Package ‘plyinteractions’

February 2, 2026

Title Extending tidy verbs to genomic interactions

Description Operate on ~Glnteractions™ objects as tabular data using
“dplyr’ -like verbs. The functions and methods in " plyinteractions’
provide a grammatical approach to manipulate " Glnteractions", to
facilitate their integration in genomic analysis workflows.

Version 1.9.2
Date 2026-01-07
License Artistic-2.0

URL https://github.com/js2264/plyinteractions

BugReports https://github.com/js2264/plyinteractions/issues
biocViews Software, Infrastructure

Encoding UTF-8

Roxygen list(markdown = TRUE)

Depends R (>=4.3.0), InteractionSet, plyranges

Imports Seqinfo, BiocGenerics, GenomicRanges, IRanges, S4Vectors,
rlang, dplyr, tibble, tidyselect, methods, utils

Suggests tidyverse, BSgenome.Mmusculus.UCSC.mm10, Biostrings,
BiocParallel, GenomelnfoDb, scales, HiContactsData,
rtracklayer, BiocStyle, covr, knitr, rmarkdown, sessioninfo,
testthat (>= 3.0.0), RefManageR

Config/testthat/edition 3
VignetteBuilder knitr
RoxygenNote 7.3.3

Collate 'attach.R' 'zzz.R''AllGenerics.R' 'AllClasses.R'
'add_pairdist.R' 'anchor.R' 'annotate.R' 'arrange.R’
'count-overlaps.R' 'count.R' 'data.R" 'export.R’
filter-overlaps.R' filter.R' 'find-overlaps.R' 'flank.R'
'ginteractions-construct.R' 'ginteractions-env.R'
'ginteractions-getters.R' 'ginteractions-scoping.R'
'ginteractions-setters.R' 'tbl_vars.R' 'group_data.R'

1

https://github.com/js2264/plyinteractions
https://github.com/js2264/plyinteractions/issues

2 Contents

'group_by.R' 'internals.R' 'join-overlap-left.R’
'methods-AnchoredPinnedGlnteractions.R’
‘methods-DelegatingGlInteractions.R'
'methods-GroupedGlnteractions.R'
'methods-PinnedGlInteractions.R' 'methods-show.R' 'mutate.R’
'pair-granges.R' 'pin.R’ 'plyinteractions.R' rename.R'
'replace-anchors.R' 'select.R' 'shift.R' 'slice.R' 'stretch.R’
'summarize.R’

LazyData false

git_url https://git.bioconductor.org/packages/plyinteractions
git_branch devel

git_last commit d5c0f13

git_last_commit_date 2026-01-10

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Jacques Serizay [aut, cre]

Maintainer Jacques Serizay <jacquesserizay@gmail.com>

Contents
plyinteractions-package 3
add_pairdist 4
anchorsl L L 5
ANNOtAte L. L 7
aS_gINEractioNS o v vt e e e e e e e e e e 9
delegating-ginteractions-methods oL o oL 11
dplyr-arrangeo e e 13
dplyr-count e e 14
dplyr-filter e 15
dplyr-group_by 16
dplyr-mutate e e 18
dplyr-rename e e e 20
dplyr-select 21
dplyr-slice e 22
dplyr-summarize e e e e 23
ginteractions-anchor Lo 24
ginteractions-count-overlaps Lol 26
gINtEractionS-eXPOort e e e e e e e e e 27
ginteractions-filter-overlaps oL 28
ginteractions-find-overlaps 30
ginteractions-join-overlap-left oL o oL 32
group-group_data L. e e e e 34
PAII_Granges o v vt e e e e e e e e e e 35
PIN . o o 36

plyinteractions-data 38

plyinteractions-package 3

plyinteractions-flank Lo 39
plyinteractions-shift L 41
plyranges-stretch L 43
replace_anchors L e 44
set_seqnamesl L. e 45
show-GlInteractions 47
Index 49

plyinteractions-package
plyinteractions: Extending tidyomics verbs to genomic interactions

Description

plyinteractions verbs treat GInteractions objects as tabular data using dplyr-like verbs. The func-
tions and methods in plyinteractions provide a grammatical approach to manipulate GInteractions,
to facilitate their integration in genomic analysis workflows.

plyinteractions is a dplyr-like API to the Glnteractions infrastructure in Bioconductor.

Details

plyinteractions provides a consistent interface for importing and wrangling genomic interactions
from a variety of sources. The package defines a grammar of genomic interactions manipulation
through a set of verbs. These verbs can be used to construct human-readable analysis pipelines
based on GInteractions.

* Group genomic interactions with group_by;

* Summarize grouped genomic interactions with summarize;

* Tally/count grouped genomic interactions with tally and count;

* Modify genomic interactions with mutate;

* Subset genomic interactions with filter using <data-masking> and logical expressions;

* Pick out any columns from the associated metadata with select using <tidy-select> argu-
ments;

* Subset using indices with slice;

* Order genomic interactions with arrange using categorical/numerical variables.

For more details on the features of plyinteractions, read the vignette: browseVignettes(package
= "plyinteractions”)
Author(s)

Jacques Serizay

Maintainer: Jacques Serizay <jacquesserizay@gmail.com>

https://rlang.r-lib.org/reference/args_data_masking.html
https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html
https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html

4 add_pairdist

See Also
Useful links:

* https://github.com/js2264/plyinteractions
* Report bugs at https://github.com/js2264/plyinteractions/issues

Useful links:

e https://github.com/js2264/plyinteractions
* Report bugs at https://github.com/js2264/plyinteractions/issues

add_pairdist Appends distance between interaction anchors

Description

Appends distance between interaction anchors, using InteractionSet: :pairdist

Usage

add_pairdist(x, type = "mid”, colname = "pairdist")

Arguments
X The query Glnteractions
type A character string specifying the type of distance to compute. Can take values
of "mid", "gap", "span", "diag" or "intra".
colname name of column to hold pair distance values
Value

The GlInteractions with an additional column containing the distance between each pair of anchors.

Examples

gi <- read.table(text ="
chr1l 100 200 chr1 5000 5100 bedpe_examplel 30 + -
chr1 1000 5000 chr2 3000 3800 bedpe_example2 100 + -",
col.names = c(
"seqgnames1”, "start1”, "end1",
"segnames2”, "start2", "end2", "name"”, "score", "strand1”, "strand2")
) |> as_ginteractions()

add_pairdist(gi)

https://github.com/js2264/plyinteractions
https://github.com/js2264/plyinteractions/issues
https://github.com/js2264/plyinteractions
https://github.com/js2264/plyinteractions/issues

anchorsl

anchors1 Enhanced Glnteractions getters

Description

Enhanced Glnteractions getters

Usage

anchors1(x)
anchors2(x)
segnames1(x)
segnames2(x)
start1(x)
start2(x)
end1(x)
end2(x)
width1(x)
width2(x)
strand1(x)
strand2(x)
ranges1(x)
ranges2(x)

S4 method for signature 'GInteractions'
x$name

S4 method for signature 'GInteractions'
anchors1(x)

S4 method for signature 'GInteractions'
anchors2(x)

S4 method for signature 'GInteractions'

6 anchorsl

segnamesi1(x)

S4 method for signature 'GInteractions'
segnames2(x)

S4 method for signature 'GInteractions'
start1(x)

S4 method for signature 'GInteractions'
start2(x)

S4 method for signature 'GInteractions'
end1(x)

S4 method for signature 'GInteractions'
end2(x)

S4 method for signature 'GInteractions'
width1(x)

S4 method for signature 'GInteractions'
width2(x)

S4 method for signature 'GInteractions'
strand1(x)

S4 method for signature 'GInteractions'
strand2(x)

S4 method for signature 'GInteractions'
ranges1(x)

S4 method for signature 'GInteractions'

ranges2(x)
Arguments

X a GInteractions object

name The pattern or name of a column stored in the Glnteractions metadata (mcols).
Value

One of the core Glnteractions fields (e.g. seqnamesl, startl, ...) or one of the metadata columns
when using $. Note that auto-completion works with $.

Examples

gi <- data.frame(
segnames1 = 'chrl1', startl =1, endl = 10,

annotate 7

20
'cis")

segnames2 = 'chr1', start2 = 2, end2
) |> as_ginteractions() |> mutate(type
anchors1(gi)
anchors2(gi)
seqnames1(gi)
seqnames2(gi)
start1(gi)
start2(gi)
end1(gi)
end2(gi)
width1(gi)
width2(gi)
ranges1(gi)
ranges2(gi)
strand1(gi)
strand2(gi)
gi$type

annotate Annotate both anchors of a Glnteractions

Description

For each interaction in a GInteractions object, annotate returns the pairs of annotations from the
GRanges object it overlaps with.

Usage

annotate(x, y, by)

annotate_directed(x, y, by)
S4 method for signature 'GInteractions,GRanges,character'
annotate(x, y, by)

S4 method for signature 'GInteractions,GRanges,character
annotate_directed(x, y, by)

Arguments

X a Glnteractions object

y a GRanges object to extract annotations from

by Column name from y to use to extract annotations
Value

a Glnteractions object with two extra metadata columns named by. 1 and by. 2.

8 annotate

Examples

HHHEHHEEBEEE AR AR AR
1. Basic example
HHH A AR A A

gi <- read.table(text ="
chr1 11 20 - chr1 21 30 +
chr1 21 30 + chr2 51 60 +",
col.names = c(
"seqnames1”, "start1”, "end1", "strandl”,
"seqnames2”, "start2", "end2", "strand2”

)

) |> as_ginteractions()

gr <- GenomicRanges: :GRanges(c("chr1:20-30:+", "chr2:55-65:+")) |>
mutate(id = 1:2)

annotate(gi, gr, by = 'id")
annotate_directed(gi, gr, by = 'id')

HHHEHHHEEE AR AR A
2. Match loops with tiled genomic bins
HHHEHHAAHEEE AR AR A

data(GM12878_HiCCUPS)

loops <- GM12878_HiCCUPS |>
pin_by('first') |>
anchor_center() [>
mutate(widthl = 500) |>
pin_by('second') |>
anchor_center() [>
mutate(width2 = 500)

genomic_bins <- GenomeInfoDb: :getChromInfoFromUCSC(

'hg19', assembled.molecules.only = TRUE, as.Seqginfo = TRUE
) 1>

GenomicRanges: :tileGenome(tilewidth = 10000) |>

unlist() |>

mutate(binID = seq_len(plyranges::n()))

annotate(loops, genomic_bins, by = 'binID') |>
select(starts_with('binID"))

HHHHHHARHE AR AR A
3. Annotate interactions by a set of regulatory elements
HHEHHAREEE AR R AR

data(cel1@_ARCC)

data(cel10_REs)

annotate(cel1@_ARCC, cel@_REs, by = 'annot') |>
count(annot.1, annot.2) |>

as_ginteractions 9

as.data.frame() |>

arrange(desc(n))
as_ginteractions Construct a Glnteractions object from a tibble, DataFrame or
data.frame
Description

The as_ginteractions function looks for column names in .data called seqnames{ 1,2}, start{1,2},
end{1,2}, and strand{ 1,2} in order to construct a GInteractions object. By default other columns in
.data are placed into the mcols (metadata columns) slot of the returned object.

Usage

as_ginteractions(
.data,
keep.extra.columns = TRUE,
starts.in.df.are.@based = FALSE

Arguments

.data A data.frame(), S4Vectors: :DataFrame() or tibble() to construct a GIn-
teractions object from.

Optional named arguments specifying which the columns in .data containin the
core components a GlInteractions object.

keep.extra.columns
TRUE or FALSE (the default). If TRUE, the columns in df that are not used to
form the genomic ranges of the returned GRanges object are then returned as
metadata columns on the object. Otherwise, they are ignored.

starts.in.df.are.@based
TRUE or FALSE (the default). If TRUE, then the start positions of the genomic
ranges in df are considered to be 0-based and are converted to 1-based in the
returned GRanges object.

Value

a Glnteractions object.

See Also

InteractionSet: :GInteractions()

10 as_ginteractions

Examples

HHHEHHEEBEEE AR AR AR
1. GInteractions from bedpe files imported into a data.frame
HHH A AR A A

bedpe <- read.table(text ="

chr1l 100 200 chr1 5000 5100 bedpe_examplel 30 + -

chr1l 1000 5000 chrl 3000 3800 bedpe_example2 100 + -",
col.names = c(

"chroml1”, "start1”, "end1”,
"chrom2”, "start2", "end2", "name"”, "score"”, "strand1"”, "strand2"))
bedpe |>

as_ginteractions(segnames1 = chroml, segnames2 = chrom2)

HHHHHHAREEE R AR A
2. GInteractions from standard pairs files imported into a data.frame
HHHEHHAREEEE R AR AR

Note how the pairs are 0-based and no "end” field is provided
(the standard pairs file format does not have "end” fields)
We can provide width1l and width2 to fix this problem.
pairs <- read.table(text ="
pairl chrl 10000 chr1 20000
pair2 chrl 50000 chr1 70000
pair3 chrl 60000 chr2 10000
pair4 chrl 30000 chr3 40000 + -",
col.names = c(
"pairID”, "chr1”, "posl1”, "chr2", "pos2", "strandl"”, "strand2")
)
pairs |>
as_ginteractions(
segnames1 = chr1, startl = posl1, widthl
seqnames2 = chr2, start2 = pos2, width2
starts.in.df.are.@based = TRUE

+ 4+ o+

+ + + o+

1000,
1000,

S
3. GInteractions from data.frame with extra fields
S

df <- read.table(text ="
chr1 100 200 chril 5000 5100
chr1 1000 5000 chrl 3000 3800",
col.names = c("chr1”, "start1”, "end1", "chr2", "start2", "end2"))
df |>
as_ginteractions(seqnames1 = chrl, segnames2 = chr2)

df <- read.table(text ="

chr1 100 200 chr1 5000 5100

chr1l 1000 5000 chrl 3000 3800",

col.names = c("chr1”, "start1”, "end1"”, "chr2", "start2”, "end2"))

delegating-ginteractions-methods

df |>
as_ginteractions(
seqnames1 = chri1, segnames2 = chr2, strandl = '+', strand2 = '-'
)
data.frame(type = "cis”, count = 3) [>
as_ginteractions(
seqnames1 = 'chr1', startl =1, endl = 10,

seqnames2 = 'chrl1', start2 = 40, end2 = 50
)

HHHHHHAEEEEE AR R A
4. GInteractions from a real like pairs files
HHHHHHAHE AR A

pairsf <- system.file('extdata', 'pairs.gz', package = 'plyinteractions')
pairs <- read.table(pairsf, comment.char = '#', header = FALSE)
head(pairs)

pairs |>

as_ginteractions(
seqnames1 = V2, startl = V3, widthl = 1, strandl = V6,
segnames2 = V4, start2 = V5, width2 = 1, strand2 = V7,
starts.in.df.are.@based = TRUE

11

delegating-ginteractions-methods
Methods for DelegatingGlnteractions objects

Description

Methods for DelegatingGlInteractions objects

Usage

S4 method for signature 'DelegatingGInteractions'
anchors1(x)

S4 method for signature 'DelegatingGInteractions'
rangesi(x)

S4 method for signature 'DelegatingGInteractions'
segnames1(x)

S4 method for signature 'DelegatingGInteractions'
start1(x)

S4 method for signature 'DelegatingGInteractions'
end1(x)

12 delegating-ginteractions-methods

S4 method for signature 'DelegatingGInteractions'
width1(x)

S4 method for signature 'DelegatingGInteractions'
strand1(x)

S4 method for signature 'DelegatingGInteractions'
anchors2(x)

S4 method for signature 'DelegatingGInteractions'
ranges2(x)

S4 method for signature 'DelegatingGInteractions'
segnames2(x)

S4 method for signature 'DelegatingGInteractions'
start2(x)

S4 method for signature 'DelegatingGInteractions'
end2(x)

S4 method for signature 'DelegatingGInteractions'
width2(x)

S4 method for signature 'DelegatingGInteractions'
strand2(x)

S4 method for signature 'DelegatingGInteractions'
anchors(x)

S4 method for signature 'DelegatingGInteractions'
regions(x)

S4 method for signature 'DelegatingGInteractions'
seginfo(x)

S4 method for signature 'DelegatingGInteractions'
mcols(x)

S4 method for signature 'DelegatingGInteractions'
show(object)

Value

One of the core Glnteractions fields (e.g. seqnamesl, startl, ...)

dplyr-arrange 13

dplyr-arrange Arrange a Glnteractions by a column

Description

Arrange a Glnteractions by a column

Usage
S3 method for class 'GInteractions'
arrange(.data, ...)

Arguments
.data a Glnteractions object

Variables, or functions of variables. Use dplyr::desc() to sort a variable in de-
scending order.

Value

a Glnteractions object.

Examples

gi <- read.table(text ="
chr1 1 10 chr1 1 10

chrl 2 10 chr2 1 10
chr3 3 10 chr3 1 10
chr4 4 10 chr4 1 10
chr5 5 10 chr5 1 10",
col.names = c(

"seqgnames1”, "start1”, "end1",
"segnames2”, "start2", "end2")
) 1>
as_ginteractions() |>
mutate(cis = segnamesl == segnames2, score = runif(5)*100, gc = runif(5))

gi

HHHHHHARHE R AR A
1. Arrange GInteractions by a numerical column

HHHEHHAREERH R AR R
gi |> arrange(gc)

HHHHHHARHE R AR A
2. Arrange GInteractions by a logical column

A

gi |> arrange(cis)

14 dplyr-count

HHHHHHAEHE AR A
3. Arrange GInteractions by a factor
HHEHHAREERE R AR AR

gi |>
mutate(rep = factor(c("repl”, "rep2", "repl”, "rep2”, "rep1"”))) |>
arrange(rep)

HHHHHHAEE R R R
4. Combine sorting variables
HHHHHHAEEEEE AR R AR

gi |>
mutate(rep = factor(c("repl”, "rep2”, "repl”, "rep2", "repl”))) |>
arrange(dplyr: :desc(rep), score)

dplyr-count Count or tally Glnteractions per group

Description

Count or tally Glnteractions per group

Usage

S3 method for class 'GroupedGInteractions'
tally(x, wt = NULL, sort = FALSE, name = NULL)

S3 method for class 'GroupedGInteractions'
count(x, ..., wt = NULL, sort = FALSE, name = NULL)

S3 method for class 'GInteractions'

count(x, ..., wt = NULL, sort = FALSE, name = NULL)
Arguments
X A grouped Glnteractions object
wt <data-masking> Frequency weights. Can be NULL or a variable:

e If NULL (the default), counts the number of rows in each group.
* If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.

<data-masking> Variables to group by.

dplyr-filter 15

Value

a S4Vectors: :DataFrame() object, with an added column with the count/tablly per group.

Examples

gi <- read.table(text ="
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chrl 11 30 chr2 51 60 - -",
col.names = c(

"seqgnames1”, "start1”, "end1",

"seqnames2"”, "start2", "end2", "strandl1", "strand2")
R

as_ginteractions() |>

mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

o+ o+
I

HHHEHHAAHEE R A A
1. Tally groups
HHHEHHAEEEEE SRR AR AR

gi

gi |> group_by(strandl) |> tally()

gi |> group_by(type) [|> tally()

gi |> group_by(type) |> tally(wt = score)

HHHHHHAAEE AR A A
2. Count per groups

HHHEHHAREE AR R R
gi |> count(type)

gi |> group_by(type) |> count(strandl)

gi |> group_by(type, strandl) |> count(wt = score)

dplyr-filter Subset a Glnteractions with tidyverse-like filter

Description

Subset a Glnteractions with tidyverse-like filter

Usage

S3 method for class 'GInteractions'
filter(.data, ...)

16 dplyr-group_by

Arguments
.data a Glnteractions object
Expressions that return a logical value, and are defined in terms of the variables
in .data. If multiple expressions are included, they are combined with the &
operator. Only rows for which all conditions evaluate to TRUE are kept.
Value

a Glnteractions object.

Examples

gi <- read.table(text ="
chr1 1 10 chr1 1 10

chrl 2 10 chr2 1 10

chr3 3 10 chr3 1 10

chr4 4 10 chr4 1 10

chr5 5 10 chr5 1 10",
col.names = c(

"seqgnames1”, "start1”, "end1”,
"segnames2", "start2", "end2")
) 1>
as_ginteractions() |>
mutate(cis = segnames1 == segnames2, score = runif(5)*100, gc = runif(5))
gi

B S S
1. Filter metadata columns from GInteractions by condition
HHHEHHAEEEEE AR AR AR

gi |> filter(gc > 0.1)
gi |> filter(gc > 0.1, score > 50)
gi |> filter(cis)

B S S S s T
2. On-the-fly calculations
HHH A AR AR A

gi
gi |> filter(startl >= start2 + 3)
gi |> filter(score x gc > score x 0.5)

dplyr-group_by Group Glnteractions by columns

Description

Group Glnteractions by columns

dplyr-group_by 17

Usage

S3 method for class 'GInteractions'
group_by(.data, ..., .add = FALSE)

S3 method for class 'DelegatingGInteractions'
group_by(.data, ..., .add = FALSE)

S3 method for class 'GroupedGInteractions'
ungroup(x, ...)

Arguments

.data, x a (Grouped)Glnteractions object
Column(s) to group by.

.add When FALSE, the default, group_by() will override existing groups. To add to
the existing groups, use .add = TRUE.

Value

a GroupedGInteractions object. When a (Anchored)PinnedGInteractions object is grouped,
both anchoring and pinning are dropped.

Examples

gi <- read.table(text ="
chr1l 11 20 chr1 21 30
chr1l 11 20 chr1 51 55
chrl 11 30 chrl 51 55
chr1l 11 30 chr2 51 60",
col.names = c(
"segnames1”, "start1”, "end1”,
"seqgnames2”, "start2", "end2")
) 1>
as_ginteractions() |>
mutate(type = c('cis’,

cis', 'cis', 'trans'), score = runif(4))
B S
1. Group by core column

HHHEHHAEEEEE R AR R
gi |> group_by(end1l)

gi |> group_by(endl, end2) |> group_data()

HHHEHHAREEEE R AR AR

2. Group by metadata column
B AR AR

gi |> group_by(type) |> group_data()

18 dplyr-mutate

HHHEHHAREERE SRR R AR
3. Combine core and metadata column grouping
HHHHHHEHEEE A AR A

gi |> group_by(endl, type)
gi |> group_by(endl, type) |> group_data()

HHHHHHAAHE R
4. Create a new column and group by this new variable
HHHHHHAEE R R R

gi |> group_by(class = c(1, 2, 1, 2))

HHHHHHAAHE AR AR A
5. Replace or add groups to a GroupedGInteractions
B S R

ggi <- gi |> group_by(class = c(1, 2, 1, 2))

ggi |> group_data()

ggi |> group_by(type) |> group_data()

ggi |> group_by(type, .add = TRUE) |> group_data()

HHHHBHAHEHHAHAAHAHRHRAHRHAHRHAHRHAHA AR HRHEHR R
6. Ungroup GInteractions
HHHHHAHHHHEHHAHAHHHHEHRAHEHEHEHHAHEHEHEHAHEHHEHEHEHEHH R

ggi <- gi |> group_by(type, class = c(1, 2, 1, 2))
ggi

ungroup(ggi, type)

ungroup(ggi, class)

dplyr-mutate Mutate columns from a Glnteractions object

Description

Mutate columns from a Glnteractions object

Usage
S3 method for class 'GInteractions'
mutate(.data, ...)

Arguments
.data a Glnteractions object

Optional named arguments specifying which the columns in .data to create/modify.

dplyr-mutate

Value

a Glnteractions object.

Examples

gi <- read.table(text ="

chr1 10 20 chrl 50 51

chr1l 10 50 chr2 30 40",

col.names = c("chr1”, "start1”, "end1", "chr2", "start2", "end2")) |>
as_ginteractions(segnames1 = chri1, seqgnames2 = chr2)

HHHHHHAREEE AR A A
1. Add metadata columns to a GInteractions object
HHHEHHEEEEEE AR R AR

gi|>
mutate(type = c('cis', 'trans'), score = runif(2)) |>
mutate(type2 = type)

S
2. More complex, nested or inplace changes
S

gi |>
mutate(type = c('cis', 'trans'), score = runif(2)) |>
mutate(type2 = type) |[>
mutate(count = c(1, 2), score = count * 2, new_col = paste@(type2, score))

W
3. Core GInteractions columns can also be modified
piss s S S S s S s S S S s S S S S S S S

gi |>
mutate(startl = 1, endl = 10, width2 = 30, strand2 = c('-', '+'))

Note how the core columns are modified sequentially

gi |>
mutate(startl = 1, endl = 10)

gi |>

mutate(startl = 1, endl 10, widthl = 50)

B S S S s T T
4. Evaluating core GInteractions columns
AR AR A

gi |>
mutate(
score = runif(2),
cis = segnamesl == segnames2,

distance = ifelse(cis, start2 - endl, NA)

19

20 dplyr-rename
)
dplyr-rename Rename columns from a Glnteractions with tidyverse-like rename

Description

Rename columns from a Glnteractions with tidyverse-like rename
Usage

S3 method for class 'GInteractions'

rename(.data, ...)
Arguments

.data a GlInteractions object

Use new_name = 0ld_name to rename selected variables.

Value

a Glnteractions object.
Examples

gl <- read.table(text = "
chr1 10 20 chrl 50 51
chr1l 10 50 chr2 30 40",

col.names = c("chr1”, "start1”, "end1"”, "chr2", "start2", "end2")) |>
as_ginteractions(segnames1 = chr1, segnames2 = chr2) |>
mutate(type = c('cis', 'trans'), score = runif(2))

HHHEHHHEEE A AR
1. Rename metadata columns to a GInteractions object
HHHEHHARHEEEE AR AR A

gi |> rename(interaction_type = type, GC = score)

dplyr-select 21

dplyr-select Select columns within Glnteractions metadata columns

Description

Select columns within Glnteractions metadata columns

Usage
S3 method for class 'GInteractions'
select(.data, ..., .drop_ranges = FALSE)
Arguments
.data a GlInteractions object

Integer indicating rows to keep.

.drop_ranges if TRUE, returns a DataFrame object. In this case, it enables selection of any
column including core Glnteractions columns.
Value

a Glnteractions object.

Examples

gi <- read.table(text ="
chr1 1 10 chr1 1 10
chr2 1 10 chr2 1 10

chr3 1 10 chr3 1 10

chr4 1 10 chr4 1 10

chr5 1 10 chr5 1 10",

col.names = c(
"segnames1”, "start1”, "end1”,
"seqgnames2”, "start2", "end2")

) 1>
as_ginteractions() |>
mutate(score = runif(5)*100, cis = TRUE, gc = runif(5))

HHHHHHARHE R AR AR
1. Select metadata columns from GInteractions by index
HHHEHHAREEEE SRR R R

gi |> select(2, 1)
gi |> select(-3)

B AR AR
2. Select metadata columns from GInteractions by name
B

22

gi |> select(gc, score)

HHHHHHAHEEE AR A
3. Select metadata columns from GInteractions with <tidy-select>
HHHHHHAAHE AR AR A

gi |> select(contains('s'))
gi |> select(matches('*s'))

HHHHHHAEE R R R
4. Select core and metadata columns with .drop_ranges = TRUE

AR

gi |> select(matches('*s'), .drop_ranges = TRUE)

dplyr-slice

dplyr-slice Slice a Glnteractions rows by their index

Description

Slice a Glnteractions rows by their index

Usage
S3 method for class 'GInteractions'
slice(.data, ...)

Arguments
.data a Glnteractions object

Integer indicating rows to keep.

Value

a Glnteractions object.

Examples

gi <- read.table(text ="
chr1 1 10 chr1 1 10
chr2 1 10 chr2 1 10

chr3 1 10 chr3 1 10

chr4 1 10 chr4 1 10

chr5 1 10 chr5 1 10",

col.names = c(
"segnames1”, "start1”, "end1”,
"segnames2”, "start2", "end2")

) 1>

dplyr-summarize 23

as_ginteractions()

S
1. Slice a GInteractions
HHHHHH

gi |> slice(1, 2, 3)
gi |> slice(-3)
gi |> slice(1:2, 5:4)

dplyr-summarize Summarize Glnteractions per group

Description

Summarize Glnteractions per group

Usage

S3 method for class 'GroupedGInteractions'
summarise(.data, ...)

S3 method for class 'GroupedGInteractions'

summarize(.data, ...)
Arguments
.data a (grouped) Glnteractions object

Name-value pairs of summary functions. The name will be the name of the
variable in the result.

Value
a S4Vectors: :DataFrame() object:

* The rows come from the underlying group_keys().

* The columns are a combination of the grouping keys and the summary expressions that you
provide.

* Glnteractions class is not preserved, as a call to summarize fundamentally creates a new data
frame

Examples

gi <- read.table(text "
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chrl 11 30 chrl 51 55
chr1l 11 30 chr2 51 60 - -",

o+ +
I

24

col.names = c(

"seqgnames1”, "start1”, "end1",
"seqgnames2"”, "start2”, "end2", "strandl1", "strand2")
) 1>

as_ginteractions() |>
mutate(score = runif(4), type = c('cis’',

cis', 'cis', 'trans'))

HHHHHHAHE AR A
1. Summarize a single column
HHHEHHAREE R A R

gi
gi |> group_by(type) |> summarize(m = mean(score))
gi |> group_by(strandl) |> summarize(m = mean(score))
df <-gi [>
group_by(strandl) [|>
summarize(m = mean(score), n = table(segnames2))
df
dfs$n
HHHEHHAREEEE AR AR R

2. Summarize by multiple columns
HHHHHHAEEEEE AR AR AR

gi |>
group_by(strandl, segnames2) |>
summarise(m = mean(score), n = table(type))

ginteractions-anchor

ginteractions-anchor Manage Glnteractions anchors with plyranges

Description

Manage Glnteractions anchors with plyranges

Usage

S3 method for class 'AnchoredPinnedGInteractions'
anchor (x)

S3 method for class 'AnchoredPinnedGInteractions'
unanchor (x)

S3 method for class 'PinnedGInteractions'
anchor_start(x)

ginteractions-anchor

S3 method for class 'PinnedGInteractions'
anchor_end(x)

S3 method for class 'PinnedGInteractions'’
anchor_center(x)

S3 method for class 'PinnedGInteractions'
anchor_3p(x)

S3 method for class 'PinnedGInteractions'
anchor_5p(x)

S3 method for class 'AnchoredPinnedGInteractions'
anchor_start(x)

S3 method for class 'AnchoredPinnedGInteractions'
anchor_end(x)

S3 method for class 'AnchoredPinnedGInteractions'
anchor_center(x)

S3 method for class 'AnchoredPinnedGInteractions'
anchor_3p(x)

S3 method for class 'AnchoredPinnedGInteractions'
anchor_5p(x)
Arguments

X A PinnedGlnteractions object

Value

* anchor_x functions return an AnchoredPinnedGlInteractions object.
* anchor returns a character string indicating where the pinned anchors are anchored at.

* unanchor removes the anchoring for a AnchoredPinnedGlnteractions object.

Examples

gi <- read.table(text "
chr1l 11 20 chr1 21 30
chrl 11 20 chrl 51 55
chr1l 11 30 chr1 51 55
chr1l 11 30 chr2 51 60 - -",
col.names = c¢(

"seqgnames1”, "start1”, "end1”,

"segnames2”, "start2", "end2", "strand1”, "strand2")
) 1>

as_ginteractions() |>

+ +

26 ginteractions-count-overlaps

mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))
gi
HHHHHHAAHE AR
1. Anchoring pinned genomic interactions with plyranges
HHHEHHAEEEEE AR AR AR
gi |> pin_by("second”) [|> anchor_end()
gi |> pin_by("first") |> anchor_start()
gi |>

pin_by("first"”) |> anchor_center() |> stretch(4) |>
pin_by("second") |> anchor_3p() |> stretch(-2)

ginteractions-count-overlaps
Count overlaps between a query Ginteractions and a GRanges

Description

Count overlaps between a query Glnteractions and a GRanges

Usage

S3 method for class 'PinnedGInteractions'
count_overlaps(x, y, maxgap = -1L, minoverlap = QL)

S3 method for class 'GInteractions'
count_overlaps(x, y, maxgap = -1L, minoverlap = QL)

S3 method for class 'PinnedGInteractions'
count_overlaps_directed(x, y, maxgap = -1L, minoverlap = QL)

S3 method for class 'GInteractions'

count_overlaps_directed(x, y, maxgap = -1L, minoverlap = QL)
Arguments

X A (Pinned)Glnteractions object

y A GRanges object

maxgap, minoverlap
See ?countOverlaps in the GenomicRanges package for a description of these
arguments

Value

An integer vector of same length as x.

ginteractions-export 27

Pinned GInteractions

When using count_overlaps() with a PinnedGInteractions object, only the pinned anchors
are used to check for overlap with y. This is equivalent to specifying use.region="both" in
InteractionSet: :findOverlaps().

Examples

gi <- read.table(text ="

chrl 11 20 - chr1 21 30 +

chr1 11 20 - chr1 51 55 +

chr1 21 30 - chr1 51 55 +

chr1l 21 30 - chr2 51 60 +",

col.names = c(
"segnames1”, "startl1”, "end1”, "strand1”,
"seqnames2”, "start2", "end2", "strand2”

)
) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')
gr <- GenomicRanges: :GRanges(

c("chr1:20-30:+", "chr2:55-65:-"
) |> mutate(id = 1:2, type = 'gr')
gi
gr
HHH AR AR A
1. Count overlaps between GInteractions and a subject GRanges
HHHEHHARHEEEE AR A AR
count_overlaps(gi, gr)
count_overlaps_directed(gi, gr)
HHHEHHARHEE AR AR AR
2. Count overlaps between PinnedGInteractions and a subject GRanges
HHHEHHAEEEHE AR AR AR
gi |> pin_by("first”) |> count_overlaps(gr)
gi |> pin_by("second") |> count_overlaps(gr)

gi |> pin_by("first"”) |> count_overlaps_directed(gr)

gi |> pin_by("second") |> count_overlaps_directed(gr)

ginteractions-export Export Glnteractions as bedpe or pairs files

28 ginteractions-filter-overlaps

Description

write_* functions are provided to export a Glnteractions object into these two file formats. See
4DN documentation (https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md)
and UCSC documentation (https://bedtools.readthedocs.io/en/latest/content/general-usage.html#bedpe-
format) for more details.

Usage

write_bedpe(x, file, scores = NULL)

write_pairs(x, file, seqlengths = Seqinfo::seqglengths(x))

Arguments
X a Glnteractions object.
file path to a .bedpe or .pairs file to save the genomic interactions.
scores Name of column to extract scores from.
seqlengths Named vector indicating the chromosome sizes.
Value
TRUE
Examples

gi <- read.table(text ="
chr1 100 200 chrl1 5000 5100 bedpe_examplel 30 + -
chr1l 1000 5000 chrl 3000 3800 bedpe_example2 100 + -",
col.names = c(
"segnames1”, "start1”, "end1",
"seqnames2”, "start2", "end2", "name", "score"”, "strand1”, "strand2")
) |> as_ginteractions()

write_bedpe(gi, 'gi.bedpe')
write_pairs(gi, 'gi.pairs')

ginteractions-filter-overlaps
Filter GInteractions overlapping with a GRanges

Description

Filter GInteractions overlapping with a GRanges

ginteractions-filter-overlaps 29

Usage

S3 method for class 'PinnedGInteractions'
filter_by_overlaps(x, y, maxgap = -1L, minoverlap = QL)

S3 method for class 'GInteractions'

filter_by_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

S3 method for class 'PinnedGInteractions'

filter_by_non_overlaps(x, y, maxgap = -1L, minoverlap = 0L)

S3 method for class 'GInteractions'

filter_by_non_overlaps(x, y, maxgap = -1L, minoverlap = 0L)
Arguments

X A (Pinned)Glnteractions object

y A GRanges object

maxgap, minoverlap

Value

See ?countOverlaps in the GenomicRanges package for a description of these
arguments

An integer vector of same length as x.

Pinned GInteractions

When using filter_by_overlaps() with a PinnedGInteractions object, only the pinned an-
chors are used to check for overlap with y. This is equivalent to specifying use.region="both" in
InteractionSet: :findOverlaps().

Examples

gi <- read.table(text ="

chr1 11 20 - chr1 21 30
chr1 11 20 - chr1 51 55
chr1 21 30 - chr1 51 55
chr1l 21 30 - chr2 51 60 +",
col.names = c(
"segnames1”, "startl1”, "end1”, "strand1”,
"seqnames2”, "start2"”, "end2", "strand2")

+ o+ + o+

) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')

gr <- GenomicRanges: :GRanges(

c("chr1:20-30:+", "chr2:55-65:-"

) |> mutate(id = 1:2, type = 'gr')

gi

gr

30 ginteractions-find-overlaps

HHHHHHAEHE AR A
1. Filter GInteractions overlapping with a subject GRanges
HHEHHAREERE R AR AR
filter_by_overlaps(gi, gr)

filter_by_non_overlaps(gi, gr)

HHHHHHAEE R R R
2. Filter PinnedGInteractions overlapping with a subject GRanges
HHHHHHAEEEEE AR R AR
gi |> pin_by("first") |> filter_by_overlaps(gr)

gi |> pin_by("first”) |> filter_by_non_overlaps(gr)

gi |> pin_by("second") |> filter_by_overlaps(gr)

gi |> pin_by("second"”) |> filter_by_non_overlaps(gr)

ginteractions-find-overlaps
Find overlaps between a query Glnteractions and a GRanges

Description

Find overlaps between a query Glnteractions and a GRanges

Usage

S3 method for class 'PinnedGInteractions'
find_overlaps(x, y, maxgap = -1L, minoverlap = oL, suffix = c(".x", ".y"))

S3 method for class 'GInteractions'
find_overlaps(x, y, maxgap = -1L, minoverlap = oL, suffix = c(".x", ".y"))

S3 method for class 'PinnedGInteractions'’
find_overlaps_directed(

X’

y,

maxgap = -1L,

minoverlap = 0oL,

suffix = c(”.x", ".y")

S3 method for class 'GInteractions'
find_overlaps_directed(

ginteractions-find-overlaps 31

X’

y’

maxgap = -1L,
minoverlap = 0oL,
suffix = c(".x", ".y")

)

Arguments
X A (Pinned)Glnteractions object
y A GRanges object

maxgap, minoverlap
See ?findOverlaps in the GenomicRanges package for a description of these

arguments
suffix Suffix to add to metadata columns (character vector of length 2, default to
C(H'XH’ H.y”)).

Value

a Glnteractions object with rows corresponding to the GInteractions in x that overlap y.

Rationale

find_overlaps() will search for any overlap between GInteractions in x and GRanges in y. It
will return a GInteractions object of length equal to the number of times x overlaps y. This
GInteractions will have additional metadata columns corresponding to the metadata from y.
find_overlaps_directed() takes the strandness of each object into account.

Pinned GInteractions

When using find_overlaps() with a PinnedGInteractions object, only the pinned anchors
are used to check for overlap with y. This is equivalent to specifying use.region="both"” in
InteractionSet: :findOverlaps().

Examples

n

gi <- read.table(text =

chr1 11 20 - chr1 21 30 +

chr1 11 20 - chr1 51 55 +

chr1 21 30 - chr1 51 55 +

chr1l 21 30 - chr2 51 60 +",

col.names = c(
"seqnames1”, "start1”, "end1", "strandl”,
"seqnames2”, "start2", "end2", "strand2”

)
) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')

gr <- GenomicRanges: :GRanges(
c("chr1:20-30:+", "chr2:55-65:-")
) |> mutate(id = 1:2, type = 'gr')

32 ginteractions-join-overlap-left

gi

gr

HHHEHHEHEEE AR A
1. Find overlaps between GInteractions and a subject GRanges
HHHHHHAAHE R
find_overlaps(gi, gr)

find_overlaps_directed(gi, gr)

HHHHHHAAHE AR AR A
2. Find overlaps between PinnedGInteractions and a subject GRanges
B S R
gi |> pin_by("first") |> find_overlaps(gr)

gi |> pin_by("second”) |> find_overlaps(gr)

gi |> pin_by("first") |> find_overlaps_directed(gr)

gi |> pin_by("second") |> find_overlaps_directed(gr)

ginteractions-join-overlap-left
Join overlaps between a query Glnteractions and a GRanges

Description

Join overlaps between a query Glnteractions and a GRanges

Usage
S3 method for class 'PinnedGInteractions'

join_overlap_left(x, y, maxgap = -1L, minoverlap = OL, suffix = c(".x", ".y"))

S3 method for class 'GInteractions'
join_overlap_left(x, y, maxgap = -1L, minoverlap = 0L, suffix = c(".x", ".y"))

S3 method for class 'PinnedGInteractions'
join_overlap_left_directed(

X}

Y,

maxgap = -1L,
minoverlap = oL,
suffix = c(".x", ".y")

ginteractions-join-overlap-left 33

S3 method for class 'GInteractions'
join_overlap_left_directed(

X7

y)

maxgap = -1L,

minoverlap = 0L,

suffix = c(”.x", ".y")

)

Arguments
X A (Pinned)Glnteractions object
y A GRanges object

maxgap, minoverlap
See ?countOverlaps in the GenomicRanges package for a description of these

arguments
suffix Suffix to add to metadata columns (character vector of length 2, default to
C(H . X” , n .ylﬁ))'

Value

An integer vector of same length as x.

Examples

gi <- read.table(text ="
chr1 11 20 - chr1 21 30 +
chr1 11 20 - chr1 51 55 +
chr1 21 30 - chrl 51 55 +
chr1l 21 30 - chr2 51 60 +",
col.names = c(
"seqgnames1”, "start1”, "end1”, "strandl"”,
"segnames2", "start2"”, "end2", "strand2")
) |> as_ginteractions() |> mutate(id = 1:4, type = 'gi')

gr <- GenomicRanges: :GRanges(
c("chr1:20-30:+", "chr2:55-65:-")
) |> mutate(id = 1:2, type = 'gr')
gi
gr
B S S S T
1. Join overlaps between GInteractions and a subject GRanges

AR

join_overlap_left(gi, gr)

34

join_overlap_left_directed(gi, gr)

HHHHHHAHEEE AR A
2. Join overlaps between PinnedGInteractions and a subject GRanges
HHHHHHAAHE AR AR A
gi |> pin_by("first"”) |> join_overlap_left(gr)

gi |> pin_by("first"”) |> join_overlap_left_directed(gr)

gi |> pin_by("second") |> join_overlap_left(gr)

gi |> pin_by("second”) |> join_overlap_left_directed(gr)

group-group_data

group-group_data Glinteractions grouping metadata

Description

Glnteractions grouping metadata

Usage

S3 method for class 'GroupedGInteractions'
group_data(.data)

S3 method for class 'GroupedGInteractions'
group_keys(.tbl, ...)

S3 method for class 'GroupedGInteractions'
group_indices(.data, ...)

S3 method for class 'GInteractions'
group_vars(x)

S3 method for class 'GroupedGInteractions'
group_vars(x)

S3 method for class 'GroupedGInteractions'
groups(x)

S3 method for class 'GroupedGInteractions'
group_size(x)

S3 method for class 'GroupedGInteractions'
n_groups(x)

pair_granges

Arguments

.data, .tbl, x a GlInteractions object

Ignored.

Value

a Glnteractions object.

Examples

gi <- read.table(text ="
chr1l 11 20 chr1 21 30
chrl 11 20 chr1l 51 55
chr1l 11 30 chr1 51 55
chr1l 11 30 chr2 51 60",
col.names = c(

"seqgnames1”, "start1”, "endl”,
"segnames2", "start2", "end2")
) 1>
as_ginteractions() |>
mutate(type = c('cis', 'cis', 'cis', 'trans'), score = runif(4))

ggi <- gi |> group_by(end1)
ggi

group_data(ggi)
group_keys(ggi)
group_rows(ggi)
group_indices(ggi)
group_vars(ggi)

groups(ggi)

group_size(ggi)
n_groups(ggi)

pair_granges Pairwise combination of a GRanges object

Description

Create a Glnteractions object from a GRanges object, containing all possible entry pairs

Usage

pair_granges(x)

Arguments

X A GRanges object

36

Value

A Glnteractions object

Examples

gr <- read.table(text ="
chr1 100 200
chr1 5000 5100
chr1 1000 5000
chr2 3000 3800",
col.names = c(
"segnames”, "start”, "end”
)) |> plyranges::as_granges()

pair_granges(gr)

pin

pin Pin Ginteractions by anchors set (anchorsl or anchors2).

Description

Pin Glnteractions by anchors set (anchors! or anchors?2).

Usage

pin(x, anchors)
pin_by(x, anchors)
pinned_anchors(x)
unpin(x)

S4 method for signature
pin(x, anchors)

S4 method for signature
pin(x, anchors)

S4 method for signature
pin(x, anchors)

S4 method for signature
pin(x, anchors)

S4 method for signature
pin(x, anchors)

[

'GroupedGInteractions,character

'GroupedGInteractions,numeric’

'GInteractions,character’

'GInteractions,numeric'

'PinnedGInteractions,missing’

pin 37
S4 method for signature 'PinnedGInteractions,character'’
pin(x, anchors)

S4 method for signature 'PinnedGInteractions,numeric’
pin(x, anchors)

S4 method for signature 'AnchoredPinnedGInteractions,character’
pin(x, anchors)

S4 method for signature 'AnchoredPinnedGInteractions,numeric'’
pin(x, anchors)

pin_first(x)
pin_second(x)
pin_anchors1(x)
pin_anchors2(x)

S4 method for signature 'AnchoredPinnedGInteractions'
unpin(x)

S4 method for signature 'PinnedGInteractions'
unpin(x)

S4 method for signature 'GInteractions'
unpin(x)

S4 method for signature 'PinnedGInteractions'
pinned_anchors(x)

S4 method for signature 'AnchoredPinnedGInteractions'
pinned_anchors(x)

Arguments

X a Glnteractions object

anchors Anchors to pin on ("first" or "second")
Value

* pin_* functions return a PinnedGlInteractions object.
* pinreturns a numerical value indicating which set of anchors is pinned.
* unpin removes the pinning of a PinnedGlInteractions object.

* pinned_anchors returns an (Anchored)GenomicRanges object corresponding to the pinned
anchors of a PinnedGlInteractions object.

38 plyinteractions-data

Examples

gi <- read.table(text ="
chrl 11 20 chr1 21 30
chr1l 11 20 chr1 51 55
chr1l 11 30 chr1l 51 55
chr1l 11 30 chr2 51 60",
col.names = c(

"segnames1”, "start1”, "end1”,
"segnames2”, "start2", "end2")
) 1>
as_ginteractions() |>
mutate(type = c('cis', 'cis', 'cis', 'trans'), score = runif(4))

B g S S S ST T
1. Pin by first anchors

A AR AR A
gi |> pin_by("first")

gi |> pin_first()

gi |> pin_anchors1()
B
2. Pin by second anchors
B S S s T
gi |> pin_by("second")

gi |> pin_second()

gi |> pin_anchors2()

B AR AR
3. Unpin

I

gi |> pin("second”) |> unpin()

plyinteractions-data Data files provided in the plyinteractions package

Description

* Loops identified in GM 12878 with HICCUPS: File obtained from GEO entry GSE63525 (GSE63525_GM12878_primar
Rao SS, Huntley MH, Durand NC, Stamenova EK et al. A 3D map of the human genome at
kilobase resolution reveals principles of chromatin looping. Cell 2014 Dec 18;159(7):1665-
80. PMID: 25497547

plyinteractions-flank 39

* Interactions identified in L3 C. elegans by ARC-C: Supplemental Table 2 obtained from
Genome Biology online publication. Huang N, Seow WQ, Appert A, Dong Y, Stempor P
and Ahringer J Accessible Region Conformation Capture (ARC-C) gives high-resolution in-
sights into genome architecture and regulation. Genome Res 2022 Feb;32(2):357-366. PMID:
34933938

* Annotated regulatory elements in C. elegans: Figure 2 - Source data 1 obtained from eLife
online publication. Jines J, Dong Y, Schoof M, Serizay J, Appert A, Cerrato C, Woodbury
C, Chen R, Gemma C, Huang N, Kissiov D, Stempor P, Steward A, Zeiser E, Sauer S and
Ahringer J Chromatin accessibility dynamics across C. elegansdevelopment and ageing. Elife
2018 Oct 26;7. PMID: 30362940

Usage
data(GM12878_HiCCUPS)

data(GM12878_HiCCUPS)

data(GM12878_HiCCUPS)

Format
A GInteractions object

A GInteractions object

A GInteractions object

Source
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://genome.cshlp.org/content/early/2021/12/21/gr.275669.121
https://genome.cshlp.org/content/early/2021/12/21/gr.275669.121

plyinteractions-flank Generate flanking regions from pinned anchors of a GInteractions ob-
ject

Description

Generate flanking regions from pinned anchors of a Glnteractions object

Usage

flank_downstream(x, width)

S3 method for class 'Ranges'
flank_downstream(x, width)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://genome.cshlp.org/content/early/2021/12/21/gr.275669.121
https://genome.cshlp.org/content/early/2021/12/21/gr.275669.121

40 plyinteractions-flank

S3 method for class 'PinnedGInteractions'
flank_downstream(x, width)

flank_left(x, width)

S3 method for class 'Ranges'
flank_left(x, width)

S3 method for class 'PinnedGInteractions'
flank_left(x, width)

flank_upstream(x, width)

S3 method for class 'Ranges'
flank_upstream(x, width)

S3 method for class 'PinnedGInteractions'
flank_upstream(x, width)

flank_right(x, width)

S3 method for class 'Ranges'
flank_right(x, width)

S3 method for class 'PinnedGInteractions'
flank_right(x, width)

Arguments
X a PinnedGlnteractions object
width The width of the flanking region relative to the ranges in x. Either an integer
vector of length 1 or an integer vector the same length as x. The width can be
negative in which case the flanking region is reversed.
Value

A PinnedGlnteractions object

Examples

gi <- read.table(text "
chr1l 11 20 chr1l 21 30
chrl 11 20 chrl 51 55
chr1l 11 30 chr1 51 55
chr1l 11 30 chr2 51 60 - -"
col.names = c(

"seqgnames1”, "start1”, "end1”,

"segnames2”, "start2", "end2", "strand1”, "strand2")
) 1>

as_ginteractions() |>

+ +

’

plyinteractions-shift

mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))
S

1. Simple flanking
HHHHHHHH A

gi

gi |> pin_by("first") |> flank_left(-2)

gi |> pin_by("second") |> flank_downstream(4)

B S S S ST

2. Chained flanking of each set of anchors
HHHEHHAEEEEE AR AR AR

gi |>
pin_by("first") |> flank_left(2) |>
pin_by("second"”) [> flank_right(2)

41

plyinteractions-shift Shift pinned anchors of a Glnteractions object with plyinteractions

Description

Shift pinned anchors of a GInteractions object with plyinteractions

Usage

shift_downstream(x, shift)

S3 method for class 'Ranges'
shift_downstream(x, shift)

S3 method for class 'PinnedGInteractions
shift_downstream(x, shift)

shift_upstream(x, shift)

S3 method for class 'Ranges'
shift_upstream(x, shift)

S3 method for class 'PinnedGInteractions
shift_upstream(x, shift)

shift_right(x, shift)

S3 method for class 'Ranges'

42 plyinteractions-shift
shift_right(x, shift)
S3 method for class 'PinnedGInteractions'’
shift_right(x, shift)
shift_left(x, shift)
S3 method for class 'Ranges'
shift_left(x, shift)
S3 method for class 'PinnedGInteractions'’
shift_left(x, shift)
Arguments
X a PinnedGlnteractions object
shift The amount to move the genomic interval in the Ranges object by. Either a
non-negative integer vector of length 1 or an integer vector the same length as x.
Value
A PinnedGlnteractions object
Examples

gi <- read.table(text ="
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chr1l 11 30 chr2 51 60 - -",
col.names = c(

"segnames1”, "start1”, "end1",

"seqnames2"”, "start2", "end2", "strandl1", "strand2")
R

as_ginteractions() |>

mutate(score = runif(4), type = c('cis’',

+ o+

cis', 'cis', 'trans'))
B S R

1. Simple shifting
HHHEHHAEEEEE R R R

gi

gi |> pin_by("first") |> shift_left(15)

gi |> pin_by("second”) |> shift_downstream(10)

B AR

2. Chained shifting of each set of anchors
HHHHHHARHEE R AR A

plyranges-stretch 43

gi |>
pin_by("first"”) |> shift_downstream(20) |>
pin_by("second”) |> shift_upstream(20)

plyranges-stretch Stretch pinned anchors of a Glnteractions object with plyranges

Description

Stretch pinned anchors of a GInteractions object with plyranges

Usage

S3 method for class 'AnchoredPinnedGInteractions'
stretch(x, extend)

S3 method for class 'PinnedGInteractions'
stretch(x, extend)

Arguments
X a PinnedGlnteractions object
extend The amount to alter the width of a Ranges object by. Either an integer vector of
length 1 or an integer vector the same length as x.
Value

A PinnedGlnteractions object

Examples

gi <- read.table(text "
chrl 11 20 chr1 21 30
chrl 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chr1 11 30 chr2 51 60 - -",
col.names = c(

"segnames1”, "start1”, "end1",

"segnames2”, "start2", "end2", "strand1”, "strand2")
) 1>

as_ginteractions() |>

mutate(score = runif(4), type = c('cis', 'cis', 'cis', 'trans'))

o+ 4+
|

B S S sT
1. Simple stretching
B AR AR

gi

44 replace_anchors

gi |> pin_by("first"”) |> anchor_start() |> stretch(15)

gi |> pin_by("second”) |> anchor_center() |> stretch(10)

gi |> pin_by("second"”) |> anchor_3p() |> stretch(20)
B S S ST

2. Chained stretching of each set of anchors
HHHEHHAEEEE AR R AR

gi|>
pin_by("first"”) |> anchor_start() |> stretch(20) |>
pin_by("second"”) |> stretch(20)

replace_anchors Replace anchors of a Glnteractions

Description

Replace anchors of a GInteractions
Usage
replace_anchors(x, id, value)

S4 method for signature 'GInteractions,character,GenomicRanges'
replace_anchors(x, id, value)

S4 method for signature 'GInteractions,numeric,GenomicRanges'
replace_anchors(x, id, value)

S4 method for signature 'PinnedGInteractions,missing,GenomicRanges'
replace_anchors(x, id, value)

S4 method for signature 'AnchoredPinnedGInteractions,missing,GRanges'
replace_anchors(x, id, value)

S4 method for signature 'AnchoredPinnedGInteractions,numeric,GRanges'
replace_anchors(x, id, value)

Arguments
X a (Pinned)Glnteractions object
id Which anchors to replace ("first" or "second"). Ignored if the Glnteractions is

already pinned to a specific set of anchors.

value A GRanges object vector the same length as x.

set_seqnames |

Value

a (Pinned)Glnteractions object.

Examples

gi <- read.table(text ="
chr1 11 20 chr1 21 30
chr1 11 20 chr1 51 55
chr1 11 30 chr1 51 55
chr1l 11 30 chr2 51 60",
col.names = c(
"seqnames1”, "start1”, "endl”,
"seqgnames2”, "start2", "end2")
ES
as_ginteractions() |>
mutate(type = c('cis’,

cis', 'cis', 'trans'), score = runif(4))
HHHHHHHH AR A

1. Replace anchors of a GInteractions object
B S

gi |> replace_anchors(2, value = anchorsi1(gi))
gi |> replace_anchors(1, value = anchors2(gi))

gi |> replace_anchors(1, value = GenomicRanges: :GRanges(c(
"chr1:1-2", "chr1:2-3", "chr1:3-4", "chri1:4-5"
)

HHHEHHHEEE A A
2. Replace anchors of a pinned GInteractions object
HHEHHAAEEE AR A A

gi |> pin_by(1) |> replace_anchors(value = anchors1(gi))
gi |> replace_anchors(1, value = anchors2(gi))

gi |>

pin_by(1) |>

replace_anchors(value = GenomicRanges: :GRanges(c(
"chr1:1-2", "chr1:2-3", "chr1:3-4", "chr1:4-5"

RE

pin_by(2) [>

replace_anchors(value = GenomicRanges: :GRanges (c(
"chr2:1-2", "chr2:2-3", "chr2:3-4", "chr2:4-5"

)))

set_seqgnames] Internal Glnteractions setters

46 set_seqnames |

Description

Internal Glnteractions setters
Usage

set_seqnames1(x, value)
set_seqgnames2(x, value)
set_start1(x, value)
set_start2(x, value)
set_end1(x, value)
set_end2(x, value)
set_width1(x, value)
set_width2(x, value)
set_strandl(x, value)
set_strand2(x, value)

S4 replacement method for signature 'GInteractions'
first(x) <- value

S4 replacement method for signature 'GInteractions'
second(x) <- value

S4 method for signature 'GInteractions,factor'
set_seqgnames1(x, value)

S4 method for signature 'GInteractions,factor'
set_seqnames2(x, value)

S4 method for signature 'GInteractions,numeric'
set_start1(x, value)

S4 method for signature 'GInteractions,numeric'
set_start2(x, value)

S4 method for signature 'GInteractions,numeric'
set_end1(x, value)

S4 method for signature 'GInteractions,numeric'
set_end2(x, value)

show-Glnteractions

S4 method for signature 'GInteractions,numeric'
set_width1(x, value)

S4 method for signature 'GInteractions,numeric'
set_width2(x, value)

S4 method for signature 'AnchoredPinnedGInteractions,numeric'

set_width1(x, value)

S4 method for signature 'AnchoredPinnedGInteractions,numeric'’

set_width2(x, value)

S4 method for signature 'GInteractions,character'
set_strandl1(x, value)

S4 method for signature 'GInteractions,character'
set_strand2(x, value)

Arguments

X a GlInteractions object

value a value passed to the corresponding field
Value

A modified Glnteractions

47

show-GInteractions show method for GInteractions objects

Description

show method for GInteractions objects

Arguments

object a (Anchored/Pinned/Grouped)GInteractions object

Value

Prints a message to the console describing the contents of a Glnteractions® object.

48

show-Glnteractions

Examples
pairsf <- system.file('extdata', 'pairs.gz', package = 'plyinteractions')
pairs <- read.table(pairsf, comment.char = '#', header = FALSE)
pairs |>

as_ginteractions(
seqnames1 = V2, startl = V3, widthl = 1, strandl = V6,
segnames2 = V4, start2 = V5, width2 = 1, strand2 = V7,
starts.in.df.are.@based = TRUE

Index

+ datasets anchors1,GInteractions-method
plyinteractions-data, 38 (anchors1), 5
* internal anchors?2 (anchors1), 5
delegating-ginteractions-methods, anchors2,DelegatingGInteractions-method
11 (delegating-ginteractions-methods),
plyinteractions-package, 3 11
set_segnames1, 45 anchors2,GInteractions-method
$,GInteractions-method (anchors1), 5 (anchors1), 5
annotate, 7

annotate,GInteractions,GRanges, character-method
(annotate), 7

annotate_directed (annotate), 7

annotate_directed,GInteractions,GRanges, character-method
(annotate), 7

add_pairdist, 4

anchor.AnchoredPinnedGInteractions
(ginteractions-anchor), 24

anchor_3p.AnchoredPinnedGInteractions
(ginteractions-anchor), 24

. . arrange, 3
anchor_3p.PinnedGInteractions .
. . arrange.GInteractions (dplyr-arrange),
(ginteractions-anchor), 24 13

anchor_5p.AnchoredPinnedGInteractions

as_ginteractions, 9
(ginteractions-anchor), 24 &

anchor_5p.FinnedGIpteractions ce10_ARCC (plyinteractions-data), 38
(ginteractions-anchor), 24 ce10_REs (plyinteractions-data), 38
anchor_center.AnchoredPinnedGInteractions count. 3

(ginteractions-anchor), 24
anchor_center.PinnedGInteractions

count.GInteractions (dplyr-count), 14
count.GroupedGInteractions

(ginteractions-anchor), 24 (dplyr-count), 14
anchor_end.AnchoredPinnedGInteractions count_overlaps.GInteractions

(ginteractions-anchor), 24 (ginteractions-count-overlaps),
anchor_end.PinnedGInteractions 26

(ginteractions-anchor), 24 count_overlaps.PinnedGInteractions
anChOF_Start . AnChOredPinnedGInteraCtionS (ginteractions—count—overlaps)’

(ginteractions-anchor), 24 26
anchor_start.PinnedGInteractions count_overlaps_directed.GInteractions

(ginteractions-anchor), 24 (ginteractions-count-overlaps),
anchors,DelegatingGInteractions-method 26

(delegating-ginteractions-methods), count_overlaps_directed.PinnedGInteractions

11 (ginteractions-count-overlaps),
anchors1, 5 26
anchors1,DelegatingGInteractions-method countOverlaps, 26, 29, 33

(delegating-ginteractions-methods),

11 data.frame(), 9

49

50

DataFrame(), 15,23
delegating-ginteractions-methods, 11
dplyr-arrange, 13

dplyr-count, 14

dplyr-filter, 15

dplyr-group_by, 16

dplyr-mutate, 18

dplyr-rename, 20

dplyr-select, 21

dplyr-slice, 22

dplyr-summarise (dplyr-summarize), 23
dplyr-summarize, 23

end1 (anchors1), 5

end1,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11

end1,GInteractions-method (anchors1), 5

end2 (anchors1), 5

end2,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11

end2,GInteractions-method (anchors1), 5

filter, 3
filter.GInteractions (dplyr-filter), 15
filter_by_non_overlaps.GInteractions
(ginteractions-filter-overlaps),
28
filter_by_non_overlaps.PinnedGInteractions
(ginteractions-filter-overlaps),
28
filter_by_overlaps.GInteractions
(ginteractions-filter-overlaps),
28
filter_by_overlaps.PinnedGInteractions
(ginteractions-filter-overlaps),
28
find_overlaps.GInteractions
(ginteractions-find-overlaps),
30
find_overlaps.PinnedGInteractions
(ginteractions-find-overlaps),
30
find_overlaps_directed.GInteractions
(ginteractions-find-overlaps),
30
find_overlaps_directed.PinnedGInteractions
(ginteractions-find-overlaps),

INDEX

30
findOverlaps, 31
first<-,GInteractions-method
(set_segnames1), 45
flank_downstream
(plyinteractions-flank), 39
flank_left (plyinteractions-flank), 39
flank_right (plyinteractions-flank), 39
flank_upstream (plyinteractions-flank),
39

ginteractions-anchor, 24
ginteractions-annotate (annotate), 7
ginteractions-count-overlaps, 26
ginteractions-export, 27
ginteractions-filter-overlaps, 28
ginteractions-find-overlaps, 30
ginteractions-getters (anchorsi), 5
ginteractions-join-overlap-left, 32
ginteractions-pin (pin), 36
ginteractions-setters (set_segnames1),
45
GM12878_HiCCUPS (plyinteractions-data),
38
group-group_data, 34
group_by, 3
group_by.DelegatingGInteractions
(dplyr-group_by), 16
group_by.GInteractions
(dplyr-group_by), 16
group_data.GroupedGInteractions
(group-group_data), 34
group_indices.GroupedGInteractions
(group-group_data), 34
group_keys.GroupedGInteractions
(group-group_data), 34
group_size.GroupedGInteractions
(group-group_data), 34
group_vars.GInteractions
(group-group_data), 34
group_vars.GroupedGInteractions
(group-group_data), 34
groups.GroupedGInteractions
(group-group_data), 34

InteractionSet: :GInteractions(), 9

join_overlap_left.GInteractions
(ginteractions-join-overlap-left),
32

INDEX 51

join_overlap_left.PinnedGInteractions plyinteractions
(ginteractions-join-overlap-left), (plyinteractions-package), 3
32 plyinteractions-data, 38
join_overlap_left_directed.GInteractions plyinteractions-flank, 39
(ginteractions-join-overlap-left), plyinteractions-package, 3
32 plyinteractions-shift, 41

join_overlap_left_directed.PinnedGInteractionslyranges-stretch, 43
(ginteractions-join-overlap-left),

32 ranges1 (anchors1), 5

. . ranges1,DelegatingGInteractions-method
mcols,DelegatingGInteractions-method (delegating-ginteractions-methods),

(delegating-ginteractions-methods), 11
11

mutate, 3

mutate.GInteractions (dplyr-mutate), 18

rangesl1,GInteractions-method
(anchors1), 5

ranges2 (anchors1), 5

ranges2,DelegatingGInteractions-method

n_groups.GroupedGInteractions . . .
-group up ! (delegating-ginteractions-methods),

(group-group_data), 34

11
pair_granges, 35 ranges2,GInteractions-method
pin 56 ’ (anchors1), 5

pin,AnchoredPinnedGInteractions,character—metﬁ%%lons’DEIEgatlthInFeraCtlons_mEthOd
(pin), 36 (delegating-ginteractions-methods),

pin,AnchoredPinnedGInteractions, numeric-method 11)
(pin), 36 rename.GInteractions (dplyr-rename), 20

pin,GInteractions,character-method replace_anchors, 44 . .
(pin), 36 replace_anchors,AnchoredPinnedGInteractions,missing,GRange

pin,GInteractions,numeric-method (pin), (replace_anchors),44) .
36 replace_anchors,AnchoredPinnedGInteractions, numeric, GRange

pin,GroupedGInteractions,character-method (replace_anchors), 44
(pin), 36 replace_anchors,GInteractions,character,GenomicRanges-meth

pin,GroupedGInteractions,numeric-method (replace_anchors), 44

(pin), 36 replace_anchors,GInteractions, numeric, GenomicRanges-method
pin,PinnedGInteractions,character-method (replace_anchors), 44

(pin), 36 replace_anchors,PinnedGInteractions,missing,GenomicRanges-
pin,PinnedGInteractions,missing-method (replace_anchors), 44

(pin), 36
pin,PinnedGInteractions,numeric-method S4Vectors: :DataFrame(), 9

(pin), 36 second<-,GInteractions-method
pin_anchors1 (pin), 36 (set_seqgnames1), 45
pin_anchors2 (pin), 36 select, 3
pin_by (pin), 36 select.GInteractions (dplyr-select), 21
pin_first (pin), 36 seginfo,DelegatingGInteractions-method
pin_second (pin), 36 (delegating-ginteractions-methods),
pinned_anchors (pin), 36 11
pinned_anchors,AnchoredPinnedGInteractions-meségadamesi (anchors1), 5

(pin), 36 segnames1,DelegatingGInteractions-method
pinned_anchors,PinnedGInteractions-method (delegating-ginteractions-methods),

(pin), 36 11

52

segnames1,GInteractions-method
(anchors1), 5

segnames?2 (anchors1), 5

segnames2,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11

segnames2,GInteractions-method
(anchors1), 5

set_end1 (set_seqnames1), 45

set_end1,GInteractions,numeric-method
(set_seqgnames1), 45

set_end2 (set_seqgnames1), 45

set_end2,GInteractions,numeric-method
(set_seqgnames1), 45

set_seqnames1, 45

set_seqnames1,GInteractions, factor-method
(set_seqgnames1), 45

set_seqnames?2 (set_seqgnames1), 45

set_seqnames2,GInteractions, factor-method
(set_seqgnames1), 45

set_startl (set_segnames1), 45

set_start1,GInteractions,numeric-method
(set_segnames1), 45

set_start2 (set_segnames1), 45

set_start2,GInteractions,numeric-method
(set_seqgnames1), 45

set_strandl (set_segnames1), 45

set_strandl,GInteractions,character-method
(set_seqnames1), 45

set_strand2 (set_segnames1), 45

set_strand2,GInteractions,character-method
(set_segnames1), 45

set_width1 (set_segnames1), 45

set_width1,AnchoredPinnedGInteractions,numeric-method

(set_seqgnames1), 45
set_width1,GInteractions,numeric-method
(set_seqgnames1), 45
set_width2 (set_seqgnames1), 45

INDEX

show, AnchoredPinnedGInteractions-method
(show-GInteractions), 47

show,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11

show,GInteractions-method
(show-GInteractions), 47

show, GroupedGInteractions-method
(show-GInteractions), 47

show, PinnedGInteractions-method
(show-GInteractions), 47

show-GInteractions, 47

slice, 3

slice.GInteractions (dplyr-slice), 22

start1 (anchors1), 5

startl,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11

startl1,GInteractions-method (anchors1),
5

start2 (anchors1), 5

start2,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11

start2,GInteractions-method (anchors1),
5

strand1 (anchors1), 5

strandl,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11

strandl,GInteractions-method
(anchorst1), 5

strand2 (anchors1), 5

strand2,DelegatingGInteractions-method

(delegating-ginteractions-methods),

11

strand2,GInteractions-method
(anchors1), 5

stretch.AnchoredPinnedGInteractions

set_widthz,AnchoredPinnedGInteractions,numeric—methoqblyranges_stretch) 43

(set_segnames1), 45
set_width2,GInteractions,numeric-method
(set_segnames1), 45
shift_downstream
(plyinteractions-shift), 41
shift_left (plyinteractions-shift), 41
shift_right (plyinteractions-shift), 41
shift_upstream(plyinteractions-shift),
41

stretch.PinnedGInteractions
(plyranges-stretch), 43
summarise.GroupedGInteractions
(dplyr-summarize), 23
summarize, 3
summarize.GroupedGInteractions
(dplyr-summarize), 23

tally, 3

INDEX

tally.GroupedGInteractions
(dplyr-count), 14

unanchor.AnchoredPinnedGInteractions
(ginteractions-anchor), 24

ungroup.GroupedGInteractions
(dplyr-group_by), 16

unpin (pin), 36

unpin,AnchoredPinnedGInteractions-method
(pin), 36

unpin,GInteractions-method (pin), 36

unpin,PinnedGInteractions-method (pin),
36

width1 (anchors1), 5
width1,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11
width1,GInteractions-method (anchors1),
5
width2 (anchors1), 5
width2,DelegatingGInteractions-method
(delegating-ginteractions-methods),
11
width2,GInteractions-method (anchors1),
5
write_bedpe (ginteractions-export), 27
write_pairs (ginteractions-export), 27

53

	plyinteractions-package
	add_pairdist
	anchors1
	annotate
	as_ginteractions
	delegating-ginteractions-methods
	dplyr-arrange
	dplyr-count
	dplyr-filter
	dplyr-group_by
	dplyr-mutate
	dplyr-rename
	dplyr-select
	dplyr-slice
	dplyr-summarize
	ginteractions-anchor
	ginteractions-count-overlaps
	ginteractions-export
	ginteractions-filter-overlaps
	ginteractions-find-overlaps
	ginteractions-join-overlap-left
	group-group_data
	pair_granges
	pin
	plyinteractions-data
	plyinteractions-flank
	plyinteractions-shift
	plyranges-stretch
	replace_anchors
	set_seqnames1
	show-GInteractions
	Index

