
Package ‘pipeFrame’
February 2, 2026

Type Package

Title Pipeline framework for bioinformatics in R

Version 1.27.0

Author Zheng Wei, Shining Ma

Maintainer Zheng Wei <wzweizheng@qq.com>

Description pipeFrame is an R package for building
a componentized bioinformatics pipeline.
Each step in this pipeline is wrapped in the framework,
so the connection among steps is created seamlessly and automatically.
Users could focus more on fine-tuning arguments rather than spending a
lot of time on transforming file format, passing task outputs to task
inputs or installing the dependencies.
Componentized step elements can be customized into other
new pipelines flexibly as well.
This pipeline can be split into several important functional steps,
so it is much easier for users to understand the complex
arguments from each step
rather than parameter combination from the whole pipeline.
At the same time, componentized pipeline can restart at the
breakpoint and avoid rerunning the whole pipeline,
which may save a lot of time for users on pipeline tuning or
such issues as power off or process other interrupts.

License GPL-3

Encoding UTF-8

LazyData FALSE

Depends R (>= 4.0.0),

Imports BSgenome, digest, visNetwork, magrittr, methods, Biostrings,
Seqinfo, parallel, stats, utils, rmarkdown

Suggests BiocManager, knitr, rtracklayer, testthat,
BSgenome.Hsapiens.UCSC.hg19

RoxygenNote 7.0.2

VignetteBuilder knitr

1

2 getObjsInPipe

biocViews Software, Infrastructure, WorkflowStep

URL https://github.com/wzthu/pipeFrame

BugReports https://github.com/wzthu/pipeFrame/issues

git_url https://git.bioconductor.org/packages/pipeFrame

git_branch devel

git_last_commit b7c4419

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
getObjsInPipe . 2
graphMng . 3
ignoreCheck . 4
initPipeFrame . 5
loadConfig . 6
loadStep . 7
runWithFinishCheck . 7
setGenome . 8
setJobName . 9
setPipeName . 10
setRefDir . 11
setThreads . 12
setTmpDir . 12
Step-class . 13
Utils . 22

Index 24

getObjsInPipe Obtain all of objects in the specific pipeline

Description

Obtain all of objects in the specific pipeline

Usage

getObjsInPipe(pipeName = "pipe")

Arguments

pipeName Character scalar or vector. Pipeline name(s) of objects to be selected.

https://github.com/wzthu/pipeFrame
https://github.com/wzthu/pipeFrame/issues

graphMng 3

Value

List scalar. A list containing all objects that belongs to the pipe name.

Examples

getObjsInPipe("pipe")

graphMng Step graph management

Description

The step relations are managed and restricted to directed acyclic graph. The direction of data flow is
from upstream to downstream. So when users create a new step object, restricting its relation with
existing steps is necessary.

Usage

addEdges(edges, argOrder)

getPrevSteps(stepType, argOrder)

getAttachedStep(stepType)

regAttachedStep(newStepType, stepType)

getNextSteps(stepType, argOrder)

printMap(stepType = NULL, display = TRUE, ...)

Arguments

edges Character vector. Contain the names of start and end points for all edges. It
needs to follow the format like c("startpt1","endpt1","startpt2", "endpt2","startpt3","endpt3").

argOrder Numeric scalar. The argument order of the input Step object.

stepType Character scalar. Step class name of each step.

newStepType Logical scalar. give a new step step type name to the original step type with
different default parameter value

display Logical scalar. Wether show the picture on device or not.

... Additional arguments, currently used.

4 ignoreCheck

Value

addEdges No value will be returned.

getPrevSteps Names of previous steps
getAttachedStep

get the step that is generated from
regAttachedStep

Add different step type for exist step

getNextSteps Names of next steps

printMap Print the flow map for the pipeline.

Examples

addEdges(edges = c("RandomRegionOnGenome",
"OverlappedRandomRegion"),argOrder = 1)

printMap()

getPrevSteps("OverlappedRandomRegion",1)

ignoreCheck ignore checking input and output file (for developer)

Description

ignore checking input and output file (for developer)

Usage

ignoreCheck(ignore = TRUE)

Arguments

ignore Logical scalar. Ignore checking input and output file MD5 value when skipping
the step.

Value

ignoreCheck No value will be returned

Examples

ignoreCheck(FALSE)

initPipeFrame 5

initPipeFrame initialize the pipeFrame package

Description

This function should be called first in R terminal for general users. And it should be used in
.onLoad() function for package developers. In this function, several parameters need to be defined
and configured, including genome, job name, reference directory, temporary directory, check and
install function, threads number, reference list, etc.

Usage

initPipeFrame(
defaultJobName,
availableGenome = c("hg19", "hg38", "mm9", "mm10", "danRer10", "galGal5", "galGal4",
"rheMac3", "rheMac8", "panTro4", "rn5", "rn6", "sacCer2", "sacCer3", "susScr3",
"testgenome"),

defaultCheckAndInstallFunc = NULL,
defaultThreads = 2,
defaultTmpDir = getwd(),
defaultRefDir = file.path(getwd(), "refdir"),
defaultReference = list(test = list(file = "fileName", rc = "obj"))

)

Arguments

defaultJobName Character scalar. The default job name for the package. When users use
pipeFrame package, defaultJobName is "pipeFrame-pipeline".

availableGenome

Character scalar or vector. Configure the available valid genome such as "hg19",
"mm10", etc.

defaultCheckAndInstallFunc

Function scalar. The function needs to call runWithFinishCheck

defaultThreads Numeric scalar. The maximum thread limit for each step. Default:2

defaultTmpDir Character scalar. The directory of intermediate results for all steps. Default:
Current working directory.

defaultRefDir Character scalar. The directory of reference data. Default: file.path(getwd(),"refdir")

defaultReference

List scalar. List of reference files.

Value

No value will be returned.

6 loadConfig

Examples

initPipeFrame(availableGenome = c("hg19", "hg38", "mm9", "mm10"),
defaultJobName = paste0("pkgname","-pipeline")

)

loadConfig load configure from file

Description

load configure from file

Usage

loadConfig(configFile)

saveConfig(configFile)

configRegName()

Arguments

configFile Character scalar. The directory to configuration file.

Value

loadConfig No value will be returned

saveConfig save the configuration into a RDS file

configRegName charactor vector, registered configuration name

Examples

configRegName()
saveConfig("test.rds")
loadConfig("test.rds")

loadStep 7

loadStep load step object from rds file

Description

load PipeFrame Step (or its inherit class) object from rds file

Usage

loadStep(rdsfile, regClass = TRUE)

Arguments

rdsfile Character scalar. The rds file directory for Step (or its inherit class) Object

regClass Logical scalar. Register the Class of object to inherit from Step Class. Default:
TRUE. Note: make sure corresponding packages depending on pipeFrame is
loaded

Value

Step (or its inherit class) object

Examples

objrds <- system.file(package = "pipeFrame", "extdata","pipeFrame.obj.rds")
obj <- loadStep(objrds)

runWithFinishCheck Install dependent data or software with finishing check

Description

Install dependent data or software with finishing check

Usage

runWithFinishCheck(func, refName, refFilePath = NULL, genome = NULL)

checkAndInstallBSgenome(refFilePath, genome = getGenome())

checkAndInstallOrgDb(refFilePath, genome = getGenome())

checkAndInstallTxDb(refFilePath, genome = getGenome())

checkAndInstallGenomeFa(refFilePath)

8 setGenome

Arguments

func Function scalar. The function with refFilePath argument (reference file direc-
tory). The returned value will be set as the reference object.

refName Character scalar. Reference name for getRef, getRefFiles and getRefRc.

refFilePath Character scalar. The reference file relative directory under the "refdir/genome/"

genome Character scalar. The genome like "hg19". Default: getGenome()

Value
runWithFinishCheck

No value will be returned
checkAndInstallBSgenome

check if there is the BSgenome package installed for curent genome and install
it if not. No value will be returned.

checkAndInstallOrgDb

check if there is the OrgDb package installed for curent genome and install it if
not. No value will be returned.

checkAndInstallTxDb

check if there is the TxDb package installed for curent genome and install it if
not. Nothing will be returned.

checkAndInstallGenomeFa

check if genome FASTA file exist and install if not. No value will be returned

Examples

checkAndInstall <- function(){
runWithFinishCheck(func = checkAndInstallBSgenome,refName = "bsgenome")
runWithFinishCheck(func = checkAndInstallGenomeFa,refName = "fasta",
refFilePath = paste0(getGenome(),".fa"))

}
initPipeFrame(availableGenome = c("hg19", "hg38","mm9","mm10","testgenome"),

defaultJobName = paste0("pkgname","-pipeline")
)

setGenome("hg19")

setGenome Configure genome for all steps

Description

Configure the reference genome assembly for all steps.

setJobName 9

Usage

getValidGenome()

setGenome(genome)

getGenome()

Arguments

genome Character scalar. Valid genome to be configured.

Value

getValidGenome Character scalar. All valid genome assemblies for this package.

setGenome All packages and dependencies are configured and installed. No value will be
returned.

getGenome Character scalar. Display the configured genome.

Examples

getValidGenome()
setGenome("hg19")
getGenome()

setJobName Configure the job name for following steps.

Description

Configure the job name for following steps.

Usage

setJobName(jobName)

getJobName()

getJobDir()

Arguments

jobName Character scalar. Job name for following steps.

10 setPipeName

Value

setJobName No value will be returned

getJobName Set a job name for following steps.

getJobDir get the job directory

Examples

setJobName("testJobName")
getJobName()
getJobDir()

setPipeName Configure the pipe name for following steps.

Description

Configure the pipe name for following steps.

Usage

setPipeName(pipeName)

getPipeName(all = FALSE)

Arguments

pipeName Character scalar. Pipeline name for following steps.

all Logical scalar. If TRUE, return all exist pipeName. Default FALSE, return
current default pipeName.

Value

setPipeName No value will be returned

getPipeName Set a pipeline name for following steps.

Examples

setPipeName("pipe")
getPipeName()

setRefDir 11

setRefDir Set the reference directory

Description

Set the reference directory

Usage

setRefDir(refdir, createDir = TRUE)

getRefDir()

getRef(refName)

getRefFiles(refName)

getRefRc(refName)

Arguments

refdir Character scalar. The directory to store the reference data.

createDir Logica scalar. Create the directory if the directory does not exist. Default:
TRUE

refName Character scalar. The name of reference data.

Value

setRefDir No value will be returned

getRefDir Character scalar. Display the directory of reference data.

getRef List scalar. A list object which contains "files" (reference file paths) and "rc"
(reference R object)

getRefFiles Character scalar or vector. Display the reference file directory.

getRefRc Uncertain scalar or vector. Display any reference R object.

Examples

setRefDir("./refdir")
getRefDir()
getRef("test")

getRefFiles("test")
getRefRc("test")

12 setTmpDir

setThreads Configure the maximum number of threads

Description

Configure the maximum number of threads for all steps

Usage

setThreads(threads = detectCores())

getThreads()

Arguments

threads Numeric scalar. The maximum number of threads that can be allocated to each
step.

Value

setThreads No value will be returned

getThreads Numeric scalar. Display the maximum number of threads that can be allocated
to each step.

Examples

setThreads()
getThreads()

setTmpDir Configure the directory for intermediate results of all steps

Description

Configure the directory for intermediate results of all steps

Usage

setTmpDir(tmpDir = getwd())

getTmpDir()

Arguments

tmpDir Character scalar. The directory to store intermediate results of all steps. De-
fault: Current directory.

Step-class 13

Value

setTmpDir No value will be returned

getTmpDir Character scalar. Display the directory for intermediate results of all steps.

Examples

setTmpDir()
getTmpDir()

Step-class Methods for Step objects

Description

Users can call Step object operation methods below to obtain information in objects.

Usage

S4 method for signature 'Step'
init(.Object, prevSteps = list(), ...)

S4 method for signature 'Step'
stepName(.Object, ...)

S4 method for signature 'Step'
stepType(.Object, attachedTypes = TRUE, ...)

S4 method for signature 'Step'
pipeName(.Object, ...)

S4 method for signature 'Step'
input(.Object)

S4 replacement method for signature 'Step'
input(.Object) <- value

S4 method for signature 'Step'
output(.Object)

S4 replacement method for signature 'Step'
output(.Object) <- value

S4 method for signature 'Step'
param(.Object)

S4 replacement method for signature 'Step'

14 Step-class

param(.Object) <- value

S4 method for signature 'Step'
property(.Object, ..., pipeName = NULL)

S4 replacement method for signature 'Step'
property(.Object, pipeName = NULL) <- value

S4 method for signature 'Step'
report(.Object)

S4 replacement method for signature 'Step'
report(.Object) <- value

S4 method for signature 'Step'
argv(.Object)

S4 method for signature 'Step'
x$name

S4 replacement method for signature 'Step'
x$name <- value

S4 method for signature 'Step'
getParam(.Object, item, type = c("input", "output", "other"), ...)

S4 method for signature 'Step'
getParamItems(.Object, type = c("input", "output", "other"), ...)

S4 method for signature 'Step'
isReady(.Object, ...)

S4 method for signature 'Step'
clearStepCache(.Object, ...)

S4 method for signature 'Step'
getAutoPath(.Object, originPath, regexSuffixName, suffix, ...)

S4 method for signature 'Step'
checkRequireParam(.Object, ...)

S4 method for signature 'Step'
checkAllPath(.Object, ...)

S4 method for signature 'Step'
getParamMD5Path(.Object, ...)

S4 method for signature 'Step'

Step-class 15

getStepWorkDir(.Object, filename = NULL, ...)

S4 method for signature 'Step'
stepID(.Object, ...)

S4 method for signature 'Step'
writeLog(
.Object,
msg,
...,
isWarnning = FALSE,
appendLog = TRUE,
showMsg = TRUE

)

processing(.Object, ...)

genReport(.Object, ...)

Arguments

.Object Step object scalar. Step object is returned by functions in each step.
prevSteps List list of Step objects
... Additional arguments, currently unused.
attachedTypes Logical scalar. Show the new type name or show the original type name De-

fault: TRUE
value any type scalar. The value to be set for corresponding item in a list.
pipeName Character scalar. The pipeline name that this step belongs to. Default: NULL.

It will be replace by the only pipeline name.
x Step object scalar. Step object is returned by functions in each step.
name Character scalar. Name can be one of inputList, outputList, paramList, allList,

propList or the item names of inputList, outputList or paramList
item Character scalar. The items in parameter list (input, output and other) or report

list.
type Character scalar. Valid types of parameters including "input", "output" and

"other"
originPath Character scalar. The file name for output file is based on this original path

name.
regexSuffixName

Character scalar. The suffix for replacement.
suffix Character scalar. The new suffix for the file.
filename Character scaler. The name of file under step working directiory
msg Character scalar. The message to write into log file.
isWarnning Logical scalar. Set this message as warning message. Default: FALSE
appendLog Logical scalar. Append to the log file. Default: TRUE
showMsg Logical scalar. Show the message on screen. Default: TRUE

16 Step-class

Details

Step is a S4 class for generating Step S4 objects. All Step objects generated by child classes inherit
from Step. To generate new Step objects, a function wrapper with fixed arguments needs to be
implemented. Users use this function to generate new Step functions rather than Step S4 class to
generate objects.

Value

the function and result of functions:

init (For package developer only) A Step child class object with initialized input,
output and other parameters

stepName get Step object Character name

stepType get Step object Character type name (class name)

pipeName get Step object pipe name

input get input list

input<- set input list

output get output list

output<- set output list

param get other parameters list

param<- set other parameters list

property get property list

property<- set property list

report get report list

report<- set report list

argv get arguments list

$ get inputList, outputList, paramList, allList, propList or any item value in input-
List, outputList or paramList

$<- set inputList, outputList, paramList, allList, propList or any item value in input-
List, outputList or paramList

getParam Get parameter value set by process function. See getParamItems to obtain valid
items for query.

getParamItems Get parameter name list

isReady Is the process ready for downstream process

clearStepCache Clear cache of Step object

getAutoPath (For package developer) Developer can use this method to generate new file
name based on exist input file name

checkRequireParam

(For package developer) Check required inputs or parameters are filled.
checkRequireParam

(For package developer) Check required inputs are filled.

Step-class 17

getParamMD5Path

The Step object storage directory

getStepWorkDir Get the step work directory of this object

stepID Get the step ID

writeLog (For package developer) write log.

processing (For package developer) Run pipeline step

genReport (For package developer) Generate report list

Author(s)

Zheng Wei

See Also

setGenome setThreads

Examples

library(BSgenome)
library(rtracklayer)
library(magrittr)

generate new Step : RandomRegionOnGenome
setClass(Class = "RandomRegionOnGenome",

contains = "Step"
)

setMethod(
f = "init",
signature = "RandomRegionOnGenome",
definition = function(.Object,prevSteps = list(),...){

All arguments in function randomRegionOnGenome
will be passed from "..."
so get the arguments from "..." first.
allparam <- list(...)
sampleNumb <- allparam[["sampleNumb"]]
regionLen <- allparam[["regionLen"]]
genome <- allparam[["genome"]]
outputBed <- allparam[["outputBed"]]
no previous steps for this step so ingnore the "prevSteps"
begin to set input parameters
no input for this step
begin to set output parameters
if(is.null(outputBed)){

output(.Object)$outputBed <-
getStepWorkDir(.Object,"random.bed")

}else{
output(.Object)$outputBed <- outputBed

}
begin to set other parameters

18 Step-class

param(.Object)$regionLen <- regionLen
param(.Object)$sampleNumb <- sampleNumb
if(is.null(genome)){

param(.Object)$bsgenome <- getBSgenome(getGenome())
}else{

param(.Object)$bsgenome <- getBSgenome(genome)
}
don't forget to return .Object
.Object

}
)

setMethod(
f = "processing",
signature = "RandomRegionOnGenome",
definition = function(.Object,...){

All arguments are set in .Object
so we can get them from .Object
allparam <- list(...)
sampleNumb <- getParam(.Object,"sampleNumb")
regionLen <- getParam(.Object,"regionLen")
bsgenome <- getParam(.Object,"bsgenome")
outputBed <- getParam(.Object,"outputBed")
begin the calculation
chrlens <-seqlengths(bsgenome)
selchr <- grep("_|M",names(chrlens),invert=TRUE)
chrlens <- chrlens[selchr]
startchrlens <- chrlens - regionLen
spchrs <- sample(x = names(startchrlens),
size = sampleNumb, replace = TRUE,
prob = startchrlens / sum(startchrlens))
gr <- GRanges()
for(chr in names(startchrlens)){

startpt <- sample(x = 1:startchrlens[chr],
size = sum(spchrs == chr),replace = FALSE)
gr <- c(gr,GRanges(seqnames = chr,
ranges = IRanges(start = startpt, width = 1000)))

}
result <- sort(gr,ignore.strand=TRUE)
rtracklayer::export.bed(object = result, con = outputBed)
don't forget to return .Object
.Object

}
)

setMethod(
f = "genReport",
signature = "RandomRegionOnGenome",
definition = function(.Object, ...){

.Object
}

Step-class 19

)

This function is exported in NAMESPACE for user to use
randomRegionOnGenome <- function(sampleNumb, regionLen = 1000,

genome = NULL, outputBed = NULL, ...){
allpara <- c(list(Class = "RandomRegionOnGenome", prevSteps = list()),

as.list(environment()),list(...))
step <- do.call(new,allpara)
invisible(step)

}

generate another new Step : OverlappedRandomRegion
setClass(Class = "OverlappedRandomRegion",

contains = "Step"
)

setMethod(
f = "init",
signature = "OverlappedRandomRegion",
definition = function(.Object,prevSteps = list(),...){

All arguments in function overlappedRandomRegion and
runOerlappedRandomRegion will be passed from "..."
so get the arguments from "..." first.
allparam <- list(...)
inputBed <- allparam[["inputBed"]]
randomBed <- allparam[["randomBed"]]
outputBed <- allparam[["outputBed"]]
inputBed can obtain from previous step object when running
runOerlappedRandomRegion
if(length(prevSteps)>0){

prevStep <- prevSteps[[1]]
input(.Object)$randomBed <- getParam(prevStep,"outputBed")

}
begin to set input parameters
if(!is.null(inputBed)){

input(.Object)$inputBed <- inputBed
}
if(!is.null(randomBed)){

input(.Object)$randomBed <- randomBed
}
begin to set output parameters
the output is recemended to set under the step work directory
if(!is.null(outputBed)){

output(.Object)$outputBed <- outputBed
}else{

output(.Object)$outputBed <-
getAutoPath(.Object, getParam(.Object, "inputBed"),

20 Step-class

"bed", suffix = "bed")
the path can also be generate in this way
ib <- getParam(.Object,"inputBed")
output(.Object)$outputBed <-
file.path(getStepWorkDir(.Object),
paste0(substring(ib,1,nchar(ib)-3), "bed"))

}
begin to set other parameters
no other parameters
don't forget to return .Object

.Object
}

)
setMethod(

f = "processing",
signature = "OverlappedRandomRegion",
definition = function(.Object,...){

All arguments are set in .Object
so we can get them from .Object
allparam <- list(...)
inputBed <- getParam(.Object,"inputBed")
randomBed <- getParam(.Object,"randomBed")
outputBed <- getParam(.Object,"outputBed")

begin the calculation
gr1 <- import.bed(con = inputBed)
gr2 <- import.bed(con = randomBed)
gr <- second(findOverlapPairs(gr1,gr2))
export.bed(gr,con = outputBed)
don't forget to return .Object
.Object

}
)

setMethod(
f = "genReport",
signature = "OverlappedRandomRegion",
definition = function(.Object, ...){

.Object
}

)

This function is exported in NAMESPACE for user to use
overlappedRandomRegion <- function(inputBed, randomBed,

outputBed = NULL, ...){
allpara <- c(list(Class = "OverlappedRandomRegion",

prevSteps = list()),as.list(environment()),list(...))

Step-class 21

step <- do.call(new,allpara)
invisible(step)

}

setGeneric("runOverlappedRandomRegion",
function(prevStep,

inputBed,
randomBed = NULL,
outputBed = NULL,
...) standardGeneric("runOverlappedRandomRegion"))

setMethod(
f = "runOverlappedRandomRegion",
signature = "Step",
definition = function(prevStep,

inputBed,
randomBed = NULL,
outputBed = NULL,
...){

allpara <- c(list(Class = "OverlappedRandomRegion",
prevSteps = list(prevStep)),as.list(environment()),list(...))

step <- do.call(new,allpara)
invisible(step)

}
)

add to graph
addEdges(edges = c("RandomRegionOnGenome","OverlappedRandomRegion"),

argOrder = 1)
begin to test pipeline
setGenome("hg19")
generate test BED file
test_bed <- file.path(tempdir(),"test.bed")
library(rtracklayer)
export.bed(GRanges("chr7:1-127473000"),test_bed)

rd <- randomRegionOnGenome(10000)
overlap <- runOverlappedRandomRegion(rd, inputBed = test_bed)

randombed <- getParam(rd,"outputBed")

randombed

overlap1 <-
overlappedRandomRegion(inputBed = test_bed, randomBed = randombed)

clearStepCache(overlap1)
overlap1 <-

overlappedRandomRegion(inputBed = test_bed, randomBed = randombed)
clearStepCache(rd)

22 Utils

clearStepCache(overlap1)
rd <- randomRegionOnGenome(10000) %>%
runOverlappedRandomRegion(inputBed = test_bed)

stepName(rd)
stepID(rd)

isReady(rd)

Utils Functions for directory operations

Description

Functions for directory operations

Usage

getBasenamePrefix(filepath, words, ...)

getPathPrefix(filepath, words, ...)

checkFileExist(filePath, ...)

checkPathExist(filePath, ...)

checkFileCreatable(filePath, ...)

addFileSuffix(filePath, suffix, ...)

Arguments

filepath character scalar or vector.

words character scalar. Remove substring of the path characters starting to match the
word

... Additional arguments, currently unused

filePath Character scalar.

suffix Character scalar. File suffix.

Value
getBasenamePrefix

Get the filepath basename with removed suffix

getPathPrefix Get the filepath with removed suffix

checkFileExist (For package developer) Check file is exist.

Utils 23

checkPathExist (For package developer) Check directory is exist.
checkFileCreatable

(For package developer) Check file creatable.

addFileSuffix (For package developer) Check if file suffix existed and add suffix

Examples

getBasenamePrefix("aaa/bbb.ccc.ddd","cCc")

getBasenamePrefix("aaa/bbb.ccc.ddd","ddd")

getPathPrefix("aaa/bbb.ccc.ddd","dDd")

getPathPrefix("aaa/bbb.ccc.ddd","ccc")

file.create("test.bed")

checkFileExist("test.bed")

tryCatch({checkFileExist("test.bed1")},error = function(e) e)

dir.create("testdir")

checkPathExist(file.path(getwd(),"testdir"))

tryCatch({checkPathExist(file.path(dirname(getwd()),
"notexistfolder","testdir"))},error = function(e) e)

checkFileCreatable("aaa.bed")

tryCatch({checkFileCreatable("testdir1/aaa.bed")},error = function(e) e)

Index

$ (Step-class), 13
$,Step-method (Step-class), 13
$<- (Step-class), 13
$<-,Step-method (Step-class), 13

addEdges (graphMng), 3
addFileSuffix (Utils), 22
argv (Step-class), 13
argv,Step-method (Step-class), 13

checkAllPath (Step-class), 13
checkAllPath,Step-method (Step-class),

13
checkAndInstallBSgenome

(runWithFinishCheck), 7
checkAndInstallGenomeFa

(runWithFinishCheck), 7
checkAndInstallOrgDb

(runWithFinishCheck), 7
checkAndInstallTxDb

(runWithFinishCheck), 7
checkFileCreatable (Utils), 22
checkFileExist (Utils), 22
checkPathExist (Utils), 22
checkRequireParam (Step-class), 13
checkRequireParam,Step-method

(Step-class), 13
clearStepCache (Step-class), 13
clearStepCache,Step-method

(Step-class), 13
configRegName (loadConfig), 6

genReport (Step-class), 13
getAttachedStep (graphMng), 3
getAutoPath (Step-class), 13
getAutoPath,Step-method (Step-class), 13
getBasenamePrefix (Utils), 22
getGenome (setGenome), 8
getJobDir (setJobName), 9
getJobName (setJobName), 9

getNextSteps (graphMng), 3
getObjsInPipe, 2
getParam (Step-class), 13
getParam,Step-method (Step-class), 13
getParamItems (Step-class), 13
getParamItems,Step-method (Step-class),

13
getParamMD5Path (Step-class), 13
getParamMD5Path,Step-method

(Step-class), 13
getPathPrefix (Utils), 22
getPipeName (setPipeName), 10
getPrevSteps (graphMng), 3
getRef, 8
getRef (setRefDir), 11
getRefDir (setRefDir), 11
getRefFiles, 8
getRefFiles (setRefDir), 11
getRefRc, 8
getRefRc (setRefDir), 11
getStepWorkDir (Step-class), 13
getStepWorkDir,Step-method

(Step-class), 13
getThreads (setThreads), 12
getTmpDir (setTmpDir), 12
getValidGenome (setGenome), 8
graphMng, 3

ignoreCheck, 4
init (Step-class), 13
init,Step-method (Step-class), 13
initPipeFrame, 5
input (Step-class), 13
input,Step-method (Step-class), 13
input<- (Step-class), 13
input<-,Step-method (Step-class), 13
isReady (Step-class), 13
isReady,Step-method (Step-class), 13

loadConfig, 6

24

INDEX 25

loadStep, 7

output (Step-class), 13
output,Step-method (Step-class), 13
output<- (Step-class), 13
output<-,Step-method (Step-class), 13

param (Step-class), 13
param,Step-method (Step-class), 13
param<- (Step-class), 13
param<-,Step-method (Step-class), 13
pipeName (Step-class), 13
pipeName,Step-method (Step-class), 13
printMap (graphMng), 3
processing (Step-class), 13
property (Step-class), 13
property,Step-method (Step-class), 13
property<- (Step-class), 13
property<-,Step-method (Step-class), 13

regAttachedStep (graphMng), 3
report (Step-class), 13
report,Step-method (Step-class), 13
report<- (Step-class), 13
report<-,Step-method (Step-class), 13
runWithFinishCheck, 5, 7

saveConfig (loadConfig), 6
setGenome, 8, 17
setJobName, 9
setPipeName, 10
setRefDir, 11
setThreads, 12, 17
setTmpDir, 12
Step (Step-class), 13
Step-class, 13
stepID (Step-class), 13
stepID,Step-method (Step-class), 13
stepName (Step-class), 13
stepName,Step-method (Step-class), 13
stepType (Step-class), 13
stepType,Step-method (Step-class), 13

Utils, 22

writeLog (Step-class), 13
writeLog,Step-method (Step-class), 13

	getObjsInPipe
	graphMng
	ignoreCheck
	initPipeFrame
	loadConfig
	loadStep
	runWithFinishCheck
	setGenome
	setJobName
	setPipeName
	setRefDir
	setThreads
	setTmpDir
	Step-class
	Utils
	Index

