Package ‘scone’

February 2, 2026
Version 1.35.0

Title Single Cell Overview of Normalized Expression data

Description SCONE is an R package for comparing and ranking the performance of
different normalization schemes for single-cell RNA-seq and other
high-throughput analyses.

License Artistic-2.0
Depends R (>= 3.4), methods, SummarizedExperiment

Imports graphics, stats, utils, aroma.light, BiocParallel, class,
cluster, compositions, diptest, edgeR, fpc, gplots, grDevices,
hexbin, limma, matrixStats, mixtools, RColorBrewer, boot,
rhdf5, RUVSeq, rARPACK, MatrixGenerics, SingleCellExperiment,
DelayedMatrixStats, sparseMatrixStats, SparseArray (>= 1.7.6)

Suggests BiocStyle, DT, ggplot2, knitr, miniUI, NMF, plotly, reshape2,
rmarkdown, scran, scRNAseq, shiny, testthat, DelayedArray,
visNetwork, doParallel, batchtools, splatter, scater,
kableExtra, mclust, TENxPBMCData

VignetteBuilder knitr

biocViews ImmunoOncology, Normalization, Preprocessing,
QualityControl, GeneExpression, RNASeq, Software,
Transcriptomics, Sequencing, SingleCell, Coverage

BugReports https://github.com/YoseflLab/scone/issues

RoxygenNote 7.3.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/scone

git_branch devel

git_last_commit 60f7f37

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

https://github.com/YosefLab/scone/issues

2 Contents
Author Michael Cole [aut, cph],
Davide Risso [aut, cre, cph],
Matteo Borella [ctb],
Chiara Romualdi [ctb]
Maintainer Davide Risso <risso.davide@gmail.com>
Contents
Lkfn . . .o e 3
PATSE_TOW . . v v v vt e e e e e e e e e e e e e e e e e e e 3
PZIN L L e e 4
biplot_color 4
biplot_interactive e e e e 5
CLR_EN . . e e e 6
Ccontrol_@enes e e e 7
DESEQ_FN e e e e e 8
estimate_ziber e 9
factor_sample_filter L 10
fast_estimate_ziber e e 12
FQ _FN . . e 13
et DI . . . e e 14
get_design 15
GELNEGCONIUV v v vttt e et e e e e e e 16
get_normalized 17
GEL_PATAMS . .« . v v et e e e e e e e e e e e e e e e e e e e 18
CELLAC v o e e e e e e e e e 19
GEELSCOTES .« v v v v v v e e e e e e e e e e e 20
impute_expectationo e e e e e e e e e e 21
impute_null e 22
Im_adjust 22
make_design L. e e 23
metric_sample_filter L 24
PsiNorm e 26
PSINORM_FEN . . . e e e e 27
SCOME + v v v v v e e e e e e e e e e e e e e e e 28
SconeExperiment-class Lo 31
sconeReport e e e e 34
scone_easybake 35
SCOTE_MALTIX . v v v v v e 38
SCRAN_FEN . . . e 41
select_methods e 41
simple_FNR_params e 42
SUM_EN . . 43
TMM_EN . . e e e e e 44
UQ_FN . . e e 44
Index 46

dikfn

.likfn

Likelihood Function of the Logistic Model

Description

Likelihood Function of the Logistic Model

Usage

.1likfn(Z, X, Beta)

Arguments
Z data matrix
X sample-level values
Beta gene-level values
.parse_row Parse rows
Description

This function is used internally in scone to parse the variables used to generate the design matrices.

Usage

.parse_row(pars, bio, batch, ruv_factors, qc)

Arguments

pars
bio
batch

ruv_factors

qc

Value

character. A vector of parameters corresponding to a row of workflow parame-
ters.

factor. The biological covariate.
factor. The batch covariate.

list. A list containing the factors of unwanted variation (RUVg) for all upstream
workflows.

matrix. The principal components of the QC metric matrix.

A list with the variables to be passed to make_design.

4 biplot_color

.pzfn Posterior probability of detection

Description

Posterior probability of detection

Usage

.pzfn(Y, W, Alpha, X, Beta)

Arguments
Y detection matrix.
W sample-level drop-out coefficients.
Alpha gene-level drop-out features.
X sample-level expression features.
Beta gene-level sample coefficients.
biplot_color Function for biplotting with no point labels and with points color-
coded according to a quantitative variable. For example: the rank of
normalization performance.
Description

This function implements biplot for prcomp objects.

Usage

biplot_color(
X,
Y,
rank = TRUE,
ties_method = c("max"”, "min", "first”, "last”, "random"),
choices = 1:2,
expand = 1,

biplot_interactive 5

Arguments
X prcomp object.
y numeric. Quantitative values used to color the points. If rank is FALSE, all
values must be positive integers and less than or equal to the length of y.
rank logical. If TRUE (default) y will be transformed by the rank() function
ties_method character. ties.method used by the rank() function
choices numeric. 2 principal components to plot. Default to first two PCs.
expand numeric. value used to adjust the spread of the arrows relative to the points.
arguments passed to plot.
Value

Invisibly returns scaled point coordinates used in plot.

Examples

mat <- matrix(rnorm(1000), ncol=10)
colnames(mat) <- paste(”X"”, 1:ncol(mat), sep="")

pc <- prcomp(mat)

biplot_color(pc, rank(pc$x[,11))

biplot_interactive Interactive biplot

Description

This is a wrapper around biplot_color, creating a shiny gadget to allow the user to select specific
points in the graph.

Usage
biplot_interactive(x, ...)
Arguments
X a SconeExperiment object.
passed to biplot_color.
Details

Since this is based on the shiny gadget feature, it will not work in static documents, such as vignettes
or markdown / knitr documents. See biplot_color for more details on the internals.

Value

A SconeExperiment object representing selected methods.

Examples

mat <- matrix(rpois(1000, lambda = 5), ncol=10)

colnames(mat) <- paste(”"X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat)

res <- scone(obj, scaling=list(none=identity,
ug=UQ_FN, deseq=DESEQ_FN, fqg=FQT_FN),

evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2,
bpparam = BiocParallel::SerialParam())

Not run:

biplot_interactive(res)

End(Not run)

CLR_FN

CLR_FN Centered log-ratio (CLR) normalization wrapper function

Description

Centered log-ratio (CLR) normalization wrapper function

Usage
CLR_FN(ei)

Arguments

ei Numerical matrix. (rows = genes, cols = samples).

Details

SCONE scaling wrapper for c1r).

Value

CLR normalized matrix.

Examples

ei <- matrix(0:20,nrow = 7)
eo <- CLR_FN(ei)

control_genes 7

control_genes Data: Positive and Negative Control Genes

Description

Sets of "positive" and "negative" control genes, useful arguments for scone.

Details

These gene sets can be used as negative or positive controls, either for RUV factor normalization or
for evaluation and ranking of the normalization workflows.

Gene set datasets are in the form of data. frame, with the first column containing the gene symbols
and an (optional) second column containing additional information (such as cortical layer or cell
cycle phase).

Note that the gene symbols follow the mouse conventions (i.e. capitalized) or the human conven-
tions (i.e, all upper-case), based on the original publication. One can use the toupper, tolower,
and toTitleCase functions to alter symbol conventions.

Mouse gene symbols in cortical_markers are transcribed from Figure 3 of Molyneaux et al.
(2007): "laminar-specific expression of 66 genes within the neocortex."

Human gene symbols in housekeeping are derived from the list of "housekeeping” genes from the
c¢DNA microarray analysis of Eisenberg and Levanon (2003): "[HK genes] belong to the class of
genes that are EXPRESSED in all tissues." "... from 47 different human tissues and cell lines."

Human gene symbols in housekeeping_revised from Eisenberg and Levanon (2013): "This list
provided ... is based on analysis of next-generation sequencing (RNA-seq) data. At least one
variant of these genes is expressed in all tissues uniformly... The RefSeq transcript according to
which we deemed the gene "housekeeping’ is given." Housekeeping exons satisfy "(i) expression
observed in all tissues; (ii) low variance over tissues: standard-deviation [log2(RPKM)]<1; and (iii)
no exceptional expression in any single tissue; that is, no log-expression value differed from the
averaged log2(RPKM) by two (fourfold) or more." "We define a housekeeping gene as a gene for
which at least one RefSeq transcript has more than half of its exons meeting the previous criteria
(thus being housekeeping exons)."

Human gene symbols in cellcycle_genes from Macosko et al. (2015) and represent a set of genes
marking G1/S, S, G2/M, M, and M/G1 phases.

References
Molyneaux, B.J., Arlotta, P., Menezes, J.R. and Macklis, J.D.. Neuronal subtype specification in
the cerebral cortex. Nature Reviews Neuroscience, 2007, 8(6):427-437.

Eisenberg E, Levanon EY. Human housekeeping genes are compact. Trends in Genetics, 2003,
19(7):362-5.

Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends in Genetics, 2013, 29(10):569-
74.

Macosko, E. Z., et al. Highly parallel genome-wide expression profiling of individual cells using
nanoliter droplets. Cell, 2015, 161.5:1202-1214.

8 DESEQ_FN

Examples

data(housekeeping)
data(housekeeping_revised)
data(cellcycle_genes)
data(cortical_markers)

DESEQ_FN Relative log-expression (RLE; DESeq) scaling normalization wrapper
function

Description

Relative log-expression (RLE; DESeq) scaling normalization wrapper function

Usage

DESEQ_FN(ei)

Arguments

ei Numerical matrix. (rows = genes, cols = samples).

Details

SCONE scaling wrapper for calcNormFactors).

Value

RLE normalized matrix.

Examples

ei <- matrix(@:20,nrow = 7)
eo <- DESEQ_FN(ei)

estimate_ziber 9

estimate_ziber Parameter estimation of zero-inflated bernoulli model

Description

This function implements an expectation-maximization algorithm for a zero-inflated bernoulli model
of transcript detection, modeling gene expression state (off of on) as a bernoulli draw on a gene-
specific expression rate (Z in 0,1). Detection conditioned on expression is a logistic function of
gene-level features. The bernoulli model is modeled numerically by a logistic model with an inter-
cept.

Usage

estimate_ziber(

X,

fp_tresh = 0,

gfeatM = NULL,
bulk_model = FALSE,
pos_controls = NULL,
em_tol = 0.01,
maxiter = 100,
verbose = FALSE

)
Arguments
X matrix. An expression data matrix (genes in rows, cells in columns)
fp_tresh numeric. Threshold for calling a positive detection (D = 1). Default 0.
gfeatM matrix. Numeric gene level determinants of drop-out (genes in rows, features in
columns)
bulk_model logical. Use median log-expression of gene in detected fraction as sole gene-

level feature. Default FALSE. Ignored if gfeatM is specified.

pos_controls logical. TRUE for all genes that are known to be expressed in all cells.

em_tol numeric. Convergence treshold on log-likelihood.

maxiter numeric. The maximum number of iterations. Default 100.

verbose logical. Whether or not to print the value of the likelihood at each iteration.
Value

a list with the following elements:

* W coefficients of sample-specific logistic drop-out model
* Alpha intercept and gene-level parameter matrix

* X intercept

10 factor_sample_filter

* Beta coefficient of gene-specific logistic expression model

 fnr_character the probability, per gene, of P(D=0IE=1)

* p_nodrop 1 - the probability P(droplY), useful as weights in weighted PCA
* expected_state the expected value E[Z] (1 = "on")

* loglik the log-likelihood

» convergence 0 if the algorithm converged and 1 if maxiter was reached

Examples

mat <- matrix(rpois(1000, lambda = 3), ncol=10)
mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)
ziber_out = suppressWarnings(estimate_ziber(mat,

bulk_model = TRUE,

pos_controls = 1:10))

factor_sample_filter Factor-based Sample Filtering: Function to filter single-cell RNA-Seq
libraries.

Description

This function returns a sample-filtering report for each cell in the input expression matrix, describing
whether it passed filtering by factor-based filtering, using PCA of quality metrics.

Usage
factor_sample_filter(
expr,
qual,
gene_filter = NULL,
max_exp_pcs = 5,

qual_select_qg_thresh = 0.01,
force_metrics = NULL,
good_metrics = NULL,
min_qual_variance = 0.7,
zcut = 1,

mixture = TRUE,

dip_thresh = 9.01,

plot = FALSE,

hist_breaks = 20

factor_sample_filter

Arguments

expr
qual

gene_filter

max_exp_pcs

11

matrix The data matrix (genes in rows, cells in columns).
matrix Quality metric data matrix (cells in rows, metrics in columns).

Logical vector indexing genes that will be used for PCA. If NULL, all genes are
used.

numeric number of expression PCs used in quality metric selection. Default 5.

qual_select_q_thresh

force_metrics

good_metrics

numeric. g-value threshold for quality/expression correlation significance tests.
Default 0.01

logical. If not NULL, indexes quality metric to be forcefully included in quality
PCA.

logical. If not NULL, indexes quality metric that indicate better quality when of
higher value.

min_qual_variance

zcut

mixture

dip_thresh
plot

hist_breaks

Details

None

Value

numeric. Minimum proportion of selected quality variance addressed in filter-
ing. Default 0.70

A numeric value determining threshold Z-score for sd, mad, and mixture sub-
criteria. Default 1.

A logical value determining whether mixture modeling sub-criterion will be ap-
plied per primary criterion (quality score). If true, a dip test will be applied to
each quality score. If a metric is multimodal, it is fit to a two-component normal
mixture model. Samples deviating zcut sd’s from optimal mean (in the inferior
direction), have failed this sub-criterion.

A numeric value determining dip test p-value threshold. Default 0.05.
logical. Should a plot be produced?
hist() breaks argument. Ignored if ‘plot=FALSE".

A logical, representing samples passing factor-based filter.

Examples

mat <- matrix(rpois(1000, lambda = 5), ncol=10)
colnames(mat) <- paste(”X"”, 1:ncol(mat), sep="")
gc = as.matrix(cbind(colSums(mat),colSums(mat > @)))

rownames(qc) =
colnames(qc) =

colnames(mat)
Cc("NCOUNTS", "NGENES")

mfilt = factor_sample_filter(expr = mat,
qc, plot = TRUE,qual_select_qg_thresh = 1)

12 fast_estimate_ziber

fast_estimate_ziber Fast parameter estimation of zero-inflated bernoulli model

Description

This function implements Newton’s method for solving zero of Expectation-Maximization equa-
tion at the limit of parameter convergence: a zero-inflated bernoulli model of transcript detection,
modeling gene expression state (off of on) as a bernoulli draw on a gene-specific expression rate
(Z in 0,1). Detection conditioned on expression is a logistic function of gene-level features. The
bernoulli model is modeled numerically by a logistic model with an intercept.

Usage

fast_estimate_ziber(
X,
fp_tresh = 0,
gfeatM = NULL,
bulk_model = FALSE,
pos_controls = NULL,
rate_tol = 0.01,
maxiter = 100,
verbose = FALSE

)
Arguments
X matrix. An expression data matrix (genes in rows, cells in columns)
fp_tresh numeric. Threshold for calling a positive detection (D = 1). Default 0.
gfeatM matrix. Numeric gene level determinants of drop-out (genes in rows, features in
columns)
bulk_model logical. Use median log-expression of gene in detected fraction as sole gene-

level feature. Default FALSE. Ignored if gfeatM is specified.

pos_controls logical. TRUE for all genes that are known to be expressed in all cells.

rate_tol numeric. Convergence treshold on expression rates (0-1).

maxiter numeric. The maximum number of steps per gene. Default 100.

verbose logical. Whether or not to print the value of the likelihood at each iteration.
Value

a list with the following elements:

* W coefficients of sample-specific logistic drop-out model
* Alpha intercept and gene-level parameter matrix

» X intercept

FQ_FN 13

* Beta coefficient of gene-specific logistic expression model

* fnr_character the probability, per gene, of P(D=0IE=1)

* p_nodrop 1 - the probability P(droplY), useful as weights in weighted PCA
 expected_state the expected value E[Z] (1 = "on")

* loglik the log-likelihood

* convergencefor all genes, 0 if the algorithm converged and 1 if maxiter was reached

Examples

mat <- matrix(rpois(1000, lambda = 3), ncol=10)
mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)
ziber_out = suppressWarnings(fast_estimate_ziber(mat,

bulk_model = TRUE,

pos_controls = 1:10))

FQ_FN Full-quantile normalization wrapper function

Description

Full-quantile normalization wrapper function

Usage

FQ_FN(ei)

FQT_FN(ei)

Arguments

ei Numerical matrix. (rows = genes, cols = samples).

Details

SCONE "scaling" wrapper for normalizeQuantileRank.matrix).

Unlike FQ_FN, FQT_FN handles ties carefully (see normalizeQuantiles for details).

Value

Full-quantile normalized matrix.

14 get_bio
Examples
ei <- matrix(0:20,nrow = 7)
eo <- FQ_FN(ei)
ei <- matrix(0:20,nrow = 7)
eo <- FQT_FN(ei)
get_bio Get Factor of Biological Conditions and Batch

Description

Get Factor of Biological Conditions and Batch

Usage

get_bio(x)
get_batch(x)

S4 method for signature 'SconeExperiment'
get_bio(x)

S4 method for signature 'SconeExperiment'
get_batch(x)

Arguments

X an object of class SconeExperiment.

Value

NULL or a factor containing bio or batch covariate.

Examples

set.seed(42)

mat <- matrix(rpois(500, lambda = 5), ncol=10)

colnames(mat) <- paste(”"X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat, bio = factor(rep(c(1,2),each = 5)),
batch = factor(rep(c(1,2),times = 5)))

bio = get_bio(obj)

batch = get_batch(obj)

get_design 15

get_design Retrieve Design Matrix

Description

Given a SconeExperiment object created by a call to scone, it will return the design matrix of the
selected method.
Usage

get_design(x, method)

S4 method for signature 'SconeExperiment,character'’
get_design(x, method)

S4 method for signature 'SconeExperiment,numeric'
get_design(x, method)

Arguments
X a SconeExperiment object containing the results of scone.
method character or numeric. Either a string identifying the normalization scheme to
be retrieved, or a numeric index with the rank of the normalization method to
retrieve (according to scone ranking of normalizations).
Details

The numeric method will always return the design matrix corresponding to row method of the
scone_params slot. This means that if scone was run with eval=TRUE, get_design(x, 1) will
return the top ranked method. If scone was run with eval=FALSE, get_design(x, 1) will return
the first normalization in the order saved by scone.

Value

The design matrix.

Functions

e get_design(x = SconeExperiment, method = character): If method is a character, it will
return the design matrix corresponding to the normalization scheme specified by the character
string. The string must be one of the row.names of the slot scone_params.

e get_design(x = SconeExperiment, method = numeric): If method is a numeric, it will re-
turn the design matrix according to the scone ranking.

16 get_negconruv

Examples

set.seed(42)

mat <- matrix(rpois(500, lambda = 5), ncol=10)

colnames(mat) <- paste(”X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat, bio = factor(rep(c(1,2),each = 5)),
batch = factor(rep(c(1,2),times = 5)))

res <- scone(obj, scaling=list(none=identity, ug=UQ_FN),
evaluate=TRUE, k_ruv=0, k_qc=0,
adjust_batch = "yes”, adjust_bio = "yes”,
eval_kclust=2, bpparam = BiocParallel::SerialParam())

design_top = get_design(res,1)

get_negconruv Get Negative and Positive Controls

Description

Get Negative and Positive Controls
Usage

get_negconruv(x)

get_negconeval (x)

get_poscon(x)

S4 method for signature 'SconeExperiment'
get_negconruv(x)

S4 method for signature 'SconeExperiment'
get_negconeval (x)

S4 method for signature 'SconeExperiment'
get_poscon(x)

Arguments

X an object of class SconeExperiment.
Value

NULL or a logical vector.

For get_negconruv the returned vector indicates which genes are negative controls to be used for
RUV.

get_normalized 17

For get_negconeval the returned vector indicates which genes are negative controls to be used for
evaluation.

For get_poscon the returned vector indicates which genes are positive controls to be used for
evaluation.

Examples

set.seed(42)

mat <- matrix(rpois(500, lambda = 5), ncol=10)

colnames(mat) <- paste(”X"”, 1:ncol(mat), sep="")

obj <- SconeExperiment(mat,negcon_ruv = 1:50 %in% 1:10,
negcon_eval = 1:50 %in% 11:20,
poscon = 1:50 %in% 21:30)

negcon_ruv = get_negconruv(obj)

negcon_eval = get_negconeval(obj)

poscon = get_poscon(obj)

get_normalized Retrieve Normalized Matrix

Description

Given a SconeExperiment object created by a call to scone, it will return a matrix of normalized
counts (in log scale if 1og=TRUE).

Usage
get_normalized(x, method, ...)

S4 method for signature 'SconeExperiment,character’
get_normalized(x, method, log = FALSE)

S4 method for signature 'SconeExperiment,numeric'
get_normalized(x, method, log = FALSE)

Arguments
X a SconeExperiment object containing the results of scone.
method character or numeric. FEither a string identifying the normalization scheme to

be retrieved, or a numeric index with the rank of the normalization method to
retrieve (according to scone ranking of normalizations).

additional arguments for specific methods.

log logical. Should the data be returned in log-scale

18 get_params

Details

If scone was run with return_norm="in_memory", this function simply retrieves the normalized
data from the assays slote of object.

If scone was run with return_norm="hdf5", this function will read the normalized matrix from
the specified hdf5 file.

If scone was run with return_norm="no", this function will compute the normalized matrix on the
fly.

The numeric method will always return the normalization corresponding to row method of the
scone_params slot. This means that if scone was run with eval=TRUE, get_normalized(x, 1)
will return the top ranked method. If scone was run with eval=FALSE, get_normalized(x, 1) will
return the first normalization in the order saved by scone.

Value

A matrix of normalized counts in log-scale.

Functions

e get_normalized(x = SconeExperiment, method = character): If method is a character, it
will return the normalized matrix corresponding to the normalization scheme specified by the
character string.The string must be one of the row. names of the slot scone_params.

e get_normalized(x = SconeExperiment, method = numeric): If method is a numeric, it will
return the normalized matrix according to the scone ranking.

Examples

set.seed(42)

mat <- matrix(rpois(500, lambda = 5), ncol=10)

colnames(mat) <- paste("X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat)

res <- scone(obj, scaling=list(none=identity, ug=UQ_FN),
evaluate=TRUE, k_ruv=0, k_qc=0,
eval_kclust=2, bpparam = BiocParallel::SerialParam())

top_norm = get_normalized(res,1)

get_params Extract scone parameters

Description

Extract scone parameters

get_qc 19

Usage

get_params(x)

S4 method for signature 'SconeExperiment'
get_params(x)

Arguments

X an object of class SconeExperiment.

Value

A data.frame containing workflow parameters for each scone workflow.

Examples

set.seed(42)

mat <- matrix(rpois(500, lambda = 5), ncol=10)

colnames(mat) <- paste("X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat)

res <- scone(obj, scaling=list(none=identity, ug=UQ_FN),
run = FALSE, k_ruv=0, k_qc=0, eval_kclust=2)

params = get_params(res)

get_qc Get Quality Control Matrix

Description

Get Quality Control Matrix

Usage
get_qgc(x)

S4 method for signature 'SconeExperiment'
get_qc(x)

Arguments

X an object of class SconeExperiment.

Value

NULL or the quality control (QC) metric matrix.

20 get_scores

Examples

set.seed(42)
mat <- matrix(rpois(500, lambda = 5), ncol=10)
colnames(mat) <- paste(”X", 1:ncol(mat), sep="")
obj <- SconeExperiment(mat,

gc = cbind(colSums(mat),colSums(mat > @)))
gc = get_qgc(obj)

get_scores Extract scone scores

Description

Extract scone scores

Usage

get_scores(x)
get_score_ranks(x)

S4 method for signature 'SconeExperiment'
get_scores(x)

S4 method for signature 'SconeExperiment'
get_score_ranks(x)

Arguments

X an object of class SconeExperiment.

Value

get_scores returns a matrix with all (non-missing) scone scores, ordered by average score rank.

get_score_ranks returns a vector of average score ranks.

Examples

set.seed(42)

mat <- matrix(rpois(500@, lambda = 5), ncol=10)

colnames(mat) <- paste(”X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat)

res <- scone(obj, scaling=list(none=identity, uqg=UQ_FN),
evaluate=TRUE, k_ruv=0, k_gc=0,
eval_kclust=2, bpparam = BiocParallel::SerialParam())

scores = get_scores(res)

score_ranks = get_score_ranks(res)

impute_expectation 21

impute_expectation Imputation of zero abundance based on general zero-inflated model

Description
This function is used to impute the data, weighted by probability of data coming from the zero-
inflation part of the distribution.

Usage

impute_expectation(expression, impute_args)

Arguments
expression the data matrix (genes in rows, cells in columns)
impute_args arguments for imputation (see details)

Details

The imputation is carried out with the following formula: y_ij* = y_ij * Pr(No Drop | y_ij) + mu_i
* Pr(Drop | y_ij).

impute_args must contain 2 elements: 1) p_nodrop = posterior probability of data not having re-
sulted from drop-out (genes in rows, cells in columns) 2) mu = expected expression of dropped data
(genes in rows, cells in columns)

Value

the imputed expression matrix.

Examples

mat <- matrix(rpois(1000, lambda = 3), ncol=10)
mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)

mu = matrix(rep(3/ppois(@,lambda = 3,lower.tail = FALSE),1000),ncol = 10)

p_false =1 / (1 + ppois(@, lambda = 3, lower.tail = TRUE) /
(0.01 x ppois(@, lambda = 3, lower.tail = FALSE)))

p_nodrop = matrix(rep(1-p_false,1000),ncol = 10)
p_nodrop[mat > @] = 1

impute_args = list()
impute_args = list(mu = mu, p_nodrop = p_nodrop)

imat = impute_expectation(mat,impute_args = impute_args)

22

Im_adjust

impute_null Null or no-op imputation

Description

Null or no-op imputation

Usage

impute_null(expression, impute_args)

Arguments
expression the data matrix (genes in rows, cells in columns)
impute_args arguments for imputation (not used)

Value

the imputed expression matrix.

Examples

mat <- matrix(rpois(1000, lambda = 5), ncol=10)
imat = impute_null(mat)

Im_adjust Linear Adjustment Normalization

Description

Given a matrix with log expression values and a design matrix, this function fits a linear model and

removes the effects of the batch factor as well as of the linear variables encoded in W.

Usage
Im_adjust(log_expr, design_mat, batch = NULL, weights =

Arguments
log_expr matrix. The log gene expression (genes in row, samples in columns).
design_mat matrix. The design matrix (usually the result of make_design).
batch factor. A factor with the batch information, identifying batch effect to be re-

moved.

weights matrix. A matrix of weights.

make_design 23

Details

The function assumes that the columns of the design matrix corresponding to the variable for which
expression needs to be adjusted, start with either the word "batch" or the letter "W" (case sensitive).
Any other covariate (including the intercept) is kept.

Value

The corrected log gene expression.

Examples

set.seed(141)

bio = as.factor(rep(c(1,2),each = 2))

batch = as.factor(rep(c(1,2),2))

design_mat = make_design(bio,batch, W = NULL)

log_expr = matrix(rnorm(20),ncol = 4)
adjusted_log_expr = Im_adjust(log_expr = log_expr,
design_mat = design_mat,
batch = batch)

make_design Make a Design Matrix

Description
This function builds a design matrix for the Adjustment Normalization Step, in which covariates
are two (possibly nested) categorical factors and one or more continuous variables.

Usage
make_design(bio, batch, W, nested = FALSE)

Arguments
bio factor. The biological covariate.
batch factor. The batch covariate.
W numeric. Either a vector or matrix containing one or more continuous covariates
(e.g. RUVg factors).
nested logical. Whether or not to consider a nested design (see details).
Details

If nested=TRUE a nested design is used, i.e. the batch variable is assumed to be nested within the
bio variable. Here, nested means that each batch is composed of samples from only *one* level of
bio, while each level of bio may contain multiple batches.

24

Value

The design matrix.

Examples

bio = as.factor(rep(c(1,2),each = 2))
batch = as.factor(rep(c(1,2),2))
design_mat = make_design(bio,batch, W = NULL)

metric_sample_filter

metric_sample_filter

libraries.

Metric-based Sample Filtering: Function to filter single-cell RNA-Seq

Description

This function returns a sample-filtering report for each cell in the input expression matrix, describing
which filtering criteria are satisfied.

Usage

metric_sample_filter(

expr,

nreads = colSums(expr),

ralign = NULL,
gene_filter = NULL,
pos_controls = NULL,
scale. = FALSE,

glen = NULL,

AUC_range = c(@, 15),

zcut = 1,

mixture = TRUE,
dip_thresh = 0.05,
hard_nreads = 25000,
hard_ralign = 15,
hard_breadth = 0.2,
hard_auc = 10,
suff_nreads = NULL,
suff_ralign = NULL,
suff_breadth = NULL,
suff_auc = NULL,
plot = FALSE,
hist_breaks = 10,

metric_sample_filter

Arguments

expr

nreads

ralign

gene_filter

pos_controls

scale.

glen

AUC_range

zcut

mixture

dip_thresh
hard_nreads
hard_ralign
hard_breadth
hard_auc
suff_nreads
suff_ralign
suff_breadth
suff_auc
plot

hist_breaks

Details

25

matrix The data matrix (genes in rows, cells in columns).

A numeric vector representing number of reads in each library. Default to ‘col-
Sums* of ‘expr*.

A numeric vector representing the proportion of reads aligned to the reference
genome in each library. If NULL, filtered_ralign will be returned NA.

A logical vector indexing genes that will be used to compute library transcrip-
tome breadth. If NULL, filtered_breadth will be returned NA.

A logical, numeric, or character vector indicating positive control genes that will
be used to compute false-negative rate characteristics. If NULL, filtered_fnr will
be returned NA.

logical. Will expression be scaled by total expression for FNR computation?
Default = FALSE

Gene lengths for gene-length normalization (normalized data used in FNR com-
putation).

An array of two values, representing range over which FNR AUC will be com-
puted (log(expr_units)). Default c¢(0,15)

A numeric value determining threshold Z-score for sd, mad, and mixture sub-
criteria. Default 1. If NULL, only hard threshold sub-criteria will be applied.

A logical value determining whether mixture modeling sub-criterion will be ap-
plied per primary criterion (metric). If true, a dip test will be applied to each
metric. If a metric is multimodal, it is fit to a two-component normal mixture
model. Samples deviating zcut sd’s from optimal mean (in the inferior direc-
tion), have failed this sub-criterion.

A numeric value determining dip test p-value threshold. Default 0.05.
Hard (lower bound on) nreads threshold. Default 25000.
Hard (lower bound on) ralign threshold. Default 15.

Hard (lower bound on) breadth threshold. Default 0.2.

Hard (upper bound on) fnr auc threshold. Default 10.

numeric.
numeric.
numeric.
numeric.
numeric. If not null, serves as an overriding upper bound on nreads threshold.
numeric. If not null, serves as an overriding upper bound on ralign threshold.
numeric. If not null, serves as an overriding upper bound on breadth threshold.
numeric. If not null, serves as an overriding lower bound on fnr auc threshold.
logical. Should a plot be produced?

hist() breaks argument. Ignored if ‘plot=FALSE".

Arguments to be passed to methods.

For each primary criterion (metric), a sample is evaluated based on 4 sub-criteria: 1) Hard (encoded)
threshold 2) Adaptive thresholding via sd’s from the mean 3) Adaptive thresholding via mad’s from
the median 4) Adaptive thresholding via sd’s from the mean (after mixture modeling) A sample
must pass all sub-criteria to pass the primary criterion.

26 PsiNorm

Value
A list with the following elements:

» filtered_nreads Logical. Sample has too few reads.

* filtered_ralign Logical. Sample has too few reads aligned.

* filtered_breadth Logical. Samples has too few genes detected (low breadth).
* filtered_fnr Logical. Sample has a high FNR AUC.

Examples

mat <- matrix(rpois(1000, lambda = 5), ncol=10)

colnames(mat) <- paste("X"”, 1:ncol(mat), sep="")

gc = as.matrix(cbind(colSums(mat),colSums(mat > @)))

rownames(gc) = colnames(mat)

colnames(qc) = c(”"NCOUNTS", "NGENES")

mfilt = metric_sample_filter(expr = mat,nreads = qc[,"NCOUNTS"],
plot = TRUE, hard_nreads = 0)

PsiNorm PsiNorm: scaling normalization based on the Pareto distribution

Description

Normalization of a raw counts matrix using the estimate of the shape parameter of the Pareto distri-
bution.

Usage

PsiNorm(x, ...)

S4 method for signature 'SummarizedExperiment'’
PsiNorm(x, whichAssay = 1, assayName = "PsiNorm")

S4 method for signature 'SingleCellExperiment'’
PsiNorm(x, whichAssay = "counts")

S4 method for signature 'ANY'

PsiNorm(x)
Arguments
X A SingleCellExperiment/SummarizedExperiment object or a matrix=like object
with genes in rows and samples in columns.
generic argument
whichAssay if x is a SingleCellExperiment/SummarizedExperiment the assay with the counts

to normalize (default to 1).

PSINORM_FN 27

assayName if x is a SummarizedExperiment the name of the assay in which to save the
normalized data (default to "PsiNorm").
Value

If the input is a SingleCellExperiment object the function returns the same object adding as size-
Factors those computed by PsiNorm. If the object is a SummarizedExperiment object, the function
returns the same object adding an assay with the normalized count matrix. If the input is a matrix-
like object PsiNorm returns a matrix with the same dimensions containing the normalized counts.

Author(s)

Matteo Borella and Davide Risso

Examples

m<-matrix(c(1,9,2,0,2,9,3,0), ncol=2)
sce<-SingleCellExperiment::SingleCellExperiment(assays=list(counts=m))

sce<-PsiNorm(sce) # SingleCellExperiment object
norm.matrix<-PsiNorm(m) # normalized matrix object

PSINORM_FN PsiNorm normalization wrapper

Description

PsiNorm normalization wrapper

Usage
PSINORM_FN(ei)

Arguments

ei Numerical matrix. (rows = genes, cols = samples).

Details

SCONE scaling wrapper for PsiNorm).

Value

PsiNorm normalized matrix.

Examples

ei <- matrix(c(1,90,2,0,2,9,3,0), ncol=2)
eo <- PSINORM_FN(ei)

28

scone

scone

Normalize Expression Data and Evaluate Normalization Performance

Description

Usage

» Impute: Replace observations of zeroes with expected expression values.

* Scale: Match sample-specific expression scales or quantiles.

* Adjust: Adjust for sample-level batch factors / unwanted variation.

scone(x, ...)

S4 method for signature 'SconeExperiment'
scone(

X7
imputation = list(none = impute_null),
impute_args = NULL,

zero = c("none"”, "preadjust"”, "postadjust”, "strong"),
scaling,

k_ruv = 5,

k_qc = 5,

adjust_bio = c("no", "yes", "force"),

adjust_batch = c("no", "yes”, "force"),

run = TRUE,

evaluate = TRUE,

eval_pcs = 3,

eval_proj = NULL,

eval_proj_args = NULL,
eval_kclust = 2:10,

verbose = FALSE,

stratified_pam = FALSE,
stratified_cor = FALSE,
stratified_rle = FALSE,
return_norm = c("no”, "in_memory”, "hdf5"),
hdf5file,

bpparam = BiocParallel: :bpparam()

This function applies and evaluates a variety of normalization schemes with respect to a specified
SconeExperiment containing sScCRNA-Seq data. Each normalization consists of three main steps:

Following completion of each step, the normalized expression matrix is scored based on SCONE’s
data-driven evaluation criteria.

scone 29

Arguments

X a SconeExperiment object.
see specific S4 methods for additional arguments.

imputation list or function. (A list of) function(s) to be used for imputation. By default only
scone::impute_null is included.

impute_args arguments passed to all imputation functions.

zero character. Zero-handling option, see Details.

scaling list or function. (A list of) function(s) to be used for scaling normalization step.

k_ruv numeric. The maximum number of factors of unwanted variation. Adjustment
step models will include a range of 1 to k_ruv factors of unwanted variation. If
0, RUV adjustment will not be performed.

k_qc numeric. The maximum number of quality metric PCs. Adjustment step models
will include a range of 1 to k_qc quality metric PCs. If 0, QC factor adjustment
will not be performed.

adjust_bio character. If 'no’, bio will not be included in Adjustment step models; if ’yes’,

both models with and without *bio’ will be run; if *force’, only models with
’bio’ will be run.

adjust_batch character. If 'no’, batch will not be included in Adjustment step models; if yes’,
both models with and without ’batch’ will be run; if *force’, only models with
’batch’ will be run.

run logical. If FALSE the normalization and evaluation are not run, but normaliza-
tion parameters are returned in the output object for inspection by the user.

evaluate logical. If FALSE the normalization methods will not be evaluated.

eval_pcs numeric. The number of principal components to use for evaluation. Ignored if
evaluate=FALSE.

eval_proj function. Projection function for evaluation (see score_matrix for details). If
NULL, PCA is used for projection.

eval_proj_args list. List of arguments passed to projection function as eval_proj_args.

eval_kclust numeric. The number of clusters (> 1) to be used for pam tightness evaluation. If
an array of integers, largest average silhouette width (tightness) will be reported.
If NULL, tightness will be returned NA.

verbose logical. If TRUE some messagges are printed.

stratified_pam logical. If TRUE then maximum ASW for PAM_SIL is separately computed for
each biological-cross-batch stratum (accepting NAs), and a weighted average is
returned as PAM_SIL.

stratified_cor logical. If TRUE then cor metrics are separately computed for each biological-
cross-batch stratum (accepts NAs), and weighted averages are returned for EXP_QC_COR,
EXP_UV_COR, & EXP_WV_COR. Default FALSE.

stratified_rle logical. If TRUE then rle metrics are separately computed for each biological-
cross-batch stratum (accepts NAs), and weighted averages are returned for RLE_MED
& RLE_IQR. Default FALSE.

30

scone

return_norm character. If "no" the normalized values will not be returned with the output ob-
ject. This will create a much smaller object and may be useful for large datasets
and/or when many combinations are compared. If "in_memory" the normalized
values will be returned as part of the output. If "hdf5" they will be written on
file using the rhdf5 package.

hdf5file character. If return_norm="hdf5", the name of the file onto which to save the
normalized matrices.

bpparam object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

Details

If run=FALSE only the scone_params slot of the output object is populated with a data.frame,
each row corresponding to a set of normalization parameters.

If x has a non-empty scone_params slot, only the subset of normalizations specified in scone_params
are performed and evaluated.

The zero arguments supports 3 zero-handling options:

* none: Default. No special zero-handling.
* preadjust: Restore prior zero observations to zero following Impute and Scale steps.

* postadjust: Set prior zero observations and all negative expression values to zero following
the Adjust Step.

* strong: Apply both preadjust and postadjust options.

Evaluation metrics are defined in score_matrix. Each metric is assigned a +/- signature for con-
version to scores: Positive- signature metrics increase with improving performance, including
BIO_SIL, PAM_SIL, and EXP_WYV_COR. Negative-signature metrics decrease with improving
performance, including BATCH_SIL, EXP_QC_COR, EXP_UV_COR, RLE_MED, and RLE_IQR.
Scores are computed so that higer-performing methods are assigned higher scores.

Note that if one wants to include the unnormalized data in the final comparison of normalized
matrices, the identity function must be included in the scaling list argument. Analogously, if one
wants to include non-imputed data in the comparison, the scone::impute_null function must be
included.

If return_norm="hdf5", the normalized matrices will be written to the hdf5file file. This must
be a string specifying (a path to) a new file. If the file already exists, it will return error. In this case,
the SconeExperiment object will not contain the normalized counts.

If return_norm="no" the normalized matrices are computed to copmute the scores and then dis-
carded.

In all cases, the normalized matrices can be retrieved via the get_normalized function.

Value

A SconeExperiment object with the log-scaled normalized data matrix as elements of the assays
slot, if return_normis "in_memory", and with the performance metrics and scores.

SconeExperiment-class

See Also

get_normalized, get_design

Examples

mat <- matrix(rpois(1000, lambda = 5), ncol=10)
colnames(mat) <- paste(”X", 1:ncol(mat), sep="")
obj <- SconeExperiment(mat)

no_results

results <-

results_in_|

<- scone(obj, scaling=list(none=identity,
ug=UQ_FN, deseq=DESEQ_FN),
run=FALSE, k_ruv=0, k_qc=0, eval_kclust=2)

scone(obj, scaling=list(none=identity,
ug=UQ_FN, deseq=DESEQ_FN),

run=TRUE, k_ruv=0, k_qc=0, eval_kclust=2,
bpparam = BiocParallel::SerialParam())

memory <- scone(obj, scaling=list(none=identity,
ug=UQ_FN, deseq=DESEQ_FN),

k_ruv=0, k_qc=0, eval_kclust=2,

return_norm = "in_memory",

bpparam = BiocParallel::SerialParam())

31

SconeExperiment-class Class SconeExperiment

Description

Objects of this class store, at minimum, a gene expression matrix and a set of covariates (sam-
ple metadata) useful for running scone. These include, the quality control (QC) metrics, batch

information,

and biological classes of interest (if available).

The typical way of creating SconeExperiment objects is via a call to the SconeExperiment func-
tion or to the scone function. If the object is a result to a scone call, it will contain the results,
e.g., the performance metrics, scores, and normalization workflow comparisons. (See Slots for a

full list).

This object extends the SummarizedExperiment class.

The constructor SconeExperiment creates an object of the class SconeExperiment.

Usage

SconeExperiment(object, ...)

S4 method for signature 'SummarizedExperiment'

SconeExperiment(
object,
which_qgc = integer(),

32

which_bio

SconeExperiment-class

integer(),

which_batch = integer(),
which_negconruv = integer(),
which_negconeval = integer(),

which_poscon

= integer(),

is_log = FALSE

S4 method for signature 'matrix’
SconeExperiment(

object,
qc,
bio,
batch,

negcon_ruv = NULL,
negcon_eval = negcon_ruv,
poscon = NULL,

is_log = FALSE

Arguments

object

which_qgc
which_bio

which_batch

which_negconruv

Either a matrix or a SummarizedExperiment containing the raw gene expres-
sion.

see specific S4 methods for additional arguments.
index that specifies which columns of ‘colData‘ correspond to QC measures.
index that specifies which column of ‘colData‘ corresponds to ‘bio‘.

index that specifies which column of ‘colData‘ corresponds to ‘batch‘.

index that specifies which column of ‘rowData‘ has information on negative
controls for RUV.

which_negconeval

which_poscon

is_log

qc

bio

batch
negcon_ruv
negcon_eval

poscon

index that specifies which column of ‘rowData‘ has information on negative
controls for evaluation.

index that specifies which column of ‘rowData‘ has information on positive con-
trols.

are the expression data in log scale?

numeric matrix with the QC measures.

factor with the biological class of interest.

factor with the batch information.

a logical vector indicating which genes to use as negative controls for RUV.
alogical vector indicating which genes to use as negative controls for evaluation.

a logical vector indicating which genes to use as positive controls.

SconeExperiment-class 33

Details
The QC matrix, biological class, and batch information are stored as elements of the ‘colData‘ of
the object.

The positive and negative control genes are stored as elements of the ‘rowData‘ of the object.

Value

A SconeExperiment object.

Slots

which_qgc integer. Index of columns of ‘colData‘ that contain the QC metrics.

which_bio integer. Index of the column of ‘colData‘ that contains the biological classes informa-
tion (it must be a factor).

which_batch integer. Index of the column of ‘colData‘ that contains the batch information (it must
be a factor).

which_negconruv integer. Index of the column of ‘rowData‘ that contains a logical vector indi-
cating which genes to use as negative controls to infer the factors of unwanted variation in
RUV.

which_negconeval integer. Index of the column of ‘rowData‘ that contains a logical vector indi-
cating which genes to use as negative controls to evaluate the performance of the normaliza-
tions.

which_poscon integer. Index of the column of ‘rowData‘ that contains a logical vector indicating
which genes to use as positive controls to evaluate the performance of the normalizations.

hdf5_pointer character. A string specifying to which file to write / read the normalized data.
imputation_fn list of functions used by scone for the imputation step.
scaling_fn list of functions used by scone for the scaling step.

scone_metrics matrix. Matrix containing the "raw" performance metrics. See scone for a de-
scription of each metric.

scone_scores matrix. Matrix containing the performance scores (transformed metrics). See
scone for a discussion on the difference between scores and metrics.

scone_params data.frame. A data frame containing the normalization schemes applied to the data
and compared.

scone_run character. Whether scone was run and in which mode ("no", "in_memory", "hdf5").

is_log logical. Are the expression data in log scale?

nested logical. Is batch nested within bio? (Automatically set by scone).

rezero logical. TRUE if scone was run with zero="preadjust"” or zero="strong".

fixzero logical. TRUE if scone was run with zero="postadjust” or zero="strong".

impute_args list. Arguments passed to all imputation functions.

See Also

get_normalized, get_params, get_batch, get_bio, get_design, get_negconeval, get_negconruyv,
get_poscon, get_qc, get_scores, and get_score_ranks to access internal fields, select_methods
for subsetting by method, and scone for running scone workflows.

34 sconeReport

Examples

set.seed(42)

nrows <- 200

ncols <- 6

counts <- matrix(rpois(nrows * ncols, lambda=10), nrows)

rowdata <- data.frame(poscon=c(rep(TRUE, 10), rep(FALSE, nrows-10)))

coldata <- data.frame(bio=gl(2, 3))

se <- SummarizedExperiment(assays=SimplelList(counts=counts),
rowData=rowdata, colData=coldata)

sconel <- SconeExperiment(assay(se), bio=coldata$hio, poscon=rowdata$poscon)

scone2 <- SconeExperiment(se, which_bio=1L, which_poscon=1L)

sconeReport SCONE Report Browser: Browse Evaluation of Normalization Perfor-
mance

Description

This function opens a shiny application session for visualizing performance of a variety of normal-
ization schemes.

Usage

sconeReport(
X,
methods,
qc,
bio = NULL,
batch = NULL,
poscon = character(),
negcon = character(),

eval_proj = NULL,
eval_proj_args = NULL

)
Arguments
X a SconeExperiment object
methods character specifying the normalizations to report.
qc matrix. QC metrics to be used for QC evaluation report. Required.
bio factor. A biological condition (variation to be preserved). Default NULL.

batch factor. A known batch variable (variation to be removed). Default NULL.

scone_easybake 35

poscon character. Genes to be used as positive controls for evaluation. These genes
should be expected to change according to the biological phenomenon of inter-
est. Default empty character.

negcon character. Genes to be used as negative controls for evaluation. These genes
should be expected not to change according to the biological phenomenon of
interest. Default empty character.

eval_proj function. Projection function for evaluation (see score_matrix for details). If
NULL, PCA is used for projection.

eval_proj_args list. List of args passed to projection function as eval_proj_args.

Value

An object that represents the SCONE report app.

Examples

set.seed(101)

mat <- matrix(rpois(1000, lambda = 5), ncol=10)

colnames(mat) <- paste(”X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat)

res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN),
evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2,
bpparam = BiocParallel::SerialParam())

gc = as.matrix(cbind(colSums(mat),colSums(mat > @)))

rownames(qc) = colnames(mat)

colnames(qc) = c(”"NCOUNTS", "NGENES")

Not run:

sconeReport(res,rownames(get_params(res)), gqc = qc)

End(Not run)

scone_easybake Wrapper for Running Essential SCONE Modules

Description

Wrapper for Running Essential SCONE Modules

Usage

scone_easybake (
expr,
qc,
bio = NULL,
batch = NULL,
negcon = NULL,
verbose = c("0", "1", "2"),

36 scone_easybake
out_dir = getwd(),
seed = 112233,
filt_cells = TRUE,
filt_genes = TRUE,
always_keep_genes = NULL,
fnr_maxiter = 1000,
norm_impute = c("yes"”, "no", "force"),
norm_scaling = c("none”, "sum”, "deseq”, "tmm”, "uq", "fq", "detect"),
norm_rezero = FALSE,
norm_k_max = NULL,
norm_gc_expl = 0.5,
norm_adjust_bio = c("yes"”, "no", "force"),
norm_adjust_batch = c("yes", "no", "force"),
eval_dim = NULL,
eval_expr_expl = 0.1,
eval_poscon = NULL,
eval_negcon = negcon,
eval_max_kclust = 10,
eval_stratified_pam = TRUE,
report_num = 13,
out_rda = FALSE,
)
Arguments
expr matrix. The expression data matrix (genes in rows, cells in columns).
qc data frame. The quality control (QC) matrix (cells in rows, metrics in columns)
to be used for filtering, normalization, and evaluation.
bio factor. The biological condition to be modeled in the Adjustment Step as vari-
ation to be preserved. If adjust_bio="no", it will not be used for normalization,
but only for evaluation.
batch factor. The known batch variable to be included in the adjustment model as vari-
ation to be removed. If adjust_batch="no", it will not be used for normalization,
but only for evaluation.
negcon character. The genes to be used as negative controls for filtering, normalization,
and evaluation. These genes should be expressed uniformily across the biologi-
cal phenomenon of interest. Default NULL.
verbose character. Verbosity level: higher level is more verbose. Default "0".
out_dir character. Output directory. Default getwd().
seed numeric. Random seed. Default 112233.
filt_cells logical. Should cells be filtered? Set to FALSE if low quality cells have already

been excluded. If cells are not filtered, then initial gene filtering (the one that
is done prior to cell filtering) is disabled as it becomes redundant with the gene
filtering that is done after cell filtering. Default TRUE.

filt_genes logical. Should genes be filtered post-sample filtering? Default TRUE.

scone_easybake

37

always_keep_genes

fnr_maxiter

norm_impute

norm_scaling

norm_rezero

norm_k_max

norm_qgc_expl

norm_adjust_bio

logical. A character vector of gene names that should never be excluded (e.g.,
marker genes). Default NULL.

numeric. Maximum number of iterations in EM estimation of expression pos-
teriors. If O, then FNR estimation is skipped entirely, and as a consequence
no imputation will be performed, disregarding the value of the "norm_impute"
argument. Default 1000.

character. Should imputation be included in the comparison? If ’force’, only
imputed normalizations will be run. Default "yes."

character. Scaling options to be included in the Scaling Step. Default c("none",

"sum", "deseq", "tmm", "uq", "fq", "detect"). See details.

logical. Restore prior zeroes and negative values to zero following normaliza-
tion. Default FALSE.

numeric. Max number (norm_k_max) of factors of unwanted variation modeled
in the Adjustment Step. Default NULL.

numeric. In automatic selection of norm_k_max, what fraction of variation
must be explained by the first norm_k_max PCs of qc? Default 0.5. Ignored
if norm_k_max is not NULL.

character. If "'no’ it will not be included in the model; if "yes’, both models with
and without ’bio’ will be run; if *force’, only models with ’bio’ will be run.
Default "yes."

norm_adjust_batch

eval_dim

eval_expr_expl

eval_poscon

eval_negcon

eval_max_kclust

character. If 'no’ it will not be modeled in the Adjustment Step; if "yes’, both
models with and without *batch’ will be run; if *force’, only models with ’batch’
will be run. Default "yes."

numeric. The number of principal components to use for evaluation. Default
NULL.

numeric. In automatic selection of eval_dim, what fraction of variation must be
explained by the first eval_dim PCs of expr? Default 0.1. Ignored if eval_dim is
not NULL.

character. The genes to be used as positive controls for evaluation. These genes
should be expected to change according to the biological phenomenon of inter-
est.

character. Alternative negative control gene list for evaluation only.

numeric. The max number of clusters (> 1) to be used for pam tightness evalua-
tion. If NULL, tightness will be returned NA.

eval_stratified_pam

report_num

logical. If TRUE then maximum ASW for PAM_SIL is separately computed for
each biological-cross-batch condition (accepting NAs), and a weighted average
is returned as PAM_SIL. Default TRUE.

numeric. Number of top methods to report. Default 13.

38 score_matrix

out_rda logical. If TRUE, sconeResults.Rda file with the object that the scone function
returns is saved in the out_dir (may be very large for large datasets, but useful
for post-processing) Default FALSE.

extra params passed to the metric_sample_filter and scone when they’re called

by easybake
Details
"ADD DESCRIPTION"
Value

Directory structure "ADD DESCRIPTION"

Examples

set.seed(101)
mat <- matrix(rpois(1000, lambda = 5), ncol=10)
colnames(mat) <- paste(”"X", 1:ncol(mat), sep="")
obj <- SconeExperiment(mat)
res <- scone(obj, scaling=list(none=identity, ugq=UQ_FN, deseq=DESEQ_FN),
evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2,
bpparam = BiocParallel::SerialParam())
gc = as.matrix(cbind(colSums(mat),colSums(mat > @)))
rownames(qc) = colnames(mat)
colnames(qc) = c(”"NREADS","RALIGN")
Not run:
scone_easybake(mat, gqc = as.data.frame(qc), verbose = "2",
norm_adjust_bio= "no",
norm_adjust_batch= "no", norm_k_max = 0,
fnr_maxiter = @, filt_cells=FALSE, filt_genes=FALSE,
eval_stratified_pam = FALSE,
out_dir="~/scone_out")

"

End(Not run)

score_matrix SCONE Evaluation: Evaluate an Expression Matrix

Description

This function evaluates a (normalized) expression matrix using SCONE criteria, producing 8 met-
rics based on i) Clustering, ii) Correlations and iii) Relative Expression.

score_matrix

score_matrix(

expr,
eval_pcs = 3,
eval_proj = NULL,
eval_proj_args = NULL,
eval_kclust = NULL,

39

bio = NULL,
batch = NULL,
qgc_factors = NULL,
uv_factors = NULL,
wv_factors = NULL,
is_log = FALSE,
stratified_pam = FALSE,
stratified_cor = FALSE,
stratified_rle = FALSE
)
Arguments
expr matrix. The expression data matrix (genes in rows, cells in columns).
eval_pcs numeric. The number of principal components to use for evaluation (Default 3).
Ignored if !is.null(eval_proj).
eval_proj function. Projection function for evaluation (see Details). If NULL, PCA is used

eval_proj_args

eval_kclust

bio

batch

gc_factors

uv_factors

wv_factors

is_log

stratified_pam

for projection

list. List of arguments passed to projection function as eval_proj_args (see De-
tails).

numeric. The number of clusters (> 1) to be used for pam tightness (PAM_SIL)
evaluation. If an array of integers, largest average silhouette width (tightness)
will be reported in PAM_SIL. If NULL, PAM_SIL will be returned NA.

factor. A known biological condition (variation to be preserved), NA is allowed.
If NULL, condition ASW, BIO_SIL, will be returned NA.

factor. A known batch variable (variation to be removed), NA is allowed. If
NULL, batch ASW, BATCH_SIL, will be returned NA.

Factors of unwanted variation derived from quality metrics. If NULL, qc corre-
lations, EXP_QC_COR, will be returned NA.

Factors of unwanted variation derived from negative control genes (evaluation
set). If NULL, uv correlations, EXP_UV_COR, will be returned NA.

Factors of wanted variation derived from positive control genes (evaluation set).
If NULL, wv correlations, EXP_WV_COR, will be returned NA.

logical. If TRUE the expr matrix is already logged and log transformation will
not be carried out prior to projection. Default FALSE.

logical. If TRUE then maximum ASW is separately computed for each biological-
cross-batch stratum (accepts NAs), and a weighted average silhouette width is
returned as PAM_SIL. Default FALSE.

40 score_matrix

stratified_cor logical. If TRUE then cor metrics are separately computed for each biological-
cross-batch stratum (accepts NAs), and weighted averages are returned for EXP_QC_COR,
EXP_UV_COR, & EXP_WV_COR. Default FALSE.

stratified_rle logical. If TRUE then rle metrics are separately computed for each biological-
cross-batch stratum (accepts NAs), and weighted averages are returned for RLE_ MED
& RLE_IQR. Default FALSE.

Details

Users may specify their own eval_proj function that will be used to compute Clustering and Corre-
lation metrics. This eval_proj() function must have 2 input arguments:
* e matrix. log-transformed (+ pseudocount) expression data (genes in rows, cells in columns).

* eval_proj_args list. additional function arguments, e.g. prior data weights.

and it must output a matrix representation of the original data (cells in rows, factors in columns).
The value of eval_proj_args is passed to the user-defined function from the eval_proj_args argument
of the main score_matrix() function call.

Value
A list with the following metrics:

* BIO_SIL Average silhouette width by biological condition.
* BATCH_SIL Average silhouette width by batch condition.

* PAM_SIL Maximum average silhouette width from PAM clustering (see stratified_pam argu-
ment).

* EXP_QC_COR Coefficient of determination between expression pcs and quality factors (see
stratified_cor argument).

* EXP_UV_COR Coefficient of determination between expression pcs and negative control
gene factors (see stratified_cor argument).

* EXP_WV_COR Coefficient of determination between expression pcs and positive control
gene factors (see stratified_cor argument).

* RLE_MED The mean squared median Relative Log Expression (RLE) (see stratified_rle ar-
gument).

e RLE_IQR The variance of the inter-quartile range (IQR) of the RLE (see stratified_rle argu-
ment).

Examples

set.seed(141)

bio = as.factor(rep(c(1,2),each = 2))
batch = as.factor(rep(c(1,2),2))
log_expr = matrix(rnorm(20),ncol = 4)

scone_metrics = score_matrix(log_expr,
bio = bio, batch = batch,
eval_kclust = 2, is_log = TRUE)

SCRAN_FN 41

SCRAN_FN Simple deconvolution normalization wrapper

Description

Simple deconvolution normalization wrapper

Usage
SCRAN_FN(ei)

Arguments

ei Numerical matrix. (rows = genes, cols = samples).

Details

SCONE scaling wrapper for computeSumFactors).

Value

scran normalized matrix.

Examples

ei <- matrix(0:76,nrow = 7)
eo <- SCRAN_FN(ei)

select_methods Get a subset of normalizations from a SconeExperiment object

Description

This method let a user extract a subset of normalizations. This is useful when the original dataset is
large and/or many normalization schemes have been applied.

In such cases, the user may want to run scone in mode return_norm = "no", explore the results,
and then select the top performing methods for additional exploration.

Usage

select_methods(x, methods)

S4 method for signature 'SconeExperiment,character’
select_methods(x, methods)

S4 method for signature 'SconeExperiment,numeric'
select_methods(x, methods)

42 simple_ FNR_params

Arguments

X a SconeExperiment object.

methods either character or numeric specifying the normalizations to select.
Details

The numeric method will always return the normalization corresponding to the methods rows of
the scone_params slot. This means that if scone was run with eval=TRUE, select_methods(x,
1:3) will return the top three ranked method. If scone was run with eval=FALSE, it will return the
first three normalization in the order saved by scone.

Value

A SconeExperiment object with selected method data.

Functions

e select_methods(x = SconeExperiment, methods = character): If methods is a character,
it will return the subset of methods named in methods (only perfect match). The string must
be a subset of the row. names of the slot scone_params.

e select_methods(x = SconeExperiment, methods = numeric): If methods is a numeric, it
will return the subset of methods according to the scone ranking.

Examples

set.seed(42)

mat <- matrix(rpois(500, lambda = 5), ncol=10)

colnames(mat) <- paste("X", 1:ncol(mat), sep="")

obj <- SconeExperiment(mat)

res <- scone(obj, scaling=list(none=identity, uq=UQ_FN),
evaluate=TRUE, k_ruv=0, k_qc=0,
eval_kclust=2, bpparam = BiocParallel::SerialParam())

select_res = select_methods(res,1:2)

simple_FNR_params Fit Simple False-Negative Model

Description

Fits a logistic regression model of false negative observations as a function of expression level,
using a set of positive control (ubiquitously expressed) genes

Usage

simple_FNR_params(expr, pos_controls, fn_tresh = 0.01)

SUM_FN

Arguments

expr

pos_controls

fn_tresh

Details

43

matrix A matrix of transcript-proportional units (genes in rows, cells in columns).

A logical, numeric, or character vector indicating control genes that will be used
to compute false-negative rate characteristics. User must provide at least 2 con-
trol genes.

Inclusive threshold for negative detection. Default 0.01. fn_tresh must be non-
negative.

logit(Probability of False Negative) ~ a + b*(median log-expr)

Value

A matrix of logistic regression coefficients corresponding to glm fits in each sample (a and b in
columns 1 and 2 respectively). If the a & b fit does not converge, b is set to zero and only a is

estimated.

Examples

mat <- matrix(rpois(1000, lambda = 3), ncol=10)
mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)
fnr_out = simple_FNR_params(mat,pos_controls = 1:10)

SUM_FN

Sum scaling normalization function

Description

Sum scaling normalization function

Usage
SUM_FN(ei)

Arguments

ei

Details

Numerical matrix. (rows = genes, cols = samples).

SCONE scaling by library size or summed expression.

Value

Sum-scaled normalized matrix.

44 UQ_EN

Examples

ei <- matrix(@:20,nrow = 7)
eo <- SUM_FN(ei)

TMM_FN Weighted trimmed mean of M-values (TMM) scaling normalization
wrapper function

Description

Weighted trimmed mean of M-values (TMM) scaling normalization wrapper function

Usage
TMM_FN(ei)

Arguments

ei Numerical matrix. (rows = genes, cols = samples).

Details

SCONE scaling wrapper for calcNormFactors).

Value

TMM normalized matrix.

Examples

ei <- matrix(@:20,nrow = 7)
eo <- TMM_FN(ei)

UQ_FN Upper-quartile (UQ) scaling normalization wrapper function

Description

Upper-quartile (UQ) scaling normalization wrapper function

Usage
UQ_FN(ei)

UQ_FN

Arguments

ei Numerical matrix. (rows = genes, cols = samples).

Details
SCONE scaling wrapper for calcNormFactors).

Value

UQ normalized matrix.

Examples

ei <- matrix(@:20,nrow = 7)
eo <- UQ_FN(ei)

45

Index

* internal
.likfn, 3
.parse_row, 3
.pzfn, 4

.1likfn, 3

.parse_row, 3

.pzfn, 4

biplot_color, 4,5
biplot_interactive, 5
bpparam, 30

calcNormFactors, 8, 44, 45
cellcycle_genes (control_genes), 7
clr, 6

CLR_FN, 6

computeSumFactors, 41
control_genes, 7

cortical_markers (control_genes), 7

DESEQ_FN, 8
estimate_ziber, 9

factor_sample_filter, 10
fast_estimate_ziber, 12
FQ_FN, 13

FQT_FN (FQ_FN), 13

get_batch, 33

get_batch (get_bio), 14

get_batch, SconeExperiment-method
(get_bio), 14

get_bio, 14, 33

get_bio, SconeExperiment-method
(get_bio), 14

get_design, 15, 31, 33

get_design,SconeExperiment, character-method

(get_design), 15

get_design,SconeExperiment,numeric-method

(get_design), 15

get_negconeval, 33

get_negconeval (get_negconruv), 16

get_negconeval, SconeExperiment-method
(get_negconruv), 16

get_negconruy, 16, 33

get_negconruv, SconeExperiment-method
(get_negconruv), 16

get_normalized, 17, 30, 31, 33

get_normalized, SconeExperiment,character-method
(get_normalized), 17

get_normalized, SconeExperiment,numeric-method
(get_normalized), 17

get_params, 18, 33

get_params, SconeExperiment-method
(get_params), 18

get_poscon, 33

get_poscon (get_negconruv), 16

get_poscon, SconeExperiment-method
(get_negconruv), 16

get_qc, 19, 33

get_qc, SconeExperiment-method (get_qgc),
19

get_score_ranks, 33

get_score_ranks (get_scores), 20

get_score_ranks, SconeExperiment-method
(get_scores), 20

get_scores, 20, 33

get_scores, SconeExperiment-method
(get_scores), 20

housekeeping (control_genes), 7
housekeeping_revised (control_genes), 7

impute_expectation, 21
impute_null, 22

Im_adjust, 22

make_design, 23
metric_sample_filter, 24

INDEX

normalizeQuantileRank.matrix, /3
normalizeQuantiles, /3

prcomp, 4, 5

PsiNorm, 26, 27

PsiNorm, ANY-method (PsiNorm), 26

PsiNorm,SingleCellExperiment-method
(PsiNorm), 26

PsiNorm, SummarizedExperiment-method
(PsiNorm), 26

PSINORM_FN, 27

scone, 7, 15,17, 18,28, 31, 33,42

scone, SconeExperiment-method (scone), 28

scone_easybake, 35

SconeExperiment, 5, 6, 14-17, 19, 20, 29-31,
33

SconeExperiment
(SconeExperiment-class), 31

SconeExperiment,matrix-method
(SconeExperiment-class), 31

SconeExperiment, SummarizedExperiment-method
(SconeExperiment-class), 31

SconeExperiment-class, 31

sconeReport, 34

score_matrix, 29, 30, 35, 38

SCRAN_FN, 41

select_methods, 33, 41

select_methods, SconeExperiment, character-method
(select_methods), 41

select_methods, SconeExperiment, numeric-method
(select_methods), 41

simple_FNR_params, 42

SUM_FN, 43

SummarizedExperiment, 3/, 32

TMM_FN, 44
tolower, 7
toTitleCase, 7
toupper, 7

UQ_FN, 44

47

	.likfn
	.parse_row
	.pzfn
	biplot_color
	biplot_interactive
	CLR_FN
	control_genes
	DESEQ_FN
	estimate_ziber
	factor_sample_filter
	fast_estimate_ziber
	FQ_FN
	get_bio
	get_design
	get_negconruv
	get_normalized
	get_params
	get_qc
	get_scores
	impute_expectation
	impute_null
	lm_adjust
	make_design
	metric_sample_filter
	PsiNorm
	PSINORM_FN
	scone
	SconeExperiment-class
	sconeReport
	scone_easybake
	score_matrix
	SCRAN_FN
	select_methods
	simple_FNR_params
	SUM_FN
	TMM_FN
	UQ_FN
	Index

