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scDiagnostics-package scDiagnostics: Single-Cell Diagnostics Package

Description

‘scDiagnostics‘ is a comprehensive toolkit designed for the analysis and diagnostics of single-cell
RNA sequencing (scRNA-seq) data. This package provides functionalities for comparing princi-
pal components, visualizing canonical correlation analysis (CCA) outputs, and plotting cell type-
specific MDS and PCA projections.
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Details

The package includes the following key functionalities, organized by their specific purposes:

Visualization of Cell Type Annotations

Functions for visualizing differences between query and reference datasets across multiple cell
types.
* boxplotPCA: Boxplots of PCA scores for cell types.

* calculateDiscriminantSpace: Calculates discriminant space, with a plot method for visu-
alization.

* plotCellTypeMDS: Creates MDS plots for cell types using query and reference datasets.
* plotCellTypePCA: Plots principal components for different cell types.

Evaluation of Dataset Alignment

Functions for visualizing differences between query and reference datasets for a specific cell type.

* calculateGraphIntegration: Calculate a graph network and form communities of cells.
* calculateWassersteinDistance: Wasserstein distance for different cell types.

» comparePCA: Compares PCA results, with a plot method for visualization.

» comparePCASubspace: Compares PCA subspace, with a plot method for visualization.

* plotPairwiseDistancesDensity: Plots the density of pairwise distances.

Calculation of Statistical Measures to Compare Two Datasets

Functions to compute statistical measures to compare two datasets.
* calculateAveragePairwiseCorrelation: Calculates average pairwise correlation, with a
plot method for visualization.
* calculateCramerPValue: Calculates the p-value using Cramer’s test.
e calculateHotellingPValue: Calculates the p-value using Hotelling’s T-squared test.
* calculateMMDPValue: Calculates the p-value using maximum mean discrepancy.

* regressPC: Performs regression on principal components, with a plot method for visualiza-
tion.

Evaluation of Marker Gene Alignment

Functions for calculating overlap measures of genes between two datasets.

e calculateHVGOverlap: Calculates overlap of highly variable genes (HVG) between datasets.

* calculateVarImpOverlap: Calculates overlap of variable importance measures between datasets.

» compareMarkers: Compares marker genes between datasets.
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Visualization of Marker Expressions

Functions for to visualize and compare the expression of markers between a reference and a query
dataset.

* plotGeneExpressionDimred: Plots gene expression in a dimensionality reduction space.

* plotMarkerExpression: Plots marker expression levels.

Anomaly Detection (Global and Cell Type-Specific)
Functions for detecting anomalies at both the global and cell type-specific levels.

* detectAnomaly: Detects anomalies in the data, with a plot method for visualization.

* calculateCellSimilarityPCA: Calculates cell similarity in PCA space, with a plot method
for visualization.

Calculation of Distances Between Specific Cells and Cell Populations

Functions for calculating distances between specific cells and cell populations.

* calculateCellDistances: Calculates distances between cells, with a plot method for visu-
alization.

e calculateCellDistancesSimilarity: Calculates similarity based on cell distances, with a
plot method for visualization.

Visualization of QC and Annotation Scores
Functions for visualizing quality control (QC) metrics or other characteristics of the data.
* histQCvsAnnotation: Plots histograms of QC metrics versus annotations.

* plotGeneSetScores: Plots scores of gene sets.

¢ plotQCvsAnnotation: Plots QC metrics versus annotations.

Misc
Miscellaneous functions for various tasks.

* processPCA: Process SingleCellExperiment objects to compute PCA.

* projectPCA: Projects new data into PCA space.

* projectSIR: Projects new data into SIR space.

* calculateCategorizationEntropy: Calculates categorization entropy for clusters.

The package is built to facilitate in-depth analysis and visualization of single-cell data, enhancing
the understanding of cell type similarities and differences across datasets.
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Author(s)

Maintainer: Anthony Christidis <anthony-alexander_christidis@hms.harvard.edu> (OR-
CID)

Authors:

e Andrew Ghazi
e Smriti Chawla
* Ludwig Geistlinger

¢ Robert Gentleman
Other contributors:

* Nitesh Turaga [contributor]

See Also
Useful links:

* https://github.com/ccb-hms/scDiagnostics
* Report bugs at https://github.com/ccb-hms/scDiagnostics/issues

.getAvailableCoefficients
Determine Available Coefficient Types

Description
Helper function to determine which coefficient types are available in a regressPCObject based on
the model type and data structure.

Usage

.getAvailableCoefficients(x)

Arguments
X An object of class regressPCObject containing regression results from regressPC
function.
Value

A character vector of available coefficient types.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>


https://orcid.org/0000-0002-4565-6279
https://orcid.org/0000-0002-4565-6279
https://github.com/ccb-hms/scDiagnostics
https://github.com/ccb-hms/scDiagnostics/issues
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adjustPValues Adjust P-Values in Regression Results

Description

Adjusts the p-values in the regression results using a specified adjustment method. The adjust-
ment is performed for different regression types including cell type, dataset, and cell type-batch
interaction analyses.

Usage

adjustPValues(
regress_res,
adjust_method = c("BH", "holm", "hochberg”, "hommel”, "bonferroni”, "BY", "fdr",

"none”),
indep_var = c("cell_type"”, "cell_type_dataset_interaction”,
"cell_type_batch_interaction")
)
Arguments
regress_res A list containing regression results. The structure varies by analysis type.

adjust_method A character string specifying the method to adjust the p-values. Options include
"BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr", or "none".
Default is "BH" (Benjamini-Hochberg).

indep_var A character string specifying the independent variable for the adjustment. Op-

non

tions are "cell_type", "cell_type_dataset_interaction", or "cell_type_batch_interaction".

Details

This function adjusts p-values from regression results stored in a list. The adjustment can be applied
across different regression structures depending on the analysis type. The method for adjusting p-
values can be selected from various options such as Benjamini-Hochberg (BH), Holm, and others,
which are supported by the ‘p.adjust‘ function in R.

Value
A list similar to regress_res, but with an added column for adjusted p-values in the coefficients
tables.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>



8 argumentCheck

argumentCheck Argument Validation for SingleCellExperiment Analysis

Description

This function validates the input arguments for functions that analyze SingleCellExperiment ob-
jects. It checks that the inputs are of the correct types and formats, and that required columns and
cell types are present in the data.

Usage

argumentCheck(
query_data = NULL,
reference_data = NULL,
query_cell_type_col = NULL,
ref_cell_type_col = NULL,
unique_cell_type = FALSE,
plot_function = FALSE,
cell_names_query = NULL,
cell_names_ref = NULL,
pc_subset_query = NULL,
pc_subset_ref = NULL,
common_rotation_genes = FALSE,
assay_name = NULL,
max_cells_ref = NULL,
max_cells_query = NULL

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. If ‘NULL*, no check is performed.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells. If ‘NULL*, no check is performed.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
If ‘NULL", no check is performed.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types. If ‘NULL", no check is performed.

unique_cell_type
If “TRUE', there should only be one cell type in the provided SingleCellExperiment
objects. Default is ‘FALSE".

plot_function A logical value indicating whether the function is being called to generate a plot.
Default is ‘FALSE".
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cell_names_query
A character vector of cell names in query data to be analyzed. If ‘NULL*, no
check is performed.

cell_names_ref A character vector of cell names in reference data to be analyzed. If ‘NULL",
no check is performed.

pc_subset_query
A numeric vector specifying the principal components to be used for the query
data. If ‘NULL", no check is performed.

pc_subset_ref A numeric vector specifying the principal components to be used for the refer-
ence data. If ‘NULL’, no check is performed.

common_rotation_genes
If TRUE, check the rotation matrices of the reference and query data and ensure
they have the same genes. Default is FALSE.

assay_name Name of the assay on which to perform computations. If ‘NULL*, no check is
performed.

max_cells_ref Maximum number of reference cells to retain. If ‘NULL‘, no check is per-
formed.

max_cells_query
Maximum number of query cells to retain. If ‘'NULL*, no check is performed.

Details

The function performs a series of checks to ensure that:

* ‘query_data‘ and ‘reference_data‘ are SingleCellExperiment objects.

* ‘query_cell_type_col‘ and ‘ref_cell_type_col‘ exist in the column data of their respective
SingleCellExperiment objects.

e If ‘unique_cell_type*is “TRUE®, there should only be one cell type in the SingleCellExperiment
objects.

 ‘cell_names_query‘ are valid cell names in the provided query dataset.
* ‘cell_names_ref‘ are valid cell names in the provided reference dataset.
* The PCA subsets specified by ‘pc_subset_query‘ and ‘pc_subset_ref* are valid.

* ‘max_cells_ref* and ‘max_cells_query‘ are positive integers when not NULL.

Value

None.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>
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boxplotPCA Plot Principal Components for Different Cell Types

Description

This function generates a ggplot2 visualization of principal components (PCs) for different cell
types across two datasets (query and reference), using either boxplots or violin plots.

Usage

boxplotPCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
shape = c("box", "violin"),
assay_name = "logcounts”,
max_cells_query = NULL,
max_cells_ref = NULL

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.
reference_data A SingleCellExperiment object containing numeric expression matrix for the

reference cells.
query_cell_type_col

The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PC5.

shape Character string indicating the plot type: "box" for boxplots or "violin" for violin

plots. Default is "box".

assay_name Name of the assay on which to perform computations. Default is "logcounts".

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is NULL.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is NULL.
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Details

The function boxplotPCA is designed to provide a visualization of principal component analysis
(PCA) results. It projects the query dataset onto the principal components obtained from the ref-
erence dataset. The results are then visualized as boxplots or violin plots, grouped by cell types
and datasets (query and reference). This allows for a comparative analysis of the distributions
of the principal components across different cell types and datasets. The function internally calls
projectPCA to perform the PCA projection. It then reshapes the output data into a long format
suitable for ggplot2 plotting.

Value

A ggplot object representing the boxplots or violin plots of specified principal components for the
given cell types and datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

# Load data
data("reference_data")
data("query_data")

# Plot the PC data with boxplots (default)

pc_plot <- boxplotPCA(query_data = query_data,
reference_data = reference_data,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:6)

pc_plot

# Plot the PC data with violin plots

pc_violin <- boxplotPCA(query_data = query_data,
reference_data = reference_data,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:6,
shape = "violin")

pc_violin

calculateAveragePairwiseCorrelation
Compute Average Pairwise Correlation between Cell Types
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Description

Computes the average pairwise correlations between specified cell types in single-cell gene expres-
sion data.

The S3 plot method takes the output of the ‘calculateAveragePairwiseCorrelation function, which
should be a matrix of pairwise correlations, and plots it as a heatmap.

Usage

calculateAveragePairwiseCorrelation(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:10,
correlation_method = c("spearman”, "pearson"),
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

)

## S3 method for class 'calculateAveragePairwiseCorrelationObject'
plot(x, ...)

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to use in the analysis.
Default is 1:10. If set to NULL then no dimensionality reduction is performed
and the assay data is used directly for computations.

correlation_method
The correlation method to use for calculating pairwise correlations.

assay_name Name of the assay on which to perform computations. Default is "logcounts”.

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000
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max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000
X Output matrix from ‘calculateAveragePairwiseCorrelation® function.

Additional arguments to be passed to the plotting function.

Details

This function operates on SingleCellExperiment objects, ideal for single-cell analysis workflows.
It calculates pairwise correlations between query and reference cells using a specified correlation
method, then averages these correlations for each cell type pair. This function aids in assessing the
similarity between cells in reference and query datasets, providing insights into the reliability of
cell type annotations in single-cell gene expression data.

The S3 plot method converts the correlation matrix into a dataframe, creates a heatmap using gg-
plot2, and customizes the appearance of the heatmap with updated colors and improved aesthetics.

Value

A matrix containing the average pairwise correlation values. Rows and columns are labeled with
the cell types. Each element in the matrix represents the average correlation between a pair of cell
types.

The S3 plot method returns a ggplot object representing the heatmap plot.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateAveragePairwiseCorrelationObject

calculateAveragePairwiseCorrelation

Examples

# Load data
data("reference_data")
data("query_data")

# Compute pairwise correlations
cor_matrix_avg <- calculateAveragePairwiseCorrelation(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
cell_types = c(”"CD4", "CD8", "B_and_plasma"),
pc_subset = 1:10,
correlation_method = "spearman")

# Visualize correlation output
plot(cor_matrix_avg)
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calculateCategorizationEntropy
Calculate Categorization Entropy

Description

This function takes a matrix of category scores (cell type by cells) and calculates the entropy of the
category probabilities for each cell. This gives a sense of how confident the cell type assignments
are. High entropy = lots of plausible category assignments = low confidence. Low entropy = only
one or two plausible categories = high confidence. This is confidence in the vernacular sense, not
in the "confidence interval" statistical sense. Also note that the entropy tells you nothing about
whether or not the assignments are correct — see the other functionality in the package for that. This
functionality can be used for assessing how comparatively confident different sets of assignments
are (given that the number of categories is the same).

Usage

calculateCategorizationEntropy(
X,
inverseNormalTransformationform = FALSE,
plot = TRUE,
verbose = TRUE

Arguments

X A matrix of category scores.

inverseNormalTransformationform
If TRUE, apply inverse normal transformation to X. Default is FALSE.

plot If TRUE, plot a histogram of the entropies. Default is TRUE.
verbose If TRUE, display messages about the calculations. Default is TRUE.
Details

The function checks if X is already on the probability scale. Otherwise, it applies softmax column-
wise.

You can think about entropies on a scale from 0 to a maximum that depends on the number of cat-
egories. This is the function for entropy (minus input checking): entropy(p) = -sum(p*log(p)) .
If that input vector p is a uniform distribution over the length(p) categories, the entropy will be a
high as possible.

Value

A vector of entropy values for each column in X.
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Author(s)

Andrew Ghazi, <andrew_ghazi@hms.harvard.edu>

Examples

# Simulate 500 cells with scores on 4 possible cell types
X <= rnorm(500 * 4) |> matrix(nrow = 4)
X[1, 1:250] <- X[1, 1:250] + 5 # Make the first category highly scored in the first 250 cells

# The function will issue a message about softmaxing the scores, and the entropy histogram will be
# bimodal since we made half of the cells clearly category 1 while the other half are roughly even.
entropy_scores <- calculateCategorizationEntropy(X)

calculateCellDistances
Compute Cell Distances Between Reference and Query Data

Description

This function computes the distances within the reference dataset and the distances from each query
cell to all reference cells for each cell type. It uses PCA for dimensionality reduction and Euclidean
distance for distance calculation.

The S3 plot method plots the density functions for the reference data and the distances from a
specified query cells to all reference cell within a specified cell type.

Usage

calculateCellDistances(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

## S3 method for class 'calculateCellDistancesObject'
plot(x, ref_cell_type, cell_names, ...)
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Arguments

guery_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.
reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default 1:5.

assay_name Name of the assay on which to perform computations. Default is "logcounts"”.

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

X A list containing the distance data computed by calculatecellDistances.
ref_cell_type A string specifying the reference cell type.
cell_names A string specifying the query cell name for which to plot the distances.

Additional arguments passed to the plotting function.

Details

The function first performs PCA on the reference dataset and projects the query dataset onto the
same PCA space. It then computes pairwise Euclidean distances within the reference dataset for
each cell type, as well as distances from each query cell to all reference cells of a particular cell
type. The results are stored in a list, with one entry per cell type.

The S3 plot method first checks if the specified cell type and cell names are present in the object.
If the specified cell type or cell name is not found, an error is thrown. It then extracts the distances
within the reference dataset and the distances from the specified query cell to the reference cells The
function creates a density plot using ggplot2 to compare the distance distributions. The density plot
will show two distributions: one for the pairwise distances within the reference dataset and one for
the distances from the specified query cell to each reference cell. These distributions are plotted in
different colors to visually assess how similar the query cell is to the reference cells of the specified
cell type.

Value
A list containing distance data for each cell type. Each entry in the list contains:

ref_distances A vector of all pairwise distances within the reference subset for the cell type.
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query_to_ref_distances A matrix of distances from each query cell to all reference cells for the
cell type.

The S3 plot method returns a ggplot density plot comparing the reference distances and the dis-
tances from the specified cell to the reference cells.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateCellDistancesObject

calculateCellDistances

Examples

# Load data
data("reference_data")
data("query_data")

# Plot the PC data

distance_data <- calculateCellDistances(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

# Identify outliers for CD4
cd4_anomalies <- detectAnomaly(reference_data = reference_data,
query_data = query_data,

query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10,

n_tree = 500,

anomaly_threshold = 0.5)
cd4_top6_anomalies <- names(sort(cd4_anomalies$CD4$query_anomaly_scores, decreasing = TRUE)[1:6])

# Plot the densities of the distances
plot(distance_data, ref_cell_type = "CD4", cell_names = cd4_top6_anomalies)
plot(distance_data, ref_cell_type = "CD8", cell_names = cd4_top6_anomalies)

calculateCellDistancesSimilarity
Function to Calculate Bhattacharyya Coefficients and Hellinger Dis-
tances
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Description

This function computes Bhattacharyya coefficients and Hellinger distances to quantify the similarity
of density distributions between query cells and reference data for each cell type.

Usage

calculateCellDistancesSimilarity(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
cell_names_query,
pc_subset = 1:5,

assay_name = "logcounts”,
max_cells_ref = 5000
)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

cell_names_query
A character vector specifying the names of the query cells for which to compute
distance measures.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is 1:5.

assay_name Name of the assay on which to perform computations. Default is "logcounts”.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

Details

This function first computes distance data using the calculateCellDistances function, which
calculates pairwise distances between cells within the reference data and between query cells and
reference cells in the PCA space. Bhattacharyya coefficients and Hellinger distances are calculated
to quantify the similarity of density distributions between query cells and reference data for each
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cell type. Bhattacharyya coefficient measures the similarity of two probability distributions, while
Hellinger distance measures the distance between two probability distributions.

Bhattacharyya coefficients range between 0 and 1. A value closer to 1 indicates higher similarity
between distributions, while a value closer to 0 indicates lower similarity

Hellinger distances range between 0 and 1. A value closer to O indicates higher similarity between
distributions, while a value closer to 1 indicates lower similarity.

Value
A list containing distance data for each cell type. Each entry in the list contains:

ref_distances A vector of all pairwise distances within the reference subset for the cell type.

query_to_ref distances A matrix of distances from each query cell to all reference cells for the
cell type.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

# Load data
data("reference_data")
data("query_data")

# Plot the PC data

distance_data <- calculateCellDistances(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

# Identify outliers for CD4
cd4_anomalies <- detectAnomaly(reference_data = reference_data,
query_data = query_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10,
n_tree = 500,
anomaly_threshold = 0.5)
cd4_top6_anomalies <- names(sort(cd4_anomalies$CD4$query_anomaly_scores, decreasing = TRUE)[1:6])

# Get overlap measures
overlap_measures <- calculateCellDistancesSimilarity(query_data = query_data,
reference_data = reference_data,
cell_names_query = cd4_top6_anomalies,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)
overlap_measures



20 calculateCellSimilarityPCA

calculateCellSimilarityPCA
Calculate Cell Similarity Using PCA Loadings

Description

This function calculates the cosine similarity between cells based on the principal components (PCs)
obtained from PCA (Principal Component Analysis) loadings.

The S3 plot method creates a heatmap plot to visualize the cosine similarities between cells and
principal components (PCs).

Usage

calculateCellSimilarityPCA(
sce_object,
cell_names,
pc_subset = 1:5,
n_top_vars = 50,

assay_name = "logcounts”

)

## S3 method for class 'calculateCellSimilarityPCAObject'

plot(x, pc_subset = 1:5, ...)

Arguments

sce_object A SingleCellExperiment object containing expression data.

cell_names A character vector specifying the cell names for which to compute the similarity.

pc_subset A numeric vector specifying the subset of principal components to include in
the plot. Default is 1:5.

n_top_vars An integer indicating the number of top loading variables to consider for each
PC. Default is 50.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

X An object of class ‘calculateCellSimilarityPCA* containing a dataframe of co-

sine similarity values between cells and PCs.

Additional arguments passed to the plotting function.

Details

This function calculates the cosine similarity between cells based on the loadings of the selected
principal components obtained from PCA. It extracts the rotation matrix from the PCA results of
the SingleCellExperiment object and identifies the high-loading variables for each selected PC.
Then, it computes the cosine similarity between cells using the high-loading variables for each PC.

The S3 plot method reshapes the input data frame to create a long format suitable for plotting as
a heatmap. It then creates a heatmap plot using ggplot2, where the x-axis represents the PCs, the
y-axis represents the cells, and the color intensity represents the cosine similarity values.
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Value

A data frame containing cosine similarity values between cells for each selected principal compo-
nent.

The S3 plot method returns a ggplot object representing the cosine similarity heatmap.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateCellSimilarityPCAObject
calculateCellSimilarityPCA

Examples

# Load data
data("reference_data")
data("query_data")

# Store PCA anomaly data and plots
anomaly_output <- detectAnomaly(reference_data = reference_data,
query_data = query_data,

ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,
pc_subset = 1:10,

n_tree = 500,

anomaly_threshold = 0.5)
top6_anomalies <- names(sort(anomaly_output$Combined$reference_anomaly_scores,
decreasing = TRUE)[1:6])

# Compute cosine similarity between anomalies and top PCs
cosine_similarities <- calculateCellSimilarityPCA(reference_data,
cell_names = top6_anomalies,
pc_subset = 1:25,
n_top_vars = 50)
cosine_similarities

# Plot similarities
plot(cosine_similarities, pc_subset = 15:25)

calculateCramerPValue Calculate Cramer Test P-Values for Two-Sample Comparison of Mul-
tivariate ECDF's




22 calculateCramerPValue

Description

This function performs the Cramer test for comparing multivariate empirical cumulative distribution
functions (ECDFs) between two samples.

Usage

calculateCramerPValue(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.
reference_data A SingleCellExperiment object containing numeric expression matrix for the

reference cells.
query_cell_type_col

The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

Details
The function performs the following steps:

1. Projects the data into the PCA space.
2. Subsets the data to the specified cell types and principal components.

3. Performs the Cramer test for each cell type using the cramer.test function in the cramer
package.
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Value

A named vector of p-values from the Cramer test for each cell type.

References

Baringhaus, L., & Franz, C. (2004). "On a new multivariate two-sample test". Journal of Multivari-
ate Analysis, 88(1), 190-206.

Examples

# Load data
data("reference_data")
data("query_data")

# Plot the PC data (with query data)

cramer_test <- calculateCramerPValue(reference_data = reference_data,
query_data = query_data,
ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,

cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),

pc_subset = 1:5)

cramer_test

calculateDiscriminantSpace

Project Query Data onto a Unified Discriminant Space of Reference
Data

Description

This function projects query single-cell RNA-seq data onto a unified discriminant space defined
by reference data. The reference data is used to identify important variables across all cell types
and compute discriminant vectors, which are then used to project both reference and query data.
Similarity between the query and reference projections can be assessed using cosine similarity and
Mahalanobis distance.

The S3 plot method visualizes the projected reference and query data on the unified discriminant
space.

Usage

calculateDiscriminantSpace(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,
n_tree = 500,
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n_top = 20,
eigen_threshold = 0.1,
calculate_metrics = FALSE,
alpha = 0.01,
assay_name = "logcounts”,
max_cells_ref = NULL,
max_cells_query = NULL

)

## S3 method for class 'calculateDiscriminantSpaceObject'

plot(
X,
cell_types = NULL,
dv_subset = NULL,
lower_facet = c("scatter”, "contour”, "ellipse”, "blank"),
diagonal_facet = c("ridge"”, "density"”, "boxplot", "blank"),
upper_facet = c(”"blank”, "scatter”, "contour”, "ellipse"),
max_cells_ref = NULL,
max_cells_query = NULL,

)

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the

reference cells.

query_data A SingleCellExperiment object containing numeric expression matrix for the

query cells. If NULL, only the projected reference data is returned. Default is
NULL.

ref_cell_type_col

The column name in reference_data indicating cell type labels.

query_cell_type_col

The column name in query_data indicating cell type labels.

cell_types A character vector specifying the cell types to plot. If NULL (default), all cell
types will be plotted.
n_tree An integer specifying the number of trees for the random forest used in variable

importance calculation.

n_top An integer specifying the number of top variables to select based on importance

scores from each pairwise comparison.

eigen_threshold

A numeric value specifying the threshold for retaining eigenvalues in discrimi-
nant analysis.

calculate_metrics

Parameter to determine if cosine similarity and Mahalanobis distance metrics
should be computed. Default is FALSE.

alpha A numeric value specifying the significance level for Mahalanobis distance cut-

off.
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assay_name

max_cells_ref

max_cells_query

dv_subset

lower_facet

diagonal_facet

upper_facet

Details

Name of the assay on which to perform computations. Default is "logcounts".

Maximum number of reference cells to include in the plot. If NULL, all avail-
able reference cells are plotted. Default is NULL.

Maximum number of query cells to include in the plot. If NULL, all available
query cells are plotted. Default is NULL.

An object of class calculateDiscriminantSpaceObject containing the pro-
jected data on the discriminant space.

A numeric vector specifying which discriminant vectors to include in the plot.
Default is the number of cell types minus 1.

Type of plot to use for the lower panels. Either "scatter" (default), "contour",
"ellipse", or "blank".

Type of plot to use for the diagonal panels. Either "ridge" (default), "density",
"boxplot" or "blank".

Type of plot to use for the upper panels. Either "blank" (default), "scatter",
"contour", or "ellipse".

Additional arguments to be passed to the plotting functions.

The function performs the following steps:

* Identifies the top important variables to distinguish cell types from the reference data by taking
the union of important variables from pairwise comparisons.

» Computes the Ledoit-Wolf shrinkage estimate of the covariance matrix for each cell type using
these important genes.

¢ Constructs within-class and between-class scatter matrices.

* Solves the generalized eigenvalue problem to obtain discriminant vectors.

* Projects both reference and query data onto the unified discriminant space.

» Assesses similarity of the query data projection to the reference data using cosine similarity
and Mahalanobis distance.

The S3 plot method generates a pairs plot visualization of discriminant vectors, similar to PCA plot
visualization. Each panel shows the relationship between two discriminant vectors with customiz-
able display options for lower, diagonal, and upper panels. The visualization allows for comprehen-
sive examination of the discriminant space structure and cell type separability.

Value

A list with the following components:

discriminant_eigenvalues

Eigenvalues from the discriminant analysis.

discriminant_eigenvectors

ref_proj

Eigenvectors from the discriminant analysis.

Reference data projected onto the discriminant space.
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query_proj Query data projected onto the discriminant space (if query_data is provided).
query_mahalanobis_dist

Mahalanobis distances of query projections (if calculate_metrics is TRUE).
mahalanobis_crit

Cutoff value for Mahalanobis distance significance (if calculate_metrics is TRUE).
query_cosine_similarity

Cosine similarity scores of query projections (if calculate_metrics is TRUE).

The S3 plot method returns a GGally: :ggpairs object representing the visualization of the pro-
jected discriminant space.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References
* Fisher, R. A. (1936). "The Use of Multiple Measurements in Taxonomic Problems". *Annals
of Eugenics*. 7 (2): 179-188. doi:10.1111/j.1469-1809.1936.tb02137 x.

* Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning: Data
Mining, Inference, and Prediction*. Springer. Chapter 4: Linear Methods for Classification.

* Ledoit, O., & Wolf, M. (2004). "A well-conditioned estimator for large-dimensional covari-
ance matrices". *Journal of Multivariate Analysis*. 88 (2): 365-411. doi:10.1016/S0047-
259X(03)00096-4.

¢ De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). "The Mahalanobis dis-
tance". *Chemometrics and Intelligent Laboratory Systems*. 50 (1): 1-18. doi:10.1016/S0169-
7439(99)00047-7.

* Breiman, L. (2001). "Random Forests". *Machine Learning*. 45 (1): 5-32. doi:10.1023/A:1010933404324.

See Also

plot.calculateDiscriminantSpaceObject

calculateDiscriminantSpace

Examples

# Load data
data("reference_data")
data("query_data")

# Compute discriminant space using unified model across all cell types

disc_output <- calculateDiscriminantSpace(reference_data = reference_data,
query_data = query_data,
query_cell_type_col = "SingleR_annotation”,

ref_cell_type_col = "expert_annotation”,
n_tree = 500,
n_top = 50,

eigen_threshold = 1le-1,
calculate_metrics = FALSE,
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alpha = 0.01)

# Generate scatter and boxplot
plot(disc_output, plot_type = "scatterplot”)
plot(disc_output, cell_types = c(”"CD4", "CD8"), plot_type = "boxplot")

# Check comparison
table(Expert_Annotation = query_data$expert_annotation,
SingleR = query_data$SingleR_annotation)

calculateEntropy Calculate Entropy

Description

This function calculates the entropy of a probability distribution.

Usage
calculateEntropy(p)
Arguments
p A numeric vector representing a probability distribution. The elements should
sum to 1.
Details
The entropy is calculated using the formula — > plog(p), where the sum is over all non-zero ele-
ments of p.
Value

A numeric value representing the entropy of the probability distribution.

calculateGeneShifts Calculate Top Loading Gene Expression Shifts

Description

This function identifies genes with the highest loadings for specified principal components and
performs statistical tests to detect distributional differences between query and reference data. It
also calculates the proportion of variance explained by each principal component within specific
cell types. Optionally, it can detect anomalous cells using isolation forests.

This function creates visualizations showing expression distributions for top loading genes that ex-
hibit distributional differences between query and reference datasets. Can display results as elegant
complex heatmaps, information-rich summary boxplots, or pseudo-bulk fold change barplots. Op-
tionally displays anomaly status when available.
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Usage

calculateGeneShifts(

query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
n_top_loadings = 50,
genes_to_analyze = NULL,
p_value_threshold = 9.05,
adjust_method = "fdr",
assay_name = "logcounts”,
detect_anomalies = FALSE,
anomaly_comparison = FALSE,
anomaly_threshold = 0.6,
n_tree = 500,

max_cells_query = 5000,

max_cells_ref = 5000
)
## S3 method for class 'calculateGeneShiftsObject'
plot(

X,

cell_type,

pc_subset = 1:3,

plot_type = c("heatmap”, "barplot”, "boxplot”),
plot_by = c("p_adjusted”, "top_loading"),
n_genes = 10,

significance_threshold = 0.05,
show_anomalies = FALSE,

pseudo_bulk = FALSE,

cluster_cols = FALSE,

draw_plot = TRUE,

show_all_query = TRUE,

max_cells_ref = NULL,

max_cells_query = NULL,

Arguments

query_data

query cells.

calculateGeneShifts

A SingleCellExperiment object containing numeric expression matrix for the

reference_data A SingleCellExperiment object containing numeric expression matrix for the

reference cells.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
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ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_types A character vector specifying the cell types to analyze. If NULL, all common
cell types are used.

pc_subset A numeric vector specifying which principal components to plot. Default is 1:3.

n_top_loadings Number of top loading genes to analyze per PC. Default is 50.

genes_to_analyze
A character vector specifying genes to analyze. If NULL (default), genes are se-
lected based on top loadings from specified principal components (see n_top_loadings).
Default is NULL.

p_value_threshold

P-value threshold for statistical significance. Default is 0.05.
adjust_method Method for multiple testing correction. Default is "fdr".

assay_name Name of the assay on which to perform computations. Default is "logcounts".

detect_anomalies
Logical indicating whether to perform anomaly detection using isolation forests.
Default is FALSE.

anomaly_comparison
Logical indicating whether to perform statistical comparisons between non-anomalous
reference cells and anomalous query cells instead of all-vs-all comparisons.
When TRUE, only non-anomalous reference cells are compared against only
anomalous query cells for each cell type. Requires detect_anomalies = TRUE.
Default is FALSE.

anomaly_threshold
A numeric value specifying the threshold for identifying anomalies when detect_anomalies
is TRUE. Default is 0.6.

n_tree An integer specifying the number of trees for the isolation forest when detect_anomalies
is TRUE. Default is 500.

max_cells_query
Maximum number of query cells to include in the plot. If NULL, all available
query cells are plotted. Default is NULL.

max_cells_ref Maximum number of reference cells to include in the plot. If NULL, all avail-
able reference cells are plotted. Default is NULL.

X An object of class calculateGeneShiftsObject.
cell_type A character string specifying the cell type to plot (must be exactly one).
plot_type A character string specifying visualization type. Either "heatmap", "barplot”, or

"boxplot". Default is "heatmap".

plot_by A character string specifying gene selection method when ‘n_genes‘ is not NULL.
Either "top_loading" or "p_adjusted". Default is "p_adjusted".

n_genes Number of top genes to show per PC. Can be NULL if ‘significance_threshold*
is set. Default is 10.

significance_threshold
If not NULL, a numeric value between O and 1. Used for gene selection or
annotation. Default is 0.05.
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show_anomalies Logical indicating whether to display anomaly status annotations. Default is
FALSE. Requires anomaly results to be present in the object.

pseudo_bulk Logical indicating whether to create pseudo-bulk profiles instead of showing
individual cells. When TRUE, expression values are averaged within groups
(dataset and optionally anomaly status). Not compatible with boxplot visualiza-
tion. Required for barplot visualization. Default is FALSE.

cluster_cols  Logical indicating whether to cluster columns in the heatmap when ‘pseudo_bulk
= TRUE‘. When TRUE, columns (pseudo-bulk profiles) will be hierarchically
clustered. When FALSE, columns maintain their original ordering (Query groups
followed by Reference groups). Only applicable when ‘pseudo_bulk = TRUE®
and ‘plot_type = "heatmap"‘. Default is FALSE.

draw_plot Logical indicating whether to draw the plot immediately (TRUE) or return the
undrawn plot object (FALSE). For heatmaps, FALSE returns a ComplexHeatmap
object that can be further customized before drawing. Default is TRUE.

show_all_query Logical indicating whether to show the yellow bar for all query vs reference
comparison. Default is TRUE. When FALSE, only green and red bars are
shown.

Additional arguments passed to draw or not used for other plot types.

Details

This function extracts the top loading genes for each specified principal component from the ref-
erence PCA space and performs distributional comparisons between query and reference data. For
each gene, it performs statistical tests to identify genes that may be causing PC-specific alignment
issues between datasets. A key feature is the calculation of cell-type-specific variance explained by
global PCs, providing a more nuanced view of how major biological axes affect individual popu-
lations. When anomaly detection is enabled, isolation forests are used to identify anomalous cells
based on their PCA projections.

When anomaly_comparison = TRUE, the statistical analysis focuses specifically on comparing non-
anomalous reference cells against anomalous query cells. This can help identify genes that are
differentially expressed between "normal" reference cells and potentially problematic query cells,
providing insights into what makes certain query cells anomalous.

This function visualizes the results from calculateGeneShifts. The "heatmap" option displays a
hierarchically clustered set of genes. The "boxplot" option creates a two-panel plot using ‘ggplot2°:
the left panel shows horizontal expression boxplots for up to 5 PCs, while the right panel displays
their corresponding PC loadings and adjusted p-values. The "barplot" option creates horizontal
barplots showing log2 fold changes between pseudo-bulk expression profiles (query vs reference),
with genes ordered identically to the heatmap clustering. Bars show comparisons for query non-
anomaly (green), optionally all query cells (yellow), and query anomaly cells (red) versus reference.
When anomaly detection results are available and show_anomalies is TRUE, additional annotation
bars or visual cues highlight anomalous cells.

Value

A list containing:

e PC results: Named elements for each PC (e.g., "PC1", "PC2") containing data frames with
gene-level analysis results.
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 expression_data: Matrix of expression values for all analyzed genes (genes x cells).

* cell_metadata: Data frame with columns: cell_id, dataset, cell_type, original_index, and op-
tionally anomaly_status.

* gene_metadata: Data frame with columns: gene, pc, loading for all analyzed genes.

 percent_var: Named numeric vector of global percent variance explained for each analyzed
PC.

* cell_type_variance: A data frame detailing the percent of variance a global PC explains within
specific cell types for both query and reference datasets.

» anomaly_results: If detect_anomalies is TRUE, contains the full output from detectAnomaly.

The ‘cell_type_variance‘ data frame contains columns: pc, cell_type, dataset, percent_variance.
When anomaly detection is enabled, ‘cell_metadata‘ includes an additional ‘anomaly_status* col-
umn.

A plot object. For heatmaps when draw_plot = FALSE, returns a ComplexHeatmap object. For
boxplots and barplots, returns a ggplot2 object.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateGeneShiftsObject, detectAnomaly

calculateGeneShifts

calculateGraphIntegration
Calculate Graph Community Integration Diagnostics

Description

This function performs graph-based community detection to identify annotation inconsistencies
by detecting query-only communities, true cross-cell-type mixing patterns, and local annotation
inconsistencies based on immediate neighborhood analysis.

The S3 plot method generates visualizations of annotation consistency diagnostics, including query-
only communities, cross-cell-type mixing, and local annotation inconsistencies.

Usage

calculateGraphIntegration(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
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pc_subset = 1:10,

k_neighbors = 30,

assay_name = "logcounts”,
resolution = 0.1,
min_cells_per_community = 10,
min_cells_per_celltype = 20,
high_query_prop_threshold = 0.9,
cross_type_threshold = 0.15,
local_consistency_threshold = 9.6,
local_confidence_threshold = 0.2,
max_cells_query = 5000,
max_cells_ref = 5000

)
## S3 method for class 'calculateGraphIntegrationObject'
plot(
X,
plot_type = c("community_network”, "cell_network”, "community_data”, "summary",
"local_issues”, "annotation_issues”),

color_by = c("cell_type”, "community_type"),
max_nodes = 2000,

point_size = 0.8,

exclude_reference_only = FALSE,

Arguments

qguery_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
A character string specifying the column name in the query dataset containing
cell type annotations.

ref_cell_type_col
A character string specifying the column name in the reference dataset contain-
ing cell type annotations.

cell_types A character vector specifying the cell types to include in the analysis. If NULL,
all cell types are included.

pc_subset A vector specifying the subset of principal components to use in the analysis.
Default is 1:10.

k_neighbors An integer specifying the number of nearest neighbors for graph construction.
Default is 30.

assay_name Name of the assay on which to perform computations. Default is "logcounts”.

resolution Resolution parameter for Leiden clustering. Default is 0.15 for fewer, larger

communities.
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min_cells_per_community
Minimum number of cells required for a community to be analyzed. Default is
10.

min_cells_per_celltype
Minimum number of cells required per cell type for inclusion. Default is 20.

high_query_prop_threshold
Minimum proportion of query cells to consider a community "query-only". De-
fault is 0.9.

cross_type_threshold
Minimum proportion needed to flag cross-cell-type mixing. Default is 0.1.

local_consistency_threshold
Minimum proportion of reference neighbors that should support a query cell’s
annotation. Default is 0.6.

local_confidence_threshold
Minimum confidence difference needed to suggest re-annotation. Default is 0.2.

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

X An object of class calculateGraphIntegrationObject containing the diag-
nostic results.

plot_type Character string specifying visualization type. Options: "community_network"

non

(default), "cell_network", "community_data", "summary", "local_issues", or "an-
notation_issues".

color_by Character string specifying the variable to use for coloring points/elements if
‘plot_type‘ is "community_network" or "cell_network". Default is "cell_type".

max_nodes Maximum number of nodes to display for performance. Default is 2000.

point_size Point size for graph nodes. Default is 0.8.

exclude_reference_only

Logical indicating whether to exclude reference-only communities/cells from
visualization. Default is FALSE.

Additional arguments passed to ggplot2 functions.

Details

The function performs three types of analysis: (1) Communities containing only query cells, (2)
Communities where query cells are mixed with reference cells of different cell types WITHOUT
any reference cells of the same type, and (3) Local analysis of each query cell’s immediate neighbors
to detect annotation inconsistencies even within mixed communities.

The S3 plot method creates optimized visualizations showing different types of annotation issues
including community-level and local neighborhood-level inconsistencies.
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Value
A list containing:

high_query_prop_analysis

Analysis of communities with only query cells
cross_type_mixing

Analysis of communities with true query-reference cross-cell-type mixing
local_annotation_inconsistencies

Local neighborhood-based annotation inconsistencies
local_inconsistency_summary

Summary of local inconsistencies by cell type
community_composition

Detailed composition of each community
annotation_consistency

Summary of annotation consistency issues
overall_metrics

Overall diagnostic metrics

graph_info Graph structure information for plotting

parameters Analysis parameters used

The list is assigned the class "calculateGraphIntegration”.

A ggplot object showing integration diagnostics.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

calculateGraphIntegration

Examples

# Load data
data("reference_data")
data("query_data")

# Remove a cell type (Myeloid)
library(scater)
library(SingleR)
reference_data <- reference_data[, reference_data$expert_annotation != "Myeloid"]
reference_data <- runPCA(reference_data, ncomponents = 50)
SingleR_annotation <- SingleR(query_data, reference_data,
labels = reference_data$expert_annotation)
query_data$SingleR_annotation <- SingleR_annotation$labels

# Check annotation data
table(Expert = query_data$expert_annotation, SingleR = query_data$SingleR_annotation)
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# Run comprehensive annotation consistency diagnostics
graph_diagnostics <- calculateGraphIntegration(
query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10,
k_neighbors = 30,
resolution = 0.1,
high_query_prop_threshold = 0.9,
cross_type_threshold = 0.15,
local_consistency_threshold = 0.6,
local_confidence_threshold = 0.2

)

# Look at main output
graph_diagnostics$overall_metrics

# Network graph showing all issue types (color by cell type)
plot(graph_diagnostics, plot_type = "community_network”, color_by = "cell_type")

# Network graph showing all issue types
plot(graph_diagnostics, plot_type = "cell_network”,
max_nodes = 2000, color_by = "community_type")

# Network graph showing all issue types
plot(graph_diagnostics, plot_type = "community_data")

# Summary bar chart of all issues by cell type
plot(graph_diagnostics, plot_type = "summary")

# Focus on local annotation inconsistencies
plot(graph_diagnostics, plot_type = "local_issues”)

# Overall annotation issues overview
plot(graph_diagnostics, plot_type = "annotation_issues")

calculateHotellingPValue
Perform Hotelling’s T-squared Test on PCA Scores for Single-cell
RNA-seq Data

Description

Computes Hotelling’s T-squared test statistic and p-values for each specified cell type based on
PCA-projected data from query and reference datasets.
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Usage

calculateHotellingPValue(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
n_permutation = 500,
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
character. The column name in the colData of query_data that identifies the
cell types.

ref_cell_type_col
character. The column name in the colData of reference_data that identifies
the cell types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PC5.

n_permutation Number of permutations to perform for p-value calculation. Default is 500.

assay_name Name of the assay on which to perform computations. Default is "logcounts".
max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.
Details

This function calculates Hotelling’s T-squared statistic for comparing multivariate means between
reference and query datasets, projected onto a subset of principal components (PCs). It performs a
permutation test to obtain p-values for each cell type specified.

Value

A named numeric vector of p-values from Hotelling’s T-squared test for each cell type.
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Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Hotelling, H. (1931). "The generalization of Student’s ratio". *Annals of Mathematical Statistics*.
2 (3): 360-378. doi:10.1214/a0ms/1177732979.

Examples

# Load data
data("reference_data")
data("query_data")

# Get the p-values

p_values <- calculateHotellingPValue(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

round(p_values, 5)

calculateHVGOverlap Calculate the Overlap Coefficient for Highly Variable Genes

Description

Calculates the overlap coefficient between the sets of highly variable genes from a reference dataset
and a query dataset.

Usage

calculateHVGOverlap(reference_genes, query_genes)

Arguments

reference_genes
A character vector of highly variable genes from the reference dataset.

query_genes A character vector of highly variable genes from the query dataset.

Details

The overlap coefficient measures the similarity between two gene sets, indicating how well-aligned
reference and query datasets are in terms of their highly variable genes. This metric is useful in
single-cell genomics to understand the correspondence between different datasets.

The coefficient is calculated using the formula:
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iy X NY|
Coef ficient(X,Y) = ———————
min(| X1, [Y1)

where X and Y are the sets of highly variable genes from the reference and query datasets, respec-
tively, | X N Y| is the number of genes common to both X and Y, and min(|X|, |Y|) is the size of
the smaller set among X and Y.

Value

Overlap coefficient, a value between 0 and 1, where 0 indicates no overlap and 1 indicates complete
overlap of highly variable genes between datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Luecken et al. Benchmarking atlas-level data integration in single-cell genomics. Nature Methods,
19:41-50, 2022.

Examples

# Load data
data("reference_data")
data("query_data")

# Selecting highly variable genes

ref_var <- scran::getTopHVGs(reference_data, n = 500)

query_var <- scran::getTopHVGs(query_data, n = 500)

overlap_coefficient <- calculateHVGOverlap(reference_genes = ref_var,
query_genes = query_var)

overlap_coefficient

calculateMMDPValue Calculate Maximum Mean Discrepancy P-Values for Two-Sample
Comparison

Description

This function performs the Maximum Mean Discrepancy (MMD) test for comparing distributions
between two samples in PCA space using a custom implementation with permutation testing for
better sensitivity.
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Usage

calculateMMDPValue(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
n_permutation = 100,

kernel_type = "gaussian",
sigma = NULL,
assay_name = "logcounts”,

max_cells_query = 5000,
max_cells_ref = 5000

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS.

n_permutation Number of permutations for p-value calculation. Default is 100.

kernel_type Type of kernel to use. Options are "gaussian" (default) or "linear".
sigma Bandwidth parameter for Gaussian kernel. If NULL, uses median heuristic.
assay_name Name of the assay on which to perform computations. Default is "logcounts".

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

Details
The function performs the following steps:

1. Projects the data into the PCA space.
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2. Subsets the data to the specified cell types and principal components.

3. Performs a custom MMD test with permutation-based p-values for each cell type.

Value

A named vector of p-values from the MMD test for each cell type.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B., & Smola, A. (2012). "A kernel two-
sample test". Journal of Machine Learning Research, 13(1), 723-773.

Examples

# Load data
data("reference_data")
data("query_data")

# Calculate MMD p-values (with query data)

mmd_test <- calculateMMDPValue(reference_data = reference_data,
query_data = query_data,
ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,
cell_types = c("CD4", "CD8"),
pc_subset = 1:5,
n_permutation = 30)

mmd_test
calculateSIRSpace Calculate Sliced Inverse Regression (SIR) Space for Different Cell
Types
Description

This function calculates the SIR space projections for different cell types in the query and reference
datasets.

This function plots the Sliced Inverse Regression (SIR) components for different cell types in query
and reference datasets.
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Usage

calculateSIRSpace(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
multiple_cond_means = TRUE,
cumulative_variance_threshold = 0.7,
n_neighbor = 1,
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

)

## S3 method for class 'calculateSIRSpaceObject'
plot(
X,
plot_type = c("scores”, "loadings"),
cell_types = NULL,
sir_subset = 1:5,

lower_facet = c("scatter”, "contour”, "ellipse”, "blank"),
diagonal_facet = c("ridge"”, "density"”, "boxplot", "blank"),
upper_facet = c(”"blank”, "scatter"”, "contour”, "ellipse"),
n_top = 10,

max_cells_ref = NULL,
max_cells_query = NULL,

Arguments

guery_data A SingleCellExperiment object containing the numeric expression matrix for
the query cells.

reference_data A SingleCellExperiment object containing the numeric expression matrix for
the reference cells.

query_cell_type_col
A character string specifying the column name in the colData of query_data
that identifies the cell types.

ref_cell_type_col
A character string specifying the column name in the colData of reference_data
that identifies the cell types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included. Only used when plot_type = "scores".
multiple_cond_means

Logical. Whether to compute conditional means for multiple conditions in the
reference dataset. Default is TRUE.
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cumulative_variance_threshold
A numeric value specifying the cumulative variance threshold for selecting prin-
cipal components. Default is 0.7.

n_neighbor A numeric value specifying the number of neighbors for computing the SIR
space. Default is 1.

assay_name A character string specifying the name of the assay on which to perform com-
putations. Default is "logcounts".

max_cells_query
Maximum number of query cells to include in the plot. If NULL, all available
query cells are plotted. Default is NULL. Only used when plot_type = "scores".

max_cells_ref Maximum number of reference cells to include in the plot. If NULL, all avail-
able reference cells are plotted. Default is NULL. Only used when plot_type =

"scores".

X An object of class calculateSIRSpaceObject containing SIR projections.

plot_type A character string specifying the type of plot. Either "scores" (default) for SIR
projections or "loadings" for variable loadings.

sir_subset A numeric vector specifying which SIR components to include in the plot. De-
fault is 1:5.

lower_facet Type of plot to use for the lower panels. Either "scatter” (default), "contour",

"ellipse", or "blank". Only used when plot_type = "scores".

diagonal_facet Type of plot to use for the diagonal panels. Either "ridge" (default), "density",
"boxplot" or "blank". Only used when plot_type = "scores".

upper_facet Type of plot to use for the upper panels. Either "blank" (default), "scatter",
"contour", or "ellipse". Only used when plot_type = "scores".

n_top A numeric value specifying the number of n_top variables (by absolute loading
value) to display. Default is 10 Only used when plot_type = "loadings".

Additional arguments passed to the plotting function.

Details

The function projects the query dataset onto the SIR space of the reference dataset based on shared
cell types. It computes conditional means for the reference dataset, extracts the SVD components,
and performs the projection of both the query and reference data. It uses the ‘projectSIR‘ function
to perform the actual projection and allows the user to specify particular cell types for analysis.

This function visualizes the SIR projections for specified cell types, providing a pairs plot of the SIR
components. It offers various visualization options for different facets of the plot including scatter
plots, contours, ellipses, and density plots. When plot_type is "loadings", it creates horizontal bar
plots showing the n_top contributing variables for each SIR component.

Value

A list containing the SIR projections, rotation matrix, and percentage of variance explained for the
given cell types.

A ggmatrix object representing a pairs plot of specified SIR components for the given cell types
and datasets when plot_type = "scores", or a ggplot object showing loadings when plot_type =
"loadings".
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Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateSIRSpaceObject
calculateSIRSpace

Examples

# Load data
data("reference_data")
data("query_data")

# Compute important variables for all pairwise cell comparisons

sir_output <- calculateSIRSpace(reference_data = reference_data,
query_data = query_data,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
multiple_cond_means = TRUE,
cumulative_variance_threshold = 0.9,
n_neighbor = 1)

# Generate plots SIR projections
plot(sir_output,
sir_subset = 1:5,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
lower_facet = "scatter”,
diagonal_facet = "boxplot”,
upper_facet = "blank")

# Plot top loadings
plot(sir_output,
sir_subset = 1:5,
plot_type = "loadings”,
n_top = 10)

calculateVarImpOverlap
Compare Gene Importance Across Datasets Using Random Forest

Description

This function identifies and compares the most important genes for differentiating cell types be-
tween a query dataset and a reference dataset using Random Forest.
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Usage
calculateVarImpOverlap(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,
n_tree = 500,
n_top = 50,
assay_name = "logcounts”,
max_cells_ref = 5000,
max_cells_query = 5000
)
Arguments
reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
guery_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. If NULL, then the variable importance scores are only computed
for the reference data. Default is NULL.
ref_cell_type_col
A character string specifying the column name in the reference dataset contain-
ing cell type annotations.
query_cell_type_col
A character string specifying the column name in the query dataset containing
cell type annotations.
cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
n_tree An integer specifying the number of trees to grow in the Random Forest. Default
is 500.
n_top An integer specifying the number of top genes to consider when comparing
variable importance scores. Default is 50.
assay_name Name of the assay on which to perform computations. Defaults to "logcounts”.
max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.
max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.
Details

This function uses the Random Forest algorithm to calculate the importance of genes in differen-
tiating between cell types within both a reference dataset and a query dataset. The function then
compares the top genes identified in both datasets to determine the overlap in their importance

SCOres.
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Value
A list containing three elements:

var_imp_ref A list of data frames containing variable importance scores for each combination
of cell types in the reference dataset.

var_imp_query A list of data frames containing variable importance scores for each combination
of cell types in the query dataset.
var_imp_comparison

A named vector indicating the proportion of top genes that overlap between the
reference and query datasets for each combination of cell types.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Breiman, L. (2001). "Random forests". *Machine Learning*, 45(1), 5-32. doi:10.1023/A:1010933404324.

Examples

# Load data
data("reference_data")
data("query_data")

# Compute important variables for all pairwise cell comparisons
rf_output <- calculateVarImpOverlap(reference_data = reference_data,
query_data = query_data,

query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
n_tree = 500,

n_top = 50)

# Comparison table
rf_output$var_imp_comparison

calculateWassersteinDistance

Compute Wasserstein Distance Distributions Between Query and Ref-
erence Datasets

Description

This function calculates distributions of Wasserstein distances between reference-reference pairs
and reference-query pairs for each specified cell type, after projecting them into a shared PCA
space. It then computes the probability of superiority to assess whether reference-query distances
tend to be larger than reference-reference distances.

This function generates ridge plots comparing reference-reference and reference-query Wasserstein
distance distributions for each cell type.



46 calculate WassersteinDistance

Usage

calculateWassersteinDistance(
query_data,
reference_data,
ref_cell_type_col,
query_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
n_resamples = 300,
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

)

## S3 method for class 'calculateWassersteinDistanceObject'
plot(x, cell_types = NULL, bandwidth = NULL, ...)

Arguments

query_data A SingleCellExperiment object containing a numeric expression matrix for
the query cells.

reference_data A SingleCellExperiment object with a numeric expression matrix for the ref-
erence cells.

ref_cell_type_col
The column name in the colData of reference_data that identifies cell types.

query_cell_type_col
The column name in the colData of query_data that identifies cell types.

cell_types A character vector specifying which cell types to plot. If NULL, all cell types
are plotted.

pc_subset A numeric vector specifying which principal components to use. Defaultis 1:5.

n_resamples An integer specifying the number of resamples to generate each distribution.

Default is 300.

assay_name The name of the assay to use for computations. Default is "logcounts”.

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

X A list object containing the Wasserstein distance results from the calculateWassersteinDistance
function.
bandwidth A numeric value specifying the bandwidth for density estimation. If NULL

(default), automatic bandwidth selection is used.

Additional arguments for future extensions.
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Details

The function projects the query dataset onto the PCA space defined by the reference dataset. For
each cell type, it computes two distributions: (1) Wasserstein distances between randomly sampled
pairs within the reference dataset (null distribution), and (2) Wasserstein distances between refer-
ence and query dataset samples. It then calculates the probability of superiority, which represents
the probability that a randomly selected ref-query distance is larger than a randomly selected ref-ref
distance.

The function creates faceted ridge plots showing two clearly separated density curves for each cell
type: one for the reference-reference distribution (null) and one for the reference-query distribution.

Value

A list with the following components:

ref_ref_dist A named list of numeric vectors containing Wasserstein distances computed
from resampled pairs within the reference dataset for each cell type.

ref_query_dist A named list of numeric vectors containing Wasserstein distances between ref-
erence and query datasets for each cell type.

probability_superiority
A named numeric vector showing the probability that ref-query distances are
larger than ref-ref distances for each cell type.

cell_types A character vector containing the cell types analyzed.

A ggplot2 object representing the comparison of Wasserstein distance distributions.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Schuhmacher, D., Bernhard, S., & Book, M. (2019). "A Review of Approximate Transport in
Machine Learning". In Journal of Machine Learning Research (Vol. 20, No. 117, pp. 1-61).

See Also

plot.calculateWassersteinDistanceObject

calculateWassersteinDistance

Examples

# Load data
data("reference_data")
data("query_data")

# Compute Wasserstein distance distributions for all cell types
wasserstein_data <- calculateWassersteinDistance(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "expert_annotation”,
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ref_cell_type_col = "expert_annotation”,

pc_subset
n_resamples = 100)
plot(wasserstein_data)

1:5,

compareMarkers

Data

Compare Marker Gene Expression between Query and Reference

Description

Usage

plot(x, cell_types = NULL, ...)
Arguments
query_data A SingleCellExperiment object containing query cells.

compareMarkers(

query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
n_markers = 50,
min_cells = 10,

This function identifies marker genes for each cell type in both query and reference datasets using
the standard Bioconductor approach (Wilcoxon rank-sum test), and compares their expression pat-
terns to assess annotation quality. It can optionally filter query cells based on anomaly detection
results and restrict analysis to specific cell types.

The S3 plot method generates a comprehensive visualization of the output from the ‘compareMark-
ers‘ function. The plot shows marker gene overlap and expression consistency between query and
reference cell types, with quality assessment and detailed annotations.

anomaly_filter = c("none”, "anomalous_only"”, "non_anomalous_only"),

assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000,

## S3 method for class 'compareMarkersObject'

query_cell_type_col

reference_data A SingleCellExperiment object containing reference cells.

The column name in the colData of query_data that identifies the cell types.



compareMarkers 49

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.

cell_types Character vector specifying which cell types to plot. If NULL, all cell types are
plotted.

n_markers Number of top marker genes to consider for each cell type. Default is 50.

min_cells Minimum number of cells required per cell type for marker identification. De-
fault is 10.

anomaly_filter Character string specifying how to filter query cells based on anomaly detection.

non

Options: "none" (default), "anomalous_only", "non_anomalous_only".

assay_name Name of the assay to use for computations. Default is "logcounts".
max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

Additional arguments passed to the plotting function.

X A list containing the output from the compareMarkers function.

Details

The function performs the following steps: 1. Optionally performs anomaly detection and filters
query cells based on results. 2. Identifies marker genes for each cell type in both datasets using
findMarkers approach. 3. Reference markers are always computed using all reference cells for
each cell type. 4. Query markers are computed using filtered cells (anomalous/non-anomalous)
if specified. 5. Compares the overlap of top marker genes between corresponding cell types. 6.
Evaluates the expression consistency of reference markers in query data. 7. Provides quality scores
based on marker gene concordance.

Marker genes are identified using Wilcoxon rank-sum tests comparing each cell type against all
others. High overlap and consistent expression of markers indicate good annotation quality.

The S3 plot method creates a scatter plot showing the relationship between marker overlap (x-axis)
and expression consistency (y-axis) for each cell type. Points are colored by quality score and sized
by the minimum number of cells. Quality zones provide visual guidance for interpretation.

Value
A list containing the following elements:

marker_overlap Matrix showing overlap of top markers between query and reference for each cell
type.

expression_consistency Matrix showing expression consistency of reference markers in query
data.

quality_scores Named vector of quality assessments for each cell type.
markers_query List of marker gene results for each cell type in query data.

markers_ref List of marker gene results for each cell type in reference data.
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common_cell_types Vector of cell types present in both datasets.
n_cells_query Named vector of cell counts per type in query data.
n_cells_ref Named vector of cell counts per type in reference data.
anomaly_filter_used Character string indicating the anomaly filter applied.
selected_cell_types Character vector of cell types analyzed.

anomaly_output Output from anomaly detection if performed.

The S3 plot method returns a ggplot object representing the marker gene comparison results.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.compareMarkersObject, detectAnomaly

compareMarkers

Examples

# Load data
data("reference_data")
data("query_data")

# Compare marker genes

marker_comparison <- compareMarkers(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”)

# With anomaly filtering
marker_comparison_filtered <- compareMarkers(query_data = query_data,
reference_data = reference_data,

query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
anomaly_filter = "non_anomalous_only")

# Visualize results
plot(marker_comparison)
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comparePCA Compare Principal Components Analysis (PCA) Results

Description

This function compares the principal components (PCs) obtained from separate PCA on reference
and query datasets for a single cell type using either cosine similarity or correlation.

The S3 plot method generates a heatmap to visualize the similarities between principal components
from the output of the comparePCA function.

Usage

comparePCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
pc_subset = 1:5,
n_top_vars = 50,

metric = c("cosine”, "correlation”),
correlation_method = c("spearman”, "pearson"),
n_permutations = 0

)

## S3 method for class 'comparePCAObject'

plot(
X)

show_values = TRUE,
show_significance = TRUE,
significance_threshold = 0.05,
color_limits = NULL,

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.
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pc_subset A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is the first five PCs.
n_top_vars An integer indicating the number of top loading variables to consider for each
PC. Default is 50.
metric The similarity metric to use. It can be either "cosine" or "correlation". Default
is "cosine".

correlation_method
The correlation method to use if metric is "correlation". It can be "spearman” or
"pearson". Default is "spearman”.

n_permutations Number of permutations for statistical significance testing. If 0, no permutation
test is performed. Default is 0.

X A comparePCAObject output from the comparePCA function.

show_values Logical, whether to display similarity values on the heatmap. Default is TRUE.
show_significance
Logical, whether to display significance indicators (requires permutation test).

Default is TRUE.
significance_threshold

Numeric, p-value threshold for significance. Default is 0.05.

color_limits  Numeric vector of length 2 specifying color scale limits. If NULL, uses data
range.

Additional arguments passed to the plotting function.

Details

This function compares the PCA results between the reference and query datasets by computing
cosine similarities or correlations between the loadings of top variables for each pair of principal
components. It first extracts the PCA rotation matrices from both datasets and identifies the top
variables with highest loadings for each PC. Then, it computes the cosine similarities or correlations
between the loadings of top variables for each pair of PCs using vectorized operations for improved
performance. The resulting matrix contains the similarity values, where rows represent reference
PCs and columns represent query PCs.

The S3 plot method creates an enhanced heatmap visualization with options to display statistical
significance and similarity values. The heatmap uses a blue-white-red color gradient for similarity
values, and optionally overlays significance indicators.

Value

A list containing:

similarity_matrix
A matrix comparing the principal components of the reference and query datasets.

top_variables A list containing the top loading variables for each PC pair comparison.

p_values A matrix of permutation p-values (if n_permutations > 0).
metric The similarity metric used.
n_top_vars Number of top variables used.

A ggplot object representing the heatmap of similarities.
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Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.comparePCAObject

comparePCA

Examples

# Load libraries
library(scran)
library(scater)

# Load data
data("reference_data")
data("query_data")

# Extract CD4 cells
ref_data_subset <- reference_data[, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal[, which(query_data$expert_annotation == "CD4")]

# Selecting highly variable genes (can be customized by the user)
ref_top_genes <- getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- getTopHVGs(query_data_subset, n = 500)

# Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)
ref_data_subset <- ref_data_subset[common_genes, ]
query_data_subset <- query_data_subset[common_genes, ]

# Run PCA on datasets separately
ref_data_subset <- runPCA(ref_data_subset)
query_data_subset <- runPCA(query_data_subset)

# Call the PCA comparison function

similarity_mat <- comparePCA(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5,
n_top_vars = 50,
metric = c("cosine”, "correlation")[1],
correlation_method = c("”spearman”, "pearson”)[1],
n_permutation = 100)

# Create the heatmap
plot(similarity_mat, show_significance = TRUE)
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comparePCASubspace Compare Subspaces Spanned by Top Principal Components

Description

This function compares the subspace spanned by the top principal components (PCs) in a reference
dataset to that in a query dataset. It computes the cosine similarity between the loadings of the top
variables for each PC in both datasets and provides a weighted cosine similarity score.

The S3 plot method generates a visualization of the output from the comparePCASubspace function.
The plot shows the cosine of principal angles between reference and query principal components,
with point sizes representing the variance explained and colors showing the difference in variance
between datasets.

Usage

comparePCASubspace(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
pc_subset = 1:5,
n_top_vars = 50

)
## S3 method for class 'comparePCASubspaceObject’
plot(x, ...)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the

query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.

pc_subset A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is the first five PCs.

n_top_vars An integer indicating the number of top loading variables to consider for each
PC. Default is 50.

X A numeric matrix output from the comparePCASubspace function, representing

cosine similarities between query and reference principal components.

Additional arguments passed to the plotting function.
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Details

This function compares the subspace spanned by the top principal components (PCs) in a reference
dataset to that in a query dataset. It first computes the cosine similarity between the loadings of the
top variables for each PC in both datasets. The top cosine similarity scores are then selected, and
their corresponding PC indices are stored. Additionally, the function calculates the average percent-
age of variance explained by the selected top PCs. Finally, it computes a weighted cosine similarity
score based on the top cosine similarities and the average percentage of variance explained.

The S3 plot method converts the input list into a data frame suitable for plotting with ggplot2.
Each point in the scatter plot represents the cosine of a principal angle, with the size of the point
indicating the average variance explained by the corresponding principal components. The color
represents the difference in variance explained between reference and query datasets.

Value
A list containing the following components:
cosine_similarity
A numeric vector of cosine values of principal angles.

cosine_id A matrix showing which reference and query PCs were matched.

var_explained_ref

A numeric vector of variance explained by reference PCs.
var_explained_query

A numeric vector of variance explained by query PCs.
var_explained_avg

A numeric vector of average variance explained by each PC pair.
weighted_cosine_similarity

A numeric value representing the weighted cosine similarity.

The S3 plot method returns a ggplot object representing the cosine similarities with variance in-
formation.
Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.comparePCASubspaceObject

comparePCASubspace

Examples

# Load libraries
library(scran)
library(scater)

# Load data
data("reference_data")
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computeMMDStatistic
data("query_data")
# Extract CD4 cells
ref_data_subset <- reference_datal, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal, which(query_data$expert_annotation == "CD4")]

# Selecting highly variable genes (can be customized by the user)
ref_top_genes <- getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- getTopHVGs(query_data_subset, n = 500)

# Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)
ref_data_subset <- ref_data_subset[common_genes, ]
query_data_subset <- query_data_subset[common_genes, ]

# Run PCA on datasets separately
ref_data_subset <- runPCA(ref_data_subset)
query_data_subset <- runPCA(query_data_subset)

# Compare PCA subspaces

subspace_comparison <- comparePCASubspace(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
n_top_vars = 50,
pc_subset = 1:5)

# Plot output for PCA subspace comparison
plot(subspace_comparison)

computeMMDStatistic Compute Maximum Mean Discrepancy Statistic

Description

Compute the Maximum Mean Discrepancy (MMD) statistic between two datasets using either
Gaussian or linear kernels for distribution comparison.

Usage

computeMMDStatistic(X, Y, kernel_type = "gaussian”, sigma = NULL)

Arguments
X A numeric matrix representing the first dataset, where rows are observations and
columns are features.
Y A numeric matrix representing the second dataset, where rows are observations

and columns are features.
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kernel_type A character string specifying the kernel type. Options are "gaussian" for RBF
kernel or "linear" for linear kernel. Default is "gaussian".

sigma A numeric value specifying the bandwidth parameter for the Gaussian kernel. If
NULL, it is estimated using the median heuristic. Default is NULL.

Details

This function calculates the MMD statistic, which measures the distance between two probability
distributions by comparing their embeddings in a reproducing kernel Hilbert space (RKHS). For the
Gaussian kernel, an optimized median heuristic is used to estimate the bandwidth parameter sigma
when not provided. The linear kernel provides a computationally faster alternative.

The MMD statistic is computed as: MMD”2 = E[k(X,X"*)] + E[k(Y,Y")] - 2*E[k(X,Y)] where k is
the chosen kernel function.

Value

A numeric value representing the MMD*2 statistic between the two datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

conditionalMeans Compute Conditional Means for Cell Types

Description

This function computes conditional means for each cell type in the reference data. It can compute
either a single conditional mean per cell type or multiple conditional means, depending on the
specified settings. Principal component analysis (PCA) is used for dimensionality reduction before
clustering when computing multiple conditional means.

Usage

conditionalMeans(
reference_data,
ref_cell_type_col,

cell_types,
multiple_cond_means = FALSE,
assay_name = "logcounts”,

cumulative_variance_threshold = 0.7,
n_neighbor = 1

)
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Arguments

reference_data A SingleCellExperiment object containing the reference data, where rows
represent genes and columns represent cells.

ref_cell_type_col
A character string specifying the column in colData(reference_data) that
contains the cell type labels.

cell_types A character vector of cell types for which to compute conditional means.

multiple_cond_means
A logical value indicating whether to compute multiple conditional means per
cell type. Defaults to FALSE.

assay_name A character string specifying the name of the assay to use for the computation.
Defaults to "logcounts”.

cumulative_variance_threshold
A numeric value between 0 and 1 specifying the variance threshold for PCA
when computing multiple conditional means. Defaults to 0. 7.

n_neighbor An integer specifying the number of nearest neighbors for clustering when com-
puting multiple conditional means. Defaults to 1.

Details

The function offers two modes of operation: - **Single conditional mean per cell type**: For each
cell type, it computes the mean expression across all observations. - **Multiple conditional means
per cell type**: For each cell type, the function performs PCA to reduce dimensionality, followed
by clustering to compute multiple conditional means.

Value

A numeric matrix with the conditional means for each cell type. If multiple_cond_means = TRUE,
the matrix will contain multiple rows for each cell type, representing the different conditional means
computed via clustering.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

convertColumnsToCharacter
Convert Specified Columns to Character in SingleCellExperiment Ob-
jects

Description

This function converts specified columns in the colData of a SingleCellExperiment object to
character type. It checks that the specified columns exist and only performs conversion when nec-
essary (i.e., when columns are not already character type).
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Usage

convertColumnsToCharacter(sce_object, convert_cols)

Arguments

sce_object A SingleCellExperiment object containing single-cell data.

convert_cols A character vector specifying the column names in colData to convert to char-
acter type. All specified columns must exist in the colData.

Details
The function performs the following operations:
* Validates that the input is a SingleCellExperiment object.
* Checks that all specified columns exist in the colData of the object.
» Converts each specified column to character type if it is not already character.

* Returns the modified SingleCellExperiment object.

« If all specified columns are already character type, returns the object unchanged.

This function is particularly useful for handling factor columns that need to be converted to character
for downstream analysis functions that expect character input.

Value
A SingleCellExperiment object with the specified columns converted to character type in the
colData.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

decomposeR2 Decompose R-squared by Model Components

Description

Decomposes the total R-squared from a linear model into individual components representing the
variance explained by main effects (cell type, batch/dataset) and their interaction using sequential
sum of squares.

Usage

decomposeR2(pc, indep_var, df)
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Arguments
pc A character string specifying the principal component column name in the data
frame.
indep_var A character string specifying the independent variable specification. Options are
"cell_type", "cell_type * batch", or "cell_type * dataset".
df A data frame containing the principal component scores and categorical predic-
tors. Must include columns for the specified PC and predictor variables.
Details

This function performs R-squared decomposition using a sequential sum of squares approach,
which partitions the total explained variance into additive components. The decomposition follows
the hierarchical structure:

1. Cell type main effect

2. Batch/dataset main effect (after accounting for cell type)

3. Cell type x batch/dataset interaction (after accounting for main effects)
For simple cell type models, only the cell type component is returned. For interaction models,
all three components are computed. The method uses group means and residual analysis to avoid

computationally expensive matrix operations while maintaining mathematical accuracy equivalent
to ANOVA decomposition.

Value

A named list containing R-squared components:

cell_type Numeric value representing the R-squared explained by cell type main effect.

batch/dataset Numeric value representing the R-squared explained by batch or dataset main
effect (only for interaction models).

interaction Numeric value representing the R-squared explained by the interaction term
(only for interaction models).

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

detectAnomaly PCA Anomaly Scores via Isolation Forests with Visualization

Description

This function detects anomalies in single-cell data by projecting the data onto a PCA space and
using an isolation forest algorithm to identify anomalies.

This S3 plot method generates faceted scatter plots for specified principal component (PC) combi-
nations within an anomaly detection object. It visualizes the relationship between specified PCs,
highlights anomalies detected by the Isolation Forest algorithm, and provides a background gradient
representing anomaly scores.
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Usage

detectAnomaly(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,
pc_subset = 1:5,

n_tree = 500,
anomaly_threshold = 0.6,
assay_name = "logcounts”,

max_cells_query = 5000,
max_cells_ref = 5000,

)
## S3 method for class 'detectAnomalyObject'
plot(

X!

cell_type = NULL,

pc_subset = NULL,

data_type = c("query"”, "reference"),

n_tree = 500,

upper_facet = c("blank”, "contour"”, "ellipse"),

diagonal_facet = c("density”, "ridge"”, "boxplot”, "blank"),
max_cells_ref = NULL,
max_cells_query = NULL,

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data An optional SingleCellExperiment object containing numeric expression ma-
trix for the query cells. If NULL, then the isolation forest anomaly scores are
computed for the reference data. Default is NULL.

ref_cell_type_col
A character string specifying the column name in the reference dataset contain-
ing cell type annotations.

query_cell_type_col
A character string specifying the column name in the query dataset containing
cell type annotations.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying the indices of the PCs to be included in the plots.
If NULL, all PCs in reference_mat_subset will be included.
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n_tree An integer specifying the number of trees for the isolation forest. Default is 500
anomaly_threshold

A numeric value specifying the threshold for identifying anomalies, Default is
0.6.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

max_cells_query
Maximum number of query cells to include in the plot. If NULL, all available
query cells are plotted. Default is NULL.

max_cells_ref Maximum number of reference cells to include in the plot. If NULL, all avail-
able reference cells are plotted. Default is NULL.

Additional arguments passed to the ‘isolation.forest® function.

X A list object containing the anomaly detection results from the detectAnomaly
function. Each element of the list should correspond to a cell type and contain
reference_mat_subset, query_mat_subset, var_explained, and anomaly.

cell_type A character string specifying the cell type for which the plots should be gener-
ated. This should be a name present in x. If NULL, the "Combined" cell type
will be plotted. Default is NULL.

data_type A character string specifying whether to plot the "query" data or the "reference”
data. Default is "query".

upper_facet Either "blank" (default), "contour", or "ellipse" for the upper facet plots.

diagonal_facet Either "density" (default), "ridge", "boxplot" or "blank" for the diagonal plots.

Details
This function projects the query data onto the PCA space of the reference data. An isolation forest
is then built on the reference data to identify anomalies in the query data based on their PCA
projections. If no query dataset is provided by the user, the anomaly scores are computed on the
reference data itself. Anomaly scores for the data with all combined cell types are also provided as
part of the output.

The function extracts the specified PCs from the given anomaly detection object and generates

scatter plots for each pair of PCs. It uses GGally to create a pairs plot where each facet represents

a pair of PCs. The plot includes:

1. Lower facets: Scatter plots with a background gradient representing anomaly scores from green

(low) to red (high) 2. Diagonal facets: Density, ridge, boxplot or blank visualizations showing the

distribution of each PC, separated by anomaly status 3. Upper facets: Blank panels by default, or

contour/ellipse plots separated by anomaly status if specified

Value

A list containing the following components for each cell type and the combined data:

anomaly_scores Anomaly scores for each cell in the query data.

anomaly Logical vector indicating whether each cell is classified as an anomaly.
reference_mat_subset
PCA projections of the reference data.
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query_mat_subset
PCA projections of the query data (if provided).

var_explained Proportion of variance explained by the retained principal components.

The S3 plot method returns a GGally: : ggpairs object representing the PCA plots with anomalies
highlighted.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

e Liu, F. T, Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining (pp. 413-422). IEEE.

* isotree: Isolation-Based Outlier Detection

See Also

plot.detectAnomalyObject

detectAnomaly

Examples

# Load data
data("reference_data")
data("query_data")

# Store PCA anomaly data

anomaly_output <- detectAnomaly(reference_data = reference_data,
query_data = query_data,
ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,
pc_subset = 1:5,
n_tree = 500,
anomaly_threshold = 0.6)

# Plot the output for a cell type
plot(anomaly_output,

cell_type = "CD4",

pc_subset 1:3,

data_type = "query")


https://cran.r-project.org/web/packages/isotree/isotree.pdf
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downsampleSCE Downsample SingleCellExperiment Objects

Description

This internal function downsamples SingleCellExperiment objects while preserving reduced-
Dims coordinate information (PCA, UMAP, t-SNE, etc.). Optionally, it can also subset by cell
types before downsampling.

Usage

downsampleSCE(
sce_object,
cell_type_col = NULL,
cell_types = NULL,
max_cells = 2500,

seed = NULL
)
Arguments
sce_object A SingleCellExperiment object to potentially downsample. May contain PCA,

UMAP, TSNE, or other reducedDims.

cell_type_col The column name in colData that contains cell type information. Required if
cell_types is not NULL. Default is NULL.

cell_types A character vector specifying which cell types to retain. If NULL, no cell type
filtering is performed. Default is NULL.

max_cells Maximum number of cells to retain. If the object has fewer cells, it is returned
unchanged. If NULL, no downsampling is performed (all cells are kept). De-
fault is 2500.

seed Random seed for reproducible downsampling. If NULL, no seed is set. Default
is NULL.

Details

The function can perform cell type filtering followed by random downsampling without replace-
ment when the number of cells exceeds the specified threshold. All reducedDims coordinates are
preserved through standard sce_object subsetting operations. This function does not preserve PCA
rotation matrices or other model-specific attributes.

Value

A SingleCellExperiment object with at most max_cells cells and optionally filtered by cell types.
ReducedDims coordinates are preserved through standard subsetting. If max_cells is NULL, the
original object is returned unchanged.
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Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

extractGeneOrder Extract Gene Order from ComplexHeatmap Object

Description

Extracts the hierarchically clustered gene order from a ComplexHeatmap Heatmap object.

Usage

extractGeneOrder (heatmap_object)

Arguments

heatmap_object A ComplexHeatmap Heatmap object (undrawn or drawn).

Details

This function initializes a ComplexHeatmap object (without displaying it) to perform hierarchical
clustering, then extracts the resulting gene order. This allows matching gene ordering between
heatmap and other plot types. The function uses a null graphics device to initialize the heatmap
clustering without actually drawing the plot.

Value

A character vector of gene names in the clustered order (top to bottom as they appear in heatmap).

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

generateColors Generate Paired Colors for Cell Types

Description
This function assigns paired colors (light and dark) to a list of cell type names. The colors are
selected from various color palettes in the ‘pals‘ package.

Usage

generateColors(cell_type_names, paired = FALSE)
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Arguments

cell_type_names
A character vector of cell type names that need to be assigned colors.

paired If TRUE, the colored returned should be paired. Default is FALSE.

Details
The function uses color palettes from the ‘pals‘ package to generate colors or pairs of colors (light
and dark) for each cell type name provided. It cycles through different color families (blues, greens,
reds, oranges, purples, purd and greys) to create the colors

Value
A named character vector where the names are the original cell type names, and the values are the
assigned colors.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

histQCvsAnnotation Histograms: QC Stats and Annotation Scores Visualization

Description

This function generates histograms for visualizing the distribution of quality control (QC) statistics
and annotation scores associated with cell types in single-cell genomic data.

Usage

histQCvsAnnotation(
sce_object,
cell_type_col,
cell_types = NULL,

qc_col,
score_col,
max_cells = NULL
)
Arguments
sce_object A SingleCellExperiment containing the single-cell expression data and meta-
data.
cell_type_col The column name in the colData of sce_object that contains the cell type
labels.
cell_types A vector of cell types to plot (e.g., c("T-cell", "B-cell")). Defaults to NULL, which

will include all the cells.
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qgc_col

score_col

max_cells

Details
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A column name in the colData of sce_object that contains the QC stats of
interest.

The column name in the colData of sce_object that contains the cell type
scores.

Maximum number of cells to retain. If the object has fewer cells, it is returned
unchanged. Default is NULL.

The particularly useful in the analysis of data from single-cell experiments, where understanding
the distribution of these metrics is crucial for quality assessment and interpretation of cell type

annotations.

Value

A object containing two histograms displayed side by side. The first histogram represents the
distribution of QC stats, and the second histogram represents the distribution of annotation scores.

Examples

data("query_data")

# Generate histograms
histQCvsAnnotation(sce_object = query_data,

cell_type_col = "SingleR_annotation”,
cell_types = c("CD4", "CD8"),

gc_col = "percent_mito",

score_col = "annotation_scores")

histQCvsAnnotation(sce_object = query_data,

cell_type_col = "SingleR_annotation”,
cell_types = NULL,

gc_col = "percent_mito",

score_col = "annotation_scores")

hotellingT2

Calculate Hotelling’s T2 Statistic

Description

Calculates the Hotelling’s T2 statistic for comparing means of multivariate data.

Usage

hotellingT2(samplel, sample2)
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Arguments
samplel A numeric matrix or data frame of multivariate observations for sample 1, where
rows are observations and columns are variables.
sample?2 A numeric matrix or data frame of multivariate observations for sample 2, with
the same structure as sample 1.
Value

The Hotelling’s T2 statistic.

inverseNormalTransformation
Inverse Normal Transformation

Description

This function performs an inverse normal transformation on a matrix or vector.

Usage

inverseNormalTransformation(X, constant = 3/8)

Arguments

X A numeric matrix or vector.

constant A numeric value used in the transformation. Default is 3 / 8.
Details

The function ranks the elements of X and then applies the inverse normal transformation using the
formula gnorm((rank — constant)/(n — 2 x constant + 1)).

Value
A matrix or vector with the same dimensions as X, with values transformed using the inverse normal
transformation.

Author(s)

Andrew Ghazi, <andrew_ghazi@hms.harvard. edu>
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ledoitWolf Ledoit-Wolf Covariance Matrix Estimation

Description

Estimate the covariance matrix using the Ledoit-Wolf shrinkage method.

Usage

ledoitWolf(class_data)

Arguments
class_data A numeric matrix or data frame containing the data for covariance estimation,
where rows represent observations and columns represent variables.
Details

This function computes the Ledoit-Wolf shrinkage covariance matrix estimator, which improves the
accuracy of the sample covariance matrix by shrinking it towards a structured estimator, typically
the diagonal matrix with the mean of variances as its diagonal elements.

Value

A numeric matrix representing the Ledoit-Wolf estimated covariance matrix.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

nElements Number of Elements

Description

This function returns the number of elements in a matrix or vector.

Usage

nElements(X)

Arguments

X A matrix or vector.
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Details

If X is a matrix, the function returns the product of its dimensions. If X is a vector, the function
returns its length.

Value

An integer representing the number of elements in X.

Author(s)

Andrew Ghazi, <andrew_ghazi@hms.harvard. edu>

plot.regressPCObject  Plot Regression Results on Principal Components

Description
The S3 plot method generates plots to visualize the results of regression analyses performed on
principal components (PCs) against cell types, datasets, or their interactions.

This function performs linear regression of a covariate of interest onto one or more principal com-
ponents, based on the data in a SingleCellExperiment object.

Usage
## S3 method for class 'regressPCObject'
plot(
X’
plot_type = c("r_squared”, "variance_contribution”, "coefficient_heatmap”),
alpha = 0.05,

coefficients_include = NULL,

)

regressPC(
query_data,
reference_data = NULL,
query_cell_type_col,
ref_cell_type_col = NULL,
query_batch_col = NULL,
cell_types = NULL,
pc_subset = 1:10,
adjust_method = c("BH", "holm"”, "hochberg"”, "hommel”, "bonferroni", "BY", "fdr",
"none"),
assay_name = "logcounts”,
max_cells_ref = 5000,
max_cells_query = 5000

)
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Arguments

X
plot_type

alpha
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An object of class regressPCObject containing the output of the regressPC
function.

Type of plot to generate. Available options: "r_squared", "variance_contribution",
"coefficient_heatmap".

Significance threshold for p-values. Default is 0.05.

coefficients_include

query_data

reference_data

Character vector specifying which coefficient types to include in the coefficient
heatmap. Options are c("cell_type”, "batch”, "interaction"). Default is
NULL, which includes all available coefficient types. Only applies to plot_type
= "coefficient_heatmap”.

Additional arguments to be passed to the plotting functions.

A SingleCellExperiment object containing numeric expression matrix for the
query cells.

A SingleCellExperiment object containing numeric expression matrix for the
reference cells. If NULL, the PC scores are regressed against the cell types of
the query data.

query_cell_type_col

The column name in the colData of query_data that identifies the cell types.

ref_cell_type_col

query_batch_col

cell_types

pc_subset

adjust_method

assay_name
max_cells_ref

max_cells_query

Details

The column name in the colData of reference_data that identifies the cell
types.

The column name in the colData of query_data that identifies the batch or
sample. If provided, performs interaction analysis with cell types. Default is
NULL.

A character vector specifying the cell types to include in the analysis. If NULL,
all cell types are included.

A numeric vector specifying which principal components to include in the anal-
ysis. Default is PC1 to PC10.

A character string specifying the method to adjust the p-values. Options include
"BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr", or "none".
Default is "BH" (Benjamini-Hochberg).

Name of the assay on which to perform computations. Default is "logcounts".

Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

Principal component regression, derived from PCA, can be used to quantify the variance explained
by a covariate of interest. Applications for single-cell analysis include quantification of batch ef-
fects, assessing clustering homogeneity, and evaluating alignment of query and reference datasets
in cell type annotation settings.
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The function supports multiple regression scenarios:

* Query only, no batch: PC cell_type

* Query only, with batch: PC cell_type * batch

* Query + Reference, no batch: PC cell_type * dataset

* Query + Reference, with batch: PC cell_type * batch (where batch includes Reference)
When batch information is provided with reference data, batches are labeled as "Reference" for

reference data and "Query_BatchName" for query batches, with Reference set as the first factor
level for interpretation.

Value

The S3 plot method returns a ggplot object representing the specified plot type.

A list containing

» summaries of the linear regression models for each specified principal component,
* the corresponding R-squared (R2) values,
* the variance contributions for each principal component, and

* the total variance explained.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Luecken et al. Benchmarking atlas-level data integration in single-cell genomics. Nature Methods,
19:41-50, 2022.

See Also

regressPC

plot.regressPCObject

Examples

# Load data
data("reference_data")
data("query_data")

# Query only analysis

regress_res <- regressPC(query_data = query_data,
query_cell_type_col = "expert_annotation”,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
pc_subset = 1:10)

# Visualize results

plot(regress_res, plot_type = "r_squared"”)

plot(regress_res, plot_type = "variance_contribution”)
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plot(regress_res, plot_type = "coefficient_heatmap"”)

# Query + Reference analysis

regress_res <- regressPC(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
pc_subset = 1:10)

# Visualize results

plot(regress_res, plot_type = "r_squared")

plot(regress_res, plot_type = "variance_contribution”)

plot(regress_res, plot_type = "coefficient_heatmap"”)

plotBarplot Plot Barplots for Top Loading Gene Fold Changes (Pseudo-Bulk)

Description

This internal helper function creates a barplot visualization showing pseudo-bulk fold changes be-
tween different cell groups for top loading genes.

Usage

plotBarplot(
X,
cell_type,
available_pcs,
plot_by,
n_genes,
significance_threshold,
show_anomalies,
show_all_query = TRUE

)
Arguments
X An object of class calculateGeneShiftsObject containing expression data
and analysis results.
cell_type A character string specifying the cell type to visualize.

available_pcs A character vector of principal components to include in analysis.
plot_by A character string indicating gene selection criterion ("top_loading" or "p_adjusted").

n_genes An integer specifying the number of top genes to display per PC.
significance_threshold
A numeric value between 0 and 1 for significance annotation.

show_anomalies Logical indicating whether to show anomaly-related bars.
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show_all_query Logical indicating whether to show the yellow bar for all query vs reference
comparison. Default is TRUE. When FALSE, only green and red bars are
shown.

Details

This function generates a ggplot2 barplot where genes are arranged vertically in hierarchically clus-
tered order (identical to heatmap gene ordering), and horizontal bars show log2 fold changes for
different pseudo-bulk comparisons vs reference. The function creates an internal heatmap object
with the same parameters to extract the exact gene clustering order, ensuring consistency between
plot types.

Bar colors:

* Green: Query non-anomaly (pseudo-bulk) vs Reference (pseudo-bulk)

* Yellow: All Query (pseudo-bulk) vs Reference (pseudo-bulk) (shown when show_all_query
= TRUE and anomaly data available)

* Red: Query anomaly (pseudo-bulk) vs Reference (pseudo-bulk)

Value

A ggplot2 object ready for display, or NULL if no genes meet selection criteria.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

plotBoxplot Plot Boxplots for Top Loading Gene Shifts (Two-Panel Summary using
ggplor2)

Description

This internal helper function creates a comprehensive two-panel summary plot displaying gene
expression distributions and principal component loadings. The visualization uses ggplot2 faceting
to create side-by-side panels. Optionally includes anomaly status information using visual cues.

Usage

plotBoxplot(
X,
cell_type,
available_pcs,
plot_by,
n_genes,
significance_threshold,
show_anomalies
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Arguments
X An object of class calculateGeneShiftsObject containing expression data
and analysis results.
cell_type A character string specifying the cell type to visualize.

available_pcs A character vector of principal components to include in analysis.
plot_by A character string indicating gene selection criterion ("top_loading" or "p_adjusted").

n_genes An integer specifying the number of top genes to display per PC.
significance_threshold
A numeric value between 0 and 1 for significance annotation.

show_anomalies Logical indicating whether to show anomaly annotations using line type differ-
ences in boxplot borders.

Details

This function generates a dual-panel ggplot2 visualization where the left panel shows horizontal
boxplots of gene expression distributions comparing Reference and Query datasets, while the right
panel displays PC loading values as points with adjusted p-values. Gene selection is based on the
union of top genes across specified principal components.

When anomaly information is available and requested, anomalous cells are distinguished using
dashed boxplot borders (normal cells have solid borders). This approach avoids color conflicts
between dataset identification (fill colors) and PC identification (point colors/shapes).

Visual encoding:

* Dataset: Fill colors (Reference = blue, Query = red)
* Anomaly status: Line types (Normal = solid, Anomaly = dashed borders)

* PC identity: Point colors and shapes in loading panel

Value

A ggplot2 object ready for display, or NULL if no genes meet selection criteria. The returned plot
contains:

* Left panel: Expression boxplots with dataset-specific fill colors

* Right panel: PC loading scatter points with PC-specific colors/shapes
* Gene labels on y-axis with significance indicators (*)

* P-value annotations on secondary y-axis

* Legend showing dataset, PC information, and anomaly status (if applicable)

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plotHeatmap, plot.calculateGeneShiftsObject
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plotCellTypeMDS Plot Reference and Query Cell Types using MDS

Description

This function facilitates the assessment of similarity between reference and query datasets through
Multidimensional Scaling (MDS) scatter plots. It allows the visualization of cell types, color-coded
with user-defined custom colors, based on a dissimilarity matrix computed from a user-selected
gene set. If MDS coordinates are precomputed in reducedDims, they will be used; otherwise, MDS
will be computed from scratch.

Usage

plotCellTypeMDS(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

Arguments

query_data A SingleCellExperiment containing the single-cell expression data and meta-
data.

reference_data A SingleCellExperiment object containing the single-cell expression data and
metadata.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.
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Details

The function first checks if MDS coordinates are available in the reducedDims of both datasets. If
precomputed MDS is found, it uses those coordinates directly for visualization.

If MDS is not precomputed, the function selects specific subsets of cells from both reference and
query datasets. It then calculates Spearman correlations between gene expression profiles, deriv-
ing a dissimilarity matrix. This matrix undergoes Classical Multidimensional Scaling (MDS) for
visualization, presenting cell types in a scatter plot, distinguished by colors defined by the user.

Value

A ggplot object representing the MDS scatter plot with cell type coloring.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

* Kruskal, J. B. (1964). "Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis". *Psychometrika*, 29(1), 1-27. doi:10.1007/BF02289565.

* Borg, L., & Groenen, P. J. F. (2005). *Modern multidimensional scaling: Theory and applica-
tions* (2nd ed.). Springer Science & Business Media. doi:10.1007/978-0-387-25975-1.

Examples

# Load data
data("reference_data")
data("query_data")

# Generate the MDS scatter plot with cell type coloring
mds_plot <- plotCellTypeMDS(query_data = query_data,
reference_data = reference_data,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid")[1:4],

query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”)
mds_plot
plotCellTypePCA Plot Principal Components for Different Cell Types
Description

This function plots the principal components for different cell types in the query and reference
datasets.



78 plotCellTypePCA

Usage

plotCellTypePCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,

assay_name = "logcounts”,

lower_facet = c("scatter”, "contour”, "ellipse”, "blank"),
diagonal_facet = c("ridge"”, "density", "boxplot"),
upper_facet = c(”"blank”, "scatter”, "contour”, "ellipse"),

max_cells_query = 2000,
max_cells_ref = 2000

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is 1:5.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

lower_facet Type of plot to use for the lower panels. Either "scatter” (default), "contour”,
"ellipse", or "blank".

diagonal_facet Type of plot to use for the diagonal panels. Either "ridge" (default), "density",
or "boxplot".

upper_facet Type of plot to use for the upper panels. FEither "blank" (default), "scatter",
"contour", or "ellipse".

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 2000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 2000.
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Details

This function projects the query dataset onto the principal component space of the reference dataset
and then plots the specified principal components for the specified cell types. It uses the ‘project-
PCA° function to perform the projection and GGally to create the pairs plot.

Value

A ggmatrix object representing a pairs plot of specified principal components for the given cell
types and datasets.

plotCoefficientHeatmap
Generate Regression Coefficients Heatmap

Description

Creates a heatmap visualization of regression coefficients from principal component regression
analysis, organized by coefficient type (cell type, batch, interaction) and annotated with signifi-
cance indicators.

Usage
plotCoefficientHeatmap(x, alpha = 0.05, coefficients_include = NULL, ...)
Arguments
X An object of class regressPCObject containing regression results from regressPC
function.
alpha Numeric value specifying the significance threshold for p-value adjustment. De-
fault is 0.05.

coefficients_include

Character vector specifying which coefficient types to include. Options are
c("cell_type”, "batch”, "interaction"). Default is NULL, which includes
all available coefficient types.

Additional arguments passed to the plotting function (currently unused).

Details

This function generates a comprehensive heatmap showing regression coefficients for each principal
component and model term. The visualization includes:

* Color-coded coefficient values (blue = negative, red = positive)

» Significance indicators (asterisks) for adjusted p-values below threshold

* Faceted organization by coefficient category (Cell Type, Batch, Interaction)

* Clean term labels with proper formatting and reference category information



80 plotGeneExpressionDimred

The function handles different model types automatically:

» Simple cell type models: PC ~ cell_type
e Batch interaction models: PC ~ cell_type * batch

¢ Dataset interaction models: PC ~ cell_type * dataset

Term labels are cleaned and formatted for better readability, with batch/dataset terms converted
to consistent "Query Batch" terminology. The plot includes comprehensive subtitle information
showing model specification, significance threshold, and reference categories.

Value
A ggplot2 object representing the regression coefficients heatmap with faceted organization and
significance annotations.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

plotGeneExpressionDimred
Visualize gene expression on a dimensional reduction plot

Description

This function plots gene expression on a dimensional reduction plot using methods like t-SNE,
UMAP, or PCA. Each single cell is color-coded based on the expression of a specific gene or
feature.

Usage

plotGeneExpressionDimred(
sce_object,
method = c("TSNE", "UMAP”, "PCA"),
pc_subset = 1:5,
feature,
cell_type_col,
cell_types = NULL,
assay_name = "logcounts”,
max_cells = 2000
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Arguments

sce_object An object of class SingleCellExperiment containing log-transformed expres-
sion matrix and other metadata. It can be either a reference or query dataset.

method The reduction method to use for visualization. It should be one of the supported
methods: "TSNE", "UMAP", or "PCA".

pc_subset An optional vector specifying the principal components (PCs) to include in the
plot if method = "PCA". Default is 1:5.

feature A character string representing the name of the gene or feature to be visualized.

cell_type_col The column name in the colData of sce_object that identifies the cell types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

max_cells Maximum number of cells to retain. If the object has fewer cells, it is returned

unchanged. Default is 2000.

Value

A ggplot object representing the dimensional reduction plot with gene expression.

Examples

# Load data
data("query_data")

# Plot gene expression on PCA plot
plotGeneExpressionDimred(sce_object = query_data,
cell_type_col = "SingleR_annotation”,
method = "PCA",
pc_subset = 1:5,
feature = "CD8A",
cell_types = "CD4")

plotGeneSetScores Visualization of gene sets or pathway scores on dimensional reduction
plot

Description

Plot gene sets or pathway scores on PCA, TSNE, or UMAP. Single cells are color-coded by scores
of gene sets or pathways.
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Usage
plotGeneSetScores(
sce_object,
cell_type_col,
method = c("PCA”, "TSNE", "UMAP"),
score_col,
pc_subset = 1:5,
cell_types = NULL,
max_cells = 2000
)
Arguments
sce_object An object of class SingleCellExperiment containing numeric expression ma-

cell_type_col
method

score_col

pc_subset

cell_types

max_cells

Details

trix and other metadata. It can be either a reference or query dataset.
The column name in the colData of sce_object that identifies the cell types.

A character string indicating the method for visualization ("PCA", "TSNE", or
"UMAP").

A character string representing the name of the score_col (score) in the col-
Data(sce_object) to plot.

An optional vector specifying the principal components (PCs) to include in the
plot if method = "PCA". Default is 1:5.

A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

Maximum number of cells to retain. If the object has fewer cells, it is returned
unchanged. Default is 2000.

This function plots gene set scores on reduced dimensions such as PCA, t-SNE, or UMAP. It extracts
the reduced dimensions from the provided SingleCellExperiment object. Gene set scores are
visualized as a scatter plot with colors indicating the scores. For PCA, the function automatically
includes the percentage of variance explained in the plot’s legend.

Value

A ggplot2 object representing the gene set scores plotted on the specified reduced dimensions.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

# Load data

data("query_data")
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# Plot gene set scores on PCA
plotGeneSetScores(sce_object = query_data,
method = "PCA",
score_col = "gene_set_scores”,
pc_subset = 1:5,
cell_types = "CD8",
cell_type_col = "SingleR_annotation"”)

plotHeatmap Plot Heatmaps for Top Loading Gene Shifts (Simplified Single
Heatmap)

Description

This internal helper function creates a single, hierarchically clustered heatmap displaying expres-
sion data for top loading genes from principal component analysis. The function handles gene
selection, data preprocessing, and visualization formatting. Optionally includes anomaly status
annotations with proper cell ordering.

Usage

plotHeatmap(
X,
cell_type,
available_pcs,
plot_by,
n_genes,
significance_threshold,
show_anomalies,
pseudo_bulk = FALSE,
cluster_cols = FALSE

)
Arguments
X An object of class calculateGeneShiftsObject containing expression data
and analysis results.
cell_type A character string specifying the cell type to visualize.

available_pcs A character vector of principal components to include in analysis.
plot_by A character string indicating gene selection criterion ("top_loading" or "p_adjusted").

n_genes An integer specifying the number of top genes to display per PC. Can be NULL.
significance_threshold
A numeric value between 0 and 1 for significance filtering. Can be NULL.

show_anomalies Logical indicating whether to show anomaly annotations.
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pseudo_bulk Logical indicating whether to create pseudo-bulk profiles instead of showing
individual cells. When TRUE, expression values are averaged within groups
(dataset and optionally anomaly status). Not compatible with boxplot visualiza-
tion. Default is FALSE.

cluster_cols  Logical indicating whether to cluster columns in the heatmap when ‘pseudo_bulk
= TRUE*. When TRUE, columns (pseudo-bulk profiles) will be hierarchically
clustered. When FALSE, columns maintain their original ordering (Query groups
followed by Reference groups). Only applicable when ‘pseudo_bulk = TRUE*
and ‘plot_type = "heatmap"‘. Default is FALSE.

Details

This function generates a ComplexHeatmap visualization showing scaled gene expression data
across cells. Genes are selected based on either their loading values or statistical significance.
The function automatically handles data filtering, scaling, and visual formatting including color
schemes and annotations.

Cell ordering (left to right): 1. Query Anomalous cells (leftmost) 2. Query Normal cells 3. Refer-
ence Anomalous cells 4. Reference Normal cells (rightmost)

This ensures clear dataset separation while grouping anomalous cells together within each dataset
for easy visual identification.

Value

A ComplexHeatmap object ready for plotting, or NULL if no genes meet selection criteria.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

plotMarkerExpression  Plot gene expression distribution from overall and cell type-specific
perspective

Description

This function generates density plots to visualize the distribution of gene expression values for a
specific gene across the overall dataset and within a specified cell type.

Usage

plotMarkerExpression(
query_data,
reference_data,
ref_cell_type_col,
query_cell_type_col,
cell_type,
gene_name,
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assay_name = "logcounts”,

normalization = c("z_score”, "min_max", "rank”, "none"),
max_cells_query = NULL,

max_cells_ref = NULL

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

cell_type A cell type to plot (e.g., c("T-cell", "B-cell")).
gene_name The gene name for which the distribution is to be visualized.
assay_name Name of the assay on which to perform computations. Default is "logcounts".

normalization Method for normalizing expression values. Options: "z_score" (default), "min_max",

"rank", "none".

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is NULL.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is NULL.

Details

This function generates density plots to compare the distribution of a specific marker gene between
reference and query datasets. The aim is to inspect the alignment of gene expression levels as a
surrogate for dataset similarity. Similar distributions suggest a good alignment, while differences
may indicate discrepancies or incompatibilities between the datasets.

Multiple normalization options are available: - "z_score": Standard z-score normalization within
each dataset - "min_max": Min-max scaling to [0,1] range within each dataset - "rank": Maps values
to quantile ranks (0-100 scale) - "none": No transformation (preserves original scale differences)

Value

A ggplot object containing density plots comparing reference and query distributions.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>
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Examples

# Load data
data("reference_data")
data("query_data")

# Note: Users can use SingleR or any other method to obtain the cell type annotations.
plotMarkerExpression(reference_data = reference_data,
query_data = query_data,

ref_cell_type_col = "expert_annotation”,
query_cell_type_col = c("expert_annotation”, "SingleR_annotation”)[1],
gene_name = "CD8A",
cell_type = "CD4",
normalization = "z_score")

plotPairwiseDistancesDensity
Ridgeline Plot of Pairwise Distance Analysis

Description

This function calculates pairwise distances or correlations between query and reference cells of a
specified cell type and visualizes the results using ridgeline plots, displaying the density distribution
for each comparison.

Usage

plotPairwiseDistancesDensity(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,

cell_type,

pc_subset = 1:5,

distance_metric = c("correlation”, "euclidean"),
correlation_method = c("spearman”, "pearson"),
bandwidth = 0.25,

assay_name = "logcounts”,

max_cells_query = 5000,
max_cells_ref = 5000

Arguments
query_data A SingleCellExperiment containing the single-cell expression data and meta-
data.

reference_data A SingleCellExperiment object containing the single-cell expression data and
metadata.
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query_cell_type_col

The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col

The column name in the colData of reference_data that identifies the cell

types.
cell_type The cell type for which distances or correlations are calculated.
pc_subset A numeric vector specifying which principal components to use in the analysis.

Default is 1:5. If set to NULL, the assay data is used directly for computations
without dimensionality reduction.
distance_metric
The distance metric to use for calculating pairwise distances, such as euclidean,
manhattan, etc. Set to "correlation" to calculate correlation coefficients.
correlation_method
The correlation method to use when distance_metric is "correlation". Possi-
ble values are "pearson” and "spearman".
bandwidth Numeric value controlling the smoothness of the density estimate; smaller val-
ues create more detailed curves. Default is 0.25.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

Details

Designed for SingleCellExperiment objects, this function subsets data for the specified cell type,
computes pairwise distances or correlations, and visualizes these measurements through ridgeline
plots. The plots help evaluate the consistency and differentiation of annotated cell types within
single-cell datasets.

Value

A ggplot2 object showing ridgeline plots of calculated distances or correlations.

See Also

calculateWassersteinDistance

Examples

# Load data
data("reference_data")
data("query_data")

# Example usage of the function
plotPairwiseDistancesDensity(query_data = query_data,
reference_data = reference_data,
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query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
cell_type = "CD8",
pc_subset = 1:5,
distance_metric = "euclidean”,
correlation_method = "pearson”)

plotQCvsAnnotation Scatter plot: QC stats vs Cell Type Annotation Scores
Description

Creates a scatter plot to visualize the relationship between QC stats (e.g., library size) and cell type
annotation scores for one or more cell types.

Usage

plotQCvsAnnotation(

sce_object,

cell_type_col,
cell_types = NULL,

qc_col,
score_col,

max_cells = 5000

Arguments

sce_object

cell_type_col

cell_types

gc_col

score_col

max_cells

A SingleCellExperiment containing the single-cell expression data and meta-
data.

The column name in the colData of sce_object that contains the cell type
labels.

A vector of cell type labels to plot (e.g., c("T-cell", "B-cell")). Defaults to NULL,
which will include all the cells.

A column name in the colData of sce_object that contains the QC stats of
interest.

The column name in the colData of sce_object that contains the cell type
annotation scores.

Maximum number of cells to retain. If the object has fewer cells, it is returned
unchanged. Default is 5000.
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Details

This function generates a scatter plot to explore the relationship between various quality control
(QC) statistics, such as library size and mitochondrial percentage, and cell type annotation scores.
By examining these relationships, users can assess whether specific QC metrics, systematically
influence the confidence in cell type annotations, which is essential for ensuring reliable cell type
annotation.

Value

A ggplot object displaying a scatter plot of QC stats vs annotation scores, where each point repre-
sents a cell, color-coded by its cell type.

Examples

# Load data
data("qc_data")

# Remove cell types with very few cells
gc_data_subset <- gc_datal, !(gc_data$SingleR_annotation
%in% c("Chondrocytes”, "DC",
"Neurons”,"Platelets”))]

p1 <- plotQCvsAnnotation(sce_object = gc_data_subset,
cell_type_col = "SingleR_annotation”,
cell_types = NULL,
gc_col = "total”,
score_col = "annotation_scores”)

p1 + ggplot2::xlab("Library Size")

plotRSquared Generate R-squared Bar Plot with Component Breakdown

Description

Creates a bar plot visualization of R-squared values for each principal component, with optional
stacked bars showing the contribution of individual model components (cell type, batch/dataset,
and interaction effects) when component decomposition is available.

Usage
plotRSquared(x, ...)
Arguments
X An object of class regressPCObject containing regression results from regressPC

function.

Additional arguments passed to the plotting function (currently unused).



90 plotVarianceContribution

Details

This function generates either a simple bar plot or a stacked bar plot depending on the availability
of component-wise R-squared decomposition in the input object. When component breakdown is
available, the bars are stacked to show:

* Cell type main effect (blue)
* Batch or dataset main effect (orange)
* Interaction effect (green)
Principal component labels include the percentage of total variance explained by each PC. The total

R-squared value is displayed above each bar. For query-only analyses, the function uses query PCA
variance; for query+reference analyses, it uses reference PCA variance.

Value

A ggplot2 object representing the R-squared bar plot with optional component breakdown.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

plotVarianceContribution
Generate Variance Contribution Bar Plot with Component Breakdown

Description

Creates a bar plot visualization of variance contributions for each principal component, showing
how much total dataset variance is explained by the regression model. When available, displays
stacked bars showing individual component contributions (cell type, batch/dataset, and interaction

effects).
Usage
plotVarianceContribution(x, ...)
Arguments
X An object of class regressPCObject containing regression results from regressPC

function.

Additional arguments passed to the plotting function (currently unused).
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Details

This function visualizes the variance contribution of each principal component, calculated as the
product of PC variance and R-squared values. The variance contribution represents the percentage
of total dataset variance explained by the regression model for each PC.

When component decomposition is available, the function creates stacked bars with:

¢ Cell type main effect contribution (blue)
* Batch or dataset main effect contribution (orange)

* Interaction effect contribution (green)

The plot subtitle includes the total variance explained across all principal components. PC labels
show the individual variance percentage for each component. The function automatically selects
appropriate PCA variance values based on analysis type (query-only vs. query+reference).

Value
A ggplot2 object representing the variance contribution bar plot with optional component break-
down.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

processGenesSimple Process Genes for Statistical Analysis

Description

Internal helper function that performs statistical testing on top loading genes to compare their ex-
pression distributions between query and reference datasets.

Usage

processGenesSimple(
top_genes,
top_loadings,
query_expr_matrix,
ref_expr_matrix,
cell_type
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Arguments

top_genes

top_loadings

processPCA

Character vector of gene names to analyze.

Numeric vector of PC loading values corresponding to the genes.

query_expr_matrix

ref_expr_matrix

cell_type

Value

Numeric matrix of expression values for query data (genes x cells).

Numeric matrix of expression values for reference data (genes x cells).

Character string specifying the cell type being analyzed.

A list of data frames, where each data frame contains results for one gene.

processPCA

Process PCA for SingleCellExperiment Objects

Description

This function ensures that a SingleCellExperiment object has valid PCA computed using highly
variable genes when needed. It only performs downsampling when PCA computation is required,
preserving existing valid PCA computations without modification.

Usage
processPCA(
sce_object,
assay_name = "logcounts”,
n_hvgs = 2000,
max_cells = NULL
)
Arguments
sce_object A SingleCellExperiment object to process.
assay_name Name of the assay to use for HVG selection and PCA computation. Should
contain log-normalized expression values. Default is "logcounts".
n_hvgs Number of highly variable genes to select for PCA computation. Default is
2000.
max_cells Maximum number of cells to retain if downsampling is needed for PCA compu-

tation. If NULL, no downsampling is performed. Default is NULL.
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Details

The function performs the following operations:

Checks if PCA exists and is valid in the provided SingleCellExperiment object

Validates PCA integrity including rotation matrix, percentVar, gene consistency, and dimen-
sions

If PCA is valid, returns the object unchanged (no downsampling)
If PCA is missing or invalid and dataset is large, downsamples before computing PCA
Computes PCA using highly variable genes when PCA is missing or invalid

Utilizes scran for HVG selection and scater for PCA computation (soft dependencies)

The downsampling strategy uses random sampling without replacement and only occurs when PCA
computation is necessary. This preserves expensive pre-computed PCA results while ensuring com-
putational efficiency for new PCA computations.

PCA validation includes checking for:

Value

Presence of PCA in reducedDims
Existence of rotation matrix and percentVar attributes
Gene consistency between rotation matrix and current assay

Dimension consistency between PCA coordinates and cell count

A SingleCellExperiment object with valid PCA in the reducedDims slot, including rotation ma-
trix and percentVar attributes. Will have original cell count if PCA was valid, or at most max_cells
if PCA was computed.

Note

This function requires the scran and scater packages for HVG selection and PCA computation.

non

These packages should be installed via BiocManager::install(c("scran", "scater")).

Objects with existing valid PCA are returned unchanged to preserve expensive pre-computations.
Only datasets requiring PCA computation are subject to downsampling.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

library(SingleCellExperiment)

# Load data
data("reference_data")
data("query_data")

# Example 1: Dataset without PCA (will compute PCA)
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query_no_pca <- query_data
reducedDims (query_no_pca) <- list() # Remove existing PCA

processed_query <- processPCA(sce_object = query_no_pca, n_hvgs = 500)
"PCA" %in% reducedDimNames(processed_query) # Should be TRUE
ncol(processed_query) # Should be 503 (unchanged)

# Example 2: Dataset with existing valid PCA (will be preserved)
processed_existing <- processPCA(sce_object = query_data, n_hvgs = 500)
ncol (processed_existing) # Should be 503 (unchanged, no downsampling)

# Example 3: Large dataset requiring downsampling for PCA computation
ref_no_pca <- reference_data
reducedDims(ref_no_pca) <- list() # Remove existing PCA

processed_large <- processPCA(sce_object = ref_no_pca,
n_hvgs = 800,
max_cells = 1000)
ncol (processed_large) # Should be 1000 (downsampled for PCA computation)

# Example 4: Large dataset with existing PCA (no downsampling)
processed_large_existing <- processPCA(sce_object = reference_data,

n_hvgs = 800,

max_cells = 1000)
ncol (processed_large_existing) # Should be 1500 (preserved, no downsampling)

projectPCA Project Query Data Onto PCA Space of Reference Data

Description

This function projects a query singleCellExperiment object onto the PCA space of a reference sin-
gleCellExperiment object. The PCA analysis on the reference data is assumed to be pre-computed
and stored within the object. Optionally filters by cell types and downsamples the results.

Usage

projectPCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:10,
assay_name = "logcounts”,
max_cells_query = NULL,
max_cells_ref = NULL
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Arguments

qguery_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
character. The column name in the colData of query_data that identifies the
cell types.

ref_cell_type_col
character. The column name in the colData of reference_data that identifies
the cell types.

cell_types A character vector specifying which cell types to retain in the output. If NULL,
no cell type filtering is performed. Default is NULL.

pc_subset A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is 1:10.

assay_name Name of the assay on which to perform computations. Defaults to "logcounts”.
max_cells_query

Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is NULL.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is NULL.

Details

This function assumes that the "PCA" element exists within the reducedDims of the reference data
(obtained using reducedDim(reference_data)) and that the genes used for PCA are present in
both the reference and query data. It performs centering and scaling of the query data based on
the reference data before projection using the FULL datasets to maintain proper mean centering.
Cell type filtering and downsampling are performed AFTER projection to preserve the statistical
properties of the PCA space. Cell names from the original SCE objects are preserved as rownames
in the output.

Value

A data. frame containing the projected data in rows (reference and query data combined), option-
ally filtered by cell types and downsampled. Rownames preserve the original cell names from the
SCE objects.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

# Load data
data("reference_data")
data("query_data")
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# Project the query data onto PCA space of reference

pca_output <- projectPCA(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

# Project with cell type filtering and balanced downsampling
pca_output_filtered <- projectPCA(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5,
cell_types = c("CD4", "CD8"),
max_cells_ref = 1000,
max_cells_query = 1000)

projectSIR Project Query Data Onto SIR Space of Reference Data

Description

This function projects a query SingleCellExperiment object onto the SIR (supervised indepen-
dent component) space of a reference SingleCellExperiment object. The SVD of the reference
data is computed on conditional means per cell type, and the query data is projected based on these
reference components.

Usage

projectSIR(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
multiple_cond_means = TRUE,
cumulative_variance_threshold = 0.7,
n_neighbor = 1,
assay_name = "logcounts”,
max_cells_query = 5000,
max_cells_ref = 5000

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.
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reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
A character string specifying the column in the colData of query_data that
identifies the cell types.

ref_cell_type_col
A character string specifying the column in the colData of reference_data
that identifies the cell types.

cell_types A character vector of cell types for which to compute conditional means in the
reference data.

multiple_cond_means
A logical value indicating whether to compute multiple conditional means per
cell type (through PCA and clustering). Defaults to TRUE.

cumulative_variance_threshold
A numeric value between 0 and 1 specifying the variance threshold for PCA
when computing multiple conditional means. Defaults to 0. 7.

n_neighbor An integer specifying the number of nearest neighbors for clustering when com-
puting multiple conditional means. Defaults to 1.

assay_name A character string specifying the assay name on which to perform computations.
Defaults to "logcounts”.

max_cells_query
Maximum number of query cells to retain after cell type filtering. If NULL, no
downsampling of query cells is performed. Default is 5000.

max_cells_ref Maximum number of reference cells to retain after cell type filtering. If NULL,
no downsampling of reference cells is performed. Default is 5000.

Details

The genes used for the projection (SVD) must be present in both the reference and query datasets.
The function first computes conditional means for each cell type in the reference data, then performs
SVD on these conditional means to obtain the rotation matrix used for projecting both the reference
and query datasets. The query data is centered and scaled based on the reference data.

Value

A list containing:

cond_means A matrix of the conditional means computed for the reference data.
rotation_mat The rotation matrix obtained from the SVD of the conditional means.
sir_projections
A data. frame containing the SIR projections for both the reference and query
datasets.

percent_var The percentage of variance explained by each component of the SIR projection.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>
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gc_data

Examples

# Load data
data("reference_data")
data("query_data")

# Project the query data onto SIR space of reference
sir_output <- projectSIR(query_data = query_data,

reference_data = reference_data,

query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”)
gc_data Quality Control Single-Cell RNA-Seq Dataset

Description

This dataset contains the processed query dataset from the Bunis haematopoietic stem and progen-
itor cell data. It has been preprocessed to include log-normalized counts, QC metrics, SingleR cell
type predictions, and annotation scores.

Usage

gc_data

Format

An object of class SingleCellExperiment with 500 rows and 750 columns.

Details

This dataset underwent the following steps:

Loads the hpca reference dataset using fetchReference from the celldex package.

Loads the QC dataset (Bunis haematopoietic stem and progenitor cell data) from Bunis DG et
al. (2021).

Adds QC metrics to the QC dataset using the function addPerCellQCMetrics from the scuttle
package.

Performs log normalization on the QC dataset using the function logNormCounts from the
scuttle package.

Runs SingleR to predict cell types and assigns predicted labels to the QC dataset using the
function SingleR from the SingleR package.

Assigns annotation scores to the QC dataset.

Selects specific columns (total, SingleR_annotation, annotation_scores) from the cell
metadata for downstream analysis.

Selects highly variable genes (HVGs) using the function getTopHVGs from the scran package
on the QC dataset.



query_data 99

Source
Bunis DG et al. (2021). Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human
Naive T Cells Cell Rep. 34(1): 108573

References
Bunis DG et al. (2021). Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human
Naive T Cells Cell Rep. 34(1): 108573

See Also

Use data("qc_data") to load and access the resulting quality control dataset.

Examples

# Load and explore the quality control dataset
data("qc_data")

query_data Query Single-Cell RNA-Seq Dataset

Description

This dataset contains the processed query dataset from the HeOrganAtlas dataset for Marrow tissue.
It has been preprocessed to include log-normalized counts, specific metadata columns, annotations
based on SingleR cell type scoring, and PCA, t-SNE, and UMAP results.

Usage

query_data

Format

An object of class SingleCellExperiment with 392 rows and 503 columns.

Details

This dataset underwent the following steps:

* Loads the HeOrganAtlas dataset specifically for Marrow tissue from the scRNAseq package.
 Divides the loaded dataset into a query dataset used for downstream analysis.

* Performs log normalization on the query dataset using the function logNormCounts from the
scuttle package.

* Selects specific columns (percent_mito, expert_annotation) from the cell metadata for
downstream analysis.
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* Selects highly variable genes (HVGs) using the function getTopHVGs from the scran package
on the query dataset.

» Computes AUC gene set scores using the function AUCell_calcAUC from the AUCell package
based on a CD4 T cell signature containing 12 known CD4 T cell marker genes (IL7R, CCR7,
SELL, LEF1, TCF7, LTB, KLF2, IL32, CD2, CD3D, CD3E, CD3G) and adds these scores to
the query dataset as gene_set_scores.

* Intersects the highly variable genes between the query and reference datasets to obtain com-
mon genes for analysis.

* Performs Principal Component Analysis (PCA) on the query dataset using the function runPCA
from the scater package.

 Performs t-Distributed Stochastic Neighbor Embedding (t-SNE) on the query dataset using
the function runTSNE from the scater package.

* Performs Uniform Manifold Approximation and Projection (UMAP) on the query dataset
using the function runUMAP from the scater package.

* Adds SingleR annotations (SingleR_annotation) and annotation scores (annotation_scores)
to the query dataset using the function SingleR from the SingleR package.

Source

The HeOrganAtlas dataset, available through the scRNAseq package.

References
He, et al. (2020). HeOrganAtlas: a comprehensive human organ atlas based on single-cell RNA
sequencing.

See Also

Use data("query_data") toload and access the resulting query dataset and the data("reference_data")
for comparison with the reference dataset.

Examples

# Load and explore the query dataset
data("query_data")

reference_data Reference Single-Cell RNA-Seq Dataset

Description

This dataset contains the processed reference dataset from the HeOrganAtlas dataset for Marrow
tissue. It has been preprocessed to include log-normalized counts, specific metadata columns, and
PCA, t-SNE, and UMAP results.
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Usage

reference_data

Format

An object of class SingleCellExperiment with 392 rows and 1500 columns.

Details

This dataset underwent the following steps:

* Loads the HeOrganAtlas dataset specifically for Marrow tissue from the scRNAseq package.
* Divides the loaded dataset into a reference dataset used for downstream analysis.

 Performs log normalization on the reference dataset using the function logNormCounts from
the scuttle package.

* Selects the column expert_annotation) from the cell metadata for downstream analysis.

* Selects highly variable genes (HVGs) using the function getTopHVGs from the scran package
on the reference dataset.

 Performs Principal Component Analysis (PCA) on the reference dataset using the function
runPCA from the scater package.

* Performs t-Distributed Stochastic Neighbor Embedding (t-SNE) on the reference dataset using
the function runTSNE from the scater package.

 Performs Uniform Manifold Approximation and Projection (UMAP) on the reference dataset
using the function runUMAP from the scater package.
Source

The HeOrganAtlas dataset, available through the scRNAseq package.

References
He, et al. (2020). HeOrganAtlas: a comprehensive human organ atlas based on single-cell RNA
sequencing.

See Also

Use data("reference_data") to load and access the resulting reference dataset.

Examples

# Load and explore the reference dataset
data("reference_data")
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regressFastCustom Fast Custom Linear Regression for Principal Components

Description
Performs efficient linear regression of principal component scores against categorical predictors
(cell types, batches, datasets, or their interactions) using QR decomposition for numerical stability
and computational efficiency.

Usage

regressFastCustom(pc, indep_var, df)

Arguments
pc A character string specifying the principal component column name in the data
frame.
indep_var A character string specifying the independent variable specification. Options in-
clude "cell_type", "cell_type * batch", "cell_type * dataset", or other interaction
specifications.
df A data frame containing the principal component scores and categorical predic-
tors. Must include columns for the specified PC and predictor variables.
Details

This function implements a custom linear regression optimized for categorical predictors commonly
used in single-cell RNA sequencing analysis. It uses QR decomposition instead of normal equa-
tions for improved numerical stability and handles rank-deficient design matrices gracefully. The
function supports various model specifications including:

» Simple cell type effects: PC ~ cell_type
* Cell type and batch interactions: PC ~ cell_type * batch
¢ Cell type and dataset interactions: PC ~ cell_type * dataset

The output format is compatible with speedglm results to maintain consistency with existing plot-
ting and analysis workflows.

Value
A list containing:

coefficients A data frame with columns coef, se, t, and p.value containing regression
coefficients, standard errors, t-statistics, and p-values.

r_squared A numeric value representing the R-squared of the model.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>
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selectCellTypes Cell Type Selection and Validation for SingleCellExperiment Analysis

Description

This function selects and validates cell types for functions that analyze SingleCellExperiment
objects. It determines which cell types to include based on availability in datasets, applies filtering
criteria, and optionally selects the top cell types by cell count.

Usage

selectCellTypes(
query_data = NULL,
reference_data = NULL,
query_cell_type_col = NULL,
ref_cell_type_col = NULL,
cell_types = NULL,
dual_only = FALSE,
n_cell_types = NULL

Arguments

guery_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. Can be NULL if only reference data is available.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells. Can be NULL if only query data is available.
query_cell_type_col

The column name in the colData of query_data that identifies the cell types.
Should be NULL if query_data is NULL.

ref_cell_type_col

The column name in the colData of reference_data that identifies the cell
types. Should be NULL if reference_data is NULL.

cell_types A character vector specifying the cell types to validate. If NULL, cell types will
be automatically selected based on dataset availability and dual_only setting.

dual_only A logical value indicating whether cell types must be present in both datasets. If
TRUE, both query_data and reference_data must be provided, and only cell
types present in both datasets will be considered. Default is FALSE.

n_cell_types An integer specifying the maximum number of cell types to select based on
highest cell count. If NULL, all valid cell types are returned. Default is NULL.

Details
The function performs the following selection and validation steps:

* Validates that at least one of query_data or reference_data is provided.
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* When dual_only is TRUE, ensures both datasets are provided.
* Determines available cell types based on dataset availability and dual_only setting.
* Ifcell_typesis NULL and both datasets are available, includes cell types based on dual_only.

o If cell_types is NULL and only one dataset is available, includes all cell types from that
dataset.

o If cell_types is provided, filters to include only valid types.
* If n_cell_types is specified, selects the top cell types by total cell count.

» Returns the selected and validated cell types as character strings.

Value

A character vector of selected cell types that meet the specified criteria.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>
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