Package ‘scDblFinder’

February 2, 2026

Type Package
Title scDblFinder
Version 1.25.0

URL https://github.com/plger/scDblFinder,
https://plger.github.io/scDblFinder/

BugReports https://github.com/plger/scDblFinder/issues

Description The scDblFinder package gathers various methods for the detection and
handling of doublets/multiplets in single-cell sequencing data (i.e.
multiple cells captured within the same droplet or reaction volume). It
includes methods formerly found in the scran package, the new fast
and comprehensive scDblFinder method, and a reimplementation of the
Amulet detection method for single-cell ATAC-seq.

License GPL-3 + file LICENSE
Depends R (>=4.0), SingleCellExperiment

Imports igraph, Matrix, BiocGenerics, BiocParallel, BiocNeighbors,
BiocSingular, S4Vectors, SummarizedExperiment, scran, scater,
scuttle, bluster, methods, DelayedArray, xgboost, stats, utils,
MASS, IRanges, GenomicRanges, GenomelnfoDb, Rsamtools,
rtracklayer

Suggests BiocStyle, knitr, rmarkdown, testthat, sScRNAseq, circlize,
ComplexHeatmap, ggplot2, dplyr, viridisLite, mbkmeans

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2

biocViews Preprocessing, SingleCell, RNASeq, ATACSeq
git_url https://git.bioconductor.org/packages/scDblFinder
git_branch devel

git_last_commit dffelfe

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

https://github.com/plger/scDblFinder
https://plger.github.io/scDblFinder/
https://github.com/plger/scDblFinder/issues

2 addDoublets

Date/Publication 2026-02-01

Author Pierre-Luc Germain [cre, aut] (ORCID:

<https://orcid.org/0000-0003-3418-4218>),
Aaron Lun [ctb]

Maintainer Pierre-Luc Germain <pierre-luc.germain@hest.ethz.ch>

Contents
addDoublets e 2
aggregateFeatures Lo 3
amulet L e e e 5
amuletFromCounts e 6
clamulet e e e e e 7
clusterStickiness e e e e e e e e 8
computeDoubletDensity 9
createDoublets L L e e e 12
CXdS2 .. e e e e 13
directDblClassification e e 14
doubletPairwiseEnrichment, 15
doubletThresholding e 16
fastcluster e e e e e 17
findDoubletClusters e e e e 18
getArtificialDoublets 21
getCellPairs e 22
getExpectedDoublets 23
getFragmentOverlaps L 24
mockDoubletSCE 26
plotDoubletMap 27
plotThresholds 28
propHomotypic 28
recoverDoublets 29
scDbIFinder e e 31
selFeatures L e e e e 36
TFIDF e 36

Index 38

addDoublets addDoublets
Description

Adds artificial doublets to an existing dataset

https://orcid.org/0000-0003-3418-4218

aggregateFeatures 3

Usage

addDoublets(
X,
clusters,
dbr = (0.01 * ncol(x)/1000),
only.heterotypic = TRUE,
adjustSize = FALSE,
prefix = "doublet."”,

)
Arguments
X A count matrix of singlets, or a SummarizedExperiment-class
clusters A vector of cluster labels for each column of ‘x°
dbr The doublet rate

only.heterotypic
Whether to add only heterotypic doublets.

adjustSize Whether to adjust the library sizes of the doublets.
prefix Prefix for the colnames generated.

Any further arguments to createDoublets.

Value

A ‘SingleCellExperiment‘ with the colData columns ‘cluster‘ and ‘type‘ (indicating whether the
cell is a singlet or doublet).

Examples

sce <- mockDoubletSCE(dbl.rate=0)
sce <- addDoublets(sce, clusters=sce$cluster)

aggregateFeatures aggregateFeatures

Description

Aggregates similar features (rows).

4 aggregateFeatures

Usage
aggregateFeatures(
X,
dims.use = seq(2L, 12L),
k = 1000,

num_init = 3,
use.mbk = NULL,
use.subset = 20000,
minCount = 1L,
norm.fn = TFIDF,
twoPass = FALSE,

)
Arguments

X A integer/numeric (sparse) matrix, or a ‘SingleCellExperiment including a ‘counts*
assay.

dims.use The PCA dimensions to use for clustering rows.

k The approximate number of meta-features desired

num_init The number of initializations used for k-means clustering.

use.mbk Logical; whether to use minibatch k-means (see mbkmeans). If NULL, the mini-
batch approach will be used if there are more than 30000 features.

use.subset How many cells (columns) to use to cluster the features.

minCount The minimum number of counts for a region to be included.

norm.fn The normalization function to use on the un-clustered data (a function taking a
count matrix as a single argument and returning a matrix of the same dimen-
sions). TFIDF by default.

twoPass Logical; whether to perform the procedure twice, so in the second round cells
are aggregated based on the meta-features of the first round, before re-clustering
the features. Ignored if the dataset has fewer than ‘use.subset® cells.
Passed to mbkmeans. Can for instance be used to pass the ‘BPPARAM* argument
for multithreading.

Value

An aggregated version of ‘x* (either an array or a ‘SingleCellExperiment*, depending on the input).
If ‘x*“ is a ‘SingleCellExperiment, the feature clusters will also be stored in ‘metadata(x)$featureGroups*

amulet 5

amulet amulet

Description

ATACseq (Thibodeau, Eroglu, et al., Genome Biology 2021). The rationale is that cells with unex-
pectedly many loci covered by more than two reads are more likely to be doublets.

Usage
amulet(x, ...)
Arguments
X The path to a fragments file, or a GRanges object containing the fragments (with
the ‘name‘ column containing the barcode, and the ‘score‘ column containing
the count).
Any argument to getFragmentOverlaps.
Details

When used on normal (or compressed) fragment files, this implementation is relatively fast (ex-
cept for reading in the data) but it has a large memory footprint since the overlaps are performed
in memory. It is therefore recommended to compress the fragment files using bgzip and index
them with Tabix; in this case each chromosome will be read and processed separately, leading to a
considerably lower memory footprint. See the underlying getFragmentOverlaps for details.

Value

A data.frame including, for each barcode, the number sites covered by more than two reads, the
number of reads, and p- and g-values (low values indicative of doublets).

Examples

here we use a dummy fragment file for example:

fragfile <- system.file("extdata”, "example_fragments.tsv.gz",
package="scDblFinder"”)

res <- amulet(fragfile)

6 amuletFromCounts

amuletFromCounts amuletFromCounts

Description

A reimplementation of the Amulet doublet detection method for single-cell ATACseq (Thibodeau,
Eroglu, et al., Genome Biology 2021), based on tile/peak counts. Note that this is only a fast ap-
proximation to the original Amulet method, and *performs considerably worse*; for an equivalent
implementation, see amulet.

Usage
amuletFromCounts(x, maxWidth = 500L, exclude = c("chrM", "M"] "Mt"))

Arguments
X A ‘SingleCellExperiment‘ object, or a matrix of counts with cells as columns. If
the rows represent peaks, it is recommended to limite their width (see details).
maxWidth the maximum width for a feature to be included. This is ignored unless ‘x‘ is a
‘SingleCellExperiment‘ with ‘rowRanges"*.
exclude an optional ‘GRanges* of regions to be excluded. This is ignored unless ‘x* is a
‘SingleCellExperiment‘ with ‘rowRanges"*.
Details

The rationale for the amulet method is that a single diploid cell should not have more than two reads
covering a single genomic location, and the method looks for cells enriched with sites covered by
more than two reads. If the method is applied on a peak-level count matrix, however, larger peaks
can however contain multiple reads even though no single nucleotide is covered more than once.
Therefore, in such case we recommend to limit the width of the peaks used for this analysis, ideally
to maximum twice the upper bound of the fragment size. For example, with a mean fragment
size of 250bp and standard deviation of 125bp, peaks larger than 500bp are very likely to contain
non-overlapping fragments, and should therefore be excluded using the ‘maxWidth® argument.

Value
If “x* is a ‘SingleCellExperiment‘, returns the object with an additional ‘amuletFromCounts.q* col-
Data column. Otherwise returns a vector of the amulet doublet g-values for each cell.

See Also

amulet

Examples

x <- mockDoubletSCE()
x <- amuletFromCounts(x)
table(call=x$amuletFromCounts.qg<@.05, truth=x$type)

clamulet 7

clamulet clamulet

Description

Classification-powered Amulet-like method

Usage

clamulet(
X!
artificialDoublets = NULL,
iter = 2,
k = NULL,
minCount = 0.001,
maxN = 500,
nfeatures = 25,
max_depth = 5,
threshold = 0.75,
returnAll = FALSE,
verbose = TRUE,

)
Arguments

X The path to a fragment file (see getFragmentOverlaps for performance/memory-
related guidelines)

artificialDoublets
The number of artificial doublets to generate

iter The number of learning iterations (should be 1 to)

k The number(s) of nearest neighbors at which to gather statistics

minCount The minimum number of cells in which a locus is detected to be considered. If
lower than 1, it is interpreted as a fraction of the number of cells.

maxN The maximum number of regions per cell to consider to establish windows for
meta-features

nfeatures The number of meta-features to consider

max_depth The maximum tree depth

threshold The score threshold used during iterations

returnAll Logical; whether to return data also for artificial doublets

verbose Logical; whether to print progress information

Arguments passed to getFragmentOverlaps

8 clusterStickiness

Details

‘clamulet® operates similarly to the ‘scDblFinder‘ method, but generates doublets by operating on
the fragment coverages. This has the advantage that the number of loci covered by more than
two reads can be computed for artificial doublets, enabling the use of this feature (along with the
kNN-based ones) in a classification scheme. It however has the disadvantage of being rather slow
and memory hungry, and appears to be outperformed by a simple p-value combination of the two
methods (see vignette).

Value

A data.frame

clusterStickiness clusterStickiness

Description

Tests for enrichment of doublets created from each cluster (i.e. cluster’s stickiness). Only applicable
with >=4 clusters. Note that when applied to an multisample object, this functions assumes that the
cluster labels match across samples.

Usage
clusterStickiness(
X,
type = c("quasibinomial”, "nbinom"”, "binomial”, "poisson”),

inclDiff = NULL,
verbose = TRUE

)
Arguments
X A table of double statistics, or a SingleCellExperiment on which scDblFinder
was run using the cluster-based approach.
type The type of test to use (quasibinomial recommended).
inclDiff Logical; whether to include the difficulty in the model. If NULL, will be used
only if there is a significant trend with the enrichment.
verbose Logical; whether to print additional running information.
Value

A table of test results for each cluster.

Examples

sce <- mockDoubletSCE(rep(200,5), dbl.rate=0.2)
sce <- scDblFinder(sce, clusters=TRUE, artificialDoublets=500)
clusterStickiness(sce)

computeDoubletDensity 9

computeDoubletDensity Compute the density of simulated doublets

Description

Identify potential doublet cells based on the local density of simulated doublet expression profiles.
This replaces the older doubletCells function from the scran package.

Usage

computeDoubletDensity(x, ...)

S4 method for signature 'ANY'
computeDoubletDensity(
X,
size.factors.norm = NULL,
size.factors.content = NULL,
k = 50,
subset.row = NULL,
niters = max(10000, ncol(x)),
block = 10000,

dims = 25,

BNPARAM = KmknnParam(),
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'’
computeDoubletDensity(x, ..., assay.type = "counts")

S4 method for signature 'SingleCellExperiment'’

computeDoubletDensity(x, size.factors.norm = sizeFactors(x), ...)
Arguments
X A numeric matrix-like object of count values, where each column corresponds

to a cell and each row corresponds to an endogenous gene.
Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.
For the generic, additional arguments to pass to specific methods.
For the SummarizedExperiment and SingleCellExperiment methods, additional
arguments to pass to the ANY method.

size.factors.norm
A numeric vector of size factors for normalization of x prior to PCA and distance
calculations. If NULL, defaults to size factors derived from the library sizes of x.
For the SingleCellExperiment method, the default values are taken from sizeFactors(x),
if they are available.

10 computeDoubletDensity

size.factors.content
A numeric vector of size factors for RNA content normalization of x prior to
simulating doublets. This is orthogonal to the values in size.factors.norm,
see Details.

k An integer scalar specifying the number of nearest neighbours to use to deter-
mine the bandwidth for density calculations.

subset.row See ?"scran-gene-selection”.

niters An integer scalar specifying how many simulated doublets should be generated.

block An integer scalar controlling the rate of doublet generation, to keep memory
usage low.

dims An integer scalar specifying the number of components to retain after the PCA.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm. This
should be an algorithm supported by queryNeighbors.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA, if d is not
NA.

BPPARAM A BiocParallelParam object specifying whether the neighbour searches should
be parallelized.

assay.type A string specifying which assay values contain the count matrix.

Details

This function simulates doublets by adding the count vectors for two randomly chosen cells in x.
For each original cell, we compute the density of neighboring simulated doublets and compare it to
the density of neighboring original cells. Genuine doublets should have a high density of simulated
doublets relative to the density of its neighbourhood. Thus, the doublet score for each cell is defined
as the ratio of densities of simulated doublets to the density of the original cells.

Densities are calculated in low-dimensional space after a PCA on the log-normalized expression
matrix of x. Simulated doublets are projected into the low-dimensional space using the rotation
vectors computed from the original cells. For each cell, the density of simulated doublets is com-
puted for a hypersphere with radius set to the median distance to the k nearest neighbour. This is
normalized by niters, k and the total number of cells in x to yield the final score.

The two size factor arguments have different roles:

* size.factors.norm contains the size factors to be used for normalization prior to PCA and
distance calculations. This defaults to the values returned by librarySizeFactors but can
be explicitly set to ensure that the low-dimensional space is consistent with that in the rest of
the analysis.

* size.factors.content is much more important, and represents the size factors that preserve
RNA content differences. This is usually computed from spike-in RNA and ensures that the
simulated doublets have the correct ratio of contributions from the original cells.

Itis possible to set both of these arguments as they are orthogonal to each other. Setting size.factors.content
will not affect the calculation of log-normalized expression values from x. Conversely, setting
size.factors.norm will not affect the ratio in which cells are added together when simulating

doublets.

computeDoubletDensity 11

Value

A numeric vector of doublet scores for each cell in x.

Author(s)

Aaron Lun

References

Lun ATL (2018). Detecting doublet cells with scran. https://1tla.github.io/SingleCellThoughts/
software/doublet_detection/bycell.html

See Also

findDoubletClusters, to detect doublet clusters.

scDblFinder, which uses a hybrid approach involving simulation and overclustering.

More detail on the mathematical background of this function is provided in the corresponding vi-
gnette at vignette(”computeDoubletDensity"”, package="scDblFinder").

Examples

Mocking up an example.
set.seed(100)

ngenes
mul <-
mu2 <-
mu3 <-
mu4 <-

counts.1
counts.?2
.3 <- matrix(rpois(ngenesx100, mu3), nrow=ngenes) # Pure type 3
4
m

counts

counts.
counts.

counts

<- 1000

2*rnorm(ngenes)
2*rnorm(ngenes)
2*rnorm(ngenes)
2*rnorm(ngenes)

<- matrix(rpois(ngenes*100, mul), nrow=ngenes) # Pure type 1
<- matrix(rpois(ngenes*100, mu2), nrow=ngenes) # Pure type 2

<- matrix(rpois(ngenes*100, mu4), nrow=ngenes) # Pure type 4
<- matrix(rpois(ngenes*2@, mul+mu2), nrow=ngenes) # Doublets (1 & 2)

<- cbind(counts.1, counts.2, counts.3, counts.4, counts.m)

clusters <- rep(1:5, c(rep(100, 4), ncol(counts.m)))

Find
scores

potential doublets.
<- computeDoubletDensity(counts)

boxplot(split(logl@(scores), clusters))

https://ltla.github.io/SingleCellThoughts/software/doublet_detection/bycell.html
https://ltla.github.io/SingleCellThoughts/software/doublet_detection/bycell.html

12 createDoublets

createDoublets createDoublets

Description

Creates artificial doublet cells by combining given pairs of cells

Usage
createDoublets(
X ’
dbl.idx,
clusters = NULL,
resamp = 0.5,
halfSize = 0.5,
adjustSize = FALSE,
prefix = "dbl."”
)
Arguments
X A count matrix of real cells
dbl.idx A matrix or data.frame with pairs of cell indexes stored in the first two columns.
clusters An optional vector of cluster labels (for each column of ‘x¢)
resamp Logical; whether to resample the doublets using the poisson distribution. Alter-
natively, if a proportion between 0 and 1, the proportion of doublets to resample.
halfSize Logical; whether to half the library size of doublets (instead of just summing up
the cells). Alternatively, a number between 0 and 1 can be given, determining
the proportion of the doublets for which to perform the size adjustment. Ignored
if not resampling.
adjustSize Logical; whether to adjust the size of the doublets using the median sizes per
cluster of the originating cells. Requires ‘clusters‘ to be given. Alternatively
to a logical value, a number between O and 1 can be given, determining the
proportion of the doublets for which to perform the size adjustment.
prefix Prefix for the colnames generated.
Value

A matrix of artificial doublets.

Examples

sce <- mockDoubletSCE()
idx <- getCellPairs(sce$cluster, n=200)
art.dbls <- createDoublets(sce, idx)

cxds2 13

cxds? cxds2

Description

Calculates a coexpression-based doublet score using the method developed by Bais and Kostka
2020. This is the original implementation from the scds package, but enabling scores to be calcu-
lated for all cells while the gene coexpression is based only on a subset (i.e. excluding known/artificial
doublets) and making it robust to low sparsity.

Usage

cxds2(x, whichDbls = c(), ntop = 500, binThresh = NULL)

Arguments
X A matrix of counts, or a ‘SingleCellExperiment* containing a ’counts’
whichDbls The columns of x* which are known doublets.
ntop The number of top features to keep.
binThresh The count threshold to be considered expressed.
Value

IRy

A cxds score or, if ‘x‘ is a ‘SingleCellExperiment‘, ‘x‘ with an added ‘cxds_score‘ colData column.

References

https://doi.org/10.1093/bioinformatics/btz698

Examples

sce <- mockDoubletSCE()

sce <- cxds2(sce)

which is equivalent to

sce$cxds_score <- cxds2(counts(sce))

https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1093/bioinformatics/btz698
https://www.bioconductor.org/packages/release/bioc/html/scds.html
https://doi.org/10.1093/bioinformatics/btz698

14

directDblClassification

directDblClassification

directClassification

Description

Trains a classifier directly on the expression matrix to distinguish artificial doublets from real cells.

Usage
directDblClassification(
sce,
dbr = NULL,
processing = "default”,
iter = 2,
dims = 20,
nrounds = 0.25,
max_depth = 6,
)
Arguments
sce A SummarizedExperiment-class, SingleCellExperiment-class, or array
of counts.
dbr The expected doublet rate. By default this is assumed to be 1% per thousand
cells captured (so 4% among 4000 thousand cells), which is appropriate for 10x
datasets. Corrections for homeotypic doublets will be performed on the given
rate.
processing Counts (real and artificial) processing. Either *default’ (normal scater-based
normalization and PCA), "rawPCA" (PCA without normalization), "rawFea-
tures" (no normalization/dimensional reduction), "normFeatures" (uses normal-
ized features, without PCA) or a custom function with (at least) arguments ‘e
(the matrix of counts) and ‘dims* (the desired number of dimensions), returning
a named matrix with cells as rows and components as columns.
iter A positive integer indicating the number of scoring iterations. At each iteration,
real cells that would be called as doublets are excluding from the training, and
new scores are calculated.
dims The number of dimensions used.
nrounds Maximum rounds of boosting. If NULL, will be determined through cross-
validation.
max_depth Maximum depths of each tree.

Any doublet generation or pre-processing argument passed to ‘scDblFinder".

doubletPairwiseEnrichment 15

Value

A SummarizedExperiment-class with the additional ‘colData‘ column ‘directDoubletScore*.

Examples

sce <- directDblClassification(mockDoubletSCE(), artificialDoublets=1)
boxplot(sce$directDoubletScore~sce$type)

doubletPairwiseEnrichment
doubletPairwiseEnrichment

Description

Calculates enrichment in any type of doublet (i.e. specific combination of clusters) over random
expectation. Note that when applied to an multisample object, this functions assumes that the
cluster labels match across samples.

Usage

doubletPairwiseEnrichment(
X,
lower.tail = FALSE,
sampleWise = FALSE,
type = c("poisson”, "binomial”, "nbinom"”, "chisq"),
inclDiff = TRUE,
verbose = TRUE

)
Arguments
X A table of double statistics, or a SingleCellExperiment on which scDblFinder
was run using the cluster-based approach.
lower.tail Logical; defaults to FALSE to test enrichment (instead of depletion).
sampleWise Logical; whether to perform tests sample-wise in multi-sample datasets. If
FALSE (default), will aggregate counts before testing.
type Type of test to use.
inclDiff Logical; whether to regress out any effect of the identification difficulty in cal-
culating expected counts
verbose Logical; whether to output eventual warnings/notes
Value

A table of significances for each combination.

16

Examples

doubletThresholding

sce <- mockDoubletSCE()
sce <- scDblFinder(sce, clusters=TRUE, artificialDoublets=500)
doubletPairwiseEnrichment(sce)

doubletThresholding doubletThresholding

Description

Sets the doublet scores threshold; typically called by scDblFinder.

Usage

doubletThresholding(

d

dbr = NULL,

dbr.sd = NULL,
dbr.perlk = 0.008,
stringency = 0.5,

p=20.1,

method = c("auto”, "optim”, "dbr"”, "griffiths"),

perSample

TRUE,

returnType = c("threshold”, "call")

Arguments

d

dbr

dbr.sd

dbr.perik

stringency

A data.frame of cell properties, with each row representing a cell, as produced
by ‘scDblFinder(..., returnType="table")*, or minimally containing a ‘score‘ col-
umn.

The expected (mean) doublet rate. If ‘d‘ contains a ‘cluster‘ column, the doublet
rate will be adjusted for homotypic doublets.

The standard deviation of the doublet rate, representing the uncertainty in the

ne

estimate. Ignored if ‘method!="optim"*.
The expected proportion of doublets per 1000 cells.

A numeric value >0 and <1 which controls the relative weight of false positives
(i.e. real cells) and false negatives (artificial doublets) in setting the thresh-
old. A value of 0.5 gives equal weight to both; a higher value (e.g. 0.7) gives
higher weight to the false positives, and a lower to artificial doublets. Ignored if

ne

‘method!="optim"*.

The p-value threshold determining the deviation in doublet score.

fastcluster

method The thresholding method to use, either "auto’ (default, automatic selection de-
pending on the available fields), ’optim’ (optimization of misclassification rate
and deviation from expected doublet rate), *dbr’ (strictly based on the expected
doublet rate), or ’griffiths’ (cluster-wise number of median absolute deviation in

doublet score).

perSample Logical; whether to perform thresholding individually for each sample.

returnType The type of value to return, either doublet calls (‘call) or thresholds (‘thresh-

old*).

Value

A vector of doublet calls if ‘returnType=="call"‘, or a threshold (or vector of thresholds) if ‘return-

Type=="threshold"*.

Examples

sce <- mockDoubletSCE()

d <- scDblFinder(sce, verbose=FALSE, returnType="table")

th <- doubletThresholding(d, dbr=0.05)
th

fastcluster fastcluster

Description

Performs a fast two-step clustering: first clusters using k-means with a very large k, then uses
louvain clustering of the k cluster averages and reports back the cluster labels.

Usage
fastcluster(
X,
k = NULL,

rdname = "PCA",
nstart = 3,
iter.max = 50,
ndims = NULL,
nfeatures = 1000,
verbose = TRUE,

returnType = c("clusters”, "preclusters”, "metacells”, "graph”),

18

Arguments

X
k

rdname
nstart
iter.max
ndims

nfeatures

verbose

returnType

Value

findDoubletClusters

An object of class SCE

The number of k-means clusters to use in the primary step (should be much
higher than the number of expected clusters). Defaults to 1/10th of the number
of cells with a maximum of 3000.

The name of the dimensionality reduction to use.
Number of starts for k-means clustering
Number of iterations for k-means clustering
Number of dimensions to use

Number of features to use (ignored if ‘rdname‘ is given and the corresponding
dimensional reduction exists in ‘sce‘)

Logical; whether to output progress messages
See return.

Arguments passed to ‘scater::runPCA‘ (e.g. BPPARAM or BSPARAM) if ‘x°
does not have ‘rdname’.

By default, a vector of cluster labels. If ‘returnType="preclusters’‘, returns the k-means pre-clusters.
If ‘returnType="metacells’ ‘, returns the metacells aggretated by pre-clusters and the corresponding
cell indexes. If ‘returnType="graph’‘, returns the graph of (meta-)cells and the corresponding cell

indexes.

Examples

sce <- mockDoubletSCE()
sce$cluster <- fastcluster(sce)

findDoubletClusters Detect doublet clusters

Description

Identify potential clusters of doublet cells based on whether they have intermediate expression pro-
files, i.e., their profiles lie between two other “source” clusters.

Usage

findDoubletClusters(x, ...)

S4 method for signature 'ANY'
findDoubletClusters(

X,

findDoubletClusters 19

clusters,

subset.row = NULL,
threshold = 0.05,
get.all.pairs = FALSE,

)

S4 method for signature 'SummarizedExperiment'
findDoubletClusters(x, ..., assay.type = "counts")

S4 method for signature 'SingleCellExperiment'’

findDoubletClusters(x, clusters = collLabels(x, onAbsence = "error"), ...)
Arguments
X A numeric matrix-like object of count values, where each column corresponds

to a cell and each row corresponds to an endogenous gene.

Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

For the generic, additional arguments to pass to specific methods.

For the ANY method, additional arguments to pass to findMarkers.

For the SummarizedExperiment method, additional arguments to pass to the
ANY method.

For the SingleCellExperiment method, additional arguments to pass to the Sum-
marizedExperiment method.

clusters A vector of length equal to ncol (x), containing cluster identities for all cells. If
x is a SingleCellExperiment, this is taken from collLabels(x) by default.

subset.row See ?"scran-gene-selection”.

threshold A numeric scalar specifying the FDR threshold with which to identify significant
genes.

get.all.pairs Logical scalar indicating whether statistics for all possible source pairings should
be returned.

assay.type A string specifying which assay values to use, e.g., "counts” or "logcounts”.

Details

This function detects clusters of doublet cells in a manner similar to the method used by Bach et al.
(2017). For each “query” cluster, we examine all possible pairs of “source” clusters, hypothesizing
that the query consists of doublets formed from the two sources. If so, gene expression in the query
cluster should be strictly intermediate between the two sources after library size normalization.

We apply pairwise t-tests to the normalized log-expression profiles to reject this null hypothesis.
This is done by identifying genes that are consistently up- or down-regulated in the query compared
to both sources. We count the number of genes that reject the null hypothesis at the specified FDR
threshold. For each query cluster, the most likely pair of source clusters is that which minimizes
the number of significant genes.

Potential doublet clusters are identified using the following characteristics, in order of importance:

20 findDoubletClusters

* Low number of significant genes (i.e., num.de). Ideally, median.de is also high to indicate
that the absence of strong DE is not due to a lack of power.

* A reasonable proportion of cells in the cluster, i.e., prop. This requires some expectation of
the doublet rate in the experimental protocol.

* Library sizes of the source clusters that are below that of the query cluster, i.e., 1ib.size*
values below unity. This assumes that the doublet cluster will contain more RNA and have
more counts than either of the two source clusters.

For each query cluster, the function will only report the pair of source clusters with the lowest
num.de. Setting get.all.pairs=TRUE will retrieve statistics for all pairs of potential source clus-
ters. This can be helpful for diagnostics to identify relationships between specific clusters.

The reported p.value is of little use in a statistical sense, and is only provided for inspection.
Technically, it could be treated as the Simes combined p-value against the doublet hypothesis for
the query cluster. However, this does not account for the multiple testing across all pairs of clusters
for each chosen cluster, especially as we are chosing the pair that is most concordant with the
doublet null hypothesis.

We use library size normalization (via librarySizeFactors) even if existing size factors are
present. This is because intermediate expression of the doublet cluster is not guaranteed for ar-
bitrary size factors. For example, expression in the doublet cluster will be higher than that in the
source clusters if normalization was performed with spike-in size factors.

Value
A DataFrame containing one row per query cluster with the following fields:

sourcel: String specifying the identity of the first source cluster.
source?2: String specifying the identity of the second source cluster.

num.de: Integer, number of genes that are significantly non-intermediate in the query cluster com-
pared to the two putative source clusters.

median.de: Integer, median number of genes that are significantly non-intermediate in the query
cluster across all possible source cluster pairings.

best: String specifying the identify of the top gene with the lowest p-value against the doublet
hypothesis for this combination of query and source clusters.

p.value: Numeric, containing the adjusted p-value for the best gene.

lib.sizel: Numeric, ratio of the median library sizes for the first source cluster to the query
cluster.

lib.size2: Numeric, ratio of the median library sizes for the second source cluster to the query
cluster.

prop: Numeric, proportion of cells in the query cluster.

all.pairs: A SimpleList object containing the above statistics for every pair of potential source
clusters, if get.all.pairs=TRUE.

Each row is named according to its query cluster.

Author(s)

Aaron Lun

getArtificialDoublets 21

References

Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC and Khaled WT (2017). Dif-
ferentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat
Commun. 8, 1:2128.

See Also

findMarkers, to detect DE genes between clusters.

Examples

Mocking up an example.
library(SingleCellExperiment)
sce <- mockDoubletSCE(c(200,300,200))

Compute doublet-ness of each cluster:
dbl <- findDoubletClusters(counts(sce), sce$cluster)
dbl

Narrow this down to clusters with very low 'N':
library(scuttle)
isOutlier(dbl$num.de, log=TRUE, type="lower")

Get help from "lib.size" below 1.
dbl$lib.sizel < 1 & dbl$lib.size2 < 1

getArtificialDoublets gerArtificialDoublets

Description

Create expression profiles of random artificial doublets.

Usage
getArtificialDoublets(
X,
n = 3000,

clusters = NULL,

resamp = @.25,

halfSize = 0.25,

adjustSize = 0.25,

propRandom = 0.1,

selMode = c("proportional”, "uniform”, "sqrt"),
n.meta.cells = 2,

meta.triplets = TRUE,

trim.q = c(0.05, 0.95)

22

Arguments

X
n
clusters

resamp

halfSize

adjustSize

propRandom

selMode

n.meta.cells

meta.triplets

trim.q

Value

getCellPairs

A count matrix, with features as rows and cells as columns.
The approximate number of doublet to generate (default 3000).
The optional clusters labels to use to build cross-cluster doublets.

Logical; whether to resample the doublets using the poisson distribution. Alter-
natively, if a proportion between O and 1, the proportion of doublets to resample.

Logical; whether to half the library size of doublets (instead of just summing up
the cells). Alternatively, a number between 0 and 1 can be given, determining
the proportion of the doublets for which to perform the size adjustment.

Logical; whether to adjust the size of the doublets using the ratio between each
cluster’s median library size. Alternatively, a number between 0 and 1 can be
given, determining the proportion of the doublets for which to perform the size
adjustment.

The proportion of the created doublets that are fully random (default 0.1); the
rest will be doublets created across clusters. Ignored if ‘clusters® is NULL.

The cell pair selection mode for inter-cluster doublet generation, either 'uni-
form’ (same number of doublets for each combination), ’proportional’ (propor-
tion expected from the clusters’ prevalences), or ’sqrt’ (roughly the square root
of the expected proportion).

The number of meta-cell per cluster to create. If given, additional doublets will
be created from cluster meta-cells. Ignored if ‘clusters’ is missing.

Logical; whether to create triplets from meta cells. Ignored if ‘clusters* is miss-
ing.

A vector of two values between 0 and 1

A list with two elements: ‘counts‘ (the count matrix of the artificial doublets) and ‘origins‘ the
clusters from which each artificial doublets originated (NULL if ‘clusters‘ is not given).

Examples

m <- t(sapply(

seq(from=0, to=5, length.out=50),
FUN=function(x) rpois(30,x)))

doublets <- getArtificialDoublets(m, 30)

getCellPairs

getCellFairs

Description

Given a vector of cluster labels, returns pairs of cross-cluster cells

getExpectedDoublets

Usage

getCellPairs(
clusters,
n = 1000,
Is = NULL,

23

q=c0.1, 9.9),
selMode = "proportional”,

soft.min = 5

Arguments

clusters
n

1s

q
selMode

soft.min

Value

A vector of cluster labels for each cell, or a list containing metacells and graph
The number of cell pairs to obtain

Optional library sizes

Library size quantiles between which to include cells (ignored if ‘Is‘ is NULL)

How to decide the number of pairs of each kind to produce. Either ’proportional’
(default, proportional to the abundance of the underlying clusters), ’uniform’ or
‘sqrt’.

Minimum number of pairs of a given type.

A data.frame with the columns

Examples

create random labels
x <- sample(head(LETTERS), 100, replace=TRUE)
getCellPairs(x, n=6)

getExpectedDoublets getExpectedDoublets

Description

getExpectedDoublets

Usage

getExpectedDoublets(x, dbr = NULL, only.heterotypic = TRUE, dbr.perlk = 0.008)

24 getFragmentOverlaps

Arguments
X A vector of cluster labels for each cell
dbr The expected doublet rate.

only.heterotypic
Logical; whether to return expectations only for heterotypic doublets

dbr.perik The expected proportion of doublets per 1000 cells.

Value

The expected number of doublets of each combination of clusters

Examples

random cluster labels
cl <- sample(head(LETTERS,4), size=2000, prob=c(.4,.2,.2,.2), replace=TRUE)
getExpectedDoublets(cl)

getFragmentOverlaps getFragmentOverlaps

Description

Count the number of overlapping fragments.

Usage

getFragmentOverlaps(
X,
barcodes = NULL,
regionsToExclude = GRanges(c("M", "chrM" "MT",k "X", "Y", "chrX", "chrY"), IRanges(1L,
width = 1078)),
minFrags = 500L,
uniqueFrags = TRUE,
maxFragSize = 1000L,
removeHighOverlapSites = TRUE,
fullInMemory = FALSE,
BPPARAM = NULL,
verbose = TRUE,
ret = c("stats”, "loci”, "coverages")

getFragmentOverlaps 25
Arguments
X The path to a fragments file, or a GRanges object containing the fragments (with
the ‘name‘ column containing the barcode, and optionally the ‘score‘ column
containing the count).
barcodes Optional character vector of cell barcodes to consider
regionsToExclude
A GRanges of regions to exclude. As per the original Amulet method, we rec-
ommend excluding repeats, as well as sex and mitochondrial chromosomes.
(Note that the end coordinate does not need to be exact when excluding entire
chromosomes, but greater or equal to the chromosome length.)
minFrags Minimum number of fragments for a barcode to be considered. If ‘unique-
Frags=TRUE®, this is the minimum number of unique fragments. Ignored if
‘barcodes* is given.
uniqueFrags Logical; whether to use only unique fragments.
maxFragSize Integer indicating the maximum fragment size to consider

removeHighOverlapSites

fullInMemory

BPPARAM

verbose

ret

Details

Logical; whether to remove sites that have more than two reads in unexpectedly
many cells.

Logical; whether to process all chromosomes together. This will speed up the
process but at the cost of a very high memory consumption (as all fragments
will be loaded in memory). This is anyway the default mode when ‘x‘ is not
Tabix-indexed.

A ‘BiocParallel* parameter object for multithreading. Note that multithreading
will increase the memory usage.

Logical; whether to print progress messages.

What to return, either barcode ’stats’ (default), "loci’, or *coverages’.

When used on normal (or compressed) fragment files, this implementation is relatively fast (ex-
cept for reading in the data) but it has a large memory footprint since the overlaps are performed
in memory. It is therefore recommended to compress the fragment files using bgzip and index
them with Tabix; in this case each chromosome will be read and processed separately, leading to a
considerably lower memory footprint.

Value

A data.frame with counts and overlap statistics for each barcode.

26 mockDoubletSCE

mockDoubletSCE mockDoubletSCE

Description

Creates a mock random single-cell experiment object with doublets

Usage

mockDoubletSCE (
ncells = c(200, 300),
ngenes = 200,
mus = NULL,
dbl.rate = 0.1,
only.heterotypic = TRUE

)
Arguments
ncells A positive integer vector indicating the number of cells per cluster (min 2 clus-
ters)
ngenes The number of genes to simulate. Ignored if ‘mus‘ is given.
mus A list of cluster averages.
dbl.rate The doublet rate

only.heterotypic
Whether to create only heterotypic doublets

Value

A SingleCellExperiment object, with the colData columns ‘type‘ indicating whether the cell is
a singlet or doublet, and ‘cluster® indicating from which cluster (or cluster combination) it was
simulated.

Examples

sce <- mockDoubletSCE()

plotDoubletMap

27

plotDoubletMap

plotDoubletMap

Description

Plots a heatmap of observed versus expected doublets. Requires the ‘ComplexHeatmap* package.

Usage
plotDoubletMap(
sce,
colorBy = "enrichment”,

labelBy = "observed”,
addSizes = TRUE,

col = NULL,
column_title = "Clusters”,
row_title = "Clusters”,
column_title_side = "bottom”,
na_col = "white",
)
Arguments
sce A SingleCellExperiment object on which ‘scDblFinder* has been run with the
cluster-based approach.
colorBy Determines the color mapping. Either "enrichment" (for log2-enrichment over
expectation) or any column of ‘metadata(sce)$scDblFinder.stats
labelBy Determines the cell labels. Either "enrichment" (for log2-enrichment over ex-
pectation) or any column of ‘metadata(sce)$scDblFinder.stats
addSizes Logical; whether to add the sizes of clusters to labels
col The colors scale to use (passed to ‘ComplexHeatmap::Heatmap*)

column_title

row_title

passed to ‘ComplexHeatmap::Heatmap*

passed to ‘ComplexHeatmap::Heatmap*

column_title_side

na_col

Value

a Heatmap object

passed to ‘ComplexHeatmap::Heatmap*
color for NA cells

passed to ‘ComplexHeatmap::Heatmap*

28 propHomotypic

plotThresholds plotThresholds

Description

Plots scores used for thresholding.

Usage
plotThresholds(d, ths = (0:100)/100, dbr = NULL, dbr.sd = NULL, do.plot = TRUE)

Arguments
d A data.frame of cell properties, with each row representing a cell, as produced
by ‘scDblFinder(..., returnType="table")".
ths A vector of thresholds between 0 and 1 at which to plot values.
dbr The expected (mean) doublet rate.
dbr.sd The standard deviation of the doublet rate, representing the uncertainty in the
estimate.
do.plot Logical; whether to plot the data (otherwise will return the underlying data.frame).
Value

A ggplot, or a data.frame if ‘do.plot==FALSE".

propHomotypic propHomotypic

Description

Computes the proportion of pairs expected to be made of elements from the same cluster.

Usage

propHomotypic(clusters)

Arguments

clusters A vector of cluster labels

Value

A numeric value between 0 and 1.

recoverDoublets

Examples

clusters <- sample(LETTERS[1:5], 100, replace=TRUE)
propHomotypic(clusters)

29

recoverDoublets Recover intra-sample doublets

Description

Recover intra-sample doublets that are neighbors to known inter-sample doublets in a multiplexed
experiment.

Usage

recoverDoublets(x, ...)

S4 method for signature 'ANY'
recoverDoublets(

)

X,

doublets,

samples,

k = 50,

transposed = FALSE,
subset.row = NULL,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

S4 method for signature 'SummarizedExperiment’
recoverDoublets(x, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'’
recoverDoublets(x, ..., use.dimred = NULL)

Arguments

X

A log-expression matrix for all cells (including doublets) in columns and genes
in rows. If transposed=TRUE, this should be a matrix of low-dimensional coor-

dinates where each row corresponds to a cell.

Alternatively, a SummarizedExperiment or SingleCellExperiment containing (i)
a log-expression matrix in the assays as specified by assay.type, or (ii) a
matrix of reduced dimensions in the reducedDims as specified by use.dimred.

For the generic, additional arguments to pass to specific methods.

For the SummarizedExperiment method, additional arguments to pass to the

ANY method.

For the SingleCellExperiment method, additional arguments to pass to the Sum-

marizedExperiment method.

30 recoverDoublets
doublets A logical, integer or character vector specifying which cells in x are known
(inter-sample) doublets.
samples A numeric vector containing the relative proportions of cells from each sample,
used to determine how many cells are to be considered as intra-sample doublets.
k Integer scalar specifying the number of nearest neighbors to use for computing
the local doublet proportions.
transposed Logical scalar indicating whether x is transposed, i.e., cells in the rows.
subset.row A logical, integer or character vector specifying the genes to use for the neighbor
search. Only used when transposed=FALSE.
BNPARAM A BiocNeighborParam object specifying the algorithm to use for the nearest
neighbor search.
BPPARAM A BiocParallelParam object specifying the parallelization to use for the nearest
neighbor search.
assay.type A string specifying which assay values contain the log-expression matrix.
use.dimred A string specifying whether existing values in reducedDims (x) should be used.
Details

In multiplexed single-cell experiments, we can detect doublets as libraries with labels for multiple
samples. However, this approach fails to identify doublets consisting of two cells with the same
label. Such cells may be problematic if they are still sufficiently abundant to drive formation of
spurious clusters.

This function identifies intra-sample doublets based on the similarity in expression profiles to known
inter-sample doublets. For each cell, we compute the proportion of the k neighbors that are known
doublets. Of the “unmarked” cells that are not known doublets, those with top X largest proportions
are considered to be intra-sample doublets. We use samples to obtain a reasonable estimate for X,
see the vignette for details.

A larger value of k provides more stable estimates of the doublet proportion in each cell. However,
this comes at the cost of assuming that each cell actually has k neighboring cells of the same state.
For example, if a doublet cluster has fewer than k members, its doublet proportions will be “diluted”
by inclusion of unmarked cells in the next-closest cluster.

Value

A DataFrame containing one row per cell and the following fields:

* proportion, a numeric field containing the proportion of neighbors that are doublets.
* known, a logical field indicating whether this cell is a known inter-sample doublet.
* predicted, a logical field indicating whether this cell is a predicted intra-sample doublet.

The metadata contains intra, a numeric scalar containing the expected number of intra-sample
doublets.

Author(s)

Aaron Lun

scDblFinder 31

See Also

doubletCells and doubletCluster, for alternative methods of doublet detection when no prior
doublet information is available.

hashedDrops from the DropletUtils package, to identify doublets from cell hashing experiments.

More detail on the mathematical background of this function is provided in the corresponding vi-
gnette at vignette("recoverDoublets”, package="scDblFinder").

Examples

Mocking up an example.
set.seed(100)

ngenes <- 1000

mul <- 2*rnorm(ngenes, sd=2)
mu2 <- 2*rnorm(ngenes, sd=2)

counts.1 <- matrix(rpois(ngenes*100, mul), nrow=ngenes) # Pure type 1
counts.2 <- matrix(rpois(ngenes*100, mu2), nrow=ngenes) # Pure type 2
counts.m <- matrix(rpois(ngenes*20, mul+mu2), nrow=ngenes) # Doublets (1 & 2)
all.counts <- cbind(counts.1, counts.2, counts.m)

lcounts <- scuttle::normalizeCounts(all.counts)

Pretending that half of the doublets are known. Also pretending that
the experiment involved two samples of equal size.

known <- 200 + seq_len(10)

out <- recoverDoublets(lcounts, doublets=known, k=10, samples=c(1, 1))
out

scDblFinder scDblFinder

Description

Identification of heterotypic (or neotypic) doublets in single-cell RNAseq using cluster-based gen-
eration of artificial doublets.

Usage

scDblFinder(
sce,
clusters = NULL,
samples = NULL,
clustCor = NULL,
artificialDoublets = NULL,
knownDoublets = NULL,
knownUse = c("discard”, "positive"),
dbr = NULL,
dbr.sd = NULL,

32

dbr.perik
nfeatures
dims = 20,
k = NULL,

scDblFinder

0.008,
1352,

removeUnidentifiable = TRUE,
includePCs = 19,

propRandom =

propMarkers
aggregateFeatures = FALSE,

returnType = c("sce”", "table", "full”, "counts"”, "scores"),
score = c("xgb", "weighted”, "ratio"),

processing = "default”,

metric = "logloss”,

nrounds =

0.

9,
= @y

25,

max_depth = 4,

iter = 3,

trainingFeatures = NULL,

unident.th = NULL,

multiSampleMode = c("split”, "singleModel”, "singleModelSplitThres”, "asOne"),
threshold = TRUE,

TRUE,

BPPARAM = SerialParam(progressbar = verbose),

verbose =

Arguments

sce

clusters

samples

clustCor

A SummarizedExperiment-class, SingleCellExperiment-class, or array
of counts.

The optional cluster assignments. This is used to make doublets more efficiently.
clusters should either be a vector of labels for each cell, or the name of a
colData column of sce. Alternatively, if ‘clusters=TRUE®, fast clustering will be
performed. If ‘clusters® is a single integer, it will determine how many clusters
to create (using k-means clustering). If ‘clusters‘ is NULL or FALSE, purely
random artificial doublets will be generated.

A vector of the same length as cells (or the name of a column of colData(x)),
indicating to which sample each cell belongs. Here, a sample is understood as
being processed independently. If omitted, doublets will be searched for with
all cells together. If given, doublets will be searched for independently for each
sample, which is preferable if they represent different captures. If your samples
were multiplexed using cell hashes, what you want to give here are the differ-
ent batches/wells (i.e. independent captures, since doublets cannot arise across
them) rather than biological samples.

Include Spearman correlations to cell type averages in the predictors. If ‘clust-
Cor* is a matrix of cell type marker expressions (with features as rows and cell
types as columns), the subset of these which are present in the selected fea-
tures will be correlated to each cell to produce additional predictors (i.e. one
per cell type). Alternatively, if ‘clustCor‘ is a positive integer, this number of

scDblFinder

33

inter-cluster markers will be selected and used for correlation (se ‘clustCor=Inf*
to use all available genes).

artificialDoublets

knownDoublets

knownUse

dbr

dbr.sd

dbr.perik

nfeatures

dims
k

The approximate number of artificial doublets to create. If NULL, will be the
maximum of the number of cells or 5*nbClusters*2 (with a minimum of 1500).

An optional logical vector of known doublets (e.g. through cell barcodes), or the
name of a colData column of ‘sce‘ containing that information. The way these
are used depends on the ‘knownUse* argument.

The way to use known doublets, either ’discard’ (they are discarded for the pur-
pose of training, but counted as positive for thresholding) or ’positive’ (they are
used as positive doublets for training - usually leads to a mild decrease in ac-
curacy due to the fact that known doublets typically include a sizeable fraction
of homotypic doublets). Note that ‘scDblFinder® does *not* enforce that the
knownDoublets be necessarily called as doublets in the final classification, if
they are not predicted as such.

The expected doublet rate, i.e. the proportion of the cells expected to be dou-
blets. If omitted, will be calculated automatically based on the ‘dbr.perlk‘ argu-
ment and the number of cells.

The uncertainty range in the doublet rate, interpreted as a +/- around ‘dbr*. Dur-
ing thresholding, deviation from the expected doublet rate will be calculated
from these boundaries, and will be considered null within these boundaries. If
NULL, will be 40% of ‘dbr‘. Set to ‘dbr.sd=0° to disable the uncertainty around
the doublet rate, or to ‘dbr.sd=1° to disable any expectation of the number of
doublets (thus letting the thresholding be entirely driven by the misclassification
of artificial doublets).

This is an alternative way of providing the expected doublet rate as a fraction of
the number of (the thousands of) cells captured. The default, 0.008 (e.g. 3.2%
doublets among 4000 cells), is appropriate for standard 10X chips. For High
Throughput (HT) 10X chips, use half, i.e. 0.004. (Some more recent chips
might have this rate even lower).

The number of top features to use. Alternatively, a character vectors of feature
names (e.g. highly-variable genes) to use.

The number of dimensions used.

Number of nearest neighbors (for KNN graph). If more than one value is given,
the doublet density will be calculated at each k (and other values at the highest
k), and all the information will be used by the classifier. If omitted, a reasonable
set of values is used.

removeUnidentifiable

includePCs

propRandom

Logical; whether to remove artificial doublets of a combination that is generally
found to be unidentifiable.

The index of principal components to include in the predictors (e.g. ‘include-
PCs=1:2%), or the number of top components to use (e.g. ‘includePCs=10°,
equivalent to 1:10).

The proportion of the artificial doublets which should be made of random cells
(as opposed to inter-cluster combinations). If clusters is FALSE or NULL, this
is ignored (and set to 1).

34

propMarkers

scDblFinder

The proportion of features to select based on marker identification.

aggregateFeatures

returnType

score

processing

metric

nrounds

max_depth

iter

Whether to perform feature aggregation (recommended for ATAC). Can also be
a positive integer, in which case this will indicate the number of components to
use for feature aggregation (if TRUE, ‘dims* will be used.)

Either "sce" (default, returns a SingleCellExperiment with additional colData
columns), "scores" (returns a data.frame of scores and doublet calls for each
barcode), "table" (to return the table of cell attributes including artificial dou-
blets), or "full" (returns an SCE object containing both the real and artificial
cells).

Score to use for final classification.

Counts (real and artificial) processing before KNN. Either ’default’ (normal
scater-based normalization and PCA), "rawPCA" (PCA without normaliza-
tion), "rawFeatures" (no normalization/dimensional reduction), "normFeatures"
(uses normalized features, without PCA) or a custom function with (at least)
arguments ‘e‘ (the matrix of counts) and ‘dims* (the desired number of dimen-
sions), returning a named matrix with cells as rows and components as columns.

Error metric to optimize during training (e.g. *merror’, logloss’, "auc’, "aucpr’).

Maximum rounds of boosting. If NULL, will be determined through cross-
validation. If a number <=1, will used the best cross-validation round minus
‘nrounds‘ times the standard deviation of the classification error.

Maximum depths of each tree.

A positive integer indicating the number of scoring iterations (ignored if ‘score’
isn’t based on classifiers). At each iteration, real cells that would be called as
doublets are excluding from the training, and new scores are calculated. Rec-
ommended values are 1 or 2.

trainingFeatures

unident.th

multiSampleMode

threshold
verbose
BPPARAM

Details

The features to use for training (defaults to an optimal pre-selection based on
benchmark datasets). To exclude features (rather than list those to be included),
prefix them with a "-".

The score threshold below which artificial doublets will be considered unidenti-
fiable.

Either "split" (recommended if there is heterogeneity across samples), "single-
Model", "singleModelSplitThres", or "asOne" (see details below).

Logical; whether to threshold scores into binary doublet calls
Logical; whether to print messages and the thresholding plot.

Used for multithreading when splitting by samples (i.e. when ‘samples!=NULL);
otherwise passed to eventual PCA and K/SNN calculations.

further arguments passed to getArtificialDoublets.

This function generates artificial doublets from real cells, evaluates their prevalence in the neighbor-
hood of each cells, and uses this along with additional cell-level features to classify doublets. The

scDblFinder 35

approach is complementary to doublets identified via cell hashes and SNPs in multiplexed samples:
the latter can identify doublets formed by cells of the same type from two samples, which are nearly
undistinguishable from real cells transcriptionally, but cannot identify doublets made by cells of the
same sample. See vignette("”scDblFinder") for more details on the method.

The ‘clusters® and ‘propRandom* argument determines whether the artificial doublets are generated
between clusters or randomly.

When multiple samples/captures are present, they should be specified using the samples argument.
In this case, we recommend the use of BPPARAM to perform several of the steps in parallel. Artificial
doublets and kNN networks will be computed separately; then the behavior will then depend on the
‘multiSampleMode* argument:

* split: the whole process is split by sample. This is the default and recommended mode,
because it is the most robust (e.g. to heterogeneity between samples, also for instance in the
number of cells), and in practice we have not seen major gains in sharing information across
samples;

* singleModel: the doublets are generated on a per-sample basis, but the classifier and thresh-
olding will be trained globally;

* singleModelSplitThres: the doublets are generated on a per-sample basis, the classifier is
trained globally, but the final thresholding is per-sample;

* asOne: the doublet rate (if not given) is calculated as the weighted average of sample-specific
doublet rates, and all samples are otherwise run as if they were one sample. This can get
computationally more intensive, and can lead to biases if there are batch effects.

When inter-sample doublets are available, they can be provided to ‘scDblFinder* through the knownDoublets
argument to improve the identification of further doublets. How exactly these are used depends on

the ‘knownUse* argument: with ’discard’ (default), the known doublets are excluded from the train-

ing step, but counted as positives. With ’positive’, they are included and treated as positive doublets

for the training step. Note that because known doublets can in practice include a lot of homo-

typic doublets, this second approach can often lead to a slight decrease in the accuracy of detecting
heterotypic doublets.

Finally, for some types of data, such as single-cell ATAC-seq, selecting a number of top features is
ineffective due to the high sparsity of the signal. In such contexts, rather than _selecting_ features
we recommend to use the alternative approach of _aggregating_ similar features (with ‘aggregate-
Features=TRUE®), which strongly improves accuracy. See the vignette for more detail.

Value

The sce object with several additional colData columns, in particular ‘scDblFinder.score® (the fi-
nal score used) and ‘scDblFinder.class® (whether the cell is called as ’doublet’ or ’singlet’). See
vignette("”scDblFinder") for more details; for alternative return values, see the ‘returnType’
argument.

Examples

library(SingleCellExperiment)

sce <- mockDoubletSCE()

sce <- scDblFinder(sce)

table(truth=sce$type, call=sce$scDblFinder.class)

36 TFIDF

selFeatures selFeatures

Description

Selects features based on cluster-wise expression or marker detection, or a combination.

Usage

selFeatures(
sce,
clusters = NULL,
nfeatures = 1000,
propMarkers = 0,
FDR.max = 0.05

)
Arguments
sce A SummarizedExperiment-class, SingleCellExperiment-class with a ’counts’
assay.
clusters Optional cluster assignments. Should either be a vector of labels for each cell.
nfeatures The number of features to select.
propMarkers The proportion of features to select from markers (rather than on the basis of
high expression). Ignored if ‘clusters* isn’t given.
FDR.max The maximum marker binom FDR to be included in the selection. (see findMarkers).
Value

A vector of feature (i.e. row) names.

Examples

sce <- mockDoubletSCE()
selFeatures(sce, clusters=sce$cluster, nfeatures=5)

TFIDF TFIDF

Description

The Term Frequency - Inverse Document Frequency (TF-IDF) normalization, as implemented in
Stuart & Butler et al. 2019.

TFIDF

Usage
TFIDF(x, sf = 10000)

Arguments
X The matrix of occurrences
sf Scaling factor

Value

An array of same dimensions as ‘x*

Examples

m <- matrix(rpois(500,1),nrow=50)
m <- TFIDF(m)

37

Index

addDoublets, 2 getCellPairs, 22
aggregateFeatures, 3 getExpectedDoublets, 23
amulet, 5,6 getFragmentOverlaps, 5, 7, 24
amuletFromCounts, 6

assays, 29 librarySizeFactors, 10, 20
BiocNeighborParam, 10, 30 mbkmeans, 4
BiocParallelParam, 10, 30 metadata, 30
BiocSingularParam, /0 mockDoubletSCE, 26
clamulet, 7 plotDoubletMap, 27
clusterStickiness, 8 plotThresholds, 28
collLabels, 19 propHomotypic, 28
computeDoubletDensity, 9

computeDoubletDensity, ANY-method queryNeighbors, 10

(computeDoubletDensity), 9 bl)
computeDoubletDensity,SingleCellExperiment—me@%%%verDoublets’ 9 hod
(computeDoubletDensity), 9 recoverDoublets,ANY-metho

computeDoubletDensity, SummarizedExperiment-method (recovequublets),29
(computeDoubletDensity), 9 recoverDoublets,SingleCellExperiment-method

createDoublets, 3, 12 (recoverDoublets), 29

cxds2, 13 recoverDoublets, SummarizedExperiment-method
(recoverDoublets), 29

DataFrame, 20, 30 reducedDims, 29, 30

directDblClassification, 14

doubletCells, 37 scDblFinder, 8, 11, 16, 31

doubletCluster, 31 selFeatures, 36

doubletPairwiseEnrichment, 15 Simplelist, 20

doubletThresholding, 16 SingleCellExperiment, 9, 19, 29
sizeFactors, 9

fastcluster, 17 SummarizedExperiment, 9, 19, 29

findDoubletClusters, /11, 18

findDoubletClusters,ANY-method TFIDF, 4, 36

(findDoubletClusters), 18
findDoubletClusters,SingleCellExperiment-method

(findDoubletClusters), 18
findDoubletClusters, SummarizedExperiment-method

(findDoubletClusters), 18
findMarkers, 19, 21, 36

getArtificialDoublets, 21, 34

38

	addDoublets
	aggregateFeatures
	amulet
	amuletFromCounts
	clamulet
	clusterStickiness
	computeDoubletDensity
	createDoublets
	cxds2
	directDblClassification
	doubletPairwiseEnrichment
	doubletThresholding
	fastcluster
	findDoubletClusters
	getArtificialDoublets
	getCellPairs
	getExpectedDoublets
	getFragmentOverlaps
	mockDoubletSCE
	plotDoubletMap
	plotThresholds
	propHomotypic
	recoverDoublets
	scDblFinder
	selFeatures
	TFIDF
	Index

