Package ‘rBiopaxParser’

February 2, 2026
Type Package

Title Parses BioPax files and represents them in R

Version 2.51.0

Date 2020-07-14

Author Frank Kramer

Maintainer Frank Kramer <frank.kramer@informatik.uni-augsburg.de>

Description Parses BioPAX files and represents them in R, at the moment BioPAX
level 2 and level 3 are supported.

License GPL (>=2)

Depends R (>=4.0), data.table

Imports XML

Suggests Rgraphviz, RCurl, graph, RUnit, BiocGenerics, RBGL, igraph

URL https://github.com/frankkramer-1lab/rBiopaxParser
biocViews DataRepresentation

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/rBiopaxParser
git_branch devel

git_last_commit aedl65a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents

rBiopaxParser-packageo
addBiochemicalReaction oL oo
addBiopaxInstance
addBiopaxInstances
addControl

https://github.com/frankkramer-lab/rBiopaxParser

Contents

addhash 8
addns e 8
addPathway L 9
addPathwayComponents e 10
addPhysicalEntity 11
addPhysicalEntityParticipant L L 12
addPropertiesToBiopaxInstance 13
DIOPpaX e e e e e e 13
calcGraphOverlap e 14
checkValidity 15
CLASS_INHERITANCE_BP2 15
CLASS_INHERITANCE _BP3 e 16
CLASS_PROPERTIES BP2 e 16
CLASS_PROPERTIES_BP3 17
colorGraphNodes e 18
combineNodes e e 19
createBiopax 19
DATABASE_BIOPAX e 20
diffGraphs e 21
downloadBiopaxData 22
generateNewUniquelD L 23
getClassProperties e e 23
getlnstanceClass L 24
getlnstanceProperty L L 25
getNeighborhood e 26
getParticipants oL e e e e e 26
getReferencedIDs L 27
getReferencingIDs L. 28
getSUDCIAsSes e e e e 29
getSuperClasses 29
getXrefAnnotationso 30
hasProperty e e e e 31
internal_checkArguments L 32
internal_generateXMLfromBiopax Lo 33
internal_getBiopaxModelAsDataFrame 33
internal NrOfXMLNodes oo 34
internal_propertyListToDF 34
internal_resolvePhysicalEntityParticipant 35
internal_XMLInstance2DF 36
intersectGraphs 37
ISOfClass 37
1ISOfNamespace v v it e e e e e e e 38
ISURL . . . 39
layoutRegulatoryGraph L oo 39
listComplexComponents v v v v v v i et 40
listlnstances 41
listInteractionComponents 42

listPathwayComponents 43

rBiopaxParser-package 3

listPathways e e e 44
mergePathways 45
pathway2AdjacancyMatrix 46
pathway2Geneset e e e e e e 47
pathway2Graph 48
pathway2RegulatoryGraph 50
plotRegulatoryGraph 51
print.biopax e e e 52
readBiopax 52
removeDisconnectedParts oL 53
removelnstance L. L e 54
removeNOdes 55
removeProperties L e 56
selectlnstances L e 56
splitComplex e 58
striphash L 59
SIEIPNS « . o o o e 59
transitiveClosure oL e 60
transitiveReduction L L 61
unfactorize L. 61
uniteGraphs L e e e e e 62
writeBiopax 63
Index 65

rBiopaxParser-package Parses BioPax level files and represents them in R

Description

Parses BioPax files and represents them in R

Details

rBiopaxParser is a...

Package: rBiopaxParser
Type: Package
Version: 0.15
Date: 2012-08-22
License: GPL (>=2)

Author(s)

Frank Kramer <dev@frankkramer.de>

Examples

Not

addBiochemicalReaction

run: biopax = readBiopax(file="biopaxmodel.owl")

addBiochemicalReaction

This function adds a new biochemical reaction to the biopax model.

Description

This function adds a new biochemical reaction of class biochemicalReaction to the biopax model.

This is a convenience function, internally the function addBiopaxInstance is called with properties
LEFT and RIGHT set.
Usage
addBiochemicalReaction(biopax, LEFT = c(), RIGHT = c(), id = NULL)
Arguments
biopax A biopax model
LEFT vector of strings. IDs of the physicalEntityParticipant instances that are on the
left side of this reaction.
RIGHT vector of strings. IDs of the physicalEntityParticipant instances that are on the
right side of this reaction.
id string. ID for the control. If NULL a new ID is generated with prefix "biochem-
icalReaction".
Value

Returns the biopax model with the added pathway.

Author(s)
fkramer
Examples
biopax = createBiopax(level=2)
biopax = addPhysicalEntity(biopax, class="protein”, id="p_id1", NAME="proteinl")
biopax = addPhysicalEntityParticipant(biopax, "p_id1", id="PEP_p_id1")
biopax = addPhysicalEntity(biopax, class="protein”, id="p_id2", NAME="protein2")
biopax = addPhysicalEntityParticipant(biopax, "p_id2", id="PEP_p_id2")
biopax = addBiochemicalReaction(biopax, LEFT=c("PEP_p_id1"), RIGHT=c("PEP_p_id2"), id="biochem_id_1")

biopax$dt

addBiopaxInstance 5

addBiopaxInstance This function adds a new instance to an existing biopax model.

Description

This function adds a new instance to an existing biopax model. "properties" is a named list of
vectors, with the vector name as the name of the property and every entry of the vector a property
value. Please note: case sensitivity! In Biopax Level 2 all properties are written in all capital letters.
This will change in Biopax Level 3.

Usage

addBiopaxInstance(
biopax,
class,
id,
properties = list(NAME = c()),
verbose = TRUE

)
Arguments

biopax A biopax model

class string. Class name

id string. ID of the instance

properties named list of properties.

verbose logical. Be verbose about what was added.
Value

Returns the supplied biopax model with the new instance added.

Author(s)

Frank Kramer

Examples

biopax = createBiopax(level=2)
biopax = addBiopaxInstance(biopax, class="protein"”, id="id1", properties=1ist(NAME="protein1",SYNONYMS="p1"))
biopax$dt

6 addControl

addBiopaxInstances This function adds new instances to an existing biopax model.

Description

This function adds new instances (supplied as a compatible data.table) to an existing biopax model
via rbind. Usually you want to start out at createBiopax and addPhysicalEntity and work your way
up the ontology ladder.

Usage

addBiopaxInstances(biopax, newInstancesDF)

Arguments

biopax A biopax model

newInstancesDF data.table or data.frame. Must be compatible with internal biopax implementa-
tion.

Value

Returns the supplied biopax model with the new instances added.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

biopax_temp = createBiopax(level=2)

biopax_temp = addBiopaxInstance(biopax_temp, class="protein”, id="id1", properties=1ist(NAME="protein1"”,6SYNONYM
selectInstances(biopax_temp)

biopax = addBiopaxInstances(biopax, selectInstances(biopax_temp))

addControl This function adds a new control to the biopax model.

Description

This function adds a new interaction of class control to the biopax model. This is a convenience
function to add controls, internally the function addBiopaxInstance is called with properties CONTROL-
TYPE, CONTROLLER and CONTROLLED set.

addControl 7

Usage

addControl(
biopax,
CONTROL_TYPE = c("ACTIVATION", "INHIBITION"),
CONTROLLER = "",
CONTROLLED = c(),
id = NULL

Arguments

biopax A biopax model

CONTROL_TYPE string. Specifies wether this is an activating or inhibiting control.

CONTROLLER string. ID of the physicalEntityParticipant instance that is the controller of this
interaction.
CONTROLLED vector of strings. IDs of the interaction and/or pathway instances that are being
controlled.
id string. ID for the control. If NULL a new ID is generated with prefix "control".
Value

Returns the biopax model with the added pathway.

Author(s)

fkramer

Examples

biopax = createBiopax(level=2)

biopax = addPhysicalEntity(biopax, class="protein”, id="p_id1", NAME="proteinl")

biopax = addPhysicalEntityParticipant(biopax, "p_id1"”, id="PEP_p_id1")

biopax = addPhysicalEntity(biopax, class="protein”, id="p_id2", NAME="protein2")

biopax = addPhysicalEntityParticipant(biopax, "p_id2", id="PEP_p_id2")

biopax = addBiochemicalReaction(biopax, LEFT=c("PEP_p_id1"), RIGHT=c("PEP_p_id2"), id="biochem_id_1")

biopax = addPhysicalEntity(biopax, class="protein"”, id="p_id3", NAME="controllerProtein1")

biopax = addPhysicalEntityParticipant(biopax, "p_id3", id="PEP_p_id3")

biopax = addControl(biopax, CONTROL_TYPE="ACTIVATION"”, CONTROLLER="PEP_p_id3", CONTROLLED="biochem_id_1", id="c_
biopax$dt

8 addns

addhash Adds a hash in front of a string

Description

Adds a hash in front of a string

Usage
addhash(x)

Arguments

X A string to be preceeded by a hash

Value

The supplied string with a hash "#" pasted in front of it.

Author(s)

Frank Kramer

addns Add a namespace tag to the supplied classname string

Description

This function takes the input classname, checks if it already has a namespace, and if not pastes the

non

namespace tag with a dividing ":" in front of it.

Usage

addns(classname, namespace = "bp")
Arguments

classname A string containing a classname

namespace A string containing a namespace
Value

If the classname is not preceeded by a namespace yet, the supplied namespace is pasted in front of
it and returned.

Author(s)

Frank Kramer

addPathway 9

addPathway This function adds a new pathway to the biopax model.

Description

This function adds a new pathway + its PATHWAY-COMPONENTS (references to interaction/pathways/pathwaySteps)

Usage

addPathway (
biopax,
NAME,
PATHWAY_COMPONENTS = c(),
id = NULL,
ORGANISM = NULL,
COMMENT = NULL

)
Arguments
biopax A biopax model
NAME string. Name of the pathway

PATHWAY_COMPONENTS
character vector. IDs of the pathway components. This must be IDs of instances
of type interaction/pathway/pathwayStep (or their subclasses).

id string. ID for the pathway. If NULL a new ID is generated with prefix "path-
way".
ORGANISM string. Organism property of the pathway. optional.
COMMENT string. An optional comment
Value

Returns the biopax model with the added pathway.

Author(s)

fkramer

Examples

biopax = createBiopax(level=2)

biopax = addPhysicalEntity(biopax, class="protein”, id="p_id1", NAME="proteinl")

biopax = addPhysicalEntityParticipant(biopax, "p_id1", id="PEP_p_id1")

biopax = addPhysicalEntity(biopax, class="protein”, id="p_id2", NAME="protein2")

biopax = addPhysicalEntityParticipant(biopax, "p_id2", id="PEP_p_id2")

biopax = addBiochemicalReaction(biopax, LEFT=c("PEP_p_id1"), RIGHT=c("PEP_p_id2"), id="biochem_id_1")
biopax = addPhysicalEntity(biopax, class="protein"”, id="p_id3", NAME="controllerProtein1")

10 addPathwayComponents

biopax = addPhysicalEntityParticipant(biopax, "p_id3", id="PEP_p_id3")

biopax = addControl (biopax, CONTROL_TYPE="ACTIVATION", CONTROLLER="PEP_p_id3", CONTROLLED="biochem_id_1", id="c_
biopax = addPathway(biopax, NAME="mypathway1"”, PATHWAY_COMPONENTS=c("c_id1"), id="pw_id1")

biopax$dt

addPathwayComponents This function adds pathway components to an existing pathway

Description

This function adds pathway components to an existing pathway. Property PATHWAY-COMPONENTS
are references to IDs of interaction/pathways/pathwaySteps (or subclasses of those)

Usage
addPathwayComponents(biopax, id, PATHWAY_COMPONENTS = c())

Arguments
biopax A biopax model
id string. ID for the pathway

PATHWAY_COMPONENTS
character vector. IDs of the pathway components. This must be IDs of instances
of type interaction/pathway/pathwayStep (or their subclasses).

Value

Returns the biopax model with the pathway components added to the pathway

Author(s)

fkramer

Examples

biopax = createBiopax(level=2)

biopax = addPhysicalEntity(biopax, class="protein”, id="p_id1", NAME="proteinl")

biopax = addPhysicalEntityParticipant(biopax, "p_id1"”, id="PEP_p_id1")

biopax = addPhysicalEntity(biopax, class="protein”, id="p_id2", NAME="protein2")

biopax = addPhysicalEntityParticipant(biopax, "p_id2", id="PEP_p_id2")

biopax = addBiochemicalReaction(biopax, LEFT=c("PEP_p_id1"), RIGHT=c("PEP_p_id2"), id="biochem_id_1")
biopax = addPhysicalEntity(biopax, class="protein"”, id="p_id3", NAME="controllerProtein1")

biopax = addPhysicalEntityParticipant(biopax, "p_id3", id="PEP_p_id3")

biopax = addControl (biopax, CONTROL_TYPE="ACTIVATION", CONTROLLER="PEP_p_id3", CONTROLLED="biochem_id_1", id="c_
biopax = addPathway(biopax, NAME="mypathway1", PATHWAY_COMPONENTS=c(), id="pw_id1")

biopax = addPathwayComponents(biopax, id="pw_id1", PATHWAY_COMPONENTS=c("c_id1"))

biopax$dt

addPhysicalEntity 11

addPhysicalEntity This function adds a new physical entity.

Description

This function adds a new physical entity of chosen class to the biopax model. This is a convenience
function to add physical entities, internally the function addBiopaxInstance is called with properties
NAME and ORGANISM set.

Usage

addPhysicalEntity(
biopax,
class = c("dna", "rna", "protein”, "smallMolecule"”, "complex")[1],
NAME,
id = NULL,
ORGANISM = NULL,
COMMENT = NULL

)
Arguments
biopax A biopax model
class string. Class of the physical entity to add, choose from c("dna","rna","protein","smallMolecule","complex
NAME string. Name of the new physical entity
id string. ID for the physical entity. If NULL a new ID is generated with prefix
"physicalEntity".
ORGANISM string. Organism property of the molecule. optional.
COMMENT string. An optional comment
Value

Returns the biopax model with the added physical entity.

Author(s)

fkramer

Examples

biopax = createBiopax(level=2)

biopax = addBiopaxInstance(biopax, class="protein"”, id="id1", properties=1list(NAME="protein1",COMMENT="this is m
biopax$dt

biopax = addPhysicalEntity(biopax, class="protein"”, id="id2", NAME="protein2", COMMENT="This is a protein added us
biopax$dt

12 addPhysicalEntityParticipant

addPhysicalEntityParticipant
This function adds a new physical entity participant.

Description

This function adds a new physical entity participant instance, which is a placeholder for physicalEn-
tity class instances in interactions. This is a convenience function to add physicalEntityParticipant
instances, internally the function addBiopaxInstance is called.

Usage

addPhysicalEntityParticipant(biopax, referencedPhysicalEntityID, id = NULL)

Arguments

biopax A biopax model

referencedPhysicalEntityID
string. ID the new physicalEntity instance to reference here.

id string. ID for the physical entity participant. If NULL a new ID is generated
with prefix "physicalEntityParticipant".

Value

Returns the biopax model with the added physicalEntityParticipant.

Author(s)

fkramer

Examples

biopax = createBiopax(level=2)

biopax = addPhysicalEntity(biopax, class="protein”, id="p_id1", NAME="proteinl")
biopax = addPhysicalEntityParticipant(biopax, "p_id1"”, id="PEP_p_id1")

biopax = addPhysicalEntity(biopax, class—“protein” id="p_id2", NAME="protein2")
biopax = addPhysicalEntityParticipant(biopax, "p_id2", id="PEP_p_id2")

biopax = addBiochemicalReaction(biopax, LEFT=c("PEP_p_ 1d1") RIGHT=c("PEP_p_id2"), id="biochem_id1")

biopax$dt

addPropertiesToBiopaxInstance 13

addPropertiesToBiopaxInstance
This function adds new properties to an existing biopax instance.

Description

This function adds new properties to an existing biopax instance.

Usage

addPropertiesToBiopaxInstance(biopax, id, properties)

Arguments
biopax A biopax model
id string. ID of the instance
properties named list of properties.
Value

Returns the supplied biopax model with new properties added to this instance.

Author(s)

Frank Kramer

Examples

biopax = createBiopax(level=2)

biopax = addBiopaxInstance(biopax, class="protein"”, id="id1", properties=1ist(NAME="protein1",SYNONYMS="p1"))

biopax$dt
biopax = addPropertiesToBiopaxInstance(biopax, id="id1", properties=1ist(COMMENT="this is my first protein!"))
biopax$dt
biopax Biopax example data set
Description

A dataset containing two regulatory pathways encoded in Biopax Level 2 and parsed in via read-
Biopax().

Another dataset containing pathways encoded in Biopax Level 2 and parsed in via readBiopax().

14 calcGraphOverlap

Format

An example biopax model parsed in via readBiopax.

An example biopax model parsed in via readBiopax.

Examples

data(biopaxexample)
biopax
data(biopaxLevel3Example)
biopax

calcGraphOverlap This function calculates the overlap of 2 graphs

Description
This function calculates the overlap of supplied graphl with graph2. Layout and weights of graphl
are kept.

Usage

calcGraphOverlap(graphl, graph2)

Arguments
graph graphNEL
graph2 graphNEL
Value

Returns a list containing the compared graphs and edge- and node-wise overlap between them.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"”

pwid2 = "pid_p_100146_hespathway”

mygraphl = pathway2RegulatoryGraph(biopax, pwid1l)
mygraph2 = pathway2RegulatoryGraph(biopax, pwid2)
calcGraphOverlap(mygraphl,mygraph2)

check Validity 15

checkvalidity This function checks the supplied biopax model for validity.

Description
This function checks the supplied biopax model for validity, concerning classes, properties, etc. Not
yet implemented. Called internally by writeBiopax.

Usage
checkValidity(biopax)

Arguments

biopax A biopax model

Value

logical. Returns TRUE is the biopax model is valid Biopax Level 2, or FALSE otherwise.

Author(s)

Frank Kramer

CLASS_INHERITANCE_BP2 CLASS_INHERITANCE_BP2

Description

Class inheritance relationships in Biopax Level 2.

Usage
CLASS_INHERITANCE_BP2

Format

A data frame with 46 rows and 2 columns

Details

A data.frame listing all direct superclasses for every Biopax Level 2 class. The variables are as
follows:

e class. Name of the class

* superclass. Name of the superclass

16 CLASS_PROPERTIES_BP2

CLASS_INHERITANCE_BP3 CLASS_INHERITANCE_BP3

Description

Class inheritance relationships in Biopax Level 3.

Usage

CLASS_INHERITANCE_BP3

Format

A data frame with 46 rows and 2 columns

Details

A data.frame listing all direct superclasses for every Biopax Level 3 class. The variables are as
follows:

¢ class. Name of the class

* superclass. Name of the superclass

NOT UPDATED TO BP3 yet!

CLASS_PROPERTIES_BP2 CLASS_PROPERTIES_BP2

Description

Class properties in Biopax Level 2.

Usage

CLASS_PROPERTIES_BP2

Format

A data frame with 106 rows and 4 columns

CLASS_PROPERTIES_BP3 17

Details

A data.frame listing all direct properties for every Biopax Level 2 class. Together with CLASS_INHERITANCE_BP2
this allows to list all properties, including the inherited ones, of every class.

The variables are as follows:

* class. Name of the class
* property. Name of the superclass
* property_type.Type of the property, value or reference

e cardinality. Maximum allowed cardinality of a property. Many properties may only be singu-
lar.

CLASS_PROPERTIES_BP3 CLASS_PROPERTIES_BP3

Description

Class properties in Biopax Level 3.

Usage

CLASS_PROPERTIES_BP3

Format

A data frame with 106 rows and 4 columns

Details

A data.frame listing all direct properties for every Biopax Level 3 class. Together with CLASS_INHERITANCE_BP3
this allows to list all properties, including the inherited ones, of every class.

The variables are as follows:

* class. Name of the class
* property. Name of the superclass
 property_type.Type of the property, value or reference

e cardinality. Maximum allowed cardinality of a property. Many properties may only be singu-
lar.

18 colorGraphNodes

colorGraphNodes This function colors the nodes of a graph.

Description

This function colors nodes of a graph, usually this is used to color subgraphs or add a color hue
correlating with the expression level or fold change to the molecules.

Usage
colorGraphNodes(graphl, nodes, values, colors = c("greenred”, "yellowred"))
Arguments
graph graphNEL
nodes vector of node names specifiying which nodes to color. must be same length as
parameter foldChanges
values vector of values indicating fold changes, gene expression values or similar. col-
ors are mapped linearly over the range of these values
colors string. either "greenred" or "yellowred", specifying which color gradient to use.
Value

Returns a graph with specified nodes colored according to the foldChanges

Author(s)

Frank Kramer

Examples

load data and retrieve wnt pathway
data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"

mygraphl = pathway2RegulatoryGraph(biopax, pwid1)
mygraph1 = layoutRegulatoryGraph(mygraphl)

retrieve all nodes

nodes = nodes(mygraphl)

random expression data for your nodes

values = rnorm(length(nodes), mean=6, sd=2)

color nodes of the graph

mygraph1 = colorGraphNodes(mygraphl, nodes, values, colors="greenred")
plot the now colored graph
plotRegulatoryGraph(mygraph1, layoutGraph=FALSE)

combineNodes 19

combineNodes This function gracefully combines nodes of a regulatory graph.

Description
This gracefully combines nodes from a regulatory graph. This is basically a wrapper for graph::combineNodes(nodes,
graph, newName, collapseFunction=max). If there are duplicated edges for the nodes, the maxi-
mum edgeweight will be used for the new connection.

Usage

combineNodes(nodes, graph, newName)

Arguments

nodes vector of node names specifiying which nodes to combine.

graph graphNEL

newName string. Name of the newly created node that will combine the specified nodes.
Value

Returns a graph with specified nodes removed.

Author(s)

Frank Kramer

Examples
load data and retrieve wnt pathway
data(biopaxexample)
createBiopax This function creates a new Biopax model from scratch
Description

This function creates a new Biopax model from scratch. This is not necessary if you want to parse
a BioPAX export from a file, please see: readBiopax. Returns a biopax model, which is a list with
named elements:

df The data.frame representing the biopax in R

ns_rdf RDF Namespace

ns_owl OWL Namespace

ns_bp Biopax Namespace

file NULL

20

Usage

createBiopax(level = 3)

Arguments

level integer. Specifies the BioPAX level.

Value

A biopax model

Author(s)
Frank Kramer

Examples

biopax = createBiopax(level=2)

DATABASE BIOPAX

DATABASE_BIOPAX DATABASE_BIOPAX

Description

Databases available for direct download via downloadBiopaxData

Usage
DATABASE_BIOPAX

Format

A data frame with 46 rows and 4 columns

Details

A data.frame listing all available databases which can be directly downloaded (Homo Sapiens only)

via function downloadBiopaxData. The variables are as follows:

» database. Name of the database
* model. Name of the ontology model
* version. Biopax level

e link. Link to the direct download

diffGraphs 21

diffGraphs This function returns the different nodes and edges between graphl
and graph?.

Description

This function returns the different nodes and edges between graphl and graph2. Layout options of
graphl are kept. Coloring currently not implemented.

Usage

diffGraphs(graphl, graph2, colorNodes = TRUE, colors = c("#B3E2CD", "#FDCDAC"))

Arguments
graph graphNEL
graph?2 graphNEL
colorNodes logical
colors character vector of colors. If colorNodes==TRUE these colors are used for
graphl and graph2 respectivley.
Value

Return the diff between the graphs.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"

pwid2 = "pid_p_100146_hespathway”

mygraphl = pathway2RegulatoryGraph(biopax, pwid1l)
mygraph2 = pathway2RegulatoryGraph(biopax, pwid2)
plotRegulatoryGraph(diffGraphs(mygraphl,mygraph2))

22 downloadBiopaxData

downloadBiopaxData This function downloads Biopax data from online databases

Description

This function has an internal list of download links for some online databases. It will retrieve the
selected model from the selected database using RCurl. The downloaded file is (if needed) unzipped
and ready to be used as input for rBiopaxParser::readBiopax. This function requires package RCurl
to run. You can easily skip this step by downloading the exported file yourself and continuing with

readBiopax.
Usage
downloadBiopaxData(
database = "NCI",
model = c("pid”, "biocarta”, "reactome", "kegg"),
outputfile = ""
version = "biopax2"
)
Arguments
database string. Select which database you want to download from. Currently only NCI
links have been stored.
model string. Select which model/file you want to download. Currently NCI versions
of the Pathway Interaction Database, Biocarta, Reactome and KEGG are linked.
outputfile string. The file name to save the downloaded data in. If left empty the URL file
name will be used. The unzipped file name can be different from this. Check
the screen output of gunzip.
version string. Select which Biopax Version you want to download.
Value

none. Check output for the name of the unzipped biopax .owl file.

Author(s)

fkramer

Examples

Not run: file = downloadBiopaxData(”"NCI"”, "biocarta”, version = "biopax2")
Not run: biopax = readBiopax(file)
Not run: biopax

generateNewUniquelD 23

generateNewUniquelD This function generates a new unique id for a biopax model

Description

This function generates a new unique id for a biopax model. Pass it an startin g point like "pathway"
or "protein" to get a niceer looking id.

Usage

generateNewUniqueID(biopax, id = "")
Arguments

biopax A biopax model

id string. This is used as a prefix for the id.
Value

Returns an unused unique ID.

Author(s)

fkramer

getClassProperties This function returns the properties of the supplied biopax class.

Description

This function returns the properties of the supplied biopax class. It always considers inhertance.
Every class inhertis the properties of its super classes. A table listing all available properties and
their cardinalities (for Biopax Level 2).

Usage

getClassProperties(classname, biopaxlevel = 3)

Arguments
classname A string containing a class name
biopaxlevel Numeric. Specifies the Biopax Level to use.
Value

Returns a data.frame containing the properties and cardinalities of the supplied class

24
Author(s)

Frank Kramer

Examples

getClassProperties("”control"”)

getlnstanceClass

getInstanceClass This function returns the class name of the instance.

Description

This function returns the class name of the instance.

Usage

getInstanceClass(biopax, id)

Arguments
biopax A biopax model
id string

Value

Returns the class name of the biopax instance.

Author(s)

fkramer

Examples

load data
data(biopaxexample)
getInstanceClass(biopax, id="ex_m_100650")

getInstanceProperty 25

getInstanceProperty This function returns all properties of the specified type for an in-
stance.

Description

This function returns all properties of the specified type for an instance. By default this function
returns the NAME property of an instance.

Usage

getInstanceProperty(
biopax,
id,
property = "NAME",
includeAllNames = TRUE,
biopaxlevel = 3

)
Arguments
biopax A biopax model
id string
property string.
includeAllNames
logical. Biopax Level 3 brought 2 new name properties: displayName and stan-
dardName. Per default this return all names of an instance. Disable if you only
want the NAME property.
biopaxlevel integer. Set the biopax level here if you supply a data.table directly.
Value

Returns a character vector with all properties of the selected type for this instance. Returns NULL
if no property data is found.

Author(s)

fkramer

Examples

load data

data(biopaxexample)

getInstanceProperty(biopax, id="ex_m_100650", property="NAME")
getInstanceProperty(biopax, id="ex_m_100650", property="ORGANISM")
getInstanceProperty(biopax, id="ex_m_100650", property="COMPONENTS")

26 getParticipants

getNeighborhood This function returns the neighborhood of a physicalEntity

Description
This function searches the supplied biopax for interactions that are connected to the molecule or
within "depth’ number of steps from it.

Usage
getNeighborhood(biopax, id, depth = 1, onlyInPathways = c(), biopaxlevel = 3)

Arguments
biopax A biopax model
id string. ID of a physicalEntity (dna, rna, protein, complex, smallMolecule)
depth integer. Search depth, this specifies how far out from the specified molecule the

neighborhood should be streched.
onlyInPathways character vector of pathway IDs. Search only in these pathways for neighbors.
biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

Value

Returns ids of interactions within ’depth’ number of steps of the specified physicalEntity

Author(s)
fkramer
getParticipants This function is used internally by pathway2Graph to obtain physical
entities participating in an interaction.
Description

This function is used internally by pathway2Graph to obtain physical entities participating in an
interaction.

Usage

getParticipants(
pwComponentList,
instance,
biopaxlevel,
splitComplexMolecules = FALSE,
useIDasNodenames = TRUE

getReferencedIDs 27

Arguments
pwComponentList
List of pathway components
instance Biopax instance id
biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

splitComplexMolecules
logical. If TRUE complexes are split up into their components and the annota-
tion of the components is added.

useIDasNodenames

logical. If TRUE nodes of the graph are named by their molecule IDs instead
of using the NAME property. This can help with badly annotated/formatted

databases.
Author(s)
Nirupama Benis
getReferencedIDs This function returns a vector of ids of all instances referenced by the

specified instance.

Description

This function takes an id and a biopax model as input. The id of every instance that is referenced is
returned. If recursive == TRUE this function recurses through all referenced IDs of the referenced
instances and so on. "onlyFollowProperties" limits the recursivness to only certain properties, for
example follow only complexes or physicalEntities.

Usage

getReferencedIDs(biopax, id, recursive = TRUE, onlyFollowProperties = c())

Arguments
biopax A biopax model OR a compatible data.table
id string. ID of the instance
recursive logical
onlyFollowProperties
character vector
Value

Returns a character vector of IDs referenced by the supplied id in the supplied biopax model.

28 getReterencingIDs

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

listComplexComponents(biopax, id="ex_m_100650")
getReferencedIDs(biopax, id="ex_m_100650", recursive=FALSE)
getReferencedIDs(biopax, id="ex_m_100650", recursive=TRUE)

getReferencingIDs This function returns a vector of ids of all instances that reference the
supplied id.

Description

This function takes an id and a biopax model as input. The id of every instance that references the
supplied id is returned. If recursive == TRUE this function recurses through all referencing IDs of
the referencing instances and so on. "onlyFollowProperties" limits the recursivness to only certain
properties, for example follow only complexes or physicalEntities.

Usage

getReferencingIDs(biopax, id, recursive = TRUE, onlyFollowProperties = c())

Arguments
biopax A biopax model
id string. ID of the instance
recursive logical
onlyFollowProperties
character vector
Value

Returns a character vector of IDs referencing the supplied id in the supplied biopax model.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

listComplexComponents(biopax, id="ex_m_100650")
getReferencingIDs(biopax, id="ex_m_100650", recursive=FALSE)
getReferencingIDs(biopax, id="ex_m_100650", recursive=TRUE)

getSubClasses 29

getSubClasses This function returns the subclasses of the supplied biopax class.

Description

This function returns the subclasses of the supplied biopax class.

Usage

getSubClasses(classname, biopaxlevel = 3)

Arguments
classname A string containing a class name
biopaxlevel Numeric. Specifies the Biopax Level to use.
Value

Returns character vector containing the subclasses of the supplied class

Author(s)

Frank Kramer

Examples

getSubClasses("control”)

getSuperClasses This function returns the superclasses of the supplied biopax class.

Description

This function returns the superclasses of the supplied biopax class.

Usage

getSuperClasses(classname, biopaxlevel = 3)

Arguments

classname A string containing a class name

biopaxlevel Numeric. Specifies the Biopax Level to use.

30 getXrefAnnotations

Value

Returns character vector containing the superclasses of the supplied class

Author(s)

Frank Kramer

Examples

getSuperClasses("control”)

getXrefAnnotations This function returns the annotations of the supplied instances.

Description

This function returns the annotations of the supplied IDs in a data.table.

Usage

getXrefAnnotations(
biopax,
id,
splitComplexes = FALSE,
followPhysicalEntityParticipants = TRUE,
biopaxlevel = 3

)
Arguments
biopax A biopax model
id vector of strings. IDs of instances to get annotations

splitComplexes logical. If TRUE complexes are split up into their components and the annota-
tion of the components is added.

followPhysicalEntityParticipants
logical. If TRUE physicalEntityParticipants are resolved to their corresponding
physicalEntities and their annotation is added.

biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

Value

Returns data.table with annotations

Author(s)

fkramer

hasProperty 31

Examples

load data

data(biopaxexample)

example of annotation for a protein:

getXrefAnnotations(biopax, id="ex_m_100647")

no annotations for exactly the complex

getXrefAnnotations(biopax, id="ex_m_100650")

split up the complex and get annotations for all the molecules involved
getXrefAnnotations(biopax, id="ex_m_100650", splitComplexes=TRUE)

hasProperty Checks if instances in the biopax data.table have a given property

Description

Checks if instances in the biopax data.table have a given property

Usage

hasProperty(df, property)

Arguments

df A data.frame with biopax instances

property A string containing the name of the property to check for
Value

Returns TRUE for every row in the data.frame with contains the supplied property. Logical vector
with length corresponding to the number of rows in the data.frame.

Author(s)

Frank Kramer

Examples

load data
data(biopaxexample)

32 internal_checkArguments

internal_checkArguments
This function checks the supplied arguments if they abid to the given
restrictions

Description

This function checks the supplied arguments if they abid to the given restrictions

Usage

internal_checkArguments(
args = c(),
allowedValues = list(),
allowNULL = FALSE,
allowNA = FALSE,
allowEmptyString = TRUE,
allowInf = TRUE

Arguments

args The vector of arguments to check

allowedValues A named list of values the argument of a this name is allowed to have

allowNULL Logical, allow NULL or not
allowNA Logical, allow NA or not
allowEmptyString
Logical, allow empty strings or not
allowInf Logical, allow values of +/- infinity or not
Value

Returns 1 if all checks completed successfully, returns error message otherwise.

Author(s)

Frank Kramer

internal_generateXMLfromBiopax 33

internal_generateXMLfromBiopax
This function generates the xmlTree from the supplied biopax model.

Description
This function is used internally by writeBiopax. It can also be called directly with a fitting dataframe
in list(df=data.frame()), but this will probably break things.

Usage

internal_generateXMLfromBiopax (biopax, namespaces = namespaces, verbose = TRUE)

Arguments
biopax A biopax model
namespaces A list of namespaces to use for the generated XML/RDF file
verbose logical

Value

Returns the xmlTree generated from the supplied biopax model.

Author(s)

Frank Kramer

internal_getBiopaxModelAsDataFrame
This internal function parses the Biopax XML of the supplied biopax
model and returns it in the data.frame format.

Description
This internal function parses the Biopax XML of the supplied biopax model and returns it in the
data.frame format.

Usage

internal_getBiopaxModelAsDataFrame(biopax, biopaxxml, verbose = TRUE)

Arguments
biopax A biopax object
biopaxxml Biopax XML file read in. See parseBiopax

verbose logical

34 internal_propertyListToDF

Value

Returns the parsed biopax model in the internal data.frame format.

Author(s)

Frank Kramer

internal_NrOfXMLNodes This function is an internal function to count the Number of nodes and
child nodes of an XMLNode.

Description

This function is an internal function to count the Number of nodes and child nodes of an XMLNode.

Usage

internal _NrOfXMLNodes (myXMLNode)

Arguments

myXMLNode XMLNode to analyze

Value

This function returns the number of Nodes and child Nodes an XMLNode has.

Author(s)

Frank Kramer

internal_propertylListToDF
Internal function to build a data.frame from the list of properties for a
new instance

Description

Internal function to build a data.frame from the list of properties for a new instance

internal_resolvePhysicalEntityParticipant 35

Usage
internal_propertylListToDF(
class,
id,
properties,
namespace_rdf = "rdf",
biopaxlevel = 2
)
Arguments
class string. Class name
id string. ID of the instance
properties named list of properties.

namespace_rdf string. This defines the rdf namespace to use.

biopaxlevel integer. This sets the version of BioPAX to generate, level 2 and level 3 are
supported at the moment.

Value

Returns a data.frame with the new properties for the given instance

Author(s)

Frank Kramer

internal_resolvePhysicalEntityParticipant
This function resolves physicalEntityParticipantIDs to their corre-
sponding physicalEntityIDs

Description

This function resolves physicalEntityParticipantIDs to their corresponding physicalEntityIDs. Ev-
ery physicalEntityParticipant corresponds exactly to one physicalEntity.

Usage

internal_resolvePhysicalEntityParticipant(biopax, physicalEntityId)

Arguments
biopax A biopax model
physicalEntityId

string. IDs of physicalEntityParticipants to be resolved

36 internal XMLInstance2DF

Value

Returns ids of physicalEntity corresponding to the specified physicalEntityParticipantIDs

Author(s)

fkramer

internal_XMLInstance2DF

This function is an internal function that parses a Biopax XMLNode.

Description

This function is an internal function that parses a Biopax XMLNode. Do not call it manually.

Usage

internal_XMLInstance2DF (myXMLNode, namespace_rdf, ret, rowcount)

Arguments

myXMLNode XMLNode

namespace_rdf String specifying the namespace to use for rdf:resource and rdf:datatype

ret data.table object contaning the already parsed data to attach this instance to
rowcount Numeric specifying the row at which further parsed data is inserted into the
data.table
Value

Returns a list contianing the new rowcount and the instance id of the added instance

Author(s)

Frank Kramer

intersectGraphs 37

intersectGraphs This function returns a graph computed by the insection of supplied
graphl and graph?2.

Description
This function returns a graph computed by the insection of supplied graphl and graph2. Layout and
weights of graphl are kept.

Usage

intersectGraphs(graphl, graph2)

Arguments
graph graphNEL
graph2 graphNEL
Value

Returns the intersection of graphl and graph?2.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"”

pwid2 = "pid_p_100146_hespathway”

mygraphl = pathway2RegulatoryGraph(biopax, pwid1l)
mygraph2 = pathway2RegulatoryGraph(biopax, pwid2)
plotRegulatoryGraph(intersectGraphs(mygraphl,mygraph2))

isOfClass Checks if instances in the biopax data.table are of the given class

Description

This function checks if instances in the supplied biopax data.table are of a given class. If consid-
erInheritance is set to TRUE it also checks if instances are of a given class or any of its inherited
classes.

38 isOfNamespace

Usage

isOfClass(df, class, considerInheritance = FALSE, biopaxlevel = 2)

Arguments
df A data.frame with biopax instances
class A string containing the class name to check for
considerInheritance
Logical value indicating wether to consider inheritance or not
biopaxlevel Numeric. Specifies the Biopax Level to use.
Value

Returns TRUE for every row in the data.frame which is of the supplied class

Author(s)

Frank Kramer

Examples
load data
data(biopaxexample)
isOfNamespace Check if a classname is preceeded by a certain namespace tag like in
"namespace:classname"
Description

This function checks if the supplied input string starts with a supplied namespace tag

Usage

isOfNamespace(classname, namespace = "bp")
Arguments

classname A string containing the classname to check

namespace A string giving the namespace to check for
Value

This function returns TRUE if the supplied classname string is preceeded with the supplied names-
pace string, and FALSE if not.

Author(s)

Frank Kramer

isURL 39

isURL Check if a string is an URL, preceeded by "http:"

Description

This function checks if the supplied input string starts with "http:"

Usage
isURL(string)

Arguments

string A string containing the classname to check

Value

This function returns TRUE if the supplied classname string starts with "http:", and FALSE if not.

Author(s)

Frank Kramer

layoutRegulatoryGraph This function generates a (more or less) beautiful layout for a regula-
tory graph.

Description

This function generates a (more or less) beautiful layout for a regulatory graph. Call this after
you generated a graph with pathway2RegulatoryGraph. Since beauty is always in the eye of the
beholder consider this a starting point for making your graphs even nicer. Rgraphviz with dot
layout is used. Edges are green/red with normal/tee arrowheads for activations/inhibitions. If you
want to specifically paint subgraphs in different colors use lists of vectors with node names for
parameter subgraphs and vector of color names for subgraphs.color for your choice of color. The
output can be further tweaked by setting layout options using nodeRenderInfo(mygraph) <- list() ...
See the Rgraphviz and Graphviz documentations.

Usage

layoutRegulatoryGraph(
mygraph,
label = "",
node.fixedsize = FALSE,
edge.weights = c("green”, "black”, "red"),
edge.arrowheads = c("normal”, "tee"),

40 listComplexComponents

subgraphs = 1list(),
subgraphs.colors = c("#B3E2CD", "#FDCDAC", "#F4CAE4", "#E6F5C9", "#FFF2AE")
)

Arguments
mygraph graphNEL
label Label of the graph

node.fixedsize logical. If font size is fixed or variable in regards to the nodes.

edge.weights vector. which colors to use for weighted edges
edge.arrowheads
vector. which arrowheads to use for weighted edges

subgraphs A list of character vectors with node names defining the sub graphs.
subgraphs.colors
vector. which colors to use for subgraphs

Value

Returns the supplied graph in a layouted form with several parameters set for regulatory graph
plotting.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwid1l = "pid_p_100002_wntpathway"

pwid2 = "pid_p_100146_hespathway"”

mygraph = pathway2RegulatoryGraph(biopax, pwid1)
mygraph = layoutRegulatoryGraph(mygraph)
plotRegulatoryGraph(mygraph)

listComplexComponents This function lists all components of a given complex.

Description
This function returns a (unique) data.frame listing all component IDs, names and classes of the
supplied complex.

Usage

listComplexComponents(biopax, id, returnIDonly = FALSE, biopaxlevel = 3)

listInstances

Arguments

biopax
id

returnIDonly

biopaxlevel

Value

data.frame

Author(s)

Frank Kramer

Examples

load data

41

A biopax model
string. A complex ID

logical. If TRUE only IDs of the components are returned. This saves tiem for
looking up names for every single ID.

integer. Set the biopax level here if you supply a data.table directly.

data(biopaxexample)
listComplexComponents(biopax, id="ex_m_100650")

listInstances

Lists all instances that conform to the selection criteria.

Description

Lists all instances that conform to the selection criteria. In contrast to selectlnstances this function
returns an easier to read list. This function returns an ordered data.table of class, id and name of the
instances. Selection criteria are wether instances belong to a certain class or have the specified id or
name. Setting a criteria to NULL ignores this criteria. If includeSubClasses is set to TRUE the class
criteria is broadened to include all classes that inherit from the given class, e.g. if class="control"
and includeSubClasses=TRUE the function will select catalyses and modulations too, since they
are a subclass of class control.

Usage

listInstances(

biopax,
id = NULL,

class = NULL,
name = NULL,

includeSubClasses = FALSE,
returnIDonly = FALSE,
biopaxlevel = 3

42

listInteractionComponents

Arguments
biopax A biopax model
id string. ID of the instances to select
class string. Class of the instances to select
name string. Name of the instances to select
includeSubClasses
logical. If includeSubClasses is set to TRUE the class criteria is broadened to
include all classes that inherit from the given class
returnIDonly logical. If TRUE only IDs of the components are returned. This saves time for
looking up names for every single ID.
biopaxlevel integer. Set the biopax level here if you supply a data.table directly.
Value

Returns a data.frame containing all instances conforming to the given selection criteria. If re-
turnIDonly=TRUE, only the selector for the internal data.table otherwise.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

list all instances of class "protein”

listInstances(biopax, class="protein")

list all instances of class "pathway”

listInstances(biopax, class="pathway")

list all interaction including all subclasses of interactions
listInstances(biopax, class="interaction”, includeSubClasses=TRUE)

listInteractionComponents

This function lists all components of a given interaction.

Description

This function returns a (unique) data.frame listing IDs, names and classes of all components of the
supplied interaction.

listPathwayComponents 43

Usage

listInteractionComponents(
biopax,
id,
splitComplexes = TRUE,
returnIDonly = FALSE,
biopaxlevel = 3

)
Arguments
biopax A biopax model
id string. A complex ID

splitComplexes logical. If TRUE complexes are split up into their components and the added to
the listing.

returnIDonly logical. If TRUE only IDs of the components are returned. This saves tiem for
looking up names for every single ID.

biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

Value

data.frame

Author(s)

Frank Kramer

Examples

load data
data(biopaxexample)
listInteractionComponents(biopax, id="ex_i_100036_activator_1")

listPathwayComponents This function lists all pathway components of a given pathway.

Description

This function returns a (unique) data.frame listing all component IDs, names and classes of the
supplied pathway.

44 listPathways

Usage

listPathwayComponents(
biopax,
id,
includeSubPathways = TRUE,
returnIDonly = FALSE,
biopaxlevel = 3

)
Arguments
biopax A biopax model
id string. A pathway ID
includeSubPathways
logical. If TRUE the returned list will include subpathways and pathwaysteps
as well.

returnIDonly logical. If TRUE only IDs of the components are returned. This saves tiem for
looking up names for every single ID.

biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

Value

data.frame

Author(s)

Frank Kramer

Examples

load data
data(biopaxexample)
listPathwayComponents(biopax, id="pid_p_100002_wntpathway")

listPathways This function returns a list of all pathway ids.

Description

This function returns a vector of all pathway ids.

Usage

listPathways(biopax, biopaxlevel = 3)

mergePathways 45

Arguments

biopax A biopax model

biopaxlevel integer. Set the biopax level here if you supply a data.table directly.
Value

Returns a character vector containing the names of all pathways.

Author(s)

Frank Kramer

Examples

load data
data(biopaxexample)
listPathways(biopax)

mergePathways This function merges two given pathways

Description

This function merges two given pathways and appends it to the supplied biopax model. The user
has to specify a new name for the pathways and can supply ID, ORGANISM and COMMENT
properties for the new pathway. If no ID is supplied, a new unique ID is generated. If no organism
property is supplied the organism property of the first pathway is re-used. If ORGANISM is NULL
the property is not set. Optionally a comment can be added to the pathway.

Usage

mergePathways(
biopax,
pwidl,
pwid2,
NAME,
id = NULL,
ORGANISM = ""|
COMMENT = NULL

Arguments
biopax A biopax model
pwid1l string. ID of first pathway to merge
pwid2 string. ID of second pathway to merge

46 pathway2AdjacancyMatrix

NAME string. Name of the new merged pathway
id string. ID for the pathway. If NULL a new ID is generated with prefix "path-
way".
ORGANISM string. Organism property of the pathway. By default uses the same organism
as the first supplied pathway. If NULL no organism property is set.
COMMENT string. An optional comment
Value

A biopax model with the merged pathway added.

Author(s)

fkramer

pathway2AdjacancyMatrix
This function generates an adjacency matrix from the activa-
tions/inhibitions of a pathway in a biopax model. This function in-
ternally first calls pathway2RegulatoryGraph, then converts the regu-
latory graph to an adjacency matrix. See pathway2RegulatoryGraph
for more details.

Description

This function generates an adjacency matrix from the activations/inhibitions of a pathway in a
biopax model.

This function internally first calls pathway2RegulatoryGraph, then converts the regulatory graph to
an adjacency matrix. See pathway2RegulatoryGraph for more details.

Usage

pathway2AdjacancyMatrix(
biopax,
pwid,
expandSubpathways = TRUE,
splitComplexMolecules = TRUE,
useIDasNodenames = FALSE,
verbose = TRUE

pathway2Geneset 47

Arguments
biopax A biopax model
pwid string
expandSubpathways

logical. If TRUE subpathways are expanded into this graph, otherwise only this
very pathway is used.
splitComplexMolecules
logical. If TRUE every complex is split up into its components. This leads to
splitting a single node with name of the complex into several nodes with names
of the components, these components all have identical edges.
useIDasNodenames
logical. If TRUE nodes of the graph are named by their molecule IDs instead
of using the NAME property. This can help with badly annotated/formatted
databases.

verbose logical

Value

Returns the adjacency matrix representing the regulatory graph of the supplied pathway.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"
pwid2 = "pid_p_100146_hespathway”
pathway2AdjacancyMatrix(biopax, pwidl)

pathway2Geneset This function generates the gene set of a pathway. This function gen-
erates a gene set of all physicalEntity’s of a pathway. First all in-
teractions of the pathway are retrieved and all components of these
interactions are then listed.

Description

This function generates the gene set of a pathway.

This function generates a gene set of all physicalEntity’s of a pathway. First all interactions of the
pathway are retrieved and all components of these interactions are then listed.

Usage

pathway2Geneset(biopax, pwid, returnIDonly = FALSE, biopaxlevel = 3)

48 pathway2Graph

Arguments
biopax A biopax model
pwid string

returnIDonly logical. If TRUE only IDs of the components are returned. This saves tiem for
looking up names for every single ID.

biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

Value

Returns the gene set of the supplied pathway. Returns NULL if the pathway has no components.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"
pathway2Geneset(biopax, pwid=pwidl)

pathway2Graph This function generates a directed graph from all the interactions of
a specified pathway in a biopax model. Edges with no direction are
indicated by a 0 weight.

Description

This function generates a directed graph from all the interactions of a specified pathway in a biopax
model. Edges with no direction are indicated by a 0 weight.

Usage

pathway2Graph(
biopax,
pwid,
expandSubpathways = TRUE,
splitComplexMolecules = FALSE,
useIDasNodenames = TRUE,
verbose = FALSE,
withDisconnectedParts = TRUE

pathway2Graph 49

Arguments
biopax A biopax model
pwid string
expandSubpathways

logical. If TRUE subpathways are expanded into this graph, otherwise only this
very pathway is used.

splitComplexMolecules
logical. If TRUE every complex is split up into its components. This leads to
splitting a single node with name of the complex into several nodes with names
of the components, these components all have identical edges. Default value is
FALSE

useIDasNodenames
logical. If TRUE nodes of the graph are named by their molecule IDs instead
of using the NAME property. This can help with badly annotated/formatted
databases.

verbose logical

withDisconnectedParts
logical. If TRUE the pathway graph is returned as such, else only the largest
connected component is given back

Value

Returns the a graph object of the specified pathway. Edges with no direction are indicated by a 0
weight.

Author(s)

Nirupama Benis

Examples

load data

data(biopaxLevel3Example) # location of the data

pwid <- "Pathway1019”

build pathway using pathway2Graph

pathwayAsGraph <- pathway2Graph(biopax = biopaxLevel3Example, pwid = pwid, splitComplexMolecules = FALSE, useIDasN
pathwayAsGraph # should have 23 nodes, 24 edges

plotRegulatoryGraph(pathwayAsGraph)

build pathway discarding the disconnected parts of the graph

pathwayAsGraph <- pathway2Graph(biopax = biopaxLevel3Example, pwid = pwid, splitComplexMolecules = FALSE, useIDasN
pathwayAsGraph # should have 10 nodes, 11 edges

plotRegulatoryGraph(pathwayAsGraph)

50 pathwayZ2RegulatoryGraph

pathway2RegulatoryGraph

This function generates the regulatory graph from the activa-
tions/inhibitions of a pathway in a biopax model. This functions builds
a graph from the pathway components of the supplied pathway. Only
instances of class ’control’ are considered, this leads a functinal graph
with all edges either representing activations or inhibitions. No trans-
ports, no translocation, etc. If desired complexes can be split up into
several nodes, this can sometimes lead to a more complex and clut-
tered graph. There can not be multiple edges between 2 nodes. When-
ever duplicated edges are generated (especially by splitting up com-
plexes) a warning is thrown.

Description

This function generates the regulatory graph from the activations/inhibitions of a pathway in a
biopax model.

This functions builds a graph from the pathway components of the supplied pathway. Only instances
of class ’control’ are considered, this leads a functinal graph with all edges either representing
activations or inhibitions. No transports, no translocation, etc. If desired complexes can be split
up into several nodes, this can sometimes lead to a more complex and cluttered graph. There can
not be multiple edges between 2 nodes. Whenever duplicated edges are generated (especially by
splitting up complexes) a warning is thrown.

Usage

pathway2RegulatoryGraph(
biopax,
pwid,
expandSubpathways = TRUE,
splitComplexMolecules = TRUE,
useIDasNodenames = FALSE,
verbose = TRUE

)

Arguments
biopax A biopax model
pwid string
expandSubpathways

logical. If TRUE subpathways are expanded into this graph, otherwise only this
very pathway is used.

splitComplexMolecules
logical. If TRUE every complex is split up into its components. This leads to
splitting a single node with name of the complex into several nodes with names
of the components, these components all have identical edges.

plotRegulatoryGraph 51

useIDasNodenames

logical. If TRUE nodes of the graph are named by their molecule IDs instead
of using the NAME property. This can help with badly annotated/formatted
databases.

verbose logical

Value

Returns the representing the regulatory graph of the supplied pathway in a node-edge-list graph.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwid1l = "pid_p_100002_wntpathway"

pwid2 = "pid_p_100146_hespathway”

mygraph = pathway2RegulatoryGraph(biopax, pwidl)
plotRegulatoryGraph(mygraph)

plotRegulatoryGraph This function layouts a regulatory graph and plots it using Rgraphviz.

Description

This function takes a regulatory graph as generated by pathway2regulatoryGraph and plots it using
standard layout options of layoutRegulatoryGraph. This function is a wrapper for layoutRegula-
toryGraph with standard parameters. Subgraphs can be painted with different colors. This can be
done by passing parameter subgraph a list of character vectors with node names.

Usage

plotRegulatoryGraph(mygraph, subgraphs = list(), layoutGraph = TRUE)

Arguments
mygraph graphNEL, regulatory graph
subgraphs list of character vectors with node names

layoutGraph logical. If FALSE the graph is not laid out again but send directly to Rgraphviz::renderGraph.

Value

none

52

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"

pwid2 = "pid_p_100146_hespathway”

mygraph = pathway2RegulatoryGraph(biopax, pwidl)
plotRegulatoryGraph(mygraph)

readBiopax

print.biopax Print a biopax object.

Description

Print a biopax object.

Usage
S3 method for class 'biopax'
print(x, ...)
Arguments
X A biopax object to print.
Other arguments to be passed to print.
Examples
data(biopaxexample)
print(biopax)

readBiopax This function reads in a Biopax .owl file

removeDisconnectedParts 53

Description

This function reads in a Biopax .owl file and generates the internal data.frame format used in this
package. This function can take a while with really big Biopax files like NCIs Pathway Interaction
Database or Reactome. In almost every case this is your starting point. Returns a biopax model,
which is a list with named elements:

df The data.frame representing the biopax in R
ns_rdf RDF Namespace

ns_owl OWL Namespace

ns_bp Biopax Namespace

file File name

Usage
readBiopax(file, verbose = TRUE)

Arguments

file string. File name

verbose logical. Output messages about how parsing is going and so on.

Value

A biopax model

Author(s)

Frank Kramer

Examples

Not run: biopax = readBiopax(file="biopaxmodel.owl")
Not run: biopax

#' # load data and retrieve wnt pathway
data(biopaxexample)

removeDisconnectedParts
This function is used internally by pathway2Graph to remove the
smaller disconnected parts of the pathway graph.

Description

This function is used internally by pathway2Graph to remove the smaller disconnected parts of the
pathway graph.

54

Usage

removeDisconnectedParts(mygraph)

Arguments

mygraph a graph object

Author(s)

Nirupama Benis

removelnstance

removelInstance This function removes an instance

Description

This function removes an instance from an existing biopax model.

Usage

removeInstance(biopax, id)

Arguments

biopax A biopax model

id string. ID of the instance
Value

Returns the supplied biopax model with the instance removed from it.

Author(s)

Frank Kramer

Examples

load data
data(biopaxexample)
biopax2 = removelnstance(biopax, 1)

removeNodes 55

removeNodes This function gracefully removes nodes from a regulatory graph.

Description

This function gracefully removes nodes from a regulatory graph. If the node to be removed has
both parent and child nodes, these are connected directly. The weight of the new direct edge is the
product of multiplying the incomming and outgoing edge weights of the original node.

Usage

removeNodes(graph, nodes)

Arguments

graph graphNEL

nodes vector of node names specifiying which nodes to remove.
Value

Returns a graph with specified nodes removed.

Author(s)

Frank Kramer

Examples

load data and retrieve wnt pathway
data(biopaxexample)

pwidl = "pid_p_100002_wntpathway"

mygraphl = pathway2RegulatoryGraph(biopax, pwid1l)
mygraph1l = layoutRegulatoryGraph(mygraph1)

retrieve all nodes

nodes = nodes(mygraphl)

random expression data for your nodes

values = rnorm(length(nodes), mean=6, sd=2)

color nodes of the graph

mygraph1l = colorGraphNodes(mygraphl, nodes, values, colors="greenred")
plot the now colored graph
plotRegulatoryGraph(mygraphl, layoutGraph=FALSE)

56 selectInstances
removeProperties This function removes a property
Description
This function removes a property fram an existing biopax instance.
Usage
removeProperties(biopax, id, properties)
Arguments
biopax A biopax model
id string. ID of the instance
properties character vector. listing the properties to remove.
Value
Returns the supplied biopax model with properties removed from this instance.
Author(s)
Frank Kramer
Examples
load data
data(biopaxexample)
biopax2 = removeProperties(biopax, 1, "name")
selectInstances Returns all instances that conform to the selection criteria.
Description

Returns all instances that conform to the selection criteria. This function returns a subset of the
internal data.table of the biopax object. Selection criteria are wether instances belong to a certain
class or have the specified id, property or name. Setting a criteria to NULL ignores this criteria. If
returnValues is set to FALSE only the selector (a logical vector with length of the internal data.table)
is returned, otherwise the selected data is returned. If includeSubClasses is set to TRUE the class
criteria is broadened to include all classes that inherit from the given class, e.g. if class="control"
and includeSubClasses=TRUE the function will select catalyses and modulations too, since they
are a subclass of class control. If includeReferencedInstances is set to TRUE all instances that are
being referenced by the selected instances are being selected too. The parameter works recursively,
this means for example that a selected pathway and all it’s interactions, complexes, molecules and
annotations are returned if this parameter is set to true. This parameter is especially helpful if you
want to migrate or merge knowledge from different data bases.

selectInstances 57

Usage

selectInstances(
biopax,
id = NULL,
class = NULL,
property = NULL,
name = NULL,
returnValues = TRUE,
includeSubClasses = FALSE,
includeReferencedInstances = FALSE,
returnCopy = TRUE,
biopaxlevel = 3

)

Arguments
biopax A biopax model or a compatible internal data.table
id string. ID of the instances to select
class string. Class of the instances to select
property string. Return only this property of the instances
name string. Name of the instances to select

returnValues logical. If returnValues is set to FALSE only the selector (a logical vector with
length of the internal data.table) is returned, otherwise the selected data is re-
turned

includeSubClasses
logical. If includeSubClasses is set to TRUE the class criteria is broadened to
include all classes that inherit from the given class

includeReferencedInstances
logical. If includeReferencedInstances is set to TRUE all instances that are being
referenced by the selected instances are being selected too

returnCopy logical. Defaults to TRUE. If TRUE a copy of the internal data.table is returned.
If FALSE data is returned by reference. Set to FALSE to increase speed when
only ever reading data. Make sure you understand the implications of using this!
See vignette of data.table package.

biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

Value
Returns a data.table containing all instances conforming to the given selection criteria if returnVal-

ues=TRUE, only the selector for the internal data.table otherwise.

Author(s)

Frank Kramer

58 splitComplex

Examples

load data

data(biopaxexample)

select the subset of the internal data.table that belongs to class "protein”

selectInstances(biopax, class="protein")

select the subset of the internal data.table that belongs to class "interaction”

selectInstances(biopax, class="interaction”)

select the subset of the internal data.table that belongs to class "interaction” or any of its sub classes, like c
selectInstances(biopax, class="interaction”, includeSubClasses=TRUE)

select the subset of the internal data.table that belongs to class "pathway” AND is a "NAME" property
selectInstances(biopax, class="pathway”, property="NAME")

splitComplex This functions splits up a complex into its components.

Description

This function looks up the supplied Complex ID and returns the names of all its components.

Usage

splitComplex(
biopax,
complexid,
recursive = TRUE,
returnIDonly = FALSE,
biopaxlevel = 3

)

Arguments
biopax A biopax model
complexid string ID of an complex
recursive logical

returnIDonly logical. If TRUE only IDs of the components are returned. This saves tiem for
looking up names for every single ID.

biopaxlevel integer. Set the biopax level here if you supply a data.table directly.

Value

Returns a character vector with the names of all subcomponents.

Author(s)
Frank Kramer

striphash 59

Examples

load data

data(biopaxexample)

selectInstances(biopax, id="ex_m_100650")
listInstances(biopax, id="ex_m_100650")
listComplexComponents(biopax, id="ex_m_100650")
splitComplex(biopax, complexid="ex_m_100650")

striphash Strips a hash in front of a string

Description

Strips a hash in front of a string

Usage

striphash(x)

Arguments

X A string to be stripped off a preceeeding hash

Value

The supplied string with a hash "#" stripped off front.

Author(s)

Frank Kramer

stripns Strips a namespace tag off a supplied classname string

Description

Strips a namespace tag off a supplied classname string

Usage

stripns(classname)

Arguments

classname A string containing a classname preceeded by a namespace tag

60 transitiveClosure

Value

The classname with the namespace tag stripped off it.

Author(s)

Frank Kramer

transitiveClosure This function generates the transitive closure of the supplied graph.

Description

This function generates the transitive closure of the supplied graph. In short: if A->B->C then an
edge A->C is added. Edge weights are conserved if possible (in a hopefully smart way). This is a
simple convenience wrapper for the RBGL function transitive.closure.

Usage

transitiveClosure(mygraph)

Arguments

mygraph graphNEL

Value

Returns the transitive closure of the supplied graph.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway”

pwid2 = "pid_p_100146_hespathway"

mygraph = pathway2RegulatoryGraph(biopax, pwidl)
tc = transitiveClosure(mygraph)

transitiveReduction 61

transitiveReduction This function generates the transitive reduction of the supplied graph.

Description

This function is deprecated due to nem dropping out of Bioconductor in BioC 4.0. This function
generates the transitive reduction of the supplied graph. In short: if A->B->C AND A->C then edge
A->C is removed. This is a simple convenience wrapper for the NEM function transitive.reduction.
Be aware of implications on the edge weights!

Usage

transitiveReduction(mygraph)

Arguments

mygraph graphNEL

Value

Returns the transitive reduction of the supplied graph.

Author(s)

Frank Kramer

Examples

load data

data(biopaxexample)

pwidl = "pid_p_100002_wntpathway”

pwid2 = "pid_p_100146_hespathway"

mygraph = pathway2RegulatoryGraph(biopax, pwidl)
tr = transitiveReduction(mygraph)

unfactorize Replace factors/levels in a data.frame and use plain strings instead

Description

This function takes a data.frame as argument and returns it with strings instead of factors.

Usage

unfactorize(df)

62 uniteGraphs

Arguments

df any data.frame with factor levels in at least one column

Value

The data.frame is returned using strings instead of factors.

Author(s)

Frank Kramer

uniteGraphs This function unites two graphs.

Description

This function unites the two supplied graphs. Layout parameters from graphl are used. If colorN-
odes==TRUE the returned graph has different colors for overlapping nodes and nodes individual
for each graph.

Usage

uniteGraphs(
grapht,
graph2,
colorNodes = TRUE,
colors = c("#B3E2CD", "#FDCDAC", "#F4CAE4")

)
Arguments
graph graphNEL
graph?2 graphNEL
colorNodes logical
colors colors character vector of colors. If colorNodes==TRUE these colors are used
for graphl and graph?2 respectivley.
Value

Return a graph generated by uniting the two supplied graphs

Author(s)

Frank Kramer

writeBiopax 63

Examples

load data

data(biopaxexample)

pwid1l = "pid_p_100002_wntpathway"

pwid2 = "pid_p_100146_hespathway”

mygraphl = pathway2RegulatoryGraph(biopax, pwid1)
mygraph2 = pathway2RegulatoryGraph(biopax, pwid2)
plotRegulatoryGraph(uniteGraphs(mygraphl,mygraph2))

writeBiopax This function writes out a biopax model.

Description

This function writes out a biopax model, as generated by readBiopax, to either a file or returns the
xmlTree if file is omitted.

Usage

writeBiopax(

biopax,

file = "",

verbose = TRUE,

overwrite = FALSE,

namespaces = list(rdf = "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#", bp =
"http://www.biopax.org/release/biopax-level2.owl#", rdfs =

"http://www.w3.0rg/2000/01/rdf-schema#", owl = "http://www.w3.0rg/2002/07/owl#", xsd
= "http://www.w3.0rg/2001/XMLSchema#")

)
Arguments
biopax A biopax model as generated by readBiopax
file A string giving a file name.
verbose logical
overwrite logical, if TRUE an already existing file will be overwritten, otherwise an error
is thrown
namespaces A list of namespaces to use for the generated XML/RDF file
Value

Returns the xmlTree object generated from the biopax model. If a filename is supplied the XML is
written to this file.

Author(s)

Frank Kramer

64 writeBiopax

Examples

load data
data(biopax2example)
Not run: writeBiopax(biopax, file="mybiopax.owl")

Index

* datasets
biopax, 13
CLASS_INHERITANCE_BP2, 15
CLASS_INHERITANCE_BP3, 16
CLASS_PROPERTIES_BP2, 16
CLASS_PROPERTIES_BP3, 17
DATABASE_BIOPAX, 20

+ package
rBiopaxParser-package, 3

addBiochemicalReaction, 4
addBiopaxInstance, 5
addBiopaxInstances, 6
addControl, 6

addhash, 8

addns, 8

addPathway, 9
addPathwayComponents, 10
addPhysicalEntity, 11

addPhysicalEntityParticipant, 12
addPropertiesToBiopaxInstance, 13

biopax, 13
biopaxexample (biopax), 13

biopaxLevel3Example (biopax), 13

calcGraphOverlap, 14
checkVvalidity, 15
CLASS_INHERITANCE_BP2, 15
CLASS_INHERITANCE_BP3, 16
CLASS_PROPERTIES_BP2, 16
CLASS_PROPERTIES_BP3, 17
colorGraphNodes, 18
combineNodes, 19
createBiopax, 19

DATABASE_BIOPAX, 20
diffGraphs, 21
downloadBiopaxData, 22

generateNewUniquelD, 23

65

getClassProperties, 23
getInstanceClass, 24
getInstanceProperty, 25
getNeighborhood, 26
getParticipants, 26
getReferencedIDs, 27
getReferencingIDs, 28
getSubClasses, 29
getSuperClasses, 29
getXrefAnnotations, 30

hasProperty, 31

internal_checkArguments, 32

internal_generateXMLfromBiopax, 33
internal_getBiopaxModelAsDataFrame, 33

internal_NrOfXMLNodes, 34
internal_propertylListToDF, 34

internal_resolvePhysicalEntityParticipant,

35
internal_XMLInstance2DF, 36
intersectGraphs, 37
isOfClass, 37
isOfNamespace, 38
isURL, 39

layoutRegulatoryGraph, 39
listComplexComponents, 40
listInstances, 41
listInteractionComponents, 42
listPathwayComponents, 43
listPathways, 44

mergePathways, 45

pathway2AdjacancyMatrix, 46
pathway2Geneset, 47
pathway2Graph, 48
pathway2RegulatoryGraph, 50
plotRegulatoryGraph, 51
print.biopax, 52

66 INDEX

rBiopaxParser (rBiopaxParser-package), 3
rBiopaxParser-package, 3

readBiopax, 52
removeDisconnectedParts, 53
removelnstance, 54

removeNodes, 55

removeProperties, 56

selectInstances, 56
splitComplex, 58
striphash, 59
stripns, 59

transitiveClosure, 60
transitiveReduction, 61

unfactorize, 61
uniteGraphs, 62

writeBiopax, 63

	rBiopaxParser-package
	addBiochemicalReaction
	addBiopaxInstance
	addBiopaxInstances
	addControl
	addhash
	addns
	addPathway
	addPathwayComponents
	addPhysicalEntity
	addPhysicalEntityParticipant
	addPropertiesToBiopaxInstance
	biopax
	calcGraphOverlap
	checkValidity
	CLASS_INHERITANCE_BP2
	CLASS_INHERITANCE_BP3
	CLASS_PROPERTIES_BP2
	CLASS_PROPERTIES_BP3
	colorGraphNodes
	combineNodes
	createBiopax
	DATABASE_BIOPAX
	diffGraphs
	downloadBiopaxData
	generateNewUniqueID
	getClassProperties
	getInstanceClass
	getInstanceProperty
	getNeighborhood
	getParticipants
	getReferencedIDs
	getReferencingIDs
	getSubClasses
	getSuperClasses
	getXrefAnnotations
	hasProperty
	internal_checkArguments
	internal_generateXMLfromBiopax
	internal_getBiopaxModelAsDataFrame
	internal_NrOfXMLNodes
	internal_propertyListToDF
	internal_resolvePhysicalEntityParticipant
	internal_XMLInstance2DF
	intersectGraphs
	isOfClass
	isOfNamespace
	isURL
	layoutRegulatoryGraph
	listComplexComponents
	listInstances
	listInteractionComponents
	listPathwayComponents
	listPathways
	mergePathways
	pathway2AdjacancyMatrix
	pathway2Geneset
	pathway2Graph
	pathway2RegulatoryGraph
	plotRegulatoryGraph
	print.biopax
	readBiopax
	removeDisconnectedParts
	removeInstance
	removeNodes
	removeProperties
	selectInstances
	splitComplex
	striphash
	stripns
	transitiveClosure
	transitiveReduction
	unfactorize
	uniteGraphs
	writeBiopax
	Index

