, QC metrics and thresholds are still
computed but are not used to filter the count matrices.

centerSizeFactors.args

Named list of arguments to pass to centerSizeFactors.

computeClrmiFactors.args

Named list of arguments to pass to computeClrmiFactors. Only used if adt. x
is provided.

normalizeCounts.args

Named list of arguments to pass to normalizeCounts.

modelGeneVariances.args

Named list of arguments to pass to modelGeneVariances. Only used if rna.x
is provided.

analyze 15

chooseHighlyVariableGenes. args
Named list of arguments to pass to chooseHighlyVariableGenes. Only used
if rna. x is provided.

runPca.args Named list of arguments to pass to runPca.

use.rna.pcs Logical scalar indicating whether to use the RNA-derived PCs for downstream
steps (i.e., clustering, visualization). Only used if rna.x is provided.

use.adt.pcs Logical scalar indicating whether to use the ADT-derived PCs for downstream
steps (i.e., clustering, visualization). Only used if adt. x is provided.

use.crispr.pcs Logical scalar indicating whether to use the CRISPR-derived PCs for down-
stream steps (i.e., clustering, visualization). Only used if crispr.x is provided.
scaleByNeighbors.args
Named list of arguments to pass to scaleByNeighbors. Only used if multiple
modalities are available and their corresponding use. *. pcs arguments are TRUE.
correctMnn.args
Named list of arguments to pass to correctMnn. Only used if block is supplied.
runUmap.args Named list of arguments to pass to runUmap. If NULL, UMAP is not performed.

runTsne.args Named list of arguments to pass to runTsne. If NULL, t-SNE is not performed.

buildSnnGraph.args
Named list of arguments to pass to buildSnnGraph. Ignored if clusterGraph.args
= NULL.

clusterGraph.args
Named list of arguments to pass to clusterGraph. If NULL, graph-based clus-
tering is not performed.

runAllNeighborSteps.args
Named list of arguments to pass to runAl1NeighborSteps.

kmeans.clusters
Integer scalar specifying the number of clusters to use in k-means clustering. If
NULL, k-means clustering is not performed.

clusterKmeans.args
Named list of arguments to pass to clusterKmeans. Ignored if kmeans.clusters
= NULL.

clusters.for.markers
Character vector of clustering algorithms (either "graph” or "kmeans"”, specify-
ing the clustering to be used for marker detection. The first available clustering
will be chosen.

scoreMarkers.args
Named list of arguments to pass to scoreMarkers. Ignored if no suitable clus-
terings are available.

BNPARAM A BiocNeighborParam instance specifying the nearest-neighbor search algo-
rithm to use.

rna.assay Integer scalar or string specifying the assay to use if rna. x is a SummarizedEx-
periment.

adt.assay Integer scalar or string specifying the assay to use if adt . x is a SummarizedEx-
periment.

crispr.assay Integer scalar or string specifying the assay to use if crispr.x is a Summarized-
Experiment.

num. threads Integer scalar specifying the number of threads to use in each step.

16 analyze

Value
List containing the results of the entire analysis:

rna.qc.metrics: Results of computeRnaQcMetrics. If RNA data is not available, this is set to
NULL instead.

rna.qc.thresholds: Results of suggestRnaQcThresholds. If RNA data is not available, this is
set to NULL instead.

rna.qc.filter: Results of filterRnaQcMetrics. If RNA data is not available, this is set to NULL
instead.

adt.qgc.metrics: Results of computeAdtQcMetrics. If ADT data is not available, this is set to
NULL instead.

adt.qc.thresholds: Results of suggestAdtQcThresholds. If ADT data is not available, this is
set to NULL instead.

adt.qgc.filter: Results of filterAdtQcMetrics. If ADT data is not available, this is set to NULL
instead.

crispr.qc.metrics: Results of computeCrisprQcMetrics. If CRISPR data is not available, this
is set to NULL instead.

crispr.qc.thresholds: Results of suggestCrisprQcThresholds. If CRISPR data is not avail-
able, this is set to NULL instead.

crispr.qc.filter: Results of filterCrisprQcMetrics. If CRISPR data is not available, this is
set to NULL instead.

combined.qc.filter: Logical vector indicating which cells are of high quality and should be
retained for downstream analyses.

rna.filtered: Matrix of RNA counts that has been filtered to only contain the high-quality cells
in combined.qc.filter. If RNA data is not available, this is set to NULL instead.

adt.filtered: Matrix of ADT counts that has been filtered to only contain the high-quality cells
in combined.qc.filter. If ADT data is not available, this is set to NULL instead.

crispr.filtered: Matrix of CRISPR counts that has been filtered to only contain the high-quality
cells in combined.qc.filter. If CRISPR data is not available, this is set to NULL instead.

rna.size.factors: Size factors for the RNA count matrix, derived from the sum of counts for
each cell and centered with centerSizeFactors. If RNA data is not available, this is set to
NULL instead.

rna.normalized: Matrix of (log-)normalized expression values derived from RNA counts, as
computed by normalizeCounts using rna.size.factors. If RNA data is not available,
this is set to NULL instead.

adt.size.factors: Size factors for the ADT count matrix, computed by computeClrm1Factors
and centered with centerSizeFactors. If ADT data is not available, this is set to NULL
instead.

adt.normalized: Matrix of (log-)normalized expression values derived from ADT counts, as
computed by normalizeCounts using adt.size.factors. If ADT data is not available, this
is set to NULL instead.

crispr.size.factors: Size factors for the CRISPR count matrix, derived from the sum of counts
for each cell and centered with centerSizeFactors. If CRISPR data is not available, this is
set to NULL instead.

analyze 17

crispr.normalized: Matrix of (log-)normalized expression values derived from CRISPR counts,
as computed by normalizeCounts using crispr.size.factors. If CRISPR data is not
available, this is set to NULL instead.

rna.gene.variances: Results of modelGeneVariances. If RNA data is not available, this is set
to NULL instead.

rna.highly.variable.genes: Results of chooseHighlyVariableGenes. If RNA data is not
available, this is set to NULL instead.

rna.pca: Results of calling runPca on rna.normalized with the rna.highly.variable.genes
subset. If RNA data is not available, this is set to NULL instead.

adt.pca: Results of calling runPca on adt.normalized. If ADT data is not available, this is set
to NULL instead.

crispr.pca: Results of calling runPca on crispr.normalized. If CRISPR data is not available,
this is set to NULL instead.

combined.pca: If only one modality is used for the downstream analysis, this is a string specifying
the list element containing the components to be used, e.g., "rna.pca”. If multiple modalities
are to be combined for downstream analysis, this contains the results of scaleByNeighbors
on the PCs of those modalities.

block: Vector or factor containing the blocking factor for all cells (after filtering, if filter.cells
= TRUE). This is set to NULL if no blocking factor was supplied.

mnn.corrected: Results of correctMnn on the PCs in or referenced by combined.pca. If no
blocking factor is supplied, this is set to NULL instead.

tsne: Results of runTsne. This is NULL if t-SNE was not performed.
umap: Results of runUmap. This is NULL if UMAP was not performed.

snn.graph: Results of buildSnnGraph. This is NULL if graph-based clustering was not performed,
or if return.graph=FALSE in runAllNeighborSteps.

graph.clusters: Results of clusterGraph. This is NULL if graph-based clustering was not per-
formed.

kmeans.clusters: Results of clusterKmeans. This is NULL if k-means clustering was not per-
formed.

clusters: Integer vector containing the cluster assignment for each cell (after filtering, if filter.cells
=TRUE). This may be derived from graph.clusters or kmeans.clusters depending on
the choice of clusters.for.markers. If no suitable clusterings are available, this is set
to NULL.

rna.markers: Results of calling scoreMarkers on rna.normalized. This is NULL if RNA data is
not available or no suitable clusterings are available.

adt.markers: Results of calling scoreMarkers on adt.normalized. This is NULL if ADT data is
not available or no suitable clusterings are available.

crispr.markers: Results of calling scoreMarkers on crispr.normalized. This is NULL if
CRISPR data is not available or no suitable clusterings are available.

Author(s)

Aaron Lun

18 analyze.se

See Also

convertAnalyzeResults, to convert the results into a SingleCellExperiment.

Examples

sce <- getTestRnaData.se()
sce <- sce[,1:500] # smaller dataset for a faster runtime for R CMD check.
res <- analyze(

sce,
rna.subsets=list(mito=grep(”*mt-", rownames(sce))),
num. threads=2 # keep R CMD check happy

)

str(res)

convertAnalyzeResults(res)

analyze.se Analyze single-cell data from a SummarizedExperiment

Description

Execute a simple single-cell analysis pipeline, starting from a count matrix and ending with clusters,
visualizations and markers. This also supports integration of multiple modalities and correction of
batch effects.

Usage

analyze.se(
X,
rna.altexp = NA,
adt.altexp = NULL,
crispr.altexp = NULL,

rna.assay.type = "counts”,
adt.assay.type = "counts”,
crispr.assay.type = "counts”,
block = NULL,

block.name = "block”,
rna.qc.subsets = list(),
rna.qc.output.prefix = NULL,
more.rna.qc.args = list(),
adt.qgc.subsets = list(),
adt.qc.output.prefix = NULL,
more.adt.qc.args = list(),
crispr.qc.output.prefix = NULL,
more.crispr.qc.args = list(),
filter.cells = TRUE,
rna.norm.output.name = "logcounts”,

analyze.se 19

more.rna.norm.args = list(),
adt.norm.output.name = "logcounts”,
more.adt.norm.args = list(),
crispr.norm.output.name = "logcounts”,
more.crispr.norm.args = list(),
rna.hvg.output.prefix = NULL,
more.rna.hvg.args = list(),
rna.pca.output.name = "PCA",
more.rna.pca.args = list(),
adt.pca.output.name = "PCA",
more.adt.pca.args = list(),
use.rna.pcs = TRUE,

use.adt.pcs = TRUE,

scale.output.name = "combined”,
more.scale.args = list(),
mnn.output.name = "MNN",

more.mnn.args = list(),

more.umap.args = list(),

more.tsne.args = list(),
cluster.graph.output.name = "graph.cluster”,
more.build.graph.args = list(),
more.cluster.graph.args = list(),
more.neighbor.args = list(),

kmeans.clusters = NULL,

kmeans.clusters.output.name = "kmeans.cluster”,
more.kmeans.args = list(),
clusters.for.markers = c("graph”, "kmeans"),

more.rna.marker.args = list(),
more.adt.marker.args = list(),
more.crispr.marker.args = list(),
BNPARAM = AnnoyParam(),

num. threads = 3L

)
Arguments

X A SummarizedExperiment object or one of its subclasses. Rows correspond to
genomic features (genes, ADTs or CRISPR guides) and columns correspond to
cells.

rna.altexp String or integer specifying the alternative experiment of x containing the RNA
data. If NA, the main experiment is assumed to contain the RNA data. If NULL, it
is assumed that no RNA data is available.

adt.altexp String or integer specifying the alternative experiment of x containing the ADT

data. If NA, the main experiment is assumed to contain the ADT data. If NULL, it
is assumed that no ADT data is available.

crispr.altexp String or integer specifying the alternative experiment of x containing the CRISPR
data. If NA, the main experiment is assumed to contain the CRISPR data. If NULL,
it is assumed that no CRISPR data is available.

analyze.se

rna.assay.type String or integer specifying the assay containing the RNA count data. Only used
if rna.altexp is not NULL.

adt.assay.type String or integer specifying the assay containing the ADT count data. Only used
if adt.altexp is not NULL.

crispr.assay.type
String or integer specifying the assay containing the CRISPR count data. Only
used if crispr.altexp is not NULL.

block Vector or factor specifying the block of origin (e.g., batch, sample) for each cell
in x. Alternatively NULL, if all cells are from the same block.

block.name String specifying the name of the colData column in which to store the blocking
factor. Only used if block is not NULL. If NULL, the blocking factor is not stored
in the colData.

rna.qc.subsets Passed to quickRnaQc. se as the subsets argument. Only used if rna.altexp
is not NULL.
rna.qc.output.prefix
Passed to quickRnaQc. se as the output.prefix argument. Only used if rna.altexp

is not NULL.
more.rna.qc.args

Named list of additional arguments to pass to quickRnaQc.se. Only used if
rna.altexp is not NULL.

adt.qgc.subsets Passed to quickAdtQc.se as the subsets argument. Only used if adt.altexp
is not NULL.

adt.qc.output.prefix
Passed to quickAdtQc. se as the output.prefix argument. Only used if adt.altexp
is not NULL.

more.adt.qc.args
Named list of additional arguments to pass to quickAdtQc.se. Only used if
adt.altexp is not NULL.

crispr.qc.output.prefix
Passed to quickCrisprQc.se as the output.prefix argument. Only used if
crispr.altexp is not NULL.

more.crispr.qc.args
Named list of additional arguments to pass to quickCrisprQc.se. Only used if
crispr.altexp is not NULL.

filter.cells Logical scalar indicating whether to filter x to only retain high-quality cells in
all modalities. If FALSE, QC metrics and thresholds are still computed but are
not used to filter the count matrices.

rna.norm.output.name
Passed to normalizeRnaCounts. se as the output.name argument. Only used
if rna.altexp is not NULL.

more.rna.norm.args
Named list of arguments to pass to normalizeRnaCounts.se. Only used if
rna.altexp is not NULL.

adt.norm.output.name
Passed to normalizeAdtCounts. se as the output.name argument. Only used
if adt.altexp is not NULL.

analyze.se 21

more.adt.norm.args
Named list of arguments to pass to normalizeAdtCounts.se. Only used if
adt.altexp is not NULL.

crispr.norm.output.name
Passed to normalizeCrisprCounts.se as the output.name argument. Only
used if crispr.altexp is not NULL.

more.crispr.norm.args
Named list of arguments to pass to normalizeCrisprCounts.se. Only used if
crispr.altexp is not NULL.

rna.hvg.output.prefix
Passed to chooseRnaHvgs. se as the output.prefix argument. Only used if
rna.altexp is provided.

more.rna.hvg.args
Named list of arguments to pass to chooseRnaHvgs. se. Only used if rna.altexp
is provided.

rna.pca.output.name
Passed to runPca. se as the output.name argument. Only used if rna.altexp
is provided.

more.rna.pca.args
Named list of arguments to pass to runPca.se. Only used if rna.altexp is
provided.

adt.pca.output.name
Passed to runPca. se as the output.name argument. Only used if adt.altexp
is provided.

more.adt.pca.args
Named list of arguments to pass to runPca.se. Only used if adt.altexp is
provided.

use.rna.pcs Logical scalar indicating whether to use the RNA-derived PCs for downstream
steps (i.e., clustering, visualization). Only used if rna.altexp is provided.

use.adt.pcs Logical scalar indicating whether to use the ADT-derived PCs for downstream
steps (i.e., clustering, visualization). Only used if adt.altexp is provided.

scale.output.name
Passed to scaleByNeighbors. se as the output.name argument. Only used if
multiple modalities are available and their corresponding use. *.pcs arguments
are TRUE.

more.scale.args
Named list of arguments to pass to scaleByNeighbors.se. Only used if mul-
tiple modalities are available and their corresponding use. *.pcs arguments are
TRUE.

mnn.output.name
Passed to correctMnn. se as the output.name argument. Only used if block is
supplied.

more.mnn.args Named list of arguments to pass to correctMnn.se. Only used if block is
supplied.

more.umap.args Passed to runAl1lNeighborSteps. se.

more.tsne.args Passed to runAl1lNeighborSteps. se.

22 analyze.se

cluster.graph.output.name
Passed to runAl1NeighborSteps.se as cluster.output.name.
more.build.graph.args
Passed to runAl1NeighborSteps. se.
more.cluster.graph.args
Passed to runAl1NeighborSteps. se.
more.neighbor.args
Passed to runAl1NeighborSteps. se.
kmeans.clusters
Passed to clusterKmeans. se as the k argument. If NULL, k-means clustering is
not performed.
kmeans.clusters.output.name
Passed to clusterKmeans. se as the output . name argument. Ignored if kmeans.clusters

= NULL.
more.kmeans.args
Named list of arguments to pass to clusterKmeans. se. Ignored if kmeans.clusters
= NULL.
clusters.for.markers
Character vector of clustering algorithms (either "graph” or "kmeans"), speci-
fying the clustering to be used for marker detection. The first available cluster-
ing will be chosen. If no clustering is available from the list, markers will not be
computed.
more.rna.marker.args
Named list of arguments to pass to scoreMarkers. se for the RNA data. Ignored
if no suitable clusterings are available or if rna.altexp=NULL.
more.adt.marker.args
Named list of arguments to pass to scoreMarkers. se for the ADT data. Ignored
if no suitable clusterings are available or if adt.altexp=NULL.
more.crispr.marker.args
Named list of arguments to pass to scoreMarkers.se for the CRISPR data.
Ignored if no suitable clusterings are available or if crispr.altexp=NULL.

BNPARAM A BiocNeighborParam instance specifying the nearest-neighbor search algo-
rithm to use.
num. threads Integer scalar specifying the number of threads to use in each step.
Details

This function is equivalent to:

* Running quickRnaQc. se, quickAdtQc. se and/or quickCrisprQc. se, for quality control.
» Subsetting x to only retain the high-quality cells in all modalities, based on filter.cells.

* Running normalizeRnaCounts.se, normalizeAdtCounts.se and/or normalizeCrisprCounts. se,
for normalization.

* Running chooseRnaHvgs. se to identify highly variable genes.
* Running runPca. se on the RNA and/or ADT data.

* Running scaleByNeighbors. se if multiple modalities are present.

buildSnnGraph 23

* Running correctMnn. se if multiple batches are present in block.

* Running runAllNeighborSteps. se to obtain t-SNE and UMAP coordinates, and to perform
graph-based clustering.

* Running clusterKmeans. se to perform k-means clustering, depending on kmeans. clusters.
* Running scoreMarkers. se to compute markers for each modality based on one of the clus-

terings.
Value
List containing:

* X, a SingleCellExperiment that is a copy of the input x. It is also decorated with the results of
each analysis step - see Details.

» markers, a list of list of DataFrames containing the marker statistics for each modality. Each
inner list corresponds to a modality (RNA, ADT, etc.) while each DataFrame corresponds to
a cluster. If no clusterings were generated, this is set to NULL.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)
sce <- getTestRnaData.se("start")
res <- analyze.se(

sce,
rna.qc.subsets=list(mito=grep(”"*mt-", rownames(sce))),
num. threads=2 # keep R CMD check happy

)

assayNames(res$x)

reducedDimNames (res$x)

colData(res$x)

previewMarkers(res$markers$rnal[[1]], "cohens.d.mean")

buildSnnGraph Build a shared nearest neighbor graph

Description

Build a shared nearest neighbor (SNN) graph where each node is a cell. Edges are formed between
cells that share one or more nearest neighbors, weighted by the number or ranking of those shared
neighbors. If two cells are close together but have distinct sets of neighbors, the corresponding edge
is downweighted as the two cells are unlikely to be part of the same neighborhood. In this manner,
strongly weighted edges will only form within highly interconnected neighborhoods where many
cells share the same neighbors. This provides a more sophisticated definition of similarity between
cells compared to a simpler (unweighted) nearest neighbor graph that just focuses on immediate
proximity.

24

Usage

buildSnnGraph(
X,
num.neighbors
weight.scheme
num. threads =

buildSnnGraph

=10,
= "ranked”,
T,

BNPARAM = AnnoyParam(),

as.pointer =

Arguments

X

num.neighbors

weight.scheme

num. threads

BNPARAM

as.pointer

FALSE

For buildSnnGraph, a numeric matrix where rows are dimensions and columns
are cells, typically containing a low-dimensional representation from, e.g., runPca.

Alternatively, a named list of nearest-neighbor search results. This should con-
tain index, an integer matrix where rows are neighbors and columns are cells.
Each column contains 1-based indices for the nearest neighbors of the corre-
sponding cell, ordered by increasing distance. The number of neighbors for
each cell should be equal to num.neighbors, otherwise a warning is raised.

Alternatively, an index constructed by buildIndex.

Integer scalar specifying the number of neighbors to use to construct the graph.
Larger values increase the connectivity of the graph and reduce the granularity
of subsequent community detection steps, at the cost of speed. Ignored if x
contains pre-computed neighbor search results.

String specifying the weighting scheme to use for constructing the SNN graph.
This can be one of:

* "ranked”, where the weight of the edge is defined by the smallest sum
of ranks across all shared neighbors. More shared neighbors, or shared
neighbors that are close to both observations, will generally yield larger
weights.

* "number”, where the weight of the edge is the number of shared nearest
neighbors between them. This is a simpler scheme that is also slightly
faster but does not account for the ranking of neighbors within each set.

* "jaccard"”, where the weight of the edge is the Jaccard index of their
neighbor sets, This is a monotonic transformation of the weight used in
"number”.

Integer scalar specifying the number of threads to use. Only used if x is not a
list of existing nearest-neighbor search results.

A BiocNeighborParam object specifying the algorithm to use. Only used if x is
not a list of existing nearest-neighbor search results.

Logical scalar indicating whether to return an external pointer for direct use
in clusterGraph. This avoids the extra memory usage caused by conversion
to/from an R list.

centerSizeFactors 25

Value

If as.pointer=FALSE, a list is returned containing:

* vertices, an integer scalar specifying the number of vertices in the graph (i.e., cells in x).

* edges, an integer vector of 1-based indices for graph edges. Pairs of values represent the
endpoints of an (undirected) edge, i.e., edges[1:2] form the first edge, edges[3:4] form the
second edge and so on.

* weights, a numeric vector of weights for each edge. This has length equal to half the length
of edges.

If as.pointer=TRUE, an external pointer to the graph is returned that can be directly used in
clusterGraph.

Author(s)

Aaron Lun

See Also

The build_snn_graph function in https://libscran.github.io/scran_graph_cluster/.
clusterGraph, to define clusters (i.e., communities) from the graph.

clusterGraph. se, which builds an SNN graph from a SingleCellExperiment.

Examples

data <- matrix(rnorm(10000), ncol=1000)
out <- buildSnnGraph(data)
str(out)

We can use this to make an igraph::graph.
g <- igraph::make_undirected_graph(out$edges, n = out$vertices)
igraph: :E(g)$weight <- out$weight

centerSizeFactors Center size factors

Description

Scale the size factors so they are centered at unity. This ensures that the original scale of the counts
is preserved in the normalized values from normalizeCounts, which simplifies interpretation and
ensures that any pseudo-count added prior to log-transformation has a predictable shrinkage effect.

Usage

centerSizeFactors(size.factors, block = NULL, mode = c("lowest"”, "per-block"))

https://libscran.github.io/scran_graph_cluster/

26 centerSizeFactors

Arguments

size.factors Numeric vector of size factors across cells. Invalid size factors (e.g., non-
positive, non-finite) will be ignored.

block Vector or factor of length equal to size. factors, specifying the block of origin
for each cell. Alternatively NULL, in which case all cells are assumed to be in the
same block.

mode String specifying how to scale size factors across blocks. This can be either

"lowest" or "per-block”, see Details. Only used if block is provided.

Details

"lowest" will compute the average size factor in each block, identify the lowest average across all
blocks, and then scale all size factors by that value. Here, our normalization strategy involves down-
scaling all blocks to match the coverage of the lowest-coverage block. This is useful for datasets
with big differences in coverage between blocks as it avoids egregious upscaling of low-coverage
blocks. Specifically, strong upscaling allows the log-transformation to ignore any shrinkage from
the pseudo-count. This is problematic as it inflates differences between cells at log-values derived
from low counts, increasing noise and overstating log-fold changes. Downscaling is safer as it
allows the pseudo-count to shrink the log-differences between cells towards zero at low counts, ef-
fectively sacrificing some information in the higher-coverage batches so that they can be compared
to the low-coverage batches (which is preferable to exaggerating the informativeness of the latter
for comparison to the former).

"per-block” will compute the average size factor in each block, and then scale each size factor
by the average of block to which it belongs. The scaled size factors are identical to those obtained
by separate invocations of ‘center_size_factors()‘ on the size factors for each block. This can be
desirable to ensure consistency with independent analyses of each block - otherwise, the centering
would depend on the size factors in other blocks. However, any systematic differences in the size
factors between blocks are lost, i.e., systematic changes in coverage between blocks will not be
normalized.

Value

Numeric vector of length equal to size. factors, containing the centered size factors.

Author(s)

Aaron Lun

See Also

The center_size_factorsand center_size_factors_blocked functionsin https://libscran.
github.io/scran_norm/.

normalizeRnaCounts. se and related functions, which center the size factors prior to normalization
of a SummarizedExperiment.

https://libscran.github.io/scran_norm/
https://libscran.github.io/scran_norm/

chooseHighly VariableGenes 27

Examples

centerSizeFactors(runif(100))

centerSizeFactors(runif(100), block=sample(3, 100, replace=TRUE))

chooseHighlyVariableGenes

Choose highly variable genes

Description

Choose highly variable genes (HVGs) based on a variance-related statistic. This is typically used to
subset the gene-cell matrix prior to calling runPca.

Usage

chooseHighlyVariableGenes(

stats,
top = 4000,

larger = TRUE,

keep.ties =
bound = @

Arguments
stats

top

larger

keep.ties

bound

Value

TRUE,

Numeric vector of variances (or a related statistic) across all genes. Typically,
the residuals from modelGeneVariances are used here.

Integer specifying the number of top genes to retain. Note that the actual number
of retained genes may not be equal to top, depending on the other options.

Logical scalar indicating whether larger values of stats correspond to more
variable genes. If TRUE, HVGs are defined as those with the largest values of
stats. This is typically the case for variances or related statistics, e.g., residuals.

Logical scalar indicating whether to keep tied values of stats, even if top may
be exceeded.

Numeric scalar specifying the lower bound (if larger=TRUE) or upper bound
(otherwise) to be applied to stats. Genes are not considered to be HVGs if they
do not satisfy this bound, even if they are within the top genes. For example,
residuals from the fitted trend should be positive, which can be enforced by
setting bound to zero. Ignored if NULL.

Integer vector containing the indices of genes in stats that are considered to be highly variable.

28 choosePseudoCount

Author(s)

Aaron Lun

See Also

The choose_highly_variable_genes functionin https://libscran.github.io/scran_variances/.

chooseRnaHvgs. se, which choose the HVGs from the residuals computed from a SummarizedEx-
periment.

Examples

resids <- rexp(10000)
str(chooseHighlyVariableGenes(resids))

choosePseudoCount Choose a suitable pseudo-count

Description

Choose a suitable pseudo-count to control the bias introduced by log-transformation of normal-
ized counts from normalizeCounts. Larger pseudo-counts shrink log-expression values towards
the zero-expression baseline, reducing the impact of the transformation bias at the cost of some
sensitivity.

Usage

choosePseudoCount(size.factors, quantile = .05, max.bias = 1, min.value = 1)

Arguments

size.factors Numeric vector of size factors for all cells. It is expected that these have already
been centered, e.g., with centerSizeFactors. Invalid size factors (e.g., non-
positive, non-finite) will be ignored.

quantile Numeric scalar specifying the quantile to use for finding the smallest/largest
size factors. Setting this to zero will use the observed minimum and maximum,
though in practice, this is usually too sensitive to outliers. The default is to take
the 5th and 95th percentile to obtain a range that captures most of the distribu-
tion.

max.bias Numeric scalar specifying the maximum allowed bias. This is the maximum ab-
solute value of any spurious log2-fold change between the cells with the smallest
and largest size factors.

min.value Numeric scalar specifying the minimum value for the pseudo-count. Defaults to
1 to stabilize near-zero normalized expression values, otherwise these manifest
as avoid large negative values.

https://libscran.github.io/scran_variances/

chooseRnaHvgs.se 29

Value

A choice of pseudo-count for normalizeCounts.

Author(s)

Aaron Lun

References

Lun ATL (2018). Overcoming systematic errors caused by log-transformation of normalized single-
cell RNA sequencing data. biorXiv doi:10.1101/404962

See Also

choose_pseudo_count in https://libscran.github.io/scran_norm/.

Examples

sf <- centerSizeFactors(runif(100))
choosePseudoCount (sf)

choosePseudoCount (sf, quantile=0.01)
choosePseudoCount(sf, max.bias=0.5)

chooseRnaHvgs. se Choose highly variable genes from a SummarizedExperiment

Description

Model the mean-variance relationship across genes and choose highly variable genes (HVGs) based
on the residuals of the fitted trend. This calls modelGeneVariances on an assay of a Summarized-
Experiment, and then calls chooseHighlyVariableGenes on the residuals.

Usage
chooseRnaHvgs. se(
X)
block = NULL,

num.threads = 1,
more.var.args = list(),

top = 4000,
more.choose.args = list(),
assay.type = "logcounts”,

output.prefix = NULL,
include.per.block = FALSE
)

formatModelGeneVariancesResult(

https://libscran.github.io/scran_norm/

30

model.res,
choose.res

chooseRnaHvgs.se

NULL,

include.per.block = FALSE

)

Arguments

X

block
num. threads
more.var.args

top

A SummarizedExperiment object or one of its subclasses. Rows correspond to
genes and columns correspond to cells.

Block assignment for each cell, to pass to modelGeneVariances.
Number of threads, to pass to modelGeneVariances.
Named list of arguments to pass to modelGeneVariances.

Number of HVGs to choose, to pass to chooseHighlyVariableGenes.

more.choose.args

assay. type

output.prefix

Named list of arguments to pass to chooseHighlyVariableGenes.

Integer or string specifying the assay of x containing the log-normalized expres-
sion matrix for the RNA data.

String containing a prefix to add to the names of the 1ink[SummarizedExperiment]{rowData}
columns containing the output statistics.

include.per.block

model.res
choose.res
Value

Logical scalar indicating whether the per-block statistics should be stored in the
output rowData. Only relevant if block is specified.

List returned by modelGeneVariances.

Integer vector returned by chooseHighlyVariableGenes. This may be NULL,
in which case the identities of the HVGs will not be stored.

For chooseRnaHvgs. se, x is returned with the per-gene variance modelling statistics added to its
rowData. The hvg column in the rowData indicates whether a gene was chosen as a HVG. If
include.per.block=TRUE and block is specified, the per-block statistics are stored as a nested
DataFrame in the per.block column.

For formatModelGeneVariancesResult, a DataFrame is returned with the per-gene variance mod-
elling statistics. If choose.res is provided, a hvg column is also stored that indicates whether a
gene was chosen as a HVG.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("norm")

sce <- chooseRnaHvgs.se(sce, more.var.args=list(use.min.width=TRUE))
summary (rowData(sce)$hvg)

clusterGraph 31

plot(rowData(sce)$means, rowData(sce)$variances, col=factor(rowData(sce)s$hvg))
curve (approxfun(rowData(sce)$means, rowData(sce)$fitted)(x), col="dodgerblue", add=TRUE)

clusterGraph Graph-based clustering of cells

Description

Identify clusters by applying community detection algorithms to a graph. This assumes that that the
nodes on the graph represent cells and weighted edges are formed between related cells.

Usage

clusterGraph(
X,
method = c("multilevel”, "leiden", "walktrap"),
multilevel.resolution = 1,
leiden.resolution = 1,
leiden.objective = c("modularity”, "cpm
walktrap.steps = 4,
seed = 42

n

, ller.u) ,

Arguments

X List containing graph information or an external pointer to a graph, as returned
by buildSnnGraph. Alternatively, an igraph object with edge weights.

method String specifying the algorithm to use.

* "multilevel” uses multi-level modularity optimization, also known as the
Louvain algorithm, see https://igraph.org/c/doc/igraph-Community.
html#igraph_community_multilevel for details.

e "walktrap” uses the Walktrap community finding algorithm, see https://
igraph.org/c/doc/igraph-Community.html#igraph_community_walktrap
for details.

e "leiden” uses the Leiden algorithm, see https://igraph.org/c/doc/
igraph-Community.html#igraph_community_leiden for details.

multilevel.resolution
Numeric scalar specifying the resolution when method="multilevel”. Lower
values favor fewer, larger communities; higher values favor more, smaller com-
munities.

leiden.resolution
Numeric scalar specifying the resolution when method="1eiden"”. Lower val-
ues favor fewer, larger communities; higher values favor more, smaller commu-
nities.

https://igraph.org/c/doc/igraph-Community.html#igraph_community_multilevel
https://igraph.org/c/doc/igraph-Community.html#igraph_community_multilevel
https://igraph.org/c/doc/igraph-Community.html#igraph_community_walktrap
https://igraph.org/c/doc/igraph-Community.html#igraph_community_walktrap
https://igraph.org/c/doc/igraph-Community.html#igraph_community_leiden
https://igraph.org/c/doc/igraph-Community.html#igraph_community_leiden

32 clusterGraph

leiden.objective
String specifying the objective function when method="1eiden". "modularity”
uses the generalized modularity, "cpm” uses the Constant Potts Model, and "er”
uses the Erd\"os-R\’enyi G(n, p) model. The CPM typically yields more fine-
grained clusters than the modularity at the same leiden.resolution.

walktrap.steps Integer scalar specifying the number of steps to use when method="walktrap”.
This determines the ability of the Walktrap algorithm to distinguish highly in-
terconnected communities from the rest of the graph.

seed Integer scalar specifying the random seed to use for method="multilevel” or
"leiden”.

Value

A list containing membership, a factor containing the cluster assignment for each cell. Additional
fields may be present depending on the method:

* For method="multilevel”, the levels list contains the clustering result at each level of
the algorithm. A modularity numeric vector also contains the modularity at each level, the
highest of which corresponds to the reported membership.

* For method="1eiden", a quality numeric scalar containg the quality of the partitioning.

» For method="walktrap”, a merges matrix specifies the pair of cells or clusters that were
merged at each step of the algorithm. A modularity numeric scalar also contains the modu-
larity of the final partitioning.

Author(s)

Aaron Lun

See Also

The various cluster_x* functions in https://libscran.github.io/scran_graph_cluster/.

clusterGraph. se, which performs clustering on graph constructed from a SingleCellExperiment.

Examples

data <- matrix(rnorm(10000), ncol=1000)
gout <- buildSnnGraph(data)
str(gout)

str(clusterGraph(gout))
str(clusterGraph(gout, method="leiden"))
str(clusterGraph(gout, method="walktrap"))

https://libscran.github.io/scran_graph_cluster/

clusterGraph.se

33

clusterGraph.se

Graph-based clustering of cells in a SingleCellExperiment

Description

Construct a shared-nearest neighbor (SNN) graph from an existing low-dimensional embedding
by calling buildSnnGraph on a reduced dimension entry in a SingleCellExperiment. Then, apply
community detection algorithms to obtain clusters of cells with clusterGraph.

Usage

clusterGraph.se(

X,

num.neighbors

num. threads

= 10,
T,

more.build.args = list(),
method = "multilevel”,
resolution = NULL,
more.cluster.args = list(),
reddim. type = "PCA",
output.name = "clusters”,
meta.name = NULL,
graph.name = NULL

Arguments

X

num.neighbors

num. threads

more.build.args

method

resolution

A SingleCellExperiment object or one of its subclasses. Rows correspond to
genomic features and columns correspond to cells.

Number of neighbors for constructing the graph, passed to buildSnnGraph.

Number of threads for graph construction, passed to buildSnnGraph.

Named list of further arguments to be passed to buildSnnGraph.
Clustering method to use, passed to clusterGraph.

Resolution for the community detection method in clusterGraph. This is ei-
ther passed to multilevel.resolution or leiden.resolution depending on
method.

more.cluster.args

reddim. type

output.name

Named list of further arguments to be passed to clusterGraph.

Integer or string specifying the existing embedding in the reducedDim of x.
Alternatively, a named integer or character vector of length 1, where the name
specifies an alternative experiment of x and the value is the name/index of a
reducedDim entry in that alternative experiment.

String containing the name of the column of the colData in which to store the
cluster assignments.

34 clusterKmeans

meta.name String containing the name of the metadata entry in which to store extra clus-
tering output. If NULL, no extra clustering output is stored.

graph.name String containing the name of the metadata entry in which to store the SNN
graph. If NULL, the SNN graph is not stored.

Value

x is returned with the cluster assignment for each cell stored in the colData. Additional clustering
output is stored in the metadata.

Author(s)

Aaron Lun

Examples

sce <- getTestRnaData.se("pca")
sce <- clusterGraph.se(sce)
table(sce$clusters)

clusterKmeans K-means clustering

Description

Perform k-means clustering with a variety of different initialization and refinement algorithms.

Usage

clusterKmeans(
X,
k,
init.method = c("var-part”, "kmeans++", "random"),
refine.method = c("hartigan-wong”, "lloyd"),
var.part.optimize.partition = TRUE,
var.part.size.adjustment = 1,
lloyd.iterations = 100,
hartigan.wong.iterations = 10,
hartigan.wong.quick.transfer.iterations = 50,
hartigan.wong.quit.quick.transfer.failure = FALSE,
seed = 5489L,
warn = TRUE,
num. threads = 1

clusterKmeans

Arguments

X

k

init.method

refine.method

35

Matrix-like object where rows are dimensions and columns are cells. This is
typically a dense double-precision matrix containing a low-dimensional repre-
sentation from, e.g., runPca. However, any matrix representation supported by
initializeCpp can also be used.

Integer scalar specifying the number of clusters.
String specifying the initialization method for the centers:

e "var-part” uses variance partitioning as described by Su and Dy (2007).
The dataset is repeatedly split along the dimension of greatest variance until
k partitions are formed, the centroids of which form the initial clusters. This
approach is slower than the others but fully deterministic.

* "kmeans++" uses the weighted sampling method described by Arthur and
Vassilvitskii (2007). k points are sampled with probability based on the
smallest distance to any previously sampled point. This improves the like-
lihood of choosing initial centroids that are far apart from each other.

* "random” initialization involves choosing k random points as the initial
centers. This is the simplest and fastest method but may not yield good
starting points.

String specifying the refinement method.

* "1loyd” uses Lloyd’s algorithm, which performs a batch update in each
iteration. This is simple and amenable to parallelization but may not con-
verge.

* "hartigan-wong" uses the Hartigan-Wong algorithm, which transfers points
between clusters to optimize the drop in the within-cluster sum of squares.
This is slower but has a greater chance of convergence.

var.part.optimize.partition

Logical scalar indicating whether each partition boundary should be optimized
to reduce the sum of squares in the child partitions. This is slower but improves
the quality of the partition. Only used if init.method = "var.part”.

var.part.size.adjustment

Numeric scalar between 0 and 1, specifying the adjustment to the cluster size
when selecting the next cluster to partition. Setting this to 0 or 1 will select the
cluster with the highest variance or sum of squares, respectively, for partitioning.
In other words, a value of 0 will ignore the cluster size while setting a value of
1 will generally cause larger clusters to be selected. Only used if init.method
="var.part".

lloyd.iterations

Integer scalar specifying the maximum number of iterations for the Lloyd algo-
rithm. Larger values increase the chance of convergence at the cost of increasing
compute time. Only used if refine.method = "11loyd".

hartigan.wong.iterations

Integer scalar specifying the maximum number of iterations for the Hartigan-
Wong algorithm. Larger values increase the chance of convergence at the cost
of increasing compute time. Only used if refine.method = "hartigan-wong".

36

clusterKmeans

hartigan.wong.quick.transfer.iterations

Integer scalar specifying the maximum number of quick transfer iterations for
the Hartigan-Wong algorithm. Larger values increase the chance of conver-
gence at the cost of increasing compute time. Only used if refine.method =
"hartigan-wong".

hartigan.wong.quit.quick.transfer.failure

seed

warn

num. threads

Value

Logical scalar indicating whether to quit the Hartigan-Wong algorithm upon
convergence failure during quick transfer iterations. Setting this to FALSE gives
the algorithm another chance to converge by attempting another optimal trans-
fer iteration, at the cost of more compute time. If TRUE, the function follows the
same behavior as R’s kmeans. Only used if refine.method = "hartigan-wong".

Integer scalar specifying the seed for random number generation. Only used if
init.method = "random"” or "kmeans++".

Boolean specifying whether a warning should be emitted if the k-means algo-
rithm failed to converge.

Integer scalar specifying the number of threads to use.

By default, a list is returned containing:

* clusters, a factor containing the cluster assignment for each cell. The number of levels is no
greater than k, where each level is an integer that refer to a column of centers.

e centers, a numeric matrix with the coordinates of the cluster centroids (dimensions in rows,
centers in columns). The number of columns is no greater than k. Empty clusters are auto-
matically removed.

* iterations, an integer scalar specifying the number of refinement iterations that were per-

formed.

* status, an integer scalar specifying the completion status of the algorithm. A value of
zero indicates success while the meaning of any non-zero value depends on the choice of
refine.method:

— For Lloyd, a value of 2 indicates convergence failure.

— For Hartigan-Wong, a value of 2 indicates convergence failure in the optimal transfer
iterations. A value of 4 indicates convergence failure in the quick transfer iterations when
hartigan.wong.quit.quick.transfer.failure = TRUE.

Author(s)

Aaron Lun

References

Hartigan JA. and Wong MA (1979). Algorithm AS 136: A K-means clustering algorithm. Applied
Statistics 28, 100-108.

Arthur D and Vassilvitskii S (2007). k-means++: the advantages of careful seeding. Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms 1027-1035.

Su T and Dy JG (2007). In Search of Deterministic Methods for Initializing K-Means and Gaussian
Mixture Clustering. Intelligent Data Analysis 11, 319-338.

clusterKmeans.se 37

See Also

https://libscran.github.io/kmeans/, which describes the various initialization and refine-
ment algorithms in more detail.

clusterKmeans. se, for k-means clustering on a SingleCellExperiment.

Examples

x <- t(as.matrix(iris[,1:41))
clustering <- clusterKmeans(x, k=3)
table(clustering$clusters, iris[,"Species”])

clusterKmeans. se k-means clustering of cells in a SingleCellExperiment

Description

Perform k-means clustering on an existing low-dimensional embedding by calling clusterKmeans
on a reduced dimension entry in a SingleCellExperiment.

Usage

clusterKmeans.se(
X,
K,
num.threads = 1,
more.kmeans.args = list(),
reddim.type = "PCA",

output.name = "clusters”,
meta.name = NULL
)
Arguments
X A SingleCellExperiment object or one of its subclasses. Rows correspond to
genomic features and columns correspond to cells.
k Number of clusters, passed to clusterKmeans.
num. threads Number of threads, passed to clusterKmeans.

more.kmeans.args
Named list of further arguments to be passed to clusterKmeans.

reddim. type Integer or string specifying the existing embedding in the reducedDim of x.
Alternatively, a named integer or character vector of length 1, where the name
specifies an alternative experiment of x and the value is the name/index of a
reducedDim entry in that alternative experiment.

output.name String containing the name of the colData column in which to store the cluster
assignments.

https://libscran.github.io/kmeans/

38 combineFactors

meta.name String containing the name of the metadata entry in which to store extra clus-
tering output. If NULL, no extra clustering output is stored.

Value

x is returned with the cluster assignment for each cell stored in the colData. Additional clustering
output is stored in the metadata.

Author(s)

Aaron Lun

Examples

sce <- getTestRnaData.se("pca")
sce <- clusterKmeans.se(sce, k=10)
table(sce$clusters)

combineFactors Combine multiple factors

Description

Combine multiple factors into a single factor where each level of the latter is a unique combination
of levels from the former.

Usage

combineFactors(factors, keep.unused = FALSE)

Arguments
factors An ordinary list or List of vectors or factors of the same length. Corresponding
elements across all vectors/factors represent the combination of levels for a sin-
gle observation. For factors, any existing levels are respected. For other vectors,
the sorted and unique values are used as levels.
Alternatively, a data frame or DataFrame where each column is a vector or factor
and each row corresponds to an observation.
keep.unused Logical scalar indicating whether to report unused combinations of levels.
Value

List containing:

* levels, a DataFrame containing the sorted and unique combinations of levels from factors.
Each column corresponds to a factor in factors while each row corresponds to a ungiue
combination.

* index, an integer vector specifying the index into levels for each observation.

For observation i and factor j, levels[[[j11[index[i]] will recover factors[[j11[i].

computeBlockWeights 39

Author(s)

Aaron Lun

See Also

The combine_to_factor function in https://libscran.github.io/factorize/.

Examples

combineFactors(list(
sample(LETTERS[1:5], 100, replace=TRUE),
sample(3, 100, replace=TRUE)

))

combineFactors(list(
factor(sample(LETTERS[1:5], 10, replace=TRUE), LETTERS[1:5]),
factor(sample(5, 10, replace=TRUE), 1:5)

), keep.unused=TRUE)

computeBlockWeights Compute block weights

Description

Compute a weight for each block based on the number of cells in each block. This is typically used
to aggregate statistics across blocks, e.g., with weighted sums/averages.

Usage
computeBlockWeights(
sizes,
block.weight.policy = c("variable"”, "equal”, "size", "none"),
variable.block.weight = c(@, 1000)
)
Arguments
sizes Numeric vector containing the size of (i.e., number of cells in) each block.

block.weight.policy
String specifying the policy to use for weighting different blocks. This should
be one of:

* "size": the contribution of each block is proportional to its size. "none”
is also a deprecated alias for "size".

e "equal”: blocks are equally weighted regardless of their size. The excep-
tion is that of empty blocks with no cells, which receive zero weight.

https://libscran.github.io/factorize/

40 computeClrm1Factors

e "variable": blocks are equally weighted past a certain threshold size. Be-
low that size, the contribution of each block is proportional to its size. This
avoids outsized contributions from very large blocks.

variable.block.weight
Numeric vector of length 2, specifying the parameters for variable block weight-
ing. The first and second values are used as the lower and upper bounds, respec-
tively, for the variable weight calculation. Only used if block.weight.policy
="variable".

Value

Numeric vector containing the relative block weights.

Author(s)

Aaron Lun

See Also

The compute_weights function from https://libscran.github.io/scran_blocks/.

Examples

computeBlockWeights(c(1, 10, 100, 1000, 10000))
computeBlockWeights(c(1, 10, 100, 1000, 10000), block.weight.policy="equal”)
computeBlockWeights(c(1, 10, 100, 1000, 10000), variable.block.weight=c(50, 5000))

computeClrmiFactors Compute size factors for ADT counts

Description

Compute size factors from an ADT count matrix using the CLRm1 method. This is a variant of the
centered log-ratio (CLR) method, where the size factors are defined from the geometric mean of
counts within each cell.

Usage

computeClrmiFactors(x, num.threads = 1)

Arguments

X A matrix-like object containing ADT count data. Rows correspond to tags and
columns correspond to cells.

num. threads Number of threads to use.

https://libscran.github.io/scran_blocks/

convertAnalyzeResults 41

Value
Numeric vector containing the CLRm1 size factor for each cell. Note that these size factors are not
centered and should be passed through, e.g., centerSizeFactors before normalization.
Author(s)

Aaron Lun

See Also

https://github.com/libscran/clrmi, for a description of the CLRm1 method.

normalizeAdtCounts. se, which computes CLRm1 factors prior to normalization.

Examples

library(Matrix)
x <- abs(rsparsematrix(1000, 100, 0.1) * 10)
head(computeClrmiFactors(x))

convertAnalyzeResults Convert analysis results into a SingleCellExperiment

Description

Convert results from analyze into a SingleCellExperiment for further analysis with Bioconductor
packages.

Usage

convertAnalyzeResults(
results,
main.modality = NULL,
flatten.qc.subsets = TRUE,
include.per.block.variances = FALSE

)

Arguments

results List of results produced by analyze.

main.modality String specifying the modality to use as the main experiment of a SingleCellEx-
periment.

flatten.qgc.subsets
Logical scalar indicating whether QC metrics for subsets should be flattened in
the column data. If FALSE, subset metrics are reported as a nested DataFrame.

include.per.block.variances
Logical scalar indicating whether the per-block variances should be reported as
a nested DataFrame in the row data.

https://github.com/libscran/clrm1

42 correctMnn

Value

A SingleCellExperiment containing most of the analysis results. Filtered and normalized matrices
are stored in the assays. QC metrics, size factors and clusterings are stored in the column data.
Gene variances are stored in the row data. PCA, t-SNE and UMAP results are stored in the reduced
dimensions. Further modalities are stored as alternative experiments.

Author(s)

Aaron Lun

See Also

analyze, to generate results.

correctMnn Batch correction with mutual nearest neighbors

Description

Apply mutual nearest neighbor (MNN) correction to remove batch effects from a low-dimensional
embedding.

Usage

correctMnn(
X,
block,
num.neighbors = 15,
num.steps = 1,
merge.policy = c("rss”, "size", "variance"”, "input"),
num.mads = NULL,
robust.iterations = NULL,
robust.trim = NULL,
mass.cap = NULL,
order = NULL,
reference.policy = NULL,
BNPARAM = AnnoyParam(),
num. threads = 1

Arguments

X Numeric matrix where rows are dimensions and columns are cells, typically
containing coordinates in a low-dimensional embedding (e.g., from runPca).

block Factor specifying the block of origin (e.g., batch, sample) for each cell in x.

correctMnn

43

num.neighbors Integer scalar specifying the number of neighbors in the various search steps.
Larger values improve the stability of the correction by increasing the number
of MNN pairs and including more observations in each center of mass. How-
ever, this comes at the cost of reduced resolution when matching subpopulations
across batches.

num.steps Integer scalar specifying the number of steps for the recursive neighbor search
to compute the center of mass. Larger values mitigate the kissing effect but
increase the risk of including inappropriately distant subpopulations into the
center of mass.

merge.policy String specifying the policy to use to choose the order of batches to merge.

e "input” will use the input order of the batches. Observations in the last
batch are corrected first, and then the second-last batch, and so on. This
allows users to control the merge order by simply changing the inputs.

* "size" will merge batches in order of increasing size (i.e., the number of
observations). So, the smallest batch is corrected first while the largest
batch is unchanged. The aim is to lower compute time by reducing the
number of observations that need to be reprocessed in later merge steps.

* "variance” will merge batches in order of increasing variance between ob-
servations. So, the batch with the lowest variance is corrected first while the
batch with the highest variance is unchanged. The aim is to lower compute
time by encouraging more observations to be corrected to the most variable
batch, thus avoid reprocessing in later merge steps.

* "rss" will merge batches in order of increasing residual sum of squares
(RSS). This is effectively a compromise between "variance” and "size".

num.mads Deprecated and ignored.

robust.iterations

Deprecated and ignored.

robust.trim Deprecated and ignored.

mass.cap Deprecated and ignored.

order Deprecated and ignored, the merge order is now always automatically deter-
mined.

reference.policy

Deprecated, use merge.policy instead.

BNPARAM A BiocNeighborParam object specifying the nearest-neighbor algorithm to use.
num. threads Integer scalar specifying the number of threads to use.
Value

List containing corrected, a numeric matrix of the same dimensions as x, containing the corrected

values.

Author(s)

Aaron Lun

44 correctMnn.se

References

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421-427

See Also

The compute function in https://libscran.github.io/mnncorrect/.

correctMnn. se, to perform MNN correction on a SingleCellExperiment.

Examples

Mocking up a dataset with multiple batches.

X <= matrix(rnorm(10000), nrow=10)

b <- sample(3, ncol(x), replace=TRUE)

x[,b==2] <- x[,b==2] + 3

x[,b==3] <- x[,b==3] + 5

lapply(split(colMeans(x), b), mean) # indeed the means differ...

corrected <- correctMnn(x, b)
str(corrected)
lapply(split(colMeans(corrected$corrected), b), mean) # now merged.

correctMnn.se MNN correction on a SingleCellExperiment

Description

Correct batch effects from an existing embedding with mutual nearest neighbors (MNNSs), by calling
correctMnn on a reduced dimension entry of a SingleCellExperiment.

Usage

correctMnn.se(
X,
block,
BNPARAM = AnnoyParam(),
num.threads = 1,
more.mnn.args = list(),
reddim.type = "PCA",
output.name = "MNN",
delayed. transpose = FALSE

https://libscran.github.io/mnncorrect/

countGroupsByBlock

Arguments

X

block
BNPARAM

num. threads
more.mnn.args

reddim. type

output.name

45

A SingleCellExperiment object or one of its subclasses. Rows correspond to
genomic features and columns correspond to cells.

Block assignment for each cell, passed to correctMnn.
Algorithm for the nearest neighbor search, passed to correctMnn.
Number of threads, passed to correctMnn.

Named list of additional arguments to pass to correctMnn.

String or integer specifying the reducedDim entry on which to perform MNN
correction. Alternatively, a named integer or character vector of length 1, where
the name specifies an alternative experiment of x and the value is the name/index
of a reducedDim entry in that alternative experiment.

String containing the name of the reducedDim entry in which to store the cor-
rected embedding.

delayed. transpose

Value

Logical scalar indicating whether to delay the transposition when storing coor-
dinates in the reducedDims.

x is returned with the corrected embedding stored as a reducedDim entry.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("pca")

Treating the tissue of origin as the batch.
sce <- correctMnn.se(sce, sce$tissue)
reducedDimNames(sce)

countGroupsByBlock Count cells in groups and blocks

Description

Tabulate the frequency of cells in each combination of groups and blocks. This is typically used to
examine the distribution of cells across batches for each cluster - the presence of a batch-specific
cluster may be indicative of a batch effect.

46 countGroupsByBlock

Usage

countGroupsByBlock(
groups,
block,
normalize.block = FALSE,
normalize.groups = FALSE

)
Arguments
groups Factor specifying the group to which each cell was assigned. This is typically
used for clusters.
block Factor specifying the block to which each cell was assigned. This is typically

used for batches or samples.
normalize.block

Boolean indicating whether to normalize the number of cells across blocks. If
TRUE, frequencies are divided by the column sums.

normalize.groups
Boolean indicating whether to normalize the number of cells across groups. If

TRUE, frequencies are divided by the row sums. This is performed after normal-
ization of the block counts if normalize.block=TRUE.

Value

Matrix of (normalized) frequencies. Each row corresponds to a group and each column corresponds
to a block.

Author(s)

Aaron Lun

See Also

table, which is used internally by this function.

Examples

groups <- sample(10, 100, replace=TRUE)
block <- sample(LETTERS[1:6], 100, replace=TRUE)

countGroupsByBlock(groups, block)

countGroupsByBlock(groups, block, normalize.block=TRUE)
countGroupsByBlock(groups, block, normalize.groups=TRUE)
countGroupsByBlock(groups, block, normalize.block=TRUE, normalize.groups=TRUE)

crispr_quality_control 47

crispr_quality_control
Quality control for CRISPR count data

Description

Compute per-cell QC metrics from an initialized matrix of CRISPR counts, and use the metrics to
suggest filter thresholds to retain high-quality cells.

Usage
computeCrisprQcMetrics(x, num.threads = 1)
suggestCrisprQcThresholds(metrics, block = NULL, num.mads = 3)

filterCrisprQcMetrics(thresholds, metrics, block = NULL)

Arguments
X A matrix-like object where rows are CRISPRs and columns are cells. Values are
expected to be counts.
num. threads Integer scalar specifying the number of threads to use.
metrics DataFrame of per-cell QC metrics. This should have the same structure as the
return value of computeCrisprQcMetrics.
block Factor specifying the block of origin (e.g., batch, sample) for each cell inmetrics.
Alternatively NULL if all cells are from the same block.
For filterCrisprQcMetrics, a blocking factor should be provided if block
was used to construct thresholds.
num.mads Number of median from the median, to define the threshold for outliers in each
metric.
thresholds List with the same structure as produced by suggestCrisprQcThresholds.
Details

In CRISPR data, a cell is considered to be of low quality if it has a low count for its most abun-
dant guide. However, directly defining a MAD-based outlier threshold on the maximum count is
somewhat tricky as unsuccessful transfection can be common. This often results in a large subpop-
ulation with low maximum counts, inflating the MAD and compromising the threshold calculation.
Instead, we use the following approach:

* Compute the proportion of counts in the most abundant guide (i.e., the maximum proportion)
in each cell. Cells that were successfully transfected should have high maximum proportions.
In contrast, unsuccessfully transfected cells will be dominated by ambient contamination and
have low proportions.

48 crispr_quality_control

* Subset the dataset to only retain those cells with maximum proportions above the median.
This assumes that at least 50 Thus, we remove all of the unsucessful transfections and enrich
for mostly-high-quality cells.

* Define a MAD-based threshold for low outliers on the log-transformed maximum count within
the subset (see ‘choose_filter_thresholds()* for details). This is now possible as we can assume
that most of the remaining cells are of high quality.

Note that the maximum proportion is only used to define the subset for threshold calculation. Once
the maximum count threshold is computed, it is applied to all cells regardless of their maximum
proportions. This ensures that we correctly remove cells with low coverage, even if the proportion
is high. It also allows us to retain cells transfected with multiple guides, as long as the maximum is
high enough - such cells are not necessarily uninteresting, e.g., for examining interaction effects, so
we will err on the side of caution and leave them in.

Value

For computeCrisprQcMetrics, a DataFrame is returned with one row per cell in x. This contains
the following columns:

* sum, a numeric vector containing the total CRISPR count for each cell. Low counts indicate
that the cell was not successfully transfected with a construct or that library preparation and
sequencing failed.

* detected, an integer vector containing the number of detected guides per cell. In theory, this
should be 1, as each cell should express no more than one guide construct. However, ambient
contamination may introduce non-zero counts for multiple guides, without necessarily inter-
fering with downstream analyses. As such, this metric is less useful for guide data, though we
compute it anyway.

* max.value, a numeric vector containing the count for the most abundant guide in cell. Low
values indicate that the cell was not successfully transfected or that library preparation and
sequencing failed.

* max.index, an integer vector containing the row index of the most abundant guide in cell.

Each vector is of length equal to the number of cells.

For suggestCrisprQcThresholds, a named list is returned.

e If block=NULL, the list contains:

— max.value, a numeric scalar containing the lower bound on the maximum count. This
is defined as num.mads MADs below the median of the log-transformed metrics across
cells with high maximum proportions (see Details).

* Otherwise, if block is supplied, the list contains:
— max.value, a numeric vector containing the lower bound on the maximum counts for

each blocking level. Here, the threshold is computed independently for each block, using
the same method as the unblocked case.

— block.ids, a vector containing the identities of the unique blocks.
Each vector is of length equal to the number of levels in block and is named accordingly.
For filterCrisprQcMetrics, a logical vector of length ncol(x) is returned indicating which

cells are of high quality. High-quality cells are defined as those with maximum counts above the
max . value threshold.

fitVarianceTrend 49

Author(s)

Aaron Lun

See Also

The compute_crispr_qc_metrics, compute_crispr_qc_filtersand compute_crispr_qc_filters_blocked
functions in https://libscran.github.io/scran_qgc/.

quickCrisprQc. se, to run all of the CRISPR-related QC functions on a SummarizedExperiment.

Examples

Mocking a matrix:
library(Matrix)
X <- round(abs(rsparsematrix(100, 100, 0.1) * 100))

gc <- computeCrisprQcMetrics(x)
qc

filt <- suggestCrisprQcThresholds(qc)
str(filt)

keep <- filterCrisprQcMetrics(filt, qc)
summary (keep)

fitVarianceTrend Fit a mean-variance trend

Description

Fit a trend to the per-gene variances with respect to their means, typically from normalized and
log-transformed expression values.

Usage

fitVarianceTrend(
means,
variances,
mean.filter = TRUE,
min.mean = 0.1,
transform = TRUE,
span = 0.3,
use.min.width = FALSE,
min.width = 1,
min.window.count = 200,
num. threads = 1

https://libscran.github.io/scran_qc/

50

Arguments

means
variances

mean.filter

min.mean

transform

span

use.min.width

min.width

fitVarianceTrend

Numeric vector containing the mean (log-)expression for each gene.
Numeric vector containing the variance in the (log-)expression for each gene.

Logical scalar indicating whether to filter on the means before trend fitting. The
assumption is that there is a bulk of low-abundance genes that are uninterest-
ing and should be removed to avoid skewing the windows of the LOWESS
smoother.

Numeric scalar specifying the minimum mean of genes to use in trend fitting.
Genes with lower means do not participate in the LOWESS fit, to ensure that
windows are not skewed towards the majority of low-abundance genes. Instead,
the fitted values for these genes are defined by extrapolating the left edge of the
fitted trend is extrapolated to the origin. The default value is chosen based on
the typical distribution of means of log-expression values across genes. Only
used if mean. filter=TRUE.

Logical scalar indicating whether a quarter-root transformation should be ap-
plied before trend fitting. This transformation is copied from limma: : voom and
shrinks all values towards 1, flattening any sharp gradients in the trend for an
easier fit. The default of TRUE assumes that the variances are computed from
log-expression values, in which case there is typically a strong “hump” in the
mean-variance relationship.

Numeric scalar specifying the span of the LOWESS smoother, as a proportion
of the total number of points. Larger values improve stability at the cost of
sensitivity to changes in low-density regions. Ignored if use.min.width=TRUE.

Logical scalar indicating whether a minimum width constraint should be applied
to the LOWESS smoother. This replaces the proportion-based span for defining
each window. Instead, the window for each point must be of a minimum width
and is extended until it contains a minimum number of points. Setting this to
‘TRUE" ensures that sensitivity is maintained in the trend fit at low-density re-
gions for the distribution of means, e.g., at high abundances. It also avoids
overfitting from very small windows in high-density intervals.

Minimum width of the window to use when use.min.width=TRUE. The default
value is chosen based on the typical range of means in single-cell RNA-seq data.

min.window.count

num. threads

Value

Minimum number of observations in each window. This ensures that each win-
dow contains at least a given number of observations for a stable fit. If the
minimum width window contains fewer observations, it is extended using the
standard LOWESS logic until the minimum number is achieved. Only used if
use.min.width=TRUE.

Number of threads to use.

List containing fitted, a numeric vector containing the fitted values of the trend for each gene; and
residuals, a numeric vector containing the residuals from the trend.

getTestData.se 51

Author(s)

Aaron Lun

See Also

modelGeneVariances, to compute the means and variances on which the trend is fitted.

The fit_variance_trend function in https://libscran.github.io/scran_variances/.

Examples

Setting up some single-cell-like data.
mu <- 2*runif (1000, -10, 10)
counts <- matrix(rpois(20 * length(mu), lambda=mu), ncol=20)

sf <- centerSizeFactors(colSums(counts))
normalized <- normalizeCounts(counts, size.factors=sf)
stats <- modelGeneVariances(normalized)

out <- fitVarianceTrend(stats$statistics$means, stats$statistics$variances)
plot(stats$statistics$means, stats$statistics$variances)
curve(approxfun(stats$statistics$means, out$fitted)(x), col="red", add=TRUE)

getTestData.se Get datasets for testing

Description
Get single-cell datasets from the scRNAseq package with varying levels of processing. This is
primarily intended for testing other scrapper functions, e.g., in their Examples section.

Usage

getTestRnaData.se(at = c("start”, "qc", "norm”, "hvg", "pca"”, "cluster"))
getTestAdtData.se(at = c("start”, "qc”, "norm”, "hvg", "pca"))

getTestCrisprData.se(at = c("start”, "qc"))

Arguments

at String specifying the level of processing. For "start”, no processing was per-
formed. Otherwise, the dataset is returned after quality control ("qc"), nor-
malization ("norm"), feature selection ("hvg"), PCA ("PCA") or graph-based
clustering ("cluster").

https://libscran.github.io/scran_variances/

52 LogNormalizedMatrix

Details

For getTestRnaData, this is a scRNA-seq dataset of the mouse brain, where the main experiment
contains RNA counts and the alternative experiments contain ERCC and repeat element counts.
This is obtained with fetchDataset("zeisel-brain-2015", "2023-12-14").

For getTestAdtData, this is a CITE-seq dataset of human PBMCs, where the main experiment
contains RNA counts and the alternative experiment contains ADT counts. This is obtained with
fetchDataset ("kotliarov-pbmc-2020", "2024-04-18"). Only the first 5000 cells are loaded
for speed.

For getTestCrisprData, this is a Perturb-seq dataset of a pancreatic beta cell line, where the main
experiment contains RNA counts and the alternative experiment contains CRISPR guide counts.
This is obtained with fetchDataset(”cao-pancreas-2025", "2025-10-10", "rqc"). Only the
first 5000 cells are loaded for speed.

Value

A SingleCellExperiment containing a dataset at the specified level of processing.

Author(s)

Aaron Lun

See Also

fetchDataset, used to obtain each dataset.

Examples

getTestRnaData.se()
getTestAdtData.se()
getTestCrisprData.se()

LogNormalizedMatrix Delayed log-normalization of a matrix

Description

Delayed calculation of log-normalized expression values, typically returned by normalizeCounts.

Usage

LogNormalizedMatrix(x, size.factors, pseudo.count = 1, log.base = 2)

LogNormalizedMatrixSeed(x, size.factors, pseudo.count = 1, log.base = 2)

modelGene Variances 53

Arguments
X Count matrix to be normalized.
size.factors Numeric vector of size factors, of length equal to the number of columns of x.
pseudo.count Number specifying the pseudo-count to add prior to log-transformation.

log.base Number specifying the base of the log-transformation.

Details

This is based on the DelayedArray framework and

Value

An instance of a LogNormalizedMatrix(Seed).

Author(s)

Aaron Lun

Examples

mat <- matrix(rpois(1000, lambda=2), ncol=10)
sf <- centerSizeFactors(colSums(mat))

norm <- LogNormalizedMatrix(mat, sf)

norm

Also works with sparse matrices.
library(Matrix)

smat <- abs(rsparsematrix(50, 20, density=0.21))
ssf <- centerSizeFactors(colSums(smat))

snorm <- LogNormalizedMatrix(smat, ssf)

shorm

modelGeneVariances Model per-gene variances in expression

Description

Model the per-gene variances as a function of the mean in single-cell expression data. Highly
variable genes can then be selected for downstream analyses.

54

modelGene Variances

Usage
modelGeneVariances(
X7
block = NULL,
block.average.policy = c("mean”, "quantile"),
block.weight.policy = c("variable"”, "equal”, "none"),

variable.block.weight = c(@, 1000),
block.quantile = 0.5,

mean.filter = TRUE,

min.mean = 0.1,

transform =
span = 0.3,

TRUE,

use.min.width = FALSE,
min.width = 1,
min.window.count = 200,
num. threads = 1

Arguments

X

block

A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. It is typically expected to contain log-expression
values, e.g., from normalizeCounts.

Factor specifying the block of origin (e.g., batch, sample) for each cell in x. If
provided, calculation of means/variances and trend fitting are performed within
each block to ensure that block effects do not confound the estimates. The
weighted average of each statistic across all blocks is reported for each gene.
Alternatively NULL, if all cells are from the same block.

block.average.policy

String specifying the policy to use for average statistics across blocks. This can
either be a (weighted) "mean” or a "quantile”. Only used if block is not NULL.

block.weight.policy

String specifying the policy to use for weighting different blocks when com-
puting the average for each statistic. See the argument of the same name in
computeBlockWeights for more detail. Only used if block is not NULL and
block.average.policy="mean".

variable.block.weight

block.quantile

mean.filter

Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more
detail. Only used if block is not NULL, block.average.policy="mean" and
block.weight.policy = "variable”.

Number specifying the probability of the quantile of statistics across blocks.
Defaults to 0.5, i.e., the median of per-block statistics. Only used if block is not
NULL and block.average.policy="quantile".

Logical scalar indicating whether to filter on the means before trend fitting. The
assumption is that there is a bulk of low-abundance genes that are uninterest-

modelGene Variances

min.mean

transform

span

use.min.width

min.width

55

ing and should be removed to avoid skewing the windows of the LOWESS
smoother.

Numeric scalar specifying the minimum mean of genes to use in trend fitting.
Genes with lower means do not participate in the LOWESS fit, to ensure that
windows are not skewed towards the majority of low-abundance genes. Instead,
the fitted values for these genes are defined by extrapolating the left edge of the
fitted trend is extrapolated to the origin. The default value is chosen based on
the typical distribution of means of log-expression values across genes. Only
used if mean. filter=TRUE.

Logical scalar indicating whether a quarter-root transformation should be ap-
plied before trend fitting. This transformation is copied from limma: : voom and
shrinks all values towards 1, flattening any sharp gradients in the trend for an
easier fit. The default of TRUE assumes that the variances are computed from
log-expression values, in which case there is typically a strong “hump” in the
mean-variance relationship.

Numeric scalar specifying the span of the LOWESS smoother, as a proportion
of the total number of points. Larger values improve stability at the cost of
sensitivity to changes in low-density regions. Ignored if use.min.width=TRUE.

Logical scalar indicating whether a minimum width constraint should be applied
to the LOWESS smoother. This replaces the proportion-based span for defining
each window. Instead, the window for each point must be of a minimum width
and is extended until it contains a minimum number of points. Setting this to
‘TRUE" ensures that sensitivity is maintained in the trend fit at low-density re-
gions for the distribution of means, e.g., at high abundances. It also avoids
overfitting from very small windows in high-density intervals.

Minimum width of the window to use when use.min.width=TRUE. The default
value is chosen based on the typical range of means in single-cell RNA-seq data.

min.window.count

num. threads

Details

Minimum number of observations in each window. This ensures that each win-
dow contains at least a given number of observations for a stable fit. If the
minimum width window contains fewer observations, it is extended using the
standard LOWESS logic until the minimum number is achieved. Only used if
use.min.width=TRUE.

Integer scalar specifying the number of threads to use.

We compute the mean and variance for each gene and fit a trend to the variances with respect to the
means using fitVarianceTrend. We assume that most genes at any given abundance are not highly
variable, such that the fitted value of the trend is interpreted as the “uninteresting” variance - this
is mostly attributed to technical variation like sequencing noise, but can also represent constitutive
biological noise like transcriptional bursting. Under this assumption, the residual can be treated as
a measure of biologically interesting variation. Genes with large residuals can then be selected for
downstream analyses, e.g., with chooseHighlyVariableGenes.

56 normalizeAdtCounts.se

Value

A list containing statistics, a DataFrame with number of rows equal to the number of genes.
This contains the columns means, variances, fitted and residuals, each of which is a numeric
vector containing the statistic of the same name across all genes.

If block is supplied, each of the column vectors described above contains the average across all
blocks. The list will also contain per.block, a list of DataFrames containing the equivalent statis-
tics for each block; and block. ids, a vector containing the identities of the unique blocks in the
same order as per.block.

Author(s)

Aaron Lun

See Also

The model_gene_variances function in https://libscran.github.io/scran_variances/.

chooseRnaHvgs. se, which computes the variances and trend from a SummarizedExperiment.

Examples

library(Matrix)

x <- abs(rsparsematrix(1000, 100, 0.1) * 10)
out <- modelGeneVariances(x)

out

Throwing in some blocking.

block <- sample(letters[1:4], ncol(x), replace=TRUE)
out <- modelGeneVariances(x, block=block)

out

normalizeAdtCounts.se Normalize ADT counts in a SummarizedExperiment

Description

Compute (log-)normalized expression values after performing scaling normalization of an ADT
count matrix. This calls computeClrm1Factors on an assay of a SingleCellExperiment, center-
ing the subsequent size factors with centerSizeFactors, and then computing normalized log-
expression values with normalizeCounts.

Usage

normalizeAdtCounts.se(
X,
size.factors = NULL,
num.threads = 1,

https://libscran.github.io/scran_variances/

normalize AdtCounts.se

center = TRUE

57

’

block = NULL,
mode = "lowest”,
log = TRUE,

pseudo.count = 1,
more.norm.args =
"counts”,

assay.type =
output.name =
factor.name =

Arguments

X

size.factors

num. threads

center

block

mode

log

pseudo.count

more.norm.args
assay.type
output.name

factor.name

Value

list(),

"logcounts”,
"sizeFactor”

A SummarizedExperiment object or one of its subclasses. Rows correspond to
antibody-derived tags (ADTs) and columns correspond to cells.

Numeric vector of length equal to the number of columns of x, containing the
size factor for each cell in x. If NULL, this defaults to the output of computeClrmi1Factors.

Number of threads, passed to computeClrmiFactors.

Logical scalar indicating whether to center the size. factors, see ?centerSizeFactors
for more details.

Block assignments for each cell, passed to centerSizeFactors.

How to center size factors in different blocks, see ?centerSizeFactors for
more details.

Whether to log-transform the normalized expression values, see ?normalizeCounts
for more details.

The pseudo-count for log-transformation, see ?normalizeCounts for more de-
tails.

Named list of additional arguments to pass to normalizeCounts.
Integer or string specifying the assay of x with the count matrix.
String containing the name of the assay to store the normalized matrix.

String containing the name of the colData column in which to store the size
factors in the output object. If NULL, the size factors are not stored.

x is returned with a new assay containing the (log-)normalized matrix. Size factors are also stored

in the colData.

Author(s)

Aaron Lun

58 normalizeCounts

Examples

library(SingleCellExperiment)

sce <- altExp(getTestAdtData.se("qc”), "ADT")
sce <- normalizeAdtCounts.se(sce)
assayNames(sce)

summary (sizeFactors(sce))

normalizeCounts Normalize the count matrix

Description

Apply scaling normalization and log-transformation to a count matrix. This yields normalized
expression values that can be used in downstream procedures like PCA.

Usage

normalizeCounts(
X!
size.factors,
log = TRUE,
pseudo.count = 1,
log.base = 2,
preserve.sparsity = FALSE,
delayed = TRUE

Arguments

X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Values are expected to be non-negative counts.
Alternatively, an external pointer created by initializeCpp.

size.factors A numeric vector of length equal to the number of cells in x, containing positive
size factors for all cells. Any invalid values should be replaced with sanitizeSizeFactors.
For most applications, these size factors should also be centered with centerSizeFactors.

log Logical scalar indicating whether log-transformation should be performed. This
ensures that downstream analyses like t-tests and distance calculations focus on
relative fold-changes rather than absolute differences. The log-transformation
also provides some measure of variance stabilization so that the downstream
analyses are not dominated by sampling noise at large counts.

pseudo.count Numeric scalar specifying the positive pseudo-count to add before any log-
transformation. Larger values shrink the differences between cells towards zero,
reducing spurious differences (but also signal) at low counts - see choosePseudoCount
for comments. Ignored if 1og=FALSE.

log.base Numeric scalar specifying the base of the log-transformation. Ignored if 1og=FALSE.

normalizeCounts 59

preserve.sparsity
Logical scalar indicating whether to preserve sparsity for pseudo.count !=1.
If TRUE, users should manually add log(pseudo.count, log.base) to the re-
turned matrix to obtain the desired log-transformed expression values. Ignored
if log = FALSE or pseudo.count = 1.

delayed Logical scalar indicating whether operations on a matrix-like x should be de-
layed. This improves memory efficiency at the cost of some speed in down-
stream operations.

Value

If x is a matrix-like object and delayed=TRUE, a DelayedArray is returned containing the (log-
transformed) normalized expression matrix. If delayed=FALSE, the type of the (log-)normalized
matrix will depend on the operations applied to x.

If x is an external pointer produced by initializeCpp, a new external pointer is returned containing
the normalized expression matrix.

Author(s)

Aaron Lun

See Also

The normalize_counts function in https://libscran.github.io/scran_norm/.

normalizeRnaCounts. se and related functions, which compute normalized expression values from
a SummarizedExperiment.

Examples

Mocking a matrix:

library(Matrix)

X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))
sf <- centerSizeFactors(colSums(x))

normed <- normalizeCounts(x, size.factors=sf)

normed

Passing a pointer.

ptr <- beachmat::initializeCpp(x)
optr <- normalizeCounts(ptr, sf)
optr

https://libscran.github.io/scran_norm/

60 normalizeCrisprCounts.se

normalizeCrisprCounts.se
Normalize CRISPR counts in a SummarizedExperiment

Description

Compute (log-)normalized expression values after performing scaling normalization of an CRISPR
count matrix. This calls normalizeCounts on an assay of a SummarizedExperiment, after centering
the size factors with centerSizeFactors.

Usage

normalizeCrisprCounts.se(
X,
size.factors = NULL,
center = TRUE,

block = NULL,
mode = "lowest”,
log = TRUE,
pseudo.count = 1,
more.norm.args = list(),
assay.type = "counts”,
output.name = "logcounts”,
factor.name = "sizeFactor”

)

Arguments
X A SummarizedExperiment object or one of its subclasses. Rows correspond to

CRISPR guides and columns correspond to cells.

size.factors Numeric vector of length equal to the number of columns of x, containing the
size factor for each cell in x. If NULL, this defaults to the column sums of the
count matrix in x.

center Logical scalar indicating whether to center the size.factors, see ?centerSizeFactors
for more details.

block Block assignments for each cell, passed to centerSizeFactors.

mode How to center size factors in different blocks, see ?centerSizeFactors for

more details.

log Whether to log-transform the normalized expression values, see ?normalizeCounts
for more details.

pseudo.count The pseudo-count for log-transformation, see ?normalizeCounts for more de-
tails.

more.norm.args Named list of additional arguments to pass to normalizeCounts.

assay.type Integer or string specifying the assay of x with the count matrix.

normalizeRnaCounts.se 61

output.name String containing the name of the assay to store the normalized matrix.

factor.name String containing the name of the colData column in which to store the size
factors in the output object. If NULL, the size factors are not stored.

Value

x is returned with a new assay containing the (log-)normalized matrix. Size factors are also stored
in the colData.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- altExp(getTestCrisprData.se("qc"”), "CRISPR Guide Capture")
sce <- normalizeCrisprCounts.se(sce, size.factors=sce$sum)
assayNames(sce)

summary (sizeFactors(sce))

normalizeRnaCounts.se Normalize RNA counts in a SummarizedExperiment

Description

Compute (log-)normalized expression values after performing scaling normalization of an RNA
count matrix. This calls normalizeCounts on an assay of a SummarizedExperiment, after centering
the size factors with centerSizeFactors.

Usage

normalizeRnaCounts. se(
X,
size.factors = NULL,
center = TRUE,

block = NULL,
mode = "lowest”,
log = TRUE,

pseudo.count = 1,
more.norm.args = list(),

assay.type = "counts”,
output.name = "logcounts”,
factor.name = "sizeFactor”

62 normalizeRnaCounts.se

Arguments

X A SummarizedExperiment object or one of its subclasses. Rows correspond to
genes and columns correspond to cells.

size.factors Numeric vector of length equal to the number of columns of x, containing the
size factor for each cell in x. If NULL, this defaults to the column sums of the
count matrix in Xx.

center Logical scalar indicating whether to center the size.factors, see ?centerSizeFactors
for more details.

block Block assignments for each cell, passed to centerSizeFactors.

mode How to center size factors in different blocks, see ?centerSizeFactors for
more details.

log Whether to log-transform the normalized expression values, see ?normalizeCounts
for more details.

pseudo.count The pseudo-count for log-transformation, see ?normalizeCounts for more de-
tails.

more.norm.args Named list of additional arguments to pass to normalizeCounts.

assay. type Integer or string specifying the assay of x with the count matrix.
output.name String containing the name of the assay to store the normalized matrix.
factor.name String containing the name of the colData column in which to store the size

factors in the output object. If NULL, the size factors are not stored.

Value

x is returned with a new assay containing the (log-)normalized matrix. Size factors are also stored
in the colData.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("qc")

sce <- normalizeRnaCounts.se(sce, size.factors=sce$sum)
assayNames(sce)

summary(sizeFactors(sce))

quickAdtQc.se 63

quickAdtQc.se Quick quality control for ADT data in a SummarizedExperiment

Description

Quickly compute quality control (QC) metrics, thresholds and filters from ADT data in a Sum-
marizedExperiment. This calls computeAdtQcMetrics on an assay in a SummarizedExperiment,
followed by suggestAdtQcThresholds and filterAdtQcMetrics to identify high-quality cells.

Usage

quickAdtQc. se(

)

X,

subsets,

num.threads = 1,

thresholds = NULL,

block = NULL,
more.suggest.args = list(),
assay.type = "counts”,
output.prefix = NULL,
meta.name = "qc",

flatten = TRUE

formatComputeAdtQcMetricsResult(compute.res, flatten = TRUE)

Arguments

X A SummarizedExperiment object or one of its subclasses. Rows correspond to
antibody-derived tags (ADTs) and columns correspond to cells.

subsets List of subsets of control tags, see ?computeAdtQcMetrics for more details.

num. threads Number of threads, to pass to computeAdtQcMetrics.

thresholds List containing pre-defined thresholds for each QC metric, see the return value
of suggestAdtQcThresholds for the expected format.

block Block assignment for each cell, to pass to suggestAdtQcThresholds and filterAdtQcMetrics.

more.suggest.args

Named list of additional arguments to pass to suggestAdtQcThresholds.

assay.type Integer or string specifying the assay of x containing the ADT count matrix.

output.prefix

columns containing the output statistics.

meta.name String containing the name of the metadata entry containing additional outputs

like the filtering thresholds. If NULL, additional outputs are not reported.

flatten Logical scalar indicating whether to flatten the subset proportions into separate

columns of the 1ink[SummarizedExperiment]{colData}. If FALSE, the subset
proportions are stored in a nested DataFrame.

compute.res DataFrame returned by computeAdtQcMetrics.

String containing a prefix to add to the names of the 1ink[SummarizedExperiment]{colData}

64 quickCrisprQc.se

Value

For quickAdtQc.se, x is returned with additional columns added to its colData. Each column
contains per-cell values for one of the QC metrics, see computeAdtQcMetrics for details. The
suggested thresholds are stored as a list in metadata. The colData also contains a keep column,
specifying which cells are to be retained.

For formatComputeAdtQcMetricsResult, a DataFrame is returned with the per-cell QC metrics.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- altExp(getTestAdtData.se(), "ADT")

sce <- quickAdtQc.se(sce, subsets=list(igg=grepl(”IgG", rownames(sce))))
colData(sce)[,c("sum”, "detected”, "subset.sum.igg")]
metadata(sce)qcthresholds

summary (sce$keep)

quickCrisprQc.se Quick quality control for CRISPR data in a SummarizedExperiment

Description

Quickly compute quality control (QC) metrics, thresholds and filters from CRISPR data in a Sum-
marizedExperiment. This calls computeCrisprQcMetrics on an assay in a SummarizedExperi-
ment, followed by suggestCrisprQcThresholds and filterCrisprQcMetrics to identify high-
quality cells.

Usage

quickCrisprQc.se(
X,
num.threads = 1,
thresholds = NULL,
block = NULL,
more.suggest.args = list(),
assay.type = "counts”,
output.prefix = NULL,
meta.name = "qc"

formatComputeCrisprQcMetricsResult(compute.res)

quickCrisprQc.se 65

Arguments
X A SummarizedExperiment object or one of its subclasses. Rows correspond to
CRISPR guides and columns correspond to cells.
num. threads Number of threads, to pass to computeCrisprQcMetrics.
thresholds List containing pre-defined thresholds for each QC metric, see the return value
of suggestRnaQcThresholds for the expected format.
block Block assignment for each cell, to pass to suggestCrisprQcThresholds and

filterCrisprQcMetrics.
more.suggest.args
Named list of additional arguments to pass to suggestCrisprQcThresholds.

assay.type Integer or string specifying the assay of x containing the CRISPR count matrix.

output.prefix String containing a prefix to add to the names of the 1ink[SummarizedExperiment]{colData}
columns containing the output statistics.

meta.name String containing the name of the metadata entry containing additional outputs
like the filtering thresholds. If NULL, additional outputs are not reported.

compute.res DataFrame returned by computeCrisprQcMetrics.

Value

For quickCrisprQc. se, x is returned with additional columns added to its colData. Each column
contains per-cell values for one of the QC metrics, see computeCrisprQcMetrics for details. The
suggested thresholds are stored as a list in metadata. The colData also contains a keep column,
specifying which cells are to be retained.

For formatComputeCrisprQcMetricsResult, a DataFrame is returned with the per-cell QC met-
rics.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- altExp(getTestCrisprData.se(), "CRISPR Guide Capture")
sce <- quickCrisprQc.se(sce)

colData(sce)[,c("sum”, "detected”, "max.value”, "max.index")]
metadata(sce)qcthresholds

summary (sce$keep)

66

quickRnaQc.se

quickRnaQc.se

Quick quality control for RNA data in a SummarizedExperiment

Description

Quickly compute quality control (QC) metrics, thresholds and filters from RNA data in a Sum-
marizedExperiment. This calls computeRnaQcMetrics on an assay in a SummarizedExperiment,
followed by suggestRnaQcThresholds and filterRnaQcMetrics to identify high-quality cells.

Usage

quickRnaQc. se(

)

X,
subsets,

num.threads = 1,

thresholds = NULL,

block = NULL,
more.suggest.args = list(),
altexp.proportions = NULL,

assay.type = "counts”,
output.prefix = NULL,
meta.name = "qc",

flatten = TRUE

computeRnaQcMetricsWithAltExps(

)

formatComputeRnaQcMetricsResult(compute.res, flatten

X,

subsets,
altexp.proportions,
num.threads = 1,
assay.type = "counts”

Arguments

X

subsets
num. threads
thresholds

block

= TRUE)

A SummarizedExperiment object or one of its subclasses. Rows correspond to

genes and columns correspond to cells.

List of subsets of control genes, see ?computeRnaQcMetrics for more details.
Number of threads, to pass to computeRnaQcMetrics.

List containing pre-defined thresholds for each QC metric, see the return value

of suggestRnaQcThresholds for the expected format.

more.suggest.args
Named list of additional arguments to pass to suggestRnaQcThresholds.

Block assignment for each cell, to pass to suggestRnaQcThresholds and filterRnaQcMetrics

quickRnaQc.se 67

altexp.proportions
Alternative experiments for which to compute QC metrics. This is typically used
to refer to alternative experiments holding spike-in data. For each alternative
experiment, the proportion is defined as X /(X + Y') where X is the alternative
experiment’s total and Y is the RNA total. These proportions will be used for
filtering in the same manner as the proportions computed from subsets.

More specifically, altexp.proportions should be an unnamed integer or char-
acter vector containing the names/indices of the alternative experiments of in-
terest. The assay to use from each alternative experiment is determined by
assay. type.

Alternatively, altexp.proportions may be a named integer or character vec-
tor. Each name specifies an alternative experiment while each value is the in-
dex/name of the assay to use from that experiment.

Only relevant if x is a SingleCellExperiment.
assay. type Integer or string specifying the assay of x containing the RNA count matrix.

output.prefix String containing a prefix to add to the names of the 1ink[SummarizedExperiment]{colData}
columns containing the output statistics.

meta.name String containing the name of the metadata entry containing the additional out-
puts such as the filtering thresholds. If NULL, additional outputs are not reported.

flatten Logical scalar indicating whether to flatten the subset proportions into separate
columns of the 1ink[SummarizedExperiment]{colData}. If FALSE, the subset
proportions are stored in a nested DataFrame.

compute.res DataFrame returned by computeRnaQcMetrics.

Value

For quickRnaQc.se, x is returned with additional columns added to its colData. Each column
contains per-cell values for one of the QC metrics, see computeRnaQcMetrics for details. The
suggested thresholds are stored as a list in metadata. The colData also contains a keep column,
specifying which cells are to be retained. If altexp.proportions is provided, QC metrics are
added to the colData of the specified alternative experiments in the output object.

For computeRnaQcMetricsWithAltExps, a list is returned containing:
* main, the result of calling computeRnaQcMetrics on the RNA count matrix in x. The propor-
tion of counts in each alternative experiment is added to the subsets.

* altexp, a named list of length equal to altexp.proportions. Each inner list is the result
of calling computeRnaQcMetrics on the RNA count matrix of the corresponding alternative
experiment of x.

For formatComputeRnaQcMetricsResult, a DataFrame is returned containing the per-cell QC
metrics.

Author(s)

Aaron Lun

68

Examples

reportGroupMarkerStatistics

library(SingleCellExperiment)
sce <- getTestRnaData.se()
sce <- quickRnaQc.se(sce, subsets=list(mito=grepl(”*mt"”, rownames(sce))))

colData(sce)[,c("sum”, "detected”, "subset.proportion.mito”")]
metadata(sce)qcthresholds
summary (sce$keep)

Computing spike-in proportions, if available.
sce <- getTestRnaData.se()
sce <- quickRnaQc.se(

sce,

subsets=list(mito=grepl(”"*mt"”, rownames(sce))),
altexp.proportions="ERCC"

)

colData(sce)[,c("sum”, "detected”, "subset.proportion.mito”, "subset.proportion.ERCC")]
colData(altExp(sce, "ERCC"))[,c("sum”, "detected")]

reportGroupMarkerStatistics

Report marker statistics for a single group

Description

Combine all marker statistics for a single group into a data frame for easy inspection. Users can
pick one of the columns for sorting potential marker genes.

Usage

reportGroupMar
results,

group,

effect.sizes
summaries =
include.mean
include.dete

Arguments

results
group

effect.sizes

summaries

kerStatistics(

= NULL,
NULL,

= TRUE,
cted = TRUE

Named list of marker statistics, typically generated by scoreMarkers with all.pairwise=FALSE.
String or integer scalar specifying the group of interest.

Character vector specifying the effect sizes of interest. If NULL, all effect sizes
are reported in the returned data frame.

Character vector specifying the summary statistics of interest. If NULL, all sum-
maries are reported in the returned data frame.

rna_quality_control 69

include.mean Logical scalar indicating whether the mean expression should be reported in the
returned data frame.

include.detected
Logical scalar indicating whether the proportion of detected cells should be re-
ported in the returned data frame.

Value

Data frame where each row corresponds to a gene. Each column contains the requested statistics
for group. Effect size summary columns are named as <EFFECT>. <SUMMARY>.

Author(s)

Aaron Lun

See Also

scoreMarkers, to generate results.

summarizeEffects, for the trade-offs between effect size summaries.

rna_quality_control Quality control for RNA count data

Description

Compute per-cell QC metrics from an initialized matrix of RNA counts, and use the metrics to
suggest filter thresholds to retain high-quality cells.

Usage

computeRnaQcMetrics(x, subsets, num.threads = 1)
suggestRnaQcThresholds(metrics, block = NULL, num.mads = 3)

filterRnaQcMetrics(thresholds, metrics, block = NULL)

Arguments

X A matrix-like object where rows are genes and columns are cells. Values are
expected to be counts.

subsets Named list of vectors specifying gene subsets of interest, typically for control-
like features like mitochondrial genes or spike-in transcripts. Each vector may
be logical (whether to keep each row), integer (row indices) or character (row
names). For character vectors, strings not present in rownames(x) are ignored.

num. threads Integer scalar specifying the number of threads to use.

metrics DataFrame of per-cell QC metrics. This should have the same structure as the

return value of computeRnaQcMetrics.

70

Value

rna_quality_control

block Factor specifying the block of origin (e.g., batch, sample) for each cell inmetrics.

Alternatively NULL if all cells are from the same block.

For filterRnaQcMetrics, a blocking factor should be provided if block was
used to construct thresholds.

num.mads Number of median from the median, to define the threshold for outliers in each

metric.

thresholds List with the same structure as produced by suggestRnaQcThresholds.

For computeRnaQcMetrics, a DataFrame is returned with one row per cell in x. This contains the
following columns:

* sum, a numeric vector containing the total RNA count for each cell. This represents the ef-

ficiency of library preparation and sequencing. Low totals indicate that the library was not
successfully captured.

detected, an integer vector containing the number of detected genes per cell. This also
quantifies library preparation efficiency but with greater focus on capturing transcriptional
complexity.

subsets, a nested DataFrame where each column corresponds to a feature subset and is a
numeric vector containing the proportion of counts in that subset. The exact interpretation
of which depends on the nature of the subset. For example, if one subset contains all genes
on the mitochondrial chromosome, higher proportions are representative of cell damage; the
assumption is that cytoplasmic transcripts leak through tears in the cell membrane while the
mitochondria are still trapped inside. The proportion of spike-in transcripts can be interpreted
in a similar manner, where the loss of endogenous transcripts results in higher spike-in pro-
portions.

Each vector is of length equal to the number of cells.

For suggestRnaQcThresholds, a named list is returned.

e If block=NULL, the list contains:

— sum, a numeric scalar containing the lower bound on the sum. This is defined as num.mads
MADs below the median of the log-transformed metrics across all cells.

— detected, a numeric scalar containing the lower bound on the number of detected genes.
This is defined as num.mads MADs below the median of the log-transformed metrics
across all cells.

— subsets, a numeric vector containing the upper bound on the sum of counts in each
feature subset. This is defined as num.mads MADs above the median across all cells.

* Otherwise, if block is supplied, the list contains:

— sum, a numeric vector containing the lower bound on the sum for each blocking level.
Here, the threshold is computed independently for each block, using the same method as
the unblocked case.

— detected, a numeric vector containing the lower bound on the number of detected genes
for each blocking level. Here, the threshold is computed independently for each block,
using the same method as the unblocked case.

runAllNeighborSteps 71

— subsets, a list of numeric vectors containing the upper bound on the sum of counts in
each feature subset for each blocking level. Here, the threshold is computed indepen-
dently for each block, using the same method as the unblocked case.

— block.ids, a vector containing the identities of the unique blocks.

Each vector is of length equal to the number of levels in block and is named accordingly.

For filterRnaQcMetrics, alogical vector of length ncol (x) is returned indicating which cells are
of high quality. High-quality cells are defined as those with sums and detected genes above their
respective thresholds and subset proportions below the subsets threshold.

Author(s)

Aaron Lun

See Also

The compute_rna_qc_metrics, compute_rna_qc_filters and compute_rna_qc_filters_blocked
functions in https://libscran.github.io/scran_qc/.

quickRnaQc. se, to run all of the RNA-related QC functions on a SummarizedExperiment.

Examples

Mocking a matrix:
library(Matrix)
X <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))

Mocking up a control set.
sub <- list(mito=rbinom(nrow(x), 1, 0.1) > @)

gc <- computeRnaQcMetrics(x, sub)
qc

filt <- suggestRnaQcThresholds(qc)
str(filt)

keep <- filterRnaQcMetrics(filt, qc)
summary (keep)

runAllNeighborSteps Run all neighbor-related steps

Description

Run all steps that require a nearest-neighbor search. This includs runUmap, runTsne and buildSnnGraph
with clusterGraph. The idea is to build the index once, perform the neighbor search, and run each
task in parallel to save time.

https://libscran.github.io/scran_qc/

72 runAllNeighborSteps

Usage

runAllNeighborSteps(
X,
runUmap.args = list(),
runTsne.args = list(),
buildSnnGraph.args = list(),
clusterGraph.args = list(),
BNPARAM = AnnoyParam(),
return.graph = FALSE,
collapse.search = TRUE,
num. threads = 3

Arguments

X Numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.

Alternatively, an index constructed by buildIndex.

runUmap.args Named list of further arguments to pass to runUmap. This can be set to NULL to
omit the UMAP.

runTsne.args Named list of further arguments to pass to runTsne. This can be set to NULL to
omit the t-SNE.
buildSnnGraph.args
Named list of further arguments to pass to buildSnnGraph. Ignored if clusterGraph.args=NULL.

clusterGraph.args
Named list of further arguments to pass to clusterGraph. This can be set to
NULL to omit the clustering.

BNPARAM A BiocNeighborParam instance specifying the nearest-neighbor search algo-
rithm to use.

return.graph Logical scalar indicating whether to return the output of buildSnnGraph. By
default, only the output of clusterGraph is returned.

collapse.search
Logical scalar indicating whether to collapse the nearest-neighbor search for
each step into a single search. Steps that need fewer neighbors will take a subset
of the neighbors from the collapsed search. Setting this to TRUE is faster but
may not give the same results as separate searches for some nearest-neighbor
algorithms (e.g., approximate methods).

num. threads Integer scalar specifying the number of threads to use. At least one thread should
be available for each step.

Value

A named list containing the results of each step. See each individual function for the format of the
results.

runAllNeighborSteps.se 73

Author(s)

Aaron Lun

See Also

runAllNeighborSteps. se, to run each neighbor-related step on a SingleCellExperiment.

Examples

x <- t(as.matrix(iris[,1:41))

(Turning down the number of threads so that R CMD check is happy.)
res <- runAllNeighborSteps(x, num.threads=2)

str(res)

runAllNeighborSteps.se
Run all nearest neighbor steps on a SummarizedExperiment

Description

Concurrently run all steps involving a nearest-neighbor search (t-SNE, UMAP and graph-based
clustering) using the same nearest-neighbor index, by calling runAl1NeighborSteps on a reduced
dimension entry of a SingleCellExperiment.

Usage

runAllNeighborSteps.se(
X,
umap.output.name = "UMAP",
more.umap.args = list(),
tsne.output.name = "TSNE",
more.tsne.args = list(),
build.graph.name = NULL,
more.build.graph.args = list(),
cluster.output.name = "clusters”,
cluster.meta.name = NULL,
more.cluster.graph.args = list(),
BNPARAM = AnnoyParam(),
num.threads = 3,
more.neighbor.args = list(),
reddim. type = "PCA"

74 runAllNeighborSteps.se

Arguments

X A SingleCellExperiment object or one of its subclasses. Rows correspond to
genomic features and columns correspond to cells.

umap.output.name

String containing the name of the reducedDim entry to store the UMAP coordi-
nates. If NULL, the UMAP is not computed.

more.umap.args Named list of additional arguments to pass to runAl1NeighborSteps as runUmap.args.

tsne.output.name
String containing the name of the reducedDim entry to store the t-SNE coordi-
nates. If NULL, the t-SNE is not computed.

more.tsne.args Named list of additional arguments to pass to runAl1NeighborSteps as runTsne.args.

build.graph.name
String containing the name of the metadata entry in which to store the nearest
neighbor graph. If NULL, the graph is not stored.

more.build.graph.args
Named list of additional arguments to pass to runAl1NeighborSteps as buildSnnGraph.args.

cluster.output.name
String containing the name of the colData column in which to store the cluster
assignments. If NULL, graph-based clustering is not performed.

cluster.meta.name
String containing the name of the metadata entry in which to store additional
clustering outputs. If NULL, these additional outputs are not stored.

more.cluster.graph.args
Named list of additional arguments to pass to runAl1NeighborSteps as clusterGraph.args.

BNPARAM, num. threads
Arguments to pass to runAl1lNeighborSteps.

more.neighbor.args
Named list of additional arguments to pass to runAl1NeighborSteps.

reddim. type String or integer specifying the reducedDim entry on which to perform a nearest
neighbor search. Alternatively, a named integer or character vector of length 1,
where the name specifies an alternative experiment of x and the value is the
name/index of a reducedDim entry in that alternative experiment.

Value

x is returned with additional coordinates stored in its reducedDims and clustering output in its
colData. Additional information may also be stored in its metadata.

Author(s)

Aaron Lun

runPca 75

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("pca”)

sce <- runAllNeighborSteps.se(
sce,
more.tsne.args=list(max.iterations=50),
more.umap.args=1list(num.epochs=50),
num.threads=2 # to keep R CMD check happy

)

reducedDimNames (sce)

table(sce$clusters)

runPca Principal components analysis

Description

Run a PCA on the gene-by-cell log-expression matrix and extract the top principal components
(PCs). This yields a low-dimensional representation that reduces noise and compute time in down-
stream analyses. For efficiency, the PCA itself is approximated using IRLBA.

Usage

runPca(
X,
number = 25,
scale = FALSE,
block = NULL,
block.weight.policy = c("variable"”, "equal”, "none"),
variable.block.weight = c(0, 1000),
components. from.residuals = FALSE,
subset = NULL,
extra.work = 7,
iterations = 1000,

seed = 5489,
realized = TRUE,
warn = TRUE,
num. threads = 1
)
Arguments
X A matrix-like object where rows correspond to genes or genomic features and

columns correspond to cells. Typically, the matrix is expected to contain log-
expression values (see normalizeCounts) for “interesting” genes (see chooseHighlyVariableGenes).

76 runPca

number Integer scalar specifying the number of top PCs to retain. More PCs will capture
more biological signal at the cost of increasing noise and compute time. If this
is greater than the maximum number of PCs (i.e., the smaller dimension of x),
only the maximum number of PCs will be reported in the results.

scale Logical scalar indicating whether to scale all genes to have the same variance.
This ensures that each gene contributes equally to the PCA, favoring consis-
tent variation across many genes rather than large variation in a few genes. If
block is specified, each gene’s variance is calculated as a weighted sum of the
variances from each block. Genes with zero variance are ignored.

block Factor specifying the block of origin (e.g., batch, sample) for each cell in x. The
PCA will be performed on the residuals after regressing out the block effect,
ensuring that differences between block do not dominate the variation in the
dataset. Alternatively NULL if all cells are from the same block.

block.weight.policy
String specifying the policy to use for weighting the contribution of different
blocks to the PCA. See the argument of the same name in computeBlockWeights
for more detail. Only used if block is not NULL.

variable.block.weight
Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable”.

components. from.residuals
Logical scalar indicating whether to compute the PC scores from the residuals
in the presence of a blocking factor. By default, the residuals are only used to
compute the rotation matrix, and the original expression values of the cells are
projected onto this new space (see Details). Only used if block is not NULL.

subset Integer, logical or character vector specifying the rows of x to use for the PCA.
This yields the same results as runPca on x[subset,], except that entries of the
rotation matrix will also be computed for rows outside of the subset. If NULL, all
rows of x are used.

extra.work Integer scalar specifying the extra dimensions for the IRLBA workspace. Larger
values improve accuracy at the cost of compute time.

iterations Integer scalar specifying the maximum number of restart iterations for IRLBA.
Larger values improve accuracy at the cost of compute time.

seed Integer scalar specifying the seed for the initial random vector in IRLBA.
realized Logical scalar indicating whether to realize x into an optimal memory layout for
IRLBA. This speeds up computation at the cost of increased memory usage.
warn Boolean specifying whether a warning should be emitted if IRLBA failed to
converge.
num. threads Number of threads to use.
Details

When block is specified, the nature of the reported PC scores depends on the choice of components. from. residuals:

runPca 77

* If TRUE, the PC scores are computed from the matrix of residuals. This yields a low-dimensional
space where inter-block differences have been removed, assuming that all blocks have the
same subpopulation composition and the inter-block differences are consistent for all cell
subpopulations. Under these assumptions, we could use these components for downstream
analysis without any concern for block-wise effects.

 If FALSE, the rotation vectors are first computed from the matrix of residuals. To obtain PC
scores, each cell is then projected onto the associated subspace using its original expression
values. This approach ensures that inter-block differences do not contribute to the PCA but
does not attempt to explicitly remove them.

In complex datasets, the assumptions mentioned for TRUE not hold and more sophisticated batch
correction methods like MNN correction are required. Functions like correctMnn will accept a
low-dimensional embedding of cells that can be created as described above with FALSE.

Value
List containing:

e components, a matrix of PC scores. Rows are dimensions (i.e., PCs) and columns are cells.
* rotation, the rotation matrix. Rows are genes and columns are dimensions.
* variance.explained, the vector of variances explained by each PC.

e total.variance, the total variance in the dataset. This can be used to divide variance.explained
to obtain the proportion of variance explained by each PC.

* center, a numeric vector containing the mean for each gene. If block is provided, this is
instead a matrix containing the mean for each gene (column) in each block (row).

* block.ids, a vector containing the identities of the unique blocks in the same order as the
rows of center. Only reported if block is provided.

* scale, a numeric vector containing the scaling for each gene. Only reported if scale=TRUE.

* converged, a boolean indicating whether IRLBA converged successfully.

Author(s)

Aaron Lun

See Also

The simple_pca and blocked_pca functions for https://libscran.github.io/scran_pca/.

runPca. se, to run a PCA on a SummarizedExperiment.

Examples

library(Matrix)
X <- abs(rsparsematrix(1000, 100, 0.1) x 10)
y <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))

A simple PCA:
out <- runPca(y)
str(out)

https://libscran.github.io/scran_pca/

78

runPca.se

Blocking on uninteresting factors:
block <- sample(LETTERS[1:3], ncol(y), replace=TRUE)
bout <- runPca(y, block=block)

str(bout)

runPca. se

Principal components analysis of a Summarizedexperiment

Description

Compact and denoise the dataset by performing PCA on the (log-)normalized expression matrix,
by calling runPca on an assay of a SummarizedExperiment.

Usage

runPca. se(
X’
features,

number = 25,
block = NULL,

num. threads

1,

more.pca.args = list(),
assay.type = "logcounts”,
output.name = "PCA",

meta.name =

HPCAH’

delayed. transpose = FALSE

Arguments

X

features

number

block

num. threads
more.pca.args

assay.type

output.name

A SummarizedExperiment object or one of its subclasses. Rows correspond to
genomic features and columns correspond to cells.

Integer, logical or character vector containing the features of interest to use in the
PCA. For RNA data, this is typically the hvg vector added by chooseRnaHvgs. se.
If NULL, all available features are used.

Number of PCs to retain, passed to runPca.

Block assignment for each cell, passed to runPca.
Number of threads for the PCA, passed to runPca.
Named list of additional arguments to pass to runPca.

Integer or string specifying the assay of x to be used for PCA. This is typically
the log-normalized expression matrix created by normalizeRnaCounts. se.

String containing the name of the reducedDim entry in which to store the PC
scores.

runTsne 79

meta.name String containing the name of the 1ink[S4Vectors]{metadata} entry in which
to store other PCA statistics.

delayed. transpose
Logical scalar indicating whether to delay the transposition when storing coor-
dinates in the reducedDims.

Value

x is returned with the principal component scores in the reducedDim. (This is converted to a Sin-
gleCellExperiment if it wasn’t one already.) Additional outputs (e.g., rotation matrix, variance
explained) are stored in the metadata.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("hvg")

sce <- runPca.se(sce, rowData(sce)$hvg)

dim(reducedDim(sce, "PCA"))

plot(metadata(sce)PCAvariance.explained / metadata(sce)PCAtotal.variance)

runTsne t-stochastic neighbor embedding

Description

Compute t-SNE coordinates to visualize similarities between cells.

Usage

runTsne(
X,
perplexity = 30,
num.neighbors = tsnePerplexityToNeighbors(perplexity),
theta = 1,
early.exaggeration.iterations = 250,
exaggeration.factor = 12,
momentum.switch.iterations = 250,
start.momentum = 0.5,
final.momentum = 0.8,
eta = 200,
max.depth = 7,
leaf.approximation = FALSE,
max.iterations = 500,

80 runTsne

seed = 42,
num.threads = 1,
BNPARAM = AnnoyParam()

)

tsnePerplexityToNeighbors(perplexity)

Arguments

X Numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.
Alternatively, a named list of nearest-neighbor search results like that returned
by findKNN. This should contain index, an integer matrix where rows are neigh-
bors and columns are cells; and distance, a numeric matrix of the same dimen-
sions containing the distances to each neighbor. Each column contains 1-based
indices for the nearest neighbors of the corresponding cell, ordered by increas-
ing distance. The number of neighbors should be the same as num.neighbors,
otherwise a warning is raised.

Alternatively, an index constructed by buildIndex.

perplexity Numeric scalar specifying the perplexity to use in the t-SNE algorithm. Higher
perplexities will focus on global structure, at the cost of increased runtime and
decreased local resolution.

num.neighbors Integer scalar specifying the number of neighbors, typically derived from perplexity.
If x contains pre-computed neighbor search results with a different number of
neighbors than num.neighbors, an error is thrown; this can be suppressed by
setting num.neighbors = NULL.

theta Numeric scalar specifying the approximation level for the Barnes-Hut calcula-
tion of repulsive forces. Lower values increase accuracy at the cost of increased
compute time. All values should be non-negative.
early.exaggeration.iterations
Integer scalar specifying the number of iterations of the early exaggeration phase,
where clusters are artificially compacted to leave more empty space so that cells
can easily relocate to find a good global organization. Larger values improve
convergence within this phase at the cost of reducing the remaining iterations in
max.iterations.
exaggeration.factor
Numeric scalar containing the exaggeration factor for the early exaggeration
phase (see early.exaggeration.iterations). Larger values increase the at-
traction between nearest neighbors to favor local structure.
momentum.switch.iterations
Integer scalar specifying the number of iterations to perform before switching
from the starting momentum to the final momentum. Higher momentums can
improve convergence by increasing the step size and smoothing over local os-
cillations, at the risk of potentially skipping over relevant minima.

start.momentum Numeric scalar containing the starting momentum, to be used in the iterations
before the momentum switch at momentum.switch.iterations. This is usu-
ally lower than final.momentum to avoid skipping over suitable local minima.

runTsne

81

final.momentum Numeric scalar containing the final momentum, to be used in the iterations af-

eta

max . depth

ter the momentum switch at momentum. switch.iterations. This is usually
higher than start.momentum to accelerate convergence to the local minima
once the observations are moderately well-organized.

Numeric scalar containing the learning rate, used to scale the updates for each
cell. Larger values can speed up convergence at the cost of skipping over local
minima.

Integer scalar specifying the maximum depth of the Barnes-Hut quadtree. If
neighboring cells cannot be separated before the maximum depth is reached,
they will be assigned to the same leaf node of the quadtree. Smaller values
(7-10) improve speed by bounding the recursion depth at the cost of accuracy.

leaf.approximation

max.iterations

seed
num. threads
BNPARAM

Value

Logical scalar indicating whether to use the “leaf approximation”. If TRUE, re-
pulsive forces are computed between leaf nodes and re-used across all cells as-
signed to that leaf node. This sacrifices some accuracy for greater speed, assum-
ing that max.depth is small enough for multiple cells to be assigned to the same
leaf.

Integer scalar specifying the maximum number of iterations to perform. Larger
values improve convergence at the cost of compute time.

Integer scalar specifying the seed to use for generating the initial coordinates.
Integer scalar specifying the number of threads to use.

A BiocNeighborParam object specifying the algorithm to use. Only used if x is
not a prebuilt index or a list of existing nearest-neighbor search results.

For runTsne, a numeric matrix where rows are cells and columns are the two dimensions of the

embedding.

For tsnePerplexityToNeighbors, an integer scalar specifying the number of neighbors to use for
a given perplexity.

Author(s)

Aaron Lun

References

van der Maaten LJP and Hinton GE (2008). Visualizing high-dimensional data using t-SNE. Journal
of Machine Learning Research_ 9, 2579-2605.

van der Maaten LJP (2014). Accelerating t-SNE using tree-based algorithms. Journal of Machine
Learning Research 15, 3221-3245.

See Also

https://libscran.github.io/qdtsne/, for an explanation of the approximations.

runTsne. se, to run t-SNE on a SingleCellExperiment.

https://libscran.github.io/qdtsne/

82 runTsne.se

Examples

x <- t(as.matrix(iris[,1:41))
embedding <- runTsne(x)
plot(embedding[,1], embedding[,2], col=iris[,5])

runTsne.se t-SNE on a SummarizedExperiment

Description

Generate a t-SNE visualization from an existing embedding, by calling runUmap on a reduced di-
mension entry in SingleCellExperiment.

Usage

runTsne.se(
X,
perplexity = 30,
num.threads = 1,
more.tsne.args = list(),
reddim.type = "PCA",
output.name = "TSNE"

)
Arguments
X A SingleCellExperiment object or one of its subclasses. Rows correspond to
genomic features and columns correspond to cells.
perplexity Perplexity to use in the t-SNE algorithm, passed to runTsne.
num. threads Number of threads for the neighbor search and optimization, passed to runTsne.

more.tsne.args Named list of further arguments to pass to runTsne.

reddim. type Integer or string specifying the existing embedding in the reducedDim of x.
Alternatively, a named integer or character vector of length 1, where the name
specifies an alternative experiment of x and the value is the name/index of a
reducedDim entry in that alternative experiment.

output.name String containing the name of the output reducedDim.

Value

x is returned with the t-SNE coordinates stored in the reducedDim.

Author(s)

Aaron Lun

runUmap 83

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("pca")

Using fewer iterations for a faster-running example.

sce <- runTsne.se(sce, more.tsne.args=list(max.iterations=50))
head(reducedDim(sce, "TSNE"))

runUmap Uniform manifold approxation and projection

Description

Compute UMAP coordinates to visualize similarities between cells.

Usage

runUmap (
X,
num.dim = 2,
local.connectivity
bandwidth = 1,
mix.ratio = 1,

1
-

spread = 1,

min.dist = 0.1,

a = NULL,

b = NULL,

repulsion.strength = 1,

initialize.method = c("spectral”, "random”, "none"),

initial.coordinates = NULL,
initialize.random.on.spectral.fail = TRUE,
initialize.spectral.scale = 10,
initialize.spectral.jitter = FALSE,
initialize.spectral.jitter.sd = 1e-04,
initialize.random.scale = 10,
initialize.seed = 9876543210,
num.epochs = NULL,

learning.rate = 1,
negative.sample.rate = 5,
num.neighbors = 15,

optimize.seed = 1234567890,
num.threads = 1,

parallel.optimization = FALSE,

BNPARAM = AnnoyParam()

84

Arguments

X

num.dim

runUmap

Numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.

Alternatively, a named list of nearest-neighbor search results like that returned
by findKNN. This should contain index, an integer matrix where rows are neigh-
bors and columns are cells; and distance, a numeric matrix of the same dimen-
sions containing the distances to each neighbor. Each column contains 1-based
indices for the nearest neighbors of the corresponding cell, ordered by increas-
ing distance. The number of neighbors should be the same as num.neighbors,
otherwise a warning is raised.

Alternatively, an index constructed by buildIndex.

Integer scalar specifying the number of dimensions of the output embedding.

local.connectivity

bandwidth

mix.ratio

spread

min.dist

Numeric scalar specifying the number of nearest neighbors that are assumed to
be always connected, with maximum membership confidence. Larger values
increase the connectivity of the embedding and reduce the focus on local struc-
ture. This may be a fractional number of neighbors, in which case interpolation
is performed when computing the membership confidence.

Numeric scalar specifying the effective bandwidth of the kernel when converting
the distance to a neighbor into a fuzzy set membership confidence. Larger values
reduce the decay in confidence with respect to distance, increasing connectivity
and favoring global structure.

Numeric scalar between 0 and 1 specifying the mixing ratio when combining
fuzzy sets. A mixing ratio of 1 will take the union of confidences, a ratio of 0
will take the intersection, and intermediate values will interpolate between them.
Larger values favor connectivity and more global structure.

Numeric scalar specifying the scale of the coordinates of the final low-dimensional
embedding. Ignored if a and b are provided.

Numeric scalar specifying the minimum distance between observations in the
final low-dimensional embedding. Smaller values will increase local clustering
while larger values favor a more even distribution of observations throughout
the low-dimensional space. This is interpreted relative to spread. Ignored if a
and b are provided.

Numeric scalar specifying the a parameter for the fuzzy set membership strength
calculations. Larger values yield a sharper decay in membership strength with
increasing distance between observations. If this or b are NULL, a suitable value
for this parameter is automatically determined from spread and min.dist.

Numeric scalar specifying the b parameter for the fuzzy set membership strength
calculations. Larger values yield an earlier decay in membership strength with
increasing distance between observations. If this or a are NULL, a suitable value
for this parameter is automatically determined from spread and min.dist.

repulsion.strength

Numeric scalar specifying the modifier for the repulsive force. Larger values
increase repulsion and favor local structure.

initialize.method

String specifying how to initialize the embedding. This should be one of:

runUmap 85

* spectral: spectral decomposition of the normalized graph Laplacian. Specif-
ically, the initial coordinates are defined from the eigenvectors correspond-
ing to the smallest non-zero eigenvalues. This fails in the presence of mul-
tiple graph components or if the approximate SVD fails to converge.

* random: fills the embedding with random draws from a normal distribution.

* none: uses initial values from initial.coordinates.
initial.coordinates
Numeric matrix of initial coordinates, with number of rows equal to the num-
ber of observations and number of columns equal to num.dim. Only relevant
if initialize.method = "none”; or initialize.method = "spectral” and
spectral initialization fails and initialize.random.on.spectral.fail = FALSE.

initialize.random.on.spectral.fail
Logical scalar indicating whether to fall back to random sampling (i.e., same as
random) if spectral initialization fails due to the presence of multiple compo-
nents in the graph. If FALSE, the values in initial.coordinates will be used
instead, i.e., same as none. Only relevantif initialize.method = "spectral”
and spectral initialization fails.

initialize.spectral.scale
Numeric scalar specifying the maximum absolute magnitude of the coordinates
after spectral initialization. All initial coordinates are scaled such that the maxi-
mum of the absolute values is equal to initialize.spectral.scale. This en-
sures that outlier observations will not have large absolute distances that may in-
terfere with optimization. Only relevant if initialize.method = "spectral”
and spectral initialization does not fail.

initialize.spectral.jitter
Logical scalar indicating whether to jitter coordinates after spectral initializa-
tion to separate duplicate observations (e.g., to avoid overplotting). This is
done using normally-distributed noise of mean zero and standard deviation of
initialize.spectral.jitter.sd. Only relevant if initialize.method =
"spectral” and spectral initialization does not fail.

initialize.spectral.jitter.sd
Numeric scalar specifying the standard deviation of the jitter to apply after
spectral initialization. Only relevant if initialize.method = "spectral” and
spectral initialization does not fail and initialize.spectral.jitter = TRUE.

initialize.random.scale
Numeric scalar specifying the scale of the randomly generated initial coor-
dinates. Coordinates are sampled from a uniform distribution from [—z, x)
where x is initialize.random.scale. Only relevant if initialize.method
= "random”, or initialize.method = "spectral” and spectral initialization
fails and initialize.random.on.spectral.fail = TRUE.

initialize.seed
Numeric scalar specifying the seed for the random number generation during
initialization. Only relevantif initialize.method = "random”, or initialize.method
"spectral” and initialize.spectral.jitter = TRUE;orinitialize.method
"spectral” and spectral initialization fails and initialize.random.on.spectral.fail
TRUE.

86 runUmap
num. epochs Integer scalar specifying the number of epochs for the gradient descent, i.e.,
optimization iterations. Larger values improve accuracy at the cost of increased
compute time. If NULL, a value is automatically chosen based on the size of the

dataset:

» For datasets with no more than 10000 observations, the default number of
epochs is set to 500.

* For larger datasets, the number of epochs is inversely proportional to the
number of cells, starting from 500 and decreasing asymptotically to a lower
limit of 200. This choice aims to reduce computational work for very large
datasets.

learning.rate Numeric scalar specifying the initial learning rate used in the gradient descent.
Larger values can accelerate convergence but at the risk of skipping over suitable
local optima.
negative.sample.rate
Numeric scalar specifying the rate of sampling negative observations to compute
repulsive forces. Greater values will improve accuracy but increase compute
time.
num.neighbors Integer scalar specifying the number of neighbors to use to define the fuzzy sets.
Larger values improve connectivity and favor preservation of global structure, at
the cost of increased compute time. Ignored if x contains pre-computed neighbor
search results.
optimize.seed Numeric scalar specifying the seed to use for the optimization epochs.
num. threads Integer scalar specifying the number of threads to use.
parallel.optimization
Logical scalar specifying whether to parallelize the optimization step.
BNPARAM A BiocNeighborParam object specifying the algorithm to use. Only used if x is
not a prebuilt index or a list of existing nearest-neighbor search results.
Value
A numeric matrix where rows are cells and columns are the two dimensions of the embedding.
Author(s)
Aaron Lun
References
Mclnnes L, Healy J, Melville J (2020). UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. arXiv, https://arxiv.org/abs/1802.03426
See Also

https://libscran.github.io/umappp/, for details on the underlying implementation.
runUmap. se, to run UMAP on a SingleCellExperiment.

https://arxiv.org/abs/1802.03426
https://libscran.github.io/umappp/

runUmap.se

Examples

87

x <- t(as.matrix(iris[,1:41))
embedding <- runUmap(x)
plot(embedding[,1], embedding[,2], col=iris[,5])

runUmap. se

UMAP on a SummarizedExperiment

Description

Generate a UMAP visualization from an existing embedding, by calling runUmap on a reduced

dimension entry in

Usage

runUmap. se(
X,
num.dim = 2,

SingleCellExperiment.

min.dist = 0.1

num.neighbors
num. threads =

=15,
1,

more.umap.args = list(),

reddim. type =
output.name =

Arguments

X

num.dim
min.dist
num.neighbors
num. threads
more.umap.args

reddim. type

output.name

Value

"PCA" R
"UMAP"

A SingleCellExperiment object or one of its subclasses. Rows correspond to
genomic features and columns correspond to cells.

Number of dimensions in the output embedding, passed to runUmap.
Minimum distance between observations, passed to runUmap.

Number of neighbors for constructing the fuzzy sets, passed to runUmap.
Number of threads for the UMAP, passed to runUmap.

Named list of further arguments to pass to runUmap.

Integer or string specifying the existing embedding in the reducedDim of x.
Alternatively, a named integer or character vector of length 1, where the name
specifies an alternative experiment of x and the value is the name/index of a
reducedDim entry in that alternative experiment.

String containing the name of the output reducedDim.

x is returned with the UMAP coordinates stored in the reducedDim.

88 sanitizeSizeFactors

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestRnaData.se("pca”)

Using fewer epochs for a faster-running example.

sce <- runUmap.se(sce, more.umap.args=1list(num.epochs=50))
head(reducedDim(sce, "UMAP"))

sanitizeSizeFactors Sanitize size factors

Description

Replace invalid size factors, i.e., zero, negative, infinite or NaN values. Such size factors can
occasionally arise if, e.g., insufficient quality control was performed upstream. Removing them
ensures that the normalized values from normalizeCounts remain finite for sensible downstream
processing.

Usage

sanitizeSizeFactors(
size.factors,
replace.zero = TRUE,
replace.negative = TRUE,
replace.infinite = TRUE,
replace.nan = TRUE

Arguments

size.factors Numeric vector of size factors across cells.

replace.zero Logical scalar indicating whether to replace size factors of zero with the low-
est positive factor in size.factors. This ensures that the normalized values
will be large to reflect the extremity of the scaling, but still finite for sensible
downstream processing. If FALSE, zeros are retained.

replace.negative
Logical scalar indicating whether to replace negative size factors with the low-
est positive factor in size.factors. This ensures that the normalized values
will be large to reflect the extremity of the scaling, but still finite for sensible
downstream processing. If FALSE, negative values are retained.

scaleByNeighbors 89

replace.infinite
Logical scalar indicating whether to replace infinite size factors with the largest
positive factor in size.factors. This ensures that any normalized values will
be, at least, finite; the choice of a relatively large replacement value reflects the
extremity of the scaling. If FALSE, infinite values are retained.

replace.nan Logical scalar indicating whether to replace NaN size factors with unity, e.g.,
scaling normalization is a no-op. If FALSE, NaN values are retained.

Value

Numeric vector of length equal to size. factors, containing the sanitized size factors.

Author(s)

Aaron Lun

See Also

The sanitize_size_factors function in https://libscran.github.io/scran_norm/.

Examples

sf <= 2*rnorm(100)

sf[1] <- 0@
sf[2] <- -1
sf[3] <- Inf
sf[4] <- NaN

sanitizeSizeFactors(sf)

scaleByNeighbors Scale and combine multiple embeddings

Description

Scale multiple embeddings (usually derived from different modalities for the same cells) so that
their within-population variances are comparable, and then combine them into a single embedding
matrix for further analyses like clustering, t-SNE, etc. The aim is to equalize uninteresting variance
across modalities so that high technical variance in one modality does not drown out interesting
biology in another modality.

Usage

scaleByNeighbors(
X,
num.neighbors = 20,
block = NULL,
block.weight.policy = c("variable"”, "equal”, "none"),

https://libscran.github.io/scran_norm/

90 scaleByNeighbors

variable.block.weight = c(@, 1000),
num.threads = 1,

weights = NULL,

BNPARAM = AnnoyParam()

Arguments

X List of numeric matrices of principal components or other embeddings, one for
each modality. For each entry, rows are dimensions and columns are cells. All
entries should have the same number of columns but may have different numbers
of rows.

num.neighbors Integer scalar specifying the number of neighbors to use to define the scaling
factor.
block Factor specifying the block of origin (e.g., batch, sample) for each cell in x. If
provided, the scaling factor is computed as a weighted average across blocks to
ensure that block effects do not inflate the within-population variance. Alterna-
tively NULL, if all cells are from the same block.
block.weight.policy
String specifying the policy to use for weighting different blocks when comput-
ing the average scaling factor. See the argument of the same name in computeBlockWeights
for more detail. Only used if block is not NULL.

variable.block.weight

Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable”.

num. threads Integer scalar specifying the number of threads to use.

weights Numeric vector of length equal to that of x, specifying the weights to apply to
each modality. Each value represents a multiplier of the within-population vari-
ance of its modality, i.e., larger values increase the contribution of that modality
in the combined output matrix. NULL is equivalent to an all-1 vector, i.e., all
modalities are scaled to have the same within-population variance.

BNPARAM A BiocNeighborParam object specifying how to perform the neighbor search.

Value

List containing scaling, a vector of scaling factors to be aplied to each embedding; and combined,
a numeric matrix creating by scaling each entry of x by scaling and then rbinding them together.

Author(s)

Aaron Lun

See Also

https://libscran.github.io/mumosa/, for the basis and caveats of this approach.

scaleByNeighbors. se, to combine embeddings in a SingleCellExperiment.

https://libscran.github.io/mumosa/

scaleByNeighbors.se 91

Examples

pcs <- list(
gene = matrix(rnorm(10000), ncol=200),
protein = matrix(rnorm(1000, sd=3), ncol=200),
guide = matrix(rnorm(2000, sd=5), ncol=200)

)

out <- scaleByNeighbors(pcs)
out$scaling
dim(out$combined)

scaleByNeighbors.se Scale and combine multiple embeddings in a SingleCellExperiment

Description

Scale embeddings for different modalities to equalize their intra-population variance, and combine
them into a single embedding for downstream analysis. This calls scaleByNeighbors on the re-
duced dimensions of the main/alternative experiments in a SingleCellExperiment.

Usage
scaleByNeighbors.se(
X7
altexp.reddims,
main.reddims = "PCA",
num.neighbors = 20,
block = NULL,

BNPARAM = AnnoyParam(),
num.threads = 1,
more.scale.args = list(),

output.name = "combined"”,
meta.name = "combined”,
delayed. transpose = FALSE
)
Arguments
X A SingleCellExperiment object or one of its subclasses. Rows correspond to

genomic features and columns correspond to cells.

altexp.reddims Named list of character or integer vectors. Each entry is named after an alter-
native experiment. Each vector contains the names/indices of the reducedDim
embeddings from that experiment to be combined.

main.reddims Character or integer vector specifying the names/indices of the reducedDim en-
tries from x to be combined.

num.neighbors Number of neighbors used to define the scaling factor, passed to scaleByNeighbors.

92 scoreGeneSet

block Block assignment for each cell, passed to scaleByNeighbors.
BNPARAM Algorithm for the nearest neighbor search, passed to scaleByNeighbors.
num. threads Number of threads for the neighbor search, passed to scaleByNeighbors.

more.scale.args
Named list of additional arguments to pass to scaleByNeighbors.

output.name String containing the name of the reducedDim entry in which to store the com-
bined embeddings.
meta.name String containing the name of the metadata entry in which to store additional

metrics. If NULL, additional metrics are not stored.

delayed. transpose
Logical scalar indicating whether to delay the transposition when storing coor-
dinates in the reducedDims.

Value

x is returned with the combined embeddings stored in its rowData. The scaling factors for all
embeddings are stored in the metadata.

Author(s)

Aaron Lun

Examples

library(SingleCellExperiment)

sce <- getTestAdtData.se("pca”)

sce <- scaleByNeighbors.se(sce, altexp.reddims=1ist(ADT="PCA"))
reducedDimNames(sce)

metadata(sce)$combined

scoreGeneSet Score gene set activity for each cell

Description

Compute per-cell scores for a gene set, defined as the column sums of a rank-1 approximation to
the submatrix for the gene set. This uses the same approach as the GSDecon package by Jason
Hackney, adapted to use an approximate PCA (via IRLBA) and to support blocking.

scoreGeneSet

Usage

scoreGeneSet (
X,
set,
rank = 1,
scale = FALSE,
block = NULL,
block.weight.policy = c("variable"”, "equal”, "none"),

variable.block.weight = c(@, 1000),
extra.work = 7,

iterations = 1000,

seed = 5489,

realized = TRUE,

num. threads = 1

93

Arguments

X

set

rank

scale

block

A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. Typically, the matrix is expected to contain log-
expression values.

Vector specifying the rows of x that belong to the gene set. This may be an
integer vector of row indices, a logical vector of length equal to the number of
rows, or a character vector of row names. For integer and character vectors,
duplicate entries are ignored. For a character vector, any string not present in
rownames(x) is ignored.

Integer scalar specifying the rank of the approximation. The default value of 1
assumes that each gene set only describes a single coordinated biological func-
tion.

Logical scalar indicating whether to scale all genes to have the same variance.
This ensures that each gene contributes equally to the PCA, favoring consis-
tent variation across many genes rather than large variation in a few genes. If
block is specified, each gene’s variance is calculated as a weighted sum of the
variances from each block. Genes with zero variance are ignored.

Factor specifying the block of origin (e.g., batch, sample) for each cell in x. The
PCA will be performed on the residuals after regressing out the block effect,
ensuring that differences between block do not dominate the variation in the
dataset. Alternatively NULL if all cells are from the same block.

block.weight.policy

String specifying the policy to use for weighting the contribution of different
blocks to the PCA. See the argument of the same name in computeBlockWeights
for more detail. Only used if block is not NULL.

variable.block.weight

Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable”.

94 scoreGeneSet.se

extra.work Integer scalar specifying the extra dimensions for the IRLBA workspace. Larger
values improve accuracy at the cost of compute time.

iterations Integer scalar specifying the maximum number of restart iterations for IRLBA.
Larger values improve accuracy at the cost of compute time.

seed Integer scalar specifying the seed for the initial random vector in IRLBA.
realized Logical scalar indicating whether to realize x into an optimal memory layout for
IRLBA. This speeds up computation at the cost of increased memory usage.
num. threads Number of threads to use.
Value

List containing:

* scores, a numeric vector of per-cell scores for each column in x.

* weights, a DataFrame containing row, an integer vector of ordered and unique row indices
corresponding to the genes in set; and weight, a numeric vector of per-gene weights for each
gene in row.

Author(s)

Aaron Lun

See Also

The compute and compute_blocked functions in https://libscran.github.io/gsdecon/.

scoreGeneSet. se, to compute gene set scores from a SummarizedExperiment.

Examples

library(Matrix)

x <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))

normed <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))
scoreGeneSet(normed, set=c(1,3,5,10,20,100))

scoreGeneSet. se Score a gene set in a SummarizedExperiment

Description

Compute a gene set activity score for each cell based on the expression values of the genes in the
set, by calling scoreGeneSet on an assay of a SummarizedExperiment.

https://libscran.github.io/gsdecon/

scoreGeneSet.se 95

Usage
scoreGeneSet.se(
X,
set,
block = NULL,

num.threads = 1,
more.score.args = list(),

assay.type = "logcounts”
)
Arguments

X A SummarizedExperiment object or one of its subclasses. Rows correspond to
genes and columns correspond to cells.

set Vector containing the gene set, see ?scoreGeneSet for details.

block Block assignment for each cell, passed to scoreGeneSet.

num. threads Number of threads for scoreGeneSet.

more.score.args
Named list of further arguments to pass to scoreGeneSet.

assay.type Integer or string specifying the relevant assay in x, usually containing log-normalized
expression values.

Value

List containing scores, a numeric vector of the gene set scores across all cells in x; and weights,
a numeric vector of weights for all genes in set.

Author(s)

Aaron Lun

Examples

Defining a gene set of oligodendrocyte genes.

library(org.Mm.eg.db)

oligo.set <- select(org.Mm.eg.db, keytype="GO0", keys="G0:0048709", columns="SYMBOL")
oligo.set <- unique(oligo.set$SYMBOL)

sce <- getTestRnaData.se("norm")
oligo.scores <- scoreGeneSet.se(sce, oligo.set)
summary (oligo.scores$scores)

96

scoreMarkers

scoreMarkers Score marker genes

Description

Score marker genes for each group using a variety of effect sizes from pairwise comparisons be-
tween groups. This includes Cohen’s d, the area under the curve (AUC), the difference in the means
(delta-mean) and the difference in the proportion of detected cells (delta-detected). For each group,
the strongest markers are those genes with the largest effect sizes (i.e., upregulated) when compared

to all other groups.

Usage

scoreMarkers(
X,
groups,
block = NULL,
block.average.policy = c("mean”, "quantile"),
block.weight.policy =
variable.block.weight
block.quantile = 0.5,
compute.group.mean = TRUE,
compute.group.detected = TRUE,
compute.delta.mean = TRUE,
compute.delta.detected = TRUE,
compute.cohens.d = TRUE,
compute.auc = TRUE,
compute.summary.min = TRUE,
compute.summary.mean = TRUE,
compute.summary.median = TRUE,
compute.summary.max = TRUE,
compute.summary.quantiles = NULL,
compute.summary.min.rank = TRUE,
threshold = 0,
all.pairwise = FALSE,
min.rank.limit = 500,
num. threads = 1

c(0, 1000),

Arguments

c("variable”, "equal”, "none"),

X A matrix-like object where rows correspond to genes or genomic features and
columns correspond to cells. It is typically expected to contain log-expression

values, e.g., from normalizeCounts.

groups A vector specifying the group assignment for each cell in x.

scoreMarkers 97

block Factor specifying the block of origin (e.g., batch, sample) for each cell in x.
If provided, comparisons are performed within each block to ensure that block
effects do not confound the estimates. The weighted average of the effect sizes
across all blocks is reported for each gene. Alternatively NULL, if all cells are
from the same block.

block.average.policy
String specifying the policy to use for average statistics across blocks. This can
either be a (weighted) "mean” or a "quantile”. Only used if block is not NULL.

block.weight.policy
String specifying the policy to use for weighting different blocks when com-
puting the average for each statistic. See the argument of the same name in
computeBlockWeights for more detail. Only used if block is not NULL.

variable.block.weight
Numeric vector of length 2, specifying the parameters for variable block weight-
ing. See the argument of the same name in computeBlockWeights for more de-
tail. Only used if block is not NULL and block.weight.policy = "variable"”.

block.quantile Number specifying the probability of the quantile of statistics across blocks.
Defaults to 0.5, i.e., the median of per-block statistics. Only used if block is not
NULL and block.average.policy="quantile".

compute.group.mean
Logical scalar indicating whether to compute the group-wise mean expression
for each gene.

compute.group.detected
Logical scalar indicating whether to compute the group-wise proportion of de-
tected cells for each gene.

compute.delta.mean
Logical scalar indicating whether to compute the delta-means, i.e., the log-fold
change when x contains log-expression values.

compute.delta.detected
Logical scalar indicating whether to compute the delta-detected, i.e., differences
in the proportion of cells with detected expression.

compute.cohens.d
Logical scalar indicating whether to compute Cohen’s d.

compute.auc Logical scalar indicating whether to compute the AUC. Setting this to FALSE
can improve speed and memory efficiency.

compute.summary.min
Boolean specifying whether to compute the minimum as a summary statistic for
each effect size. Only used if all.pairwise=FALSE.

compute. summary .mean
Boolean specifying whether to compute the mean as a summary statistic for each
effect size. Only used if all.pairwise=FALSE.

compute.summary.median
Boolean specifying whether to compute the median as a summary statistic for
each effect size. Only used if all.pairwise=FALSE.

compute. summary.max
Boolean specifying whether to compute the maximum as a summary statistic for
each effect size. Only used if all.pairwise=FALSE.

98

scoreMarkers

compute.summary.quantiles

Numeric scalars containing the probabilities of quantiles to compute as summary
statistics for each effect size. If NULL, no quantiles are computed. Only used if
all.pairwise=FALSE.

compute.summary.min.rank

Boolean specifying whether to compute the mininum rank as a summary statis-
tic for each effect size. If NULL, no quantiles are computed. Only used if
all.pairwise=FALSE.

threshold Non-negative numeric scalar specifying the minimum threshold on the differ-

ences in means (i.e., the log-fold change, if x contains log-expression values).
This is incorporated into the effect sizes for Cohen’s d and the AUC. Larger
thresholds will favor genes with large differences at the expense of genes with
low variance that would otherwise have comparable effect sizes.

all.pairwise Logical scalar indicating whether to report the effect sizes for every pairwise

comparison between groups. Alternatively, an integer scalar indicating the num-
ber of top markers to report from each pairwise comparison between groups. If
FALSE, only the summary statistics are reported.

min.rank.limit Integer scalar specifying the maximum value of the min-rank to report. Lower

values improve memory efficiency at the cost of discarding information about
lower-ranked genes. Only used if all.pairwise=FALSE.

num. threads Integer scalar specifying the number of threads to use.

Value

A named list containing:

nrow, integer specifying the number of rows in x.
row.names, character vector or NULL containing the row names of x.
group. ids, vector contaning the identities of the unique groups.

mean, a numeric matrix containing the mean expression for each group. Each row is a gene
and each column is a group in group. ids. Omitted if compute.group.mean=FALSE.

detected, a numeric matrix containing the proportion of detected cells in each group. Each

row is a gene and each column is a group in group. ids. Omitted if compute.group.detected=FALSE.

If all.pairwise=FALSE, the list also contains:

cohens.d, a list of DataFrames where each DataFrame corresponds to a group in group. ids.
Each row of a DataFrame represents a gene, while each column contains a summary of Co-
hen’s d from pairwise comparisons to all other groups. This includes min, mean, median,
max, quantile.x and min.rank - check out ?summarizeEffects for details. Omitted if
compute.cohens.d=FALSE.

auc, a list like cohens. d but containing the summaries of the AUCs from each pairwise com-
parison. Omitted if compute.auc=FALSE.

delta.mean, a list like cohens.d but containing the summaries of the delta-mean from each
pairwise comparison. Omitted if compute.delta.mean=FALSE.

delta.detected, a list like cohens.d but containing the summaries of the delta-detected
from each pairwise comparison. Omitted if compute.delta.detected=FALSE.

scoreMarkers 99

If all.pairwise=TRUE, the list also contains:

* cohens.d, a 3-dimensional numeric array containing the Cohen’s d from each pairwise com-
parison between groups. The extents of the first two dimensions are equal to the number
of groups in group.ids, while the extent of the final dimension is equal to the number of
genes. The entry cohens.d[i, j, k] represents Cohen’s d from the comparison of group
group.ids[j] over group group.ids[i] for gene k. Omitted if compute.cohens.d=FALSE.

* auc, an array like cohens.d but containing the AUCs from each pairwise comparison. Omit-
ted if compute.auc=FALSE.

* delta.mean, an array like cohens.d but containing the delta-mean from each pairwise com-
parison. Omitted if compute.delta.mean=FALSE.

» delta.detected, an array like cohens. d but containing the delta-detected from each pairwise
comparison. Omitted if compute.delta.detected=FALSE.

If all.pairwise is an integer, the list also contains:

* cohens.d, a list of list of DataFrames containing the top genes with the largest Cohen’s d
for each pairwise comparison. Specifically, cohens.d[[iJ1[[j]] is a DataFrame that con-
tains the top all.pairwise genes from the comparison of group group.ids[i] over group
group.ids[j]. Each DataFrame contains an index column, the row index of the gene; and
an effect column, the Cohen’s d for that gene. Omitted if compute.cohens.d=FALSE.

* auc, a list of list of DataFrames like cohens.d but containing the AUCs from each pairwise
comparison. Omitted if compute.auc=FALSE.

* delta.mean, a list of list of DataFrames like cohens.d but containing the delta-mean from
each pairwise comparison. Omitted if compute.delta.mean=FALSE.

* delta.detected, alist of list of DataFrames like cohens. d but containing the delta-detected
from each pairwise comparison. Omitted if compute.delta.detected=FALSE.

All returned lists will also contain:

Choice of effect size

The delta-mean is the difference in the mean expression between groups. This is fairly straight-
forward to interpret - a positive delta-mean corresponds to increased expression in the first group
compared to the second. The delta-mean can also be treated as the log-fold change if the input
matrix contains log-transformed normalized expression values.

The delta-detected is the difference in the proportion of cells with detected expression between
groups. This lies between 1 and -1, with the extremes occurring when a gene is silent in one group
and detected in all cells of the other group. For this interpretation, we assume that the input matrix
contains non-negative expression values, where a value of zero corresponds to lack of detectable
expression.

Cohen’s d is the standardized difference between two groups. This is defined as the difference in
the mean for each group scaled by the average standard deviation across the two groups. (Tech-
nically, we should use the pooled variance; however, this introduces some unintuitive asymmetry
depending on the variance of the larger group, so we take a simple average instead.) A positive
value indicates that the gene has increased expression in the first group compared to the second.
Cohen’s d is analogous to the t-statistic in a two-sample t-test and avoids spuriously large effect

100 scoreMarkers

sizes from comparisons between highly variable groups. We can also interpret Cohen’s d as the
number of standard deviations between the two group means.

The area under the curve (AUC) is the probability that a randomly chosen observation in one group
is greater than a randomly chosen observation in the other group. Values greater than 0.5 indicate
that a gene is upregulated in the first group. The AUC is closely related to the U-statistic used in
the Wilcoxon rank sum test. The key difference between the AUC and Cohen’s d is that the former
is less sensitive to the variance within each group, e.g., if two distributions exhibit no overlap, the
AUC is the same regardless of the variance of each distribution. This may or may not be desirable
as it improves robustness to outliers but reduces the information available to obtain a fine-grained
ranking.

With a minimum change threshold

Setting a minimum change threshold (i.e., threshold) prioritizes genes with large shifts in expres-
sion instead of those with low variances. Currently, only positive thresholds are supported, which
focuses on genes that are upregulated in the first group compared to the second. The effect size
definitions are generalized when testing against a non-zero threshold:

* Cohen’s d is redefined as the standardized difference between the difference in means and the
specified threshold, analogous to the TREAT method from the limma package. Large positive
values are only obtained when the observed difference in means is significantly greater than
the threshold. For example, if we had a threshold of 2 and we obtained a Cohen’s d of 3, this
means that the observed difference in means was 3 standard deviations greater than 2. Note
that a negative Cohen’s d cannot be intepreted as downregulation, as the difference in means
may still be positive but less than the threshold.

» The AUC is generalized to the probability of obtaining a random observation in one group
that is greater than a random observation plus the threshold in the other group. For example,
if we had a threshold of 2 and we obtained an AUC of 0.8, this means that, 80 the random
observation from the first group would be greater than a random observation from the second
group by 2 or more. Again, AUCs below 0.5 cannot be interpreted as downregulation, as it
may be caused by a positive shift that is less than the threshold.

See Also

The score_markers_summary, score_markers_pairwise and score_markers_best functions in
https://libscran.github.io/scran_markers/. See their blocked equivalents (e.g., score_markers_summary_blocked
when block is specified.

summarizeEffects, to summarize the pairwise effects returned when all.pairwise=TRUE.

reportGroupMarkerStatistics, to consolidate the statistics for a single group into its own data
frame.

scoreMarkers. se, to score markers from a SummarizedExperiment.

Examples

Mocking a matrix:

library(Matrix)

X <- round(abs(rsparsematrix(1000, 100, 0.1) x 100))

normed <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))

https://libscran.github.io/scran_markers/

scoreMarkers.se 101

Compute marker summaries for each group:

g <- sample(letters[1:4], ncol(x), replace=TRUE)
scores <- scoreMarkers(normed, g)

names(scores)

head(scores$mean)

head(scores$cohens.d[["a"]1])

Report marker statistics for a single group:
reportGroupMarkerStatistics(scores, "b")

scoreMarkers. se Score marker genes in a SummarizedExperiment

Description

Identify candidate marker genes based on effect sizes from pairwise comparisons between groups
of cells, by calling scoreMarkers on an assay of a SummarizedExperiment.

Usage
scoreMarkers.se(
X’
groups,
block = NULL,

num. threads = 1,
more.marker.args = list(),
assay.type = "logcounts”,
extra.columns = NULL,
order.by = TRUE

formatScoreMarkersResult(marker.res, extra.columns = NULL, order.by = TRUE)

previewMarkers(
marker.df,
columns = c("mean"”, "detected”, 1lfc = "delta.mean.mean"),
pre.columns = NULL,
post.columns = NULL,
rows = 10,
order.by = NULL,
include.order.by = !is.null(order.by)

102 scoreMarkers.se

Arguments
X A SummarizedExperiment object or one of its subclasses. Rows correspond to
genes and columns correspond to cells.
groups Group assignment for each cell, passed to scoreMarkers.
block Block assignment for each cell, passed to scoreMarkers.
num. threads Number of threads for marker scoring, passed to scoreMarkers.

more.marker.args
Named list of additional arguments to pass to scoreMarkers.

assay. type Integer or string specifying the assay to use for differential comparisons, usually
containing log-normalized expression values.

extra.columns DataFrame containing extra columns to add each DataFrame. This should have
the same number of rows as x. For scoreMarkers. se, this may also be a char-
acter vector specifying the columns of rowData to be added.

order.by String specifying the column to order each DataFrame by. Alternatively TRUE,
a column is automatically chosen from the effect size summaries. If NULL or
FALSE, no ordering is performed.

marker.res List containing the result of scoreMarkers.
marker.df DataFrame containing the marker statistics for a single group.
columns Character vector of the names of columns to retain in the preview. This may be

named, in which the names are used as the column names.

pre.columns, post.columns
Character vector of the names of additional columns to retain in the preview.
These are added before or after the columns in columns, for pre.columns and
post.columns respectively.

rows Integer specifying the number of rows to show. If NULL, all rows are returned.
include.order.by
Boolean indicating whether the column specified by order.by should be in-
cluded in the output DataFrame. A string may also be supplied and will be
treated as TRUE; the value of the string will be used as the column name in the
output DataFrame.

Value

For scoreMarkers.se and formatScoreMarkersResult, a List of DataFrames is returned. Each
DataFrame corresponds to a unique group in groups. Each row contains statistics for a gene in x,
with the following columns:

* mean, the mean expression in the current group.

* detected, the proportion of cells with detected expression in the current group.

» <effect>.<summary>, a summary statistic for an effect size, e.g., cohens.d.mean contains

the mean Cohen’s d across comparisons involving the current group.

For previewMarkers, a DataFrame is returned containing the specified columns and rows.

subsampleByNeighbors 103

Author(s)

Aaron Lun

Examples

sce <- getTestRnaData.se("cluster")
markers <- scoreMarkers.se(sce, sce$clusters)
previewMarkers(markers[["1"]1)

subsampleByNeighbors Subsample cells based on their neighbors

Description

Subsample a dataset by selecting cells to represent all of their nearest neighbors. The aim is to pre-
serve the relative density of the original dataset while guaranteeing representation of low-frequency
subpopulations.

Usage

subsampleByNeighbors(
X,
num.neighbors = 20,
min.remaining = 10,
num. threads = 1,
BNPARAM = AnnoyParam()

Arguments

X A numeric matrix where rows are dimensions and columns are cells, typically
containing a low-dimensional representation from, e.g., runPca.

Alternatively, an index constructed by buildIndex.

Alternatively, a list containing existing nearest-neighbor search results. This
should contain:

* index, an integer matrix where rows are neighbors and columns are cells.
Each column contains 1-based indices for the nearest neighbors of the cor-
responding cell, ordered by increasing distance.

* distance, a numeric matrix of the same dimensions as index, containing
the distances to each of the nearest neighbors.

The number of neighbors should be equal to num.neighbors, otherwise a warn-
ing is raised.

num.neighbors Integer scalar specifying the number of neighbors to use. Larger values result
in stronger downsampling. Ignored if x contains pre-computed neighbor search
results.

104 subsampleByNeighbors

min.remaining Integer scalar specifying the minimum number of remaining neighbors that a
cell must have in order to be considered for selection. This should be less than
or equal to num.neighbors. Larger values result in stronger downsampling.

num. threads Integer scalar specifying the number of threads to use for the nearest-neighbor
search. Only used if x does not contain existing nearest-neighbor results.

BNPARAM A BiocNeighborParam object specifying the algorithm to use. Only used if x
does not contain existing nearest-neighbor results.

Details

Starting from the densest region in the high-dimensional space, we select an observation for inclu-
sion into the subsampled dataset. Every time we select an observation, we remove it and all of its
nearest neighbors from the dataset. We then select the next observation with the most remaining
neighbors, with ties broken by density; this is repeated until there are no more observations.

The premise is that each selected observation serves as a representative for its nearest neighbors.
This ensures that the subsampled points are well-distributed across the original dataset. Low-
frequency subpopulations will always have at least a few representatives if they are sufficiently
distant from other subpopulations. We also preserve the relative density of the original dataset as
more representatives will be generated from high-density regions.

Value

Integer vector with the indices of the selected cells in the subsample.

Author(s)

Aaron Lun

See Also

https://libscran.github.io/nenesub/, for more details on the underlying algorithm.

Examples

X <- matrix(rnorm(10000), nrow=2)

keep <- subsampleByNeighbors(x, 10)

plot(x[1,], x[2,D)

points(x[1,keep], x[2,keep], col="red")

legend('topright', col=c('black', 'red'), legend=c('all', 'subsample'), pch=1)

https://libscran.github.io/nenesub/

summarizeEffects 105

summarizeEffects Summarize pairwise effect sizes for each group

Description

For each group, summarize the effect sizes for all pairwise comparisons to other groups. This yields
a set of summary statistics that can be used to rank marker genes for each group.

Usage

summarizeEffects(
effects,
compute.summary.min = TRUE,
compute.summary.mean = TRUE,
compute.summary.median = TRUE,
compute.summary.max = TRUE,
compute.summary.quantiles = NULL,
compute.summary.min.rank = TRUE,
num. threads = 1

Arguments

effects

compute.

compute.

compute.

compute.

compute.

compute.

A 3-dimensional numeric containing the effect sizes from each pairwise com-
parison between groups. The extents of the first two dimensions are equal to the
number of groups, while the extent of the final dimension is equal to the number
of genes. The entry [i, j, k] represents the effect size from the comparison of
group j against group i for gene k. See also the output of scoreMarkers with
all.pairwise=TRUE
summary.min
Boolean specifying whether to compute the minimum as a summary statistic.
summary . mean
Boolean specifying whether to compute the mean as a summary statistic.
summary.median
Boolean specifying whether to compute the median as a summary statistic.
summary . max
Boolean specifying whether to compute the maximum as a summary statistic.
summary.quantiles
Numeric scalars containing the probabilities of quantiles to compute as summary
statistics. If NULL, no quantiles are computed.
summary.min.rank

Boolean specifying whether to compute the mininum rank as a summary statis-
tic.

num. threads Integer scalar specifying the number of threads to use.

106 summarizeEffects

Details

Each summary statistic can be used to prioritize different sets of marker genes for the group of
interest, by ranking them in decreasing order according to said statistic:

* min contains the minimum effect size across all comparisons involving the group of interest.
Genes with large values are upregulated in all comparisons. As such, it is the most stringent
summary as markers will only have large values if they are uniquely upregulated in the group
of interest compared to every other group.

* mean contains the mean effect size across all comparisons involving the group of interest.
Genes with large values are upregulated on average compared to the other groups. This is a
good general-purpose summary statistic.

* median contains the median effect size across all comparisons involving the group of interest.
Genes with large values are upregulated compared to most (i.e., at least 50 Compared to the
mean, this is more robust to outlier effects but less sensitive to strong effects in a minority of
comparisons.

* max contains the maximum effect size across all comparisons involving the group of interest.
Using this to define markers will focus on genes that are upregulated in at least one compari-
son. As such, it is the least stringent summary as markers can achieve large values if they are
upregulated in the group of interest compared to any one other group.

e quantile[[P]] contains the quantile P across all comparisons involving the group of interest.
This is a generalization of the minimum, median and maximum for arbitrary quantile proba-
bilities. For example, a large quantile[["”20"]] would mean that the gene is upregulated in
the group of interest compared to 80

The exact definition of “large” depends on the choice of effect size. For signed effects like Cohen’s
d, delta-mean and delta-detected, the value must be positive to be considered “large”. For the AUC,
a value greater than 0.5 is considered “large”. This interpretation is also affected by the choice of
threshold= used to compute each effect size in scoreMarkers, e.g., a negative Cohen’s d cannot
be interpreted as downregulation when the threshold is positive.

The min.rank is a more exotic summary statistic, containing the minimum rank for each gene
across all comparisons involving the group of interest. This is defined by ranking the effect sizes
across genes within each comparison, and then taking the minimum of these ranks across compar-
isons. Taking all genes with min.rank <= T will yield a set containing the top T genes from each
comparison. The idea is to ensure that there are at least T genes that can distinguish the group of
interest from any other group.

NaN effect sizes are allowed, e.g., if two groups do not exist in the same block for a blocked anal-
ysis in scoreMarkers with block=. This function will ignore NaN values when computing each
summary. If all effects are NaN for a particular group, the summary statistic will also be NaN.

Value

List of DataFrames containing summary statistics for the effect sizes. Each DataFrame corresponds
to a group, each row corresponds to a gene, and each column contains a summary statistic. If
compute.summary.quantiles is provided, the "quantile"” column is a nested DataFrame where
each column coresponds to a probability in compute.summary.quantiles.

testEnrichment 107

Author(s)

Aaron Lun

See Also

The summarize_effects function in https://libscran.github.io/scran_markers/.

scoreMarkers, to compute the pairwise effects in the first place.

Examples

Mocking a matrix:

library(Matrix)

x <- round(abs(rsparsematrix(1000, 100, ©.1) * 100))

normed <- normalizeCounts(x, size.factors=centerSizeFactors(colSums(x)))

g <- sample(letters[1:4], ncol(x), replace=TRUE)
effects <- scoreMarkers(normed, g, all.pairwise=TRUE)

summarized <- summarizeEffects(effects$cohens.d)
str(summarized)

testEnrichment Test for gene set enrichment

Description
Perform a hypergeometric test for enrichment of gene sets in a list of interesting genes (e.g., mark-
ers).

Usage

testEnrichment(x, sets, universe = NULL, log = FALSE, num.threads = 1)

Arguments
X Vector of identifiers for some interesting genes, e.g., symbols or Ensembl IDs.
This is usually derived from a selection of top markers, e.g., from scoreMarkers.
sets List of vectors of identifiers for the pre-defined gene sets. Each inner vector
corresponds to a gene set and should contain the same type of identifiers as x.
universe Vector of identifiers for the universe of genes in the dataset. x and each vector

in sets will be subsetted to only include those genes in universe. If NULL, the
universe is defined as the union of all genes in x and sets.

Alternatively, an integer scalar specifying the number of genes in the universe.
This is assumed to be greater than or equal to the number of unique genes in x
and sets.

https://libscran.github.io/scran_markers/

108 testEnrichment

log Logical scalar indicating whether to report log-transformed p-values. This may
be desirable to avoid underflow at near-zero p-values.
num. threads Integer scalar specifying the number of threads to use.
Value

DataFrame with one row per gene set and the following columns:
* overlap, the overlap between x and each entry of sets, i.e., the number of genes in the
intersection.
* size, the set of each entry of sets.

* p.value, the (possibly log-transformed) p-value for overrepresentation of the gene set in x.

Author(s)

Aaron Lun

See Also

phyper and https://libscran.github.io/phyper/, which is the basis for the underlying calcu-
lation.

Examples

testEnrichment(
x=LETTERS[1:5],
sets=list(
first=LETTERS[1:10],
second=LETTERS[1:5 * 2],
third=LETTERS[10:20]

),
universe=LETTERS

https://libscran.github.io/phyper/

Index

adt_quality_control, 3
aggregateAcrossCells, 6,7, 8, 11
aggregateAcrossCells.se, 7,7
aggregateAcrossGenes, 7, 10, 11, 12
aggregateAcrossGenes.se, 11,11
aggregateColData
(aggregateAcrossCells.se), 7
analyze, 13, 41, 42
analyze.se, 18

BiocNeighborParam, 15, 22, 24,43, 72, 81,
86, 90, 104

buildIndex, 24, 72, 80, 84, 103

buildSnnGraph, 15, 17,23,31,33,71, 72

centerSizeFactors, 14, 16, 25, 28, 41,
56-58, 60-62
chooseHighlyVariableGenes, 15, 17,27, 29,
30, 55,75
choosePseudoCount, 28, 58
chooseRnaHvgs.se, 21, 22, 28, 29, 56, 78
clusterGraph, 15, 17,24, 25,31,33,71, 72
clusterGraph.se, 25, 32, 33
clusterKmeans, 15, 17,34, 37
clusterKmeans.se, 22, 23, 37, 37
colData, 8, 12, 20, 33, 37,57, 61, 62, 64, 65,
67,74
combineFactors, 6, 38
computeAdtQcMetrics, 14, 16, 63, 64
computeAdtQcMetrics
(adt_quality_control), 3
computeBlockWeights, 39, 54, 76, 90, 93, 97
computeClrmiFactors, 14, 16, 40, 56, 57
computeCrisprQcMetrics, 16, 64, 65
computeCrisprQcMetrics
(crispr_quality_control), 47
computeRnaQcMetrics, 14, 16, 66, 67
computeRnaQcMetrics
(rna_quality_control), 69

109

computeRnaQcMetricsWithAltExps
(quickRnaQc. se), 66
convertAnalyzeResults, 18, 41
correctMnn, 15, 17,42,44, 45,77
correctMnn.se, 21, 23, 44, 44
countGroupsByBlock, 45
crispr_quality_control, 47

DataFrame, 4, 6, 8, 9, 23, 30, 38,41, 47, 48,
56, 63-65, 67, 69, 70, 94, 98, 99
102, 106, 108
DataFramelList, 12
DelayedArray, 59
DelayedArray,LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52
dim,LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52
dimnames, LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52

extract_array,LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52

extract_sparse_array,LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52

fetchDataset, 52
filterAdtQcMetrics, 16, 63
filterAdtQcMetrics
(adt_quality_control), 3
filterCrisprQcMetrics, 16, 64, 65
filterCrisprQcMetrics
(crispr_quality_control), 47
filterRnaQcMetrics, 16, 66
filterRnaQcMetrics
(rna_quality_control), 69
findKNN, 80, 84
fitVarianceTrend, 49, 55
formatComputeAdtQcMetricsResult
(quickAdtQc.se), 63

110

formatComputeCrisprQcMetricsResult
(quickCrisprQc.se), 64
formatComputeRnaQcMetricsResult
(quickRnaQc. se), 66
formatModelGeneVariancesResult
(chooseRnaHvgs.se), 29
formatScoreMarkersResult
(scoreMarkers.se), 101

getTestAdtData.se (getTestData.se), 51

getTestCrisprData.se (getTestData.se),
51

getTestData.se, 51

getTestRnaData.se (getTestData.se), 51

igraph, 31
initializeCpp, 35, 58, 59

initializeCpp,LogNormalizedMatrixSeed-method

(LogNormalizedMatrix), 52
is_sparse,LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52

kmeans, 36

List, 12,38, 102
LogNormalizedMatrix, 52
LogNormalizedMatrix-class
(LogNormalizedMatrix), 52
LogNormalizedMatrixSeed
(LogNormalizedMatrix), 52
LogNormalizedMatrixSeed-class
(LogNormalizedMatrix), 52

matrixClass,LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52
mcols, 12
metadata, 8, 34, 38, 63-65, 67, 74, 79, 92
modelGeneVariances, 14, 17,27, 29, 30, 51,
53

normalizeAdtCounts.se, 20-22, 41, 56

normalizeCounts, /4, 16, 17, 25, 28, 29, 52,
54, 56, 57,58, 60-62, 75, 88, 96

normalizeCrisprCounts.se, 21, 22, 60

normalizeRnaCounts. se, 20, 22, 26, 59, 61,
78

phyper, 108
previewMarkers (scoreMarkers.se), 101

INDEX

quickAdtQc.se, 5, 20, 22, 63
quickCrisprQc.se, 20, 22, 49, 64
quickRnaQc. se, 20, 22, 66, 71

reducedDim, 33, 37,45, 74, 78, 82, 87, 91, 92
reducedDims, 45, 74, 79, 92
reportGroupMarkerStatistics, 68, 100
rna_quality_control, 69
rowData, 9, 12, 102
runAllNeighborSteps, 15, 17,71, 73, 74
runAllNeighborSteps.se, 2/-23, 73,73
runPca, 15,17,24,27,35,42,72,75,78, 80,
84,103
runPca.se, 21, 22, 77,78
runTsne, 15, 17,71, 72,79, 82
runTsne.se, 81, 82
runUmap, 15, 17,71, 72, 82, 83, 87
runUmap. se, 86, 87

sanitizeSizeFactors, 58, 88
scaleByNeighbors, 15, 17, 89, 91, 92
scaleByNeighbors.se, 21, 22, 90, 91
scoreGeneSet, 92, 94, 95
scoreGeneSet. se, 94, 94
scoreMarkers, 15, 17, 68, 69, 96, 101, 102,
105-107
scoreMarkers.se, 22, 23, 100, 101
SingleCellExperiment, 8, I8, 23, 25, 32, 33,
37,41, 42,44, 45, 52, 56, 67, 73, 74,
79, 81, 82, 86, 87, 90, 91
subsampleByNeighbors, 103
suggestAdtQcThresholds, 14, 16, 63
suggestAdtQcThresholds
(adt_quality_control), 3
suggestCrisprQcThresholds, 14, 16, 64, 65
suggestCrisprQcThresholds
(crispr_quality_control), 47
suggestRnaQcThresholds, 14, 16, 65, 66
suggestRnaQcThresholds
(rna_quality_control), 69
SummarizedExperiment, 5,7, 8, 11, 12, 14,
15,19, 26, 28-30, 49, 56, 57, 59-60,
71,77, 78,94, 95, 100-102
summarizeEffects, 69, 98, 100, 105

table, 46

testEnrichment, 107

tsnePerplexityToNeighbors (runTsne), 79

type,LogNormalizedMatrixSeed-method
(LogNormalizedMatrix), 52

	adt_quality_control
	aggregateAcrossCells
	aggregateAcrossCells.se
	aggregateAcrossGenes
	aggregateAcrossGenes.se
	analyze
	analyze.se
	buildSnnGraph
	centerSizeFactors
	chooseHighlyVariableGenes
	choosePseudoCount
	chooseRnaHvgs.se
	clusterGraph
	clusterGraph.se
	clusterKmeans
	clusterKmeans.se
	combineFactors
	computeBlockWeights
	computeClrm1Factors
	convertAnalyzeResults
	correctMnn
	correctMnn.se
	countGroupsByBlock
	crispr_quality_control
	fitVarianceTrend
	getTestData.se
	LogNormalizedMatrix
	modelGeneVariances
	normalizeAdtCounts.se
	normalizeCounts
	normalizeCrisprCounts.se
	normalizeRnaCounts.se
	quickAdtQc.se
	quickCrisprQc.se
	quickRnaQc.se
	reportGroupMarkerStatistics
	rna_quality_control
	runAllNeighborSteps
	runAllNeighborSteps.se
	runPca
	runPca.se
	runTsne
	runTsne.se
	runUmap
	runUmap.se
	sanitizeSizeFactors
	scaleByNeighbors
	scaleByNeighbors.se
	scoreGeneSet
	scoreGeneSet.se
	scoreMarkers
	scoreMarkers.se
	subsampleByNeighbors
	summarizeEffects
	testEnrichment
	Index

