Version 1.73.0

Package ‘preprocessCore’

February 2, 2026

Title A collection of pre-processing functions
Author Ben Bolstad <bmb@bmbolstad.com>

Maintainer Ben Bolstad <bmb@bmbolstad.com>

Imports stats

Description A library of core preprocessing routines.
License LGPL (>=2)

URL https://github.com/bmbolstad/preprocessCore

Collate normalize.quantiles.R quantile_extensions.R
rma.background.correct.R rcModel.R colSummarize.R
subColSummarize.R plmr.R plmd.R

LazyLoad yes

biocViews Infrastructure

git_url https://git.bioconductor.org/packages/preprocessCore

git_branch devel

git_last_commit bb678ea
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Contents

colSumamrize
normalize.quantiles
normalize.quantiles.in.blocks oL oo
normalize.quantiles.robust L. Lo
normalize.quantiles.target L.
rcModelPLMd
rcModelPLMr oL

rcModels

https://github.com/bmbolstad/preprocessCore

2 colSumamrize

rma.background.correct L e e e 14
subColSummarize e e e e 15
subrcModels L 17
Index 19
colSumamrize Summarize the column of matrices
Description

Compute column wise summary values of a matrix.

Usage

colSummarizeAvg(y)
colSummarizeAvglog(y)
colSummarizeBiweight(y)
colSummarizeBiweightLog(y)
colSummarizelLogAvg(y)
colSummarizelLogMedian(y)
colSummarizeMedian(y)
colSummarizeMedianLog(y)
colSummarizeMedianpolish(y)
colSummarizeMedianpolishLog(y)

Arguments

y A numeric matrix

Details

This groups of functions summarize the columns of a given matrices.

¢ colSummarizeAvgTake means in column-wise manner
e colSummarizeAvgloglog? transform the data and then take means in column-wise manner
* colSummarizeBiweightSummarize each column using a one step Tukey Biweight procedure

e colSummarizeBiweightLoglog?2 transform the data and then summarize each column using
a one step Tuke Biweight procedure

e colSummarizelLogAvgCompute the mean of each column and then log? transform it
* colSummarizelogMedianCompute the median of each column and then log2 transform it
* colSummarizeMedianCompute the median of each column

* colSummarizeMedianLoglog? transform the data and then summarize each column using the
median

normalize.quantiles 3

* colSummarizeMedianpolishUse the median polish to summarize each column, by also using
a row effect (not returned)

e colSummarizeMedianpolishLoglog? transform the data and then use the median polish to
summarize each column, by also using a row effect (not returned)

Value

A list with following items:

Estimates Summary values for each column.
StdErrors Standard error estimates.
Author(s)

B. M. Bolstad <bmb@bmbolstad.com>

Examples

y <- matrix(1@+rnorm(100),20,5)

colSummarizeAvg(y)
colSummarizeAvgLog(y)
colSummarizeBiweight(y)
colSummarizeBiweightLog(y)
colSummarizelLogAvg(y)
colSummarizelogMedian(y)
colSummarizeMedian(y)
colSummarizeMedianLog(y)
colSummarizeMedianpolish(y)
colSummarizeMedianpolishLog(y)

normalize.quantiles Quantile Normalization

Description
Using a normalization based upon quantiles, this function normalizes a matrix of probe level inten-
sities.

Usage

normalize.quantiles(x,copy=TRUE, keep.names=FALSE)

4 normalize.quantiles

Arguments
X A matrix of intensities where each column corresponds to a chip and each row
is a probe.
copy Make a copy of matrix before normalizing. Usually safer to work with a copy,
but in certain situations not making a copy of the matrix, but instead normalizing
it in place will be more memory friendly.
keep.names Boolean option to preserve matrix row and column names in output.
Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. No
special allowances are made for outliers. If you make use of quantile normalization please cite
Bolstad et al, Bioinformatics (2003).

This functions will handle missing data (ie NA values), based on the assumption that the data is
missing at random.

Note that the current implementation optimizes for better memory usage at the cost of some addi-
tional run-time.

Value

A normalized matrix.

Author(s)

Ben Bolstad, <bmbolstad.com>

References

Bolstad, B (2001) Probe Level Quantile Normalization of High Density Oligonucleotide Array
Data. Unpublished manuscript http://bmbolstad.com/stuff/qnorm.pdf

Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization
Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics
19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html

See Also

normalize.quantiles.robust

http://bmbolstad.com/stuff/qnorm.pdf
http://bmbolstad.com/misc/normalize/normalize.html

normalize.quantiles.in.blocks 5

normalize.quantiles.in.blocks
Quantile Normalization carried out separately within blocks of rows

Description
Using a normalization based upon quantiles this function normalizes the columns of a matrix such
that different subsets of rows get normalized together.

Usage

normalize.quantiles.in.blocks(x,blocks,copy=TRUE)

Arguments
X A matrix of intensities where each column corresponds to a chip and each row
is a probe.
copy Make a copy of matrix before normalizing. Usually safer to work with a copy
blocks A vector giving block membership for each each row
Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. No
special allowances are made for outliers. If you make use of quantile normalization either through
rma or expresso please cite Bolstad et al, Bioinformatics (2003).

Value

From normalize.quantiles.use. target a normalized matrix.

Author(s)

Ben Bolstad, <bmb@bmbolstad. com>

References

Bolstad, B (2001) Probe Level Quantile Normalization of High Density Oligonucleotide Array
Data. Unpublished manuscript http://bmbolstad.com/stuff/qnorm.pdf

Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization
Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics
19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html

See Also

normalize.quantiles

http://bmbolstad.com/stuff/qnorm.pdf
http://bmbolstad.com/misc/normalize/normalize.html

normalize.quantiles.robust

Examples

#i## setup the data

blocks <- c(rep(1,5),rep(2,5),rep(3,5))
par(mfrow=c(3,2))

x <- matrix(c(rexp(5,0.05),rnorm(5),rnorm(5,10)))
boxplot(x ~ blocks)

y <- matrix(c(-rexp(5,0.05),rnorm(5,10),rnorm(5)))
boxplot(y ~ blocks)

pre.norm <- cbind(x,y)

the in.blocks version

post.norm <- normalize.quantiles.in.blocks(pre.norm,blocks)
boxplot(post.norm[,1] ~ blocks)

boxplot(post.norm[,2] ~ blocks)

#i## the usual version

post.norm <- normalize.quantiles(pre.norm)
boxplot(post.norm[,1] ~ blocks)
boxplot(post.norm[,2] ~ blocks)

normalize.quantiles.robust

Robust Quantile Normalization

Description

Using a normalization based upon quantiles, this function normalizes a matrix of probe level inten-
sities. Allows weighting of chips

Usage
normalize.quantiles.robust(x,copy=TRUE,weights=NULL,
remove.extreme=c("variance”, "mean”, "both","none"),
n.remove=1,use.median=FALSE,use.log2=FALSE, keep.names=FALSE)
Arguments
X A matrix of intensities, columns are chips, rows are probes
copy Make a copy of matrix before normalizing. Usually safer to work with a copy
weights A vector of weights, one for each chip

remove.extreme If weights is null, then this will be used for determining which chips to remove

from the calculation of the normalization distribution, See details for more info

n.remove number of chips to remove

use.median if TRUE use the median to compute normalization chip, otherwise uses a weighted

mecan

normalize.quantiles.target 7

use.log2 work on log2 scale. This means we will be using the geometric mean rather than
ordinary mean
keep.names Boolean option to preserve matrix row and column names in output.
Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. Note
that the matrix is of intensities not log intensities. The function performs better with raw intensities.

Choosing variance will remove chips with variances much higher or lower than the other chips,
mean removes chips with the mean most different from all the other means, both removes first
extreme variance and then an extreme mean. The option none does not remove any chips, but will
assign equal weights to all chips.

Note that this function does not handle missing values (ie NA). Unexpected results might occur in
this situation.

Value

a matrix of normalized intensites

Note

This function is still experimental.

Author(s)

Ben Bolstad, <bmb@bmbolstad.com>

See Also

normalize.quantiles

normalize.quantiles.target
Quantile Normalization using a specified target distribution vector

Description
Using a normalization based upon quantiles, these function normalizes the columns of a matrix
based upon a specified normalization distribution

Usage

normalize.quantiles.use.target(x,target,copy=TRUE, subset=NULL)
normalize.quantiles.determine. target(x,target.length=NULL, subset=NULL)

8 normalize.quantiles.target

Arguments
X A matrix of intensities where each column corresponds to a chip and each row
is a probe.
copy Make a copy of matrix before normalizing. Usually safer to work with a copy
target A vector containing datapoints from the distribution to be normalized to

target.length number of datapoints to return in target distribution vector. If NULL then this will
be taken to be equal to the number of rows in the matrix.

subset A logical variable indexing whether corresponding row should be used in refer-
ence distribution determination

Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. No
special allowances are made for outliers. If you make use of quantile normalization either through
rma or expresso please cite Bolstad et al, Bioinformatics (2003).

These functions will handle missing data (ie NA values), based on the assumption that the data is
missing at random.

Value

From normalize.quantiles.use. target a normalized matrix.

Author(s)

Ben Bolstad, <bmb@bmbolstad.com>

References

Bolstad, B (2001) Probe Level Quantile Normalization of High Density Oligonucleotide Array
Data. Unpublished manuscript http://bmbolstad.com/stuff/gnorm.pdf

Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization
Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics
19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html

See Also

normalize.quantiles

http://bmbolstad.com/stuff/qnorm.pdf
http://bmbolstad.com/misc/normalize/normalize.html

rcModelPLMd 9

rcModelPLMd Fit robust row-column models to a matrix

Description

These functions fit row-column effect models to matrices using PLM-d

Usage
rcModelPLMd(y, group.labels)

Arguments

y A numeric matrix

group.labels A vector of group labels. Of length ncol(y)

Details

This functions first tries to fit row-column models to the specified input matrix. Specifically the
model

Yij = Ti+Cj + €
with 7; and ¢; as row and column effects respectively. Note that these functions treat the row effect
as the parameter to be constrained using sum to zero.

Next the residuals for each row are compared to the group variable. In cases where there appears
to be a significant relationship, the row-effect is "split" and separate row-effect parameters, one for
each group, replace the single row effect.

Value

A list with following items:

Estimates The parameter estimates. Stored in column effect then row effect order
Weights The final weights used

Residuals The residuals

StdErrors Standard error estimates. Stored in column effect then row effect order
WasSplit An indicator variable indicating whether or not a row was split with separate

row effects for each group

Author(s)
B. M. Bolstad <bmb@bmbolstad.com>

See Also

rcModelPLM,rcModelPLMr

10 rcModelPLMr

Examples

col.effects <- ¢(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))

y <- outer(row.effects, col.effects,”+")

y <=y + rnorm(50,sd=0.1)

rcModelPLMd(y, group.labels=c(1,1,2,2,2))

row.effects <- ¢(4,3,2,1,-1,-2,-3,-4)

col.effects <- c¢(8,9,10,11,12,10)

y <- outer(row.effects, col.effects,”+") + rnorm(48,0,0.25)
y[8,4:6] <- c(11,12,10)+ 2.5 + rnorm(3,0,0.25)

y[5,4:6] <- ¢(11,12,10)+-2.5 + rnorm(3,0,0.25)
rcModelPLMd(y, group.labels=c(1,1,1,2,2,2))
par(mfrow=c(2,2))

matplot(y, type="1",col=c(rep("red"”,3),rep("blue”,3)),ylab="residuals"”,xlab="probe"” ,main="0bserved Data")

matplot(rcModelPLM(y)$Residuals,col=c(rep("red"”,3),rep("blue”,3)),ylab="residuals"”,xlab="probe",main="Residual
matplot(rcModelPLMd(y, group.labels=c(1,1,1,2,2,2))$Residuals,col=c(rep("red”,3),rep("blue”,3)),xlab="probe",yl

rcModelPLMr Fit robust row-column models to a matrix

Description

These functions fit row-column effect models to matrices using PLM-r and variants

Usage

rcModelPLMr(y)
rcModelPLMrr(y)
rcModelPLMrc(y)
rcModelWPLMr(y, w)
rcModelWPLMrr(y, w)
rcModelWPLMrc(y, w)

Arguments

A numeric matrix

A matrix or vector of weights. These should be non-negative.

rcModelPLMr 11

Details
These functions fit row-column models to the specified input matrix. Specifically the model
Yij =Ti + ¢+ €5
with 7; and ¢; as row and column effects respectively. Note that these functions treat the row effect

as the parameter to be constrained using sum to zero.

The rcModelPLMr and rcModelWPLMr functions use the PLM-r fitting procedure. This adds column
and row robustness to single element robustness.

The rcModelPLMrc and rcModelWPLMrc functions use the PLM-rc fitting procedure. This adds
column robustness to single element robustness.

The rcModelPLMrr and rcModelWPLMrr functions use the PLM-1r fitting procedure. This adds row
robustness to single element robustness.

Value

A list with following items:

Estimates The parameter estimates. Stored in column effect then row effect order

Weights The final weights used

Residuals The residuals

StdErrors Standard error estimates. Stored in column effect then row effect order
Author(s)

B. M. Bolstad <bmb@bmbolstad.com>

See Also

rcModelPLM,rcModelPLMd

Examples

col.effects <- ¢(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))

y <- outer(row.effects, col.effects,”+")
w <- runif(50)

rcModelPLMr(y)
rcModelWPLMr(y, w)

An example where there no or only occasional outliers

y <=y + rnorm(50,sd=0.1)

par(mfrow=c(2,2))

image(1:10,1:5,rcModelPLMr(y)$Weights,xlab="row",ylab="col"” ,main="PLM-r" z1lim=c(0,1))
image(1:10,1:5,rcModelPLMrc(y)$Weights,xlab="row",ylab="col"” ,main="PLM-rc”,zlim=c(@,1))

12 rcModels

image(1:10,1:5,rcModelPLMrr(y)$Weights,xlab="row",ylab="col"”,main="PLM-rr",z1lim=c(@,1))
matplot(y, type="1")

An example where there is a row outlier
y <- outer(row.effects, col.effects,"+"
y[1,] <= 11+ rnorm(5)

y <=y + rnorm(50,sd=0.1)

par(mfrow=c(2,2))

image(1:10,1:5,rcModelPLMr(y)$Weights,xlab="row",ylab="col"” ,main="PLM-r",z1lim=c(0,1))
image(1:10,1:5,rcModelPLMrc(y)$Weights,xlab="row",ylab="col"”,main="PLM-rc",zlim=c(0,1))
image(1:10,1:5,rcModelPLMrr(y)$Weights,xlab="row",ylab="col"” ,main="PLM-rr" z1lim=c(0,1))
matplot(y, type="1")

An example where there is a column outlier
y <- outer(row.effects, col.effects,"+"
w <- rep(1,50)

y[,4] <= 12 + rnorm(10)
y <=y + rnorm(50,sd=0.1)

par(mfrow=c(2,2))
image(1:10,1:5,rcModelWPLMr(y,w)$Weights,xlab="row",ylab="col"” ,main="PLM-r" z1lim=c(0,1))
image(1:10,1:5,rcModelWPLMrc(y,w)$Weights,xlab="row",ylab="col"” ,main="PLM-rc",z1lim=c(0,1))
image(1:10,1:5,rcModelWPLMrr(y,w)$Weights,xlab="row",ylab="col"” ,main="PLM-rr",z1lim=c(0,1))
matplot(y, type="1")

An example where there is both column and row outliers
y <- outer(row.effects, col.effects,"+"
w <- rep(1,50)

y[,4] <= 12 + rnorm(10)
y[1,]1 <= 11+ rnorm(5)

y <=y + rnorm(50,sd=0.1)

par(mfrow=c(2,2))
image(1:10,1:5,rcModelWPLMr (y,w)$Weights, xlab="row",ylab="col"” ,main="PLM-r" z1lim=c(0,1))
image(1:10,1:5,rcModelWPLMrc(y,w)$Weights,xlab="row",ylab="col"” ,main="PLM-rc",z1lim=c(0,1))
image(1:10,1:5,rcModelWPLMrr(y,w)$Weights,xlab="row",ylab="col"” ,main="PLM-rr",z1lim=c(0,1))
matplot(y, type="1")

rcModels Fit row-column model to a matrix

Description

These functions fit row-column effect models to matrices

rcModels 13

Usage

rcModelPLM(y, row.effects=NULL,input.scale=NULL)
rcModelWPLM(y, w,row.effects=NULL,input.scale=NULL)
rcModelMedianPolish(y)

Arguments
y A numeric matrix
w A matrix or vector of weights. These should be non-negative.
row.effects If these are supplied then the fitting procedure uses these (and analyzes individ-
ual columns separately)
input.scale If supplied will be used rather than estimating the scale from the data
Details

These functions fit row-column models to the specified input matrix. Specifically the model
Yij :T7;+Cj +€ij

with 7; and ¢; as row and column effects respectively. Note that this functions treat the row effect as
the parameter to be constrained using sum to zero (for rcModelPLM and rcModelWPLM) or median
of zero (for rcModelMedianPolish).

The rcModelPLM and rcModelWPLM functions use a robust linear model procedure for fitting the
model.

The function rcModelMedianPolish uses the median polish algorithm.

Value

A list with following items:

Estimates The parameter estimates. Stored in column effect then row effect order
Weights The final weights used
Residuals The residuals
StdErrors Standard error estimates. Stored in column effect then row effect order
Scale Scale Estimates

Author(s)

B. M. Bolstad <bmb@bmbolstad.com>

See Also

rcModelPLMr,rcModelPLMd

14 rma.background.correct

Examples

col.effects <- ¢(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))

y <- outer(row.effects, col.effects,"”+")
w <- runif(50)

rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)

y <=y + rnorm(50)

rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)

rcModelPLM(y, row.effects=row.effects)
rcModelWPLM(y,w, row.effects=row.effects)

rcModelPLM(y, input.scale=1.0)

rcModelWPLM(y, w,input.scale=1.0)

rcModelPLM(y, row.effects=row.effects,input.scale=1.0)
rcModelWPLM(y,w, row.effects=row.effects, input.scale=1.0)

rma.background. correct
RMA Background Correction

Description

Background correct each column of a matrix

Usage

rma.background. correct(x, copy=TRUE)

Arguments

X A matrix of intensities where each column corresponds to a chip and each row
is a probe.

subColSummarize 15

copy Make a copy of matrix before background correctiong. Usually safer to work
with a copy, but in certain situations not making a copy of the matrix, but instead
background correcting it in place will be more memory friendly.
Details
Assumes PMs are a convolution of normal and exponentional. So we observe X+Y where X is
backround and Y is signal. bg.adjust returns E[YIX+Y, Y>0] as our backround corrected PM.
Value

A RMA background corrected matrix.

Author(s)

Ben Bolstad, <bmbolstad.com>

References

Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background,
Normalization and Summarization. PhD Dissertation. University of California, Berkeley. pp 17-21

subColSummarize Summarize columns when divided into groups of rows

Description

These functions summarize columns of a matrix when the rows of the matrix are classified into
different groups

Usage

subColSummarizeAvg(y, group.labels)
subColSummarizeAvglLog(y, group.labels)
subColSummarizeBiweight(y, group.labels)
subColSummarizeBiweightLog(y, group.labels)
subColSummarizelLogAvg(y, group.labels)
subColSummarizelLogMedian(y, group.labels)
subColSummarizeMedian(y, group.labels)
subColSummarizeMedianLog(y, group.labels)
subColSummarizeMedianpolish(y, group.labels)
subColSummarizeMedianpolishLog(y, group.labels)
convert.group.labels(group.labels)

Arguments

y A numeric matrix

group.labels A vector to be treated as a factor variable. This is used to assign each row to a
group. NA values should be used to exclude rows from consideration

16

Details

subColSummarize

These functions are designed to summarize the columns of a matrix where the rows of the matrix
are assigned to groups. The summarization is by column across all rows in each group.

Value

subColSummarizeAvgSummarize by taking mean

subColSummarizeAvgloglog? transform the data and then take means in column-wise man-
ner

subColSummarizeBiweightUse a one-step Tukey Biweight to summarize columns

subColSummarizeBiweightLoglog2 transform the data and then use a one-step Tukey Bi-
weight to summarize columns

subColSummarizeLogAvgSummarize by taking mean and then taking log2
subColSummarizeL.ogMedianSummarize by taking median and then taking log?2
subColSummarizeMedianSummarize by taking median

subColSummarizeMedianL.oglog? transform the data and then summarize by taking median

subColSummarizeMedianpolishUse the median polish to summarize each column, by also
using a row effect (not returned)

subColSummarizeMedianpolishLoglog?2 transform the data and then use the median polish
to summarize each column, by also using a row effect (not returned)

A matrix containing column summarized data. Each row corresponds to data column summarized
over a group of rows.

Author(s)

B. M. Bolstad <bmb@bmbolstad.com>

Examples

Assign the first 10 rows to one group and
the second 10 rows to the second group

#iH#

y <- matrix(c(10+rnorm(50),20+rnorm(50)),20,5,byrow=TRUE)

subColSummarizeAvglLog(y,c(rep(1,10),rep(2,10)))
subColSummarizelLogAvg(y,c(rep(1,10),rep(2,10)))
subColSummarizeAvg(y,c(rep(1,10),rep(2,10)))

subColSummarizeBiweight(y,c(rep(1,10),rep(2,10)))
subColSummarizeBiweightLog(y,c(rep(1,10),rep(2,10)))

subColSummarizeMedianLog(y,c(rep(1,10),rep(2,10)))
subColSummarizelLogMedian(y,c(rep(1,10),rep(2,10)))
subColSummarizeMedian(y,c(rep(1,10),rep(2,10)))

subrcModels 17

subColSummarizeMedianpolishLog(y,c(rep(1,10),rep(2,10)))
subColSummarizeMedianpolish(y,c(rep(1,10),rep(2,10)))

subrcModels Fit row-column model to a matrix

Description

These functions fit row-column effect models to matrices

Usage
subrcModelPLM(y, group.labels,row.effects=NULL,input.scale=NULL)
subrcModelMedianPolish(y, group.labels)

Arguments

y A numeric matrix

group.labels A vector to be treated as a factor variable. This is used to assign each row to a
group. NA values should be used to exclude rows from consideration

row.effects If these are supplied then the fitting procedure uses these (and analyzes individ-
ual columns separately)
input.scale If supplied will be used rather than estimating the scale from the data
Details

These functions fit row-column models to the specified input matrix. Specifically the model
Yij = Ti +Cj + €
with 7; and ¢; as row and column effects respectively. Note that this functions treat the row effect as

the parameter to be constrained using sum to zero (for rcModelPLM and rcModelWPLM) or median
of zero (for rcModelMedianPolish).

The rcModelPLM and rcModelWPLM functions use a robust linear model procedure for fitting the
model.

The function rcModelMedianPolish uses the median polish algorithm.

Value

A list with following items:

Estimates The parameter estimates. Stored in column effect then row effect order
Weights The final weights used

Residuals The residuals

StdErrors Standard error estimates. Stored in column effect then row effect order

Scale Scale Estimates

18

Author(s)
B. M. Bolstad <bmb@bmbolstad.com>

See Also
rcModelPLM

Examples

y <- matrix(c(10+rnorm(50),20+rnorm(50)),20,5,byrow=TRUE)

subrcModelPLM(y,c(rep(1,10),rep(2,10)))
subrcModelMedianPolish(y,c(rep(1,10),rep(2,10)))

col.effects <- ¢(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))

y <- outer(row.effects, col.effects,"+")
w <- runif(50)

rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)

y <=y + rnorm(50)

rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)

rcModelPLM(y,row.effects=row.effects)
rcModelWPLM(y,w, row.effects=row.effects)

rcModelPLM(y, input.scale=1.0)

rcModelWPLM(y, w,input.scale=1.0)

rcModelPLM(y, row.effects=row.effects,input.scale=1.0)
rcModelWPLM(y,w, row.effects=row.effects,input.scale=1.0)

subrcModels

Index

* manip
normalize.quantiles, 3
normalize.quantiles.in.blocks, 5
normalize.quantiles.robust, 6
normalize.quantiles.target, 7
rma.background. correct, 14

+* models
rcModelPLMd, 9
rcModelPLMr, 10
rcModels, 12
subrcModels, 17

* univar
colSumamrize, 2
subColSummarize, 15

colSumamrize, 2
colSummarizeAvg (colSumamrize), 2
colSummarizeAvglLog (colSumamrize), 2
colSummarizeBiweight (colSumamrize), 2
colSummarizeBiweightlLog (colSumamrize),
2
colSummarizelLogAvg (colSumamrize), 2
colSummarizelogMedian (colSumamrize), 2
colSummarizeMedian (colSumamrize), 2
colSummarizeMedianLog (colSumamrize), 2
colSummarizeMedianpolish
(colSumamrize), 2
colSummarizeMedianpolishlLog
(colSumamrize), 2
convert.group.labels (subColSummarize),
15

expresso, 5, 8
matrix, 15, 16

normalize.AffyBatch.quantiles.robust
(normalize.quantiles.robust), 6

normalize.quantiles, 3,5,7, 8

normalize.quantiles.determine. target
(normalize.quantiles.target), 7

19

normalize.quantiles.in.blocks, 5
normalize.quantiles.robust, 4, 6
normalize.quantiles.target, 7
normalize.quantiles.use.target
(normalize.quantiles.target), 7

rcModelMedianPolish (rcModels), 12
rcModelPLM, 9, 11, 18

rcModelPLM (rcModels), 12
rcModelPLMd, 9, 11, 13
rcModelPLMr, 9, 10, 13
rcModelPLMrc (rcModelPLMr), 10
rcModelPLMrr (rcModelPLMr), 10
rcModels, 12

rcModelWPLM (rcModels), 12
rcModelWPLMr (rcModelPLMr), 10
rcModelWPLMrc (rcModelPLMr), 10
rcModelWPLMrr (rcModelPLMr), 10
rma, 5, 8
rma.background.correct, 14

subColSummarize, 15
subColSummarizeAvg (subColSummarize), 15
subColSummarizeAvglog
(subColSummarize), 15
subColSummarizeBiweight
(subColSummarize), 15
subColSummarizeBiweightlLog
(subColSummarize), 15
subColSummarizelogAvg
(subColSummarize), 15
subColSummarizelLogMedian
(subColSummarize), 15
subColSummarizeMedian
(subColSummarize), 15
subColSummarizeMedianLog
(subColSummarize), 15
subColSummarizeMedianpolish
(subColSummarize), 15

20 INDEX

subColSummarizeMedianpolishlLog
(subColSummarize), 15

subrcModelMedianPolish (subrcModels), 17

subrcModelPLM (subrcModels), 17

subrcModels, 17

subrcModelWPLM (subrcModels), 17

	colSumamrize
	normalize.quantiles
	normalize.quantiles.in.blocks
	normalize.quantiles.robust
	normalize.quantiles.target
	rcModelPLMd
	rcModelPLMr
	rcModels
	rma.background.correct
	subColSummarize
	subrcModels
	Index

