
Package ‘reconsi’
February 2, 2026

Type Package

Title Resampling Collapsed Null Distributions for Simultaneous
Inference

Version 1.23.0

Description Improves simultaneous inference under dependence of tests by
estimating a collapsed null distribution through resampling. Accounting for
the dependence between tests increases the power while reducing the
variability of the false discovery proportion. This dependence is common in
genomics applications, e.g. when combining flow cytometry measurements with
microbiome sequence counts.

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.1

Imports phyloseq, ks, reshape2, ggplot2, stats, methods, graphics,
grDevices, matrixStats, Matrix

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

biocViews Metagenomics, Microbiome, MultipleComparison, FlowCytometry

BugReports https://github.com/CenterForStatistics-UGent/reconsi/issues

LazyData true

git_url https://git.bioconductor.org/packages/reconsi

git_branch devel

git_last_commit cd5ced8

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Stijn Hawinkel [cre, aut] (ORCID:
<https://orcid.org/0000-0002-4501-5180>)

Maintainer Stijn Hawinkel <stijn.hawinkel@psb.ugent.be>

1

https://github.com/CenterForStatistics-UGent/reconsi/issues
https://orcid.org/0000-0002-4501-5180


2 binStats

Contents
binStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
calcWeights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
estNormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
estP0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getApproxCovar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getC1prop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getFdr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
getG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
getTestStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
getTstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
plotApproxCovar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
plotCovar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
plotNull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ptEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
qtEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
quantCorrect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
reconsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
rowMultiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
stabExp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
testDAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Vandeputte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Index 21

binStats Bin the test statistic into equally sized bins

Description

Bin the test statistic into equally sized bins

Usage

binStats(z, nBins = 82L, binEdges = c(-4.1, 4.1))

Arguments

z the matrix of permuted test statistics

nBins an integer, the number of bins

binEdges A vector of length 2 with the outer bin edges

Value

Matrix of binned test statistics



calcWeights 3

calcWeights Obtain weights as posterior probabilities to calculate the consensus
null

Description

Obtain weights as posterior probabilities to calculate the consensus null

Usage

calcWeights(logDensPerm, fdr)

Arguments

logDensPerm A matrix with B rows of logged density estimates of the B permutation distribu-
tions, and p columns for the p observed test statistics

fdr A vector of local false discovery rates for the observed tests statistics of length
p

Value

A vector of weights of length B

estNormal Fast estimation of mean and standard deviation of a normal distrbu-
tion, optionally with weights

Description

Fast estimation of mean and standard deviation of a normal distrbution, optionally with weights

Usage

estNormal(y, w = NULL, p = length(y))

Arguments

y vector of observations

w optional weight vector

p The number of features

Value

A vector of length 2 with mean and standard deviation



4 getApproxCovar

estP0 Estimate the fraction of true null hypotheses.

Description

Estimate the fraction of true null hypotheses.

Usage

estP0(statObs, fitAll, z0quantRange, smooth.df, evalVal, assumeNormal)

Arguments

statObs A vector of observed z-values

fitAll the estimated normal null

z0quantRange a number of quantiles between 0 and 0.5

smooth.df degrees of freedom for the spline smoother

evalVal the value of q at which to evaluate the spline

assumeNormal A boolean, should normality be assumed for the null distribution?

Details

A natural spline is used over a range of intervals. Based on the qvalue::qvalue() function and Storey
and Tibshirani, 2003

Value

The estimated null fraction, the value of the spline evaluated at the first element of z0quantRange

getApproxCovar Obtain a null covariance matrix of binned test statistics

Description

Obtain a null covariance matrix of binned test statistics

Usage

getApproxCovar(statsPerm, ...)

Arguments

statsPerm The pxB matrix of permutation z-values in the columns

... passed on to binStats



getC1prop 5

Value

The covariance matrix of binned z-values

Note

This is not the covariance matrix of the p test statistic, nor of the data! It is an approximate covari-
ance matrix of binned test statistics for visualization and diagnostic purposes.

Examples

p = 200; n = 50; B = 5e1
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)
mat = mat = mat + rnorm(n, sd = 0.3) #Introduce some dependence
fdrRes = reconsi(mat, x, B = B)
corMat = getApproxCovar(fdrRes$statsPerm)

getC1prop Find the dependence pat C1 of the approximate covariance matrix,
and extract the ratio of the first eigenvalue to the sum of all positive
eigenvalues

Description

Find the dependence pat C1 of the approximate covariance matrix, and extract the ratio of the first
eigenvalue to the sum of all positive eigenvalues

Usage

getC1prop(statsPerm, numEig = 1, ...)

Arguments

statsPerm Matrix of permuted test statistics

numEig An integer, number of first eigenvalues

... passed onto binStats

Value

A proportion indicating the ratio of the first eigenvalues to the sum of all eigenvalues



6 getFdr

Examples

p = 200; n = 50; B = 5e1
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)
mat = mat = mat + rnorm(n, sd = 0.3) #Introduce some dependence
fdrRes = reconsi(mat, x, B = B)
getC1prop(fdrRes$statsPerm)

getFdr Calculate tail-area (Fdr) and local (fdr) false discovery rates, based
on a certain null distribution

Description

Calculate tail-area (Fdr) and local (fdr) false discovery rates, based on a certain null distribution

Usage

getFdr(
statObs,
fitAll,
fdr,
p,
p0,
zValsDensObs,
smoothObs,
assumeNormal,
fitObs,
...

)

Arguments

statObs Vector of observed z-values
fitAll The parameters of the estimated random null
fdr local false discovery rate, already estimated
p the number of hypotheses
p0 The estimated fraction of null hypotheses
zValsDensObs estimated densities of observed test statistics
smoothObs A boolean, should estimated observed densities of the test statistics be used in

estimating the Fdr
assumeNormal A boolean, should normality be assumed for the null distribution?
fitObs The kernel density estimate object of all test statistics
... more arguments, ignored



getG0 7

Value

A list with components

Fdr Tail are false discovery rate

fdr Local false discovery rate

getG0 Obtain the consensus null

Description

Obtain the consensus null

Usage

getG0(
statObs,
statsPerm,
z0Quant,
gridsize,
maxIter,
tol,
estP0args,
testPargs,
B,
p,
pi0,
assumeNormal,
resamAssumeNormal

)

Arguments

statObs A vector of lenght p with observed test statistics

statsPerm A pxB matrix with permuation z-values

z0Quant a vector of length of quantiles defining the central part R of the distribution. If a
single number is supplied, then (z0quant, 1-z0quant) will be used

gridsize An integer, the gridsize for the density estimation

maxIter An integer, the maximum number of iterations in determining R

tol The convergence tolerance.

estP0args A list of arguments passed on to the estP0args() function

testPargs A list of arguments passed on to quantileFun

B an integer, the number of permutations

p an integer, the number of hypotheses



8 getTestStats

pi0 A known fraction of true null hypotheses

assumeNormal A boolean, should normality be assumed for the null distribution?

resamAssumeNormal

A boolean, should normality be assumed for resampling dists

Value

A list with following entries

PermDensFits The permutation density fits

zSeq The support of the kernel for density estimation

zValsDensObs The estimated densities of the observed z-values

convergence A boolean, has the algorithm converged?

weights Vector of length B with weights for the permutation distributions

fdr Estimated local false discovery rate along the support of the kernel

p0 The estimated fraction of true null hypotheses

iter The number of iterations

fitAll The consensus null fit

getTestStats A function to calculate observed and permuation z-statistics on a n-
by-p matrix of observations

Description

A function to calculate observed and permuation z-statistics on a n-by-p matrix of observations

Usage

getTestStats(
Y,
center,
test = "wilcox.test",
x,
B,
argList,
tieBreakRan,
replace,
scale

)



getTstat 9

Arguments

Y The nxp data matrix

center a boolean, should data be centered prior to permuation

test A function name, possibly user defined. See details.

x A vector defining the groups. Will be coerced to factor.

B an integer, the number of permuations

argList A list of further arguments passed on to the test function

tieBreakRan A boolean, should ties of permutation test statistics be broken randomly? If not,
midranks are used

replace A boolean. If FALSE, samples are permuted (resampled without replacement),
if TRUE the samples are bootstrapped (resampled with replacement)

scale a boolean, should data be scaled prior to resampling

Details

For test "wilcox.test" and "t.test", fast custom implementations are used. Other functions can be
supplied but must accept a y outcome variable, a x as grouping variable, and possibly a list of other
arguments. It must return all arguments needed to evaluate its quantile function if z-values are to be
used.

Value

A list with components

statObs A vector of length p of observed test statistics

statsPerm A p-by-B matrix of permutation test statistics

resamDesign The resampling design

getTstat A function to obtain a t-test statistic efficiently. For internal use only

Description

A function to obtain a t-test statistic efficiently. For internal use only

Usage

getTstat(y1, y2, mm, nn)

Arguments

y1, y2 vectors of obsereved values in the two groups

mm, nn number of observations in the corresponding groups



10 plotApproxCovar

Value

A list with items

tstat The t-test statistic

df The degrees of freedom (Welch approximation)

plotApproxCovar Plot an approximation of the correlation structure of the test statistics

Description

Plot an approximation of the correlation structure of the test statistics

Usage

plotApproxCovar(
reconsiFit,
col = colorRampPalette(c("yellow", "blue"))(12),
x = seq(-4.2, 4.2, 0.1),
y = seq(-4.2, 4.2, 0.1),
xlab = "Z-values",
ylab = "Z-values",
nBins = 82L,
binEdges = c(-4.1, 4.1),
...

)

Arguments

reconsiFit The reconsi fit
col, x, y, xlab, ylab, ...

A list of arguments for the image() function.

nBins, binEdges passed on to the getApproxCovar function

Details

By default, yellow indicates negative correlaton between bin counts, blue positive correlation

Value

invisible()

Note

This is not the covariance matrix of the p test statistic, nor of the data! It is an approximate covari-
ance matrix of binned test statistics for visualization purposes. See plotCovar for the full covariance
matrix.



plotCovar 11

See Also

plotCovar, getApproxCovar

Examples

p = 200; n = 50; B = 5e1
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)
mat = mat = mat + rnorm(n, sd = 0.3) #Introduce some dependence
fdrRes = reconsi(mat, x, B = B)
plotApproxCovar(fdrRes)

plotCovar Plot an the corvariance matrix of the test statistics estimated through
permutations

Description

Plot an the corvariance matrix of the test statistics estimated through permutations

Usage

plotCovar(
reconsiFit,
col = colorRampPalette(c("yellow", "blue"))(12),
xlab = "Test statistic index",
ylab = xlab,
...

)

Arguments

reconsiFit The reconsi fit
col, xlab, ylab, ...

A list of arguments for the image() function.

Details

By default, yellow indicates negative correlaton between test statistics, blue positive correlation

Value

invisible()



12 plotNull

Note

Note the difference with the plotApproxCovar function, where the covariances between binned
test statistics are shown to get an idea between covariances between tail and center values of the
univariate null distribution. Here the covariance matrix between all test statistics is shown

See Also

plotApproxCovar

Examples

p = 200; n = 50; B = 5e1
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)
mat = mat = mat + rnorm(n, sd = 0.3) #Introduce some dependence
fdrRes = reconsi(mat, x, B = B)
plotCovar(fdrRes)

plotNull Plot the obtained null distribution along with a histogram of observed
test statistics

Description

Plot the obtained null distribution along with a histogram of observed test statistics

Usage

plotNull(
fit,
lowColor = "yellow",
highColor = "blue",
idNull = NULL,
nResampleCurves = length(fit$Weights),
hSize = 0.5

)

Arguments

fit an object returned by the reconsi() (or testDAA()) function
lowColor, highColor

The low and high ends of the colour scale
idNull indices of known null taxa
nResampleCurves

The number of resampling null distributions to plot
hSize A double, the size of the line of the collapsed null estimate



ptEdit 13

Value

a ggplot2 plot object

Examples

p = 180; n = 50; B = 1e2
#Low number of resamples keeps computation time down
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)

#Provide just the matrix and grouping factor, and test using the random null
fdrRes = reconsi(mat, x, B = B)
plotNull(fdrRes)

ptEdit A custom function to calculate the distribution function of the t-test
statistic. For internal use only

Description

A custom function to calculate the distribution function of the t-test statistic. For internal use only

Usage

ptEdit(q)

Arguments

q a vector with t-statistic and degrees of freedom

Value

A value between 0 and 1, the evaluation of the cdf

qtEdit A custom function to calculate the quantile function of the t-test statis-
tic. For internal use only

Description

A custom function to calculate the quantile function of the t-test statistic. For internal use only

Usage

qtEdit(p)



14 reconsi

Arguments

p a vector with quantile and degrees of freedom

Value

the corresponding quantile

quantCorrect Correct quantiles by not returning 0 or 1

Description

Correct quantiles by not returning 0 or 1

Usage

quantCorrect(quants)

Arguments

quants A vector of quantiles

Value

The same vector of quantiles but without 0 or 1 values

reconsi Perform simultaneous inference through collapsed resampling null
distributions

Description

Perform simultaneous inference through collapsed resampling null distributions

Usage

reconsi(
Y,
x = NULL,
B = 1000L,
test = "wilcox.test",
argList = list(),
distFun = "pnorm",
zValues = TRUE,
testPargs = list(),
z0Quant = 0.25,



reconsi 15

gridsize = 801L,
maxIter = 100L,
tol = 1e-06,
zVals = NULL,
center = FALSE,
replace = is.null(x),
assumeNormal = TRUE,
estP0args = list(z0quantRange = seq(0.05, 0.45, 0.0125), smooth.df = 3, evalVal = 0.05),
resamZvals = FALSE,
smoothObs = TRUE,
scale = FALSE,
tieBreakRan = FALSE,
pi0 = NULL,
resamAssumeNormal = TRUE

)

Arguments

Y the matrix of sequencing counts

x a grouping factor. If provided, this grouping factor is permuted. Otherwise a
bootstrap procedure is performed

B the number of resampling instances

test Character string, giving the name of the function to test for differential absolute
abundance. Must accept the formula interface. Features with tests resulting in
observed NA test statistics will be discarded

argList A list of arguments, passed on to the testing function

distFun the distribution function of the test statistic, or its name. Must at least accept an
argument named ’q’, ’p’ and ’x’ respectively.

zValues A boolean, should test statistics be converted to z-values. See details

testPargs A list of arguments passed on to distFun

z0Quant A vector of length 2 of quantiles of the null distribution, in between which only
null values are expected

gridsize The number of bins for the kernel density estimates

maxIter An integer, the maximum number of iterations in the estimation of the null dis-
tribution

tol The tolerance for the infinity norm of the central borders in the iterative proce-
dure

zVals An optional list of observed (statObs) and resampling (statsPerm) z-values. If
supplied, the calculation of the observed and resampling test statistics is skipped
and the algorithm proceeds with calculation of the consensus null distribution

center A boolean, should observations be centered in each group prior to permuations?
See details.

replace A boolean. Should resampling occur with replacement (boostrap) or without
replacement (permutation)



16 reconsi

assumeNormal A boolean, should normality be assumed for the null distribution?

estP0args A list of arguments passed on to the estP0 function

resamZvals A boolean, should resampling rather than theoretical null distributions be used?

smoothObs A boolean, should the fitted rather than estimated observed distribution be used
in the Fdr calculation?

scale a boolean, should data be scaled prior to resampling

tieBreakRan A boolean, should ties of resampling test statistics be broken randomly? If not,
midranks are used

pi0 A known fraction of true null hypotheses. If provided, the fraction of true null
hypotheses will not be estimated. Mainly for oracle purposes.

resamAssumeNormal

A boolean, should normality be assumed for resampling dists

Details

Efron (2007) centers the observations in each group prior to permutation. As permutations will
remove any genuine group differences anyway, we skip this step by default. If zValues = FALSE,
the density is fitted on the original test statistics rather than converted to z-values. This unlocks the
procedure for test statistics with unknown distributions, but may be numerically less stable.

Value

A list with entries

statsPerm Resampling Z-values

statObs Observed Z-values

distFun Density, distribution and quantile function as given

testPargs Same as given

zValues A boolean, were z-values used?

resamZvals A boolean, were the resampling null distribution used?

cdfValObs Cumulative distribution function evaluation of observed test statistics

p0estimated A boolean, was the fraction of true null hypotheses estimated from the data?

Fdr, fdr Estimates of tail-area and local false discovery rates

p0 Estimated or supplied fraction of true null hypotheses

iter Number of iterations executed

fitAll Mean and standard deviation estimated collapsed null

PermDensFits Mean and standard deviations of resamples

convergence A boolean, did the iterative algorithm converge?

zSeq Basis for the evaluation of the densities

weights weights of the resampling distributions

zValsDensObs Estimated overall densities, evaluated in zSeq



reconsi 17

Note

Ideally, it would be better to only use unique resamples, to avoid unnecesarry replicated calculations
of the same test statistics. Yet this issue is almost alwyas ignored in practice; as the sample size
grows it also becomes irrelevant. Notice also that this would require to place weights in case of the
bootstrap, as some bootstrap samples are more likely than others.

Examples

#Important notice: low number of resamples B necessary to keep
# computation time down, but not recommended. Pray set B at 200 or higher.
p = 60; n = 20; B = 5e1
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x), n, p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5), n, p*9/10) #Non DA
)
fdrRes = reconsi(mat, x, B = B)
fdrRes$p0
#Indeed close to 0.9
estFdr = fdrRes$Fdr
#The estimated tail-area false discovery rates.

#With another type of test. Need to supply quantile function in this case
fdrResLm = reconsi(mat, x, B = B,
test = function(x, y){
fit = lm(y~x)
c(summary(fit)$coef["x","t value"], fit$df.residual)},
distFun = function(q){pt(q = q[1], df = q[2])})

#With a test statistic without known null distribution(for small samples)
fdrResKruskal = reconsi(mat, x, B = B,
test = function(x, y){
kruskal.test(y~x)$statistic}, zValues = FALSE)

#Provide an additional covariate through the 'argList' argument
z = rpois(n , lambda = 2)
fdrResLmZ = reconsi(mat, x, B = B,
test = function(x, y, z){
fit = lm(y~x+z)
c(summary(fit)$coef["x","t value"], fit$df.residual)},
distFun = function(q){pt(q = q[1], df = q[2])},
argList = list(z = z))

#When nog grouping variable is provided, a bootstrap is performed
matBoot = cbind(
matrix(rnorm(n*p/10, mean = 1), n, p/10), #DA
matrix(rnorm(n*p*9/10, mean = 0), n, p*9/10) #Non DA
)
fdrResBoot = reconsi(matBoot, B = B,
test = function(y, x){testRes = t.test(y, mu = 0, var.equal = TRUE);
c(testRes$statistic, testRes$parameter)},
distFun = function(q){pt(q = q[1], df = q[2])},



18 stabExp

center = TRUE, replace = TRUE)

rowMultiply A function to efficiently row multiply a a-by-b matrix by a vector of
length b. More memory intensive but that does not matter with given
matrix sizes

Description

A function to efficiently row multiply a a-by-b matrix by a vector of length b. More memory
intensive but that does not matter with given matrix sizes

Usage

rowMultiply(matrix, vector)

Arguments

matrix a numeric matrix of dimension a-by-b
vector a numeric vector of length b

Details

t(t(matrix)*vector) but then faster

Value

a matrix, row multplied by the vector

stabExp A function to numerically stabilize an exponentiation. For internal use
only

Description

A function to numerically stabilize an exponentiation. For internal use only

Usage

stabExp(exps)

Arguments

exps the vector to be exponentiated

Value

the vector with the maximum subtracted



testDAA 19

testDAA A function to test for differential absolute abundance on a phyloseq
object

Description

A function to test for differential absolute abundance on a phyloseq object

Usage

testDAA(Y, ...)

## S4 method for signature 'phyloseq'
testDAA(Y, groupName, FCname, ...)

## S4 method for signature 'matrix'
testDAA(Y, FC, x, S = rowSums(Y), tieBreakRan = TRUE, assumeNormal = TRUE, ...)

Arguments

Y A phyloseq object, or a data matrix with samples in the rows and OTUs in the
columns

... passed on to the reconsi() function

groupName A character string, the name of a variable in physeq indicating the grouping
factor

FCname A character string, the name of a variable in physeq containing the total cell
count

FC a vector of length n with total flow cytometry cell counts

x a grouping factor of length n

S a vector of library sizes. Will be calculated if not provided

tieBreakRan A boolean, should ties be broken at random.

assumeNormal A boolean, should normality be assumed for the null distribution?

Value

See the reconsi() function

Examples

#Test for phyloseq object
library(phyloseq)
data("VandeputteData")
VandeputtePruned = prune_samples(Vandeputte,
samples = sample_names(Vandeputte)[20:40])
testVanDePutte = testDAA(VandeputtePruned, "Health.status", "absCountFrozen",



20 Vandeputte

B = 15)
#Test for matrix
testMat = testDAA(as(otu_table(VandeputtePruned), "matrix"),
get_variable(VandeputtePruned, "Health.status"),
get_variable(VandeputtePruned,"absCountFrozen"), B = 15)

Vandeputte Microbiomes of Crohn’s disease patients and healthy controls

Description

Microbiome sequencing data of Crohn’s disease patients, and healthy controls, together with other
baseline covariates. Both sequencing and flow cytometry data are available.

Usage

Vandeputte

Format

A phyloseq object with an OTU-table and sample data

otu_table Count data matrix of 234 taxa in 135 samples

sample_data Data frame of patient covariates

Source

https://www.ncbi.nlm.nih.gov/pubmed/29143816

https://www.ncbi.nlm.nih.gov/pubmed/29143816


Index

∗ datasets
Vandeputte, 20

binStats, 2

calcWeights, 3

estNormal, 3
estP0, 4

getApproxCovar, 4, 11
getC1prop, 5
getFdr, 6
getG0, 7
getTestStats, 8
getTstat, 9

plotApproxCovar, 10, 12
plotCovar, 10, 11, 11
plotNull, 12
ptEdit, 13

qtEdit, 13
quantCorrect, 14

reconsi, 14
rowMultiply, 18

stabExp, 18

testDAA, 19
testDAA,matrix-method (testDAA), 19
testDAA,phyloseq-method (testDAA), 19

Vandeputte, 20

21


	binStats
	calcWeights
	estNormal
	estP0
	getApproxCovar
	getC1prop
	getFdr
	getG0
	getTestStats
	getTstat
	plotApproxCovar
	plotCovar
	plotNull
	ptEdit
	qtEdit
	quantCorrect
	reconsi
	rowMultiply
	stabExp
	testDAA
	Vandeputte
	Index

