
Package ‘pepStat’
February 2, 2026

Type Package

Title Statistical analysis of peptide microarrays

Version 1.45.0

Author Raphael Gottardo, Gregory C Imholte, Renan Sauteraud, Mike Jiang

Maintainer Gregory C Imholte <gimholte@uw.edu>

Description Statistical analysis of peptide microarrays

License Artistic-2.0

Depends R (>= 3.0.0), Biobase, IRanges

Imports limma, fields, GenomicRanges, ggplot2, plyr, tools, methods,
data.table

Suggests pepDat, Pviz, knitr, shiny

biocViews Microarray, Preprocessing

URL https://github.com/RGLab/pepStat

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/pepStat

git_branch devel

git_last_commit d3092b9

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
baselineCorrect.pSet . 2
baseline_correct . 3
create_db . 3
makeCalls . 4
makePeptideSet . 6
normalizeArray . 8

1

https://github.com/RGLab/pepStat

2 baselineCorrect.pSet

peptideSet . 10
peptideSet-methods . 11
plotArrayImage . 12
restab . 13
shinyPepStat . 14
slidingMean . 15
summarizePeptides . 16

Index 19

baselineCorrect.pSet Substract baseline intensities

Description

Correct intensities by substracting PRE visit sample intensities.

Usage

baselineCorrect.pSet(pSet, verbose = FALSE)

Arguments

pSet A peptideSet with sample PRE and POST visits.

verbose A logical. If TRUE, information regarding the pairedness of the data will be
displayed.

Details

If samples are not PAIRED (One PRE and POST for each ptid), then the average expression of all
PRE visit samples is substracted from each sample.

Value

A matrix of the baseline corrected intensities, with as many columns as there are samples POST
visit

Author(s)

Raphael Gottardo, Gregory Imholte

baseline_correct 3

baseline_correct Substract baseline intensities

Description

Correct intensities by substracting PRE visit sample intensities.

Usage

baseline_correct(pSet, verbose = FALSE)

Arguments

pSet A peptideSet with sample PRE and POST visits.

verbose A logical. If TRUE, information regarding the pairedness of the data will be
displayed.

Details

The function will try to pair as many sample as possible. The remaining subjects with a POST and
no PRE will use the average expression of all baseline samples. Subjects with baseline only will
not be represented in the resulting matrix.

Value

A matrix of the baseline corrected intensities, with as many columns as there are samples POST
visit

Author(s)

Renan Sauteraud

create_db Create a peptide collection

Description

Constructor to create peptide collection to be used in summarizePeptides.

Usage

create_db(position)

4 makeCalls

Arguments

position A data.frame or GRanges object. If a data.frame is provided, it should con-
tain ’start’ and ’end’ or ’width’ columns as well as a peptide column. If position
is a GRanges object, then it must either have peptide as names or contain a pep-
tide metadata column.

Details

position can have additional columns. These columns will be kept in the resulting peptide col-
lection. This is especially useful to include clades and grouping parameters for the makeCalls
function.

If the input contains all the z-scores (z1 to z5), then they will not be re-calculated. If some (but not
all) z-scores are missing, a warning message will be sent and the z-scores are re-calculated.

Author(s)

Renan Sauteraud

See Also

GRanges

Examples

#construct data.frame object
AA <- c("A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P",
"Q","R", "S", "T", "V", "W", "Y")
starts <- seq(1, 30, 3)
ends <- starts + 14
peptides <- sapply(1:10, function(x) {

paste0(AA[floor(runif(15, 1, 20))], collapse = "")
})
data <- data.frame(start = starts, end = ends, peptide = peptides)

#from data.frame
new_pep <- create_db(data)

#from GRanges
new_pep <- create_db(new_pep)

makeCalls Make antibody binding positivity calls

Description

After normalization and data smoothing, this last step makes the call for each peptide of the pep-
tideSet after baseline correcting the peptide intenstities.

makeCalls 5

Usage

makeCalls(peptideSet, cutoff = 1.2, method = "absolute", freq = TRUE,
group = NULL, verbose = FALSE)

Arguments

peptideSet A peptideSet object. The peptides, after normalization and possibly data
smoothing.

cutoff A numeric. If FDR, the FDR threshold. Otherwise, a cutoff for the background
corrected intensities.

method A character. The method used to make positivity calls. "absolute" and "FDR"
are available. See details below.

freq A logical. If set to TRUE, return the percentage of slides calling a peptide
positive. Otherwise, return a logical indicating binding events.

group A character. Only used when freq is set to TRUE. A character indicating a
variable by which to group slides. If non-null the percentage is calculated by
group.

verbose A logical. If set to TRUE, progress information will be displayed.

Details

This function requires specific variables ptid and visit in pData(peptideSet). The variable ptid
should indicate subjects, and the variable visit should be a factor with levels pre and post.

If slides are paired for subjects, intensities corresponding to post-visit are substracted from pre.
If slides are not paired, slides with pre have intensities averaged by peptides, and averaged peptide
intensities are subtracted from slides that have entry post. Calls are made on these baseline corrected
intensities.

When method = FDR, a left-tail method is used to generate a threshold controlling the False Discov-
ery Rate at level cutoff. When method = absolute, Intensities exceeding the threshold are labelled
as positive.

When freq = TRUE a group variable may be specified. The argument group indicates the name of
a variable in pData(peptideSet) by which positive calls should be grouped. The call frequency for
each peptide is calculated within groups.

Value

If freq = TRUE, a numeric matrix with peptides as rows and groups as columns where the values
are the frequency of response in the group. If freq = FALSE, a logical matrix indicating binding
events for each peptide in each subject.

Author(s)

Greg Imholte

6 makePeptideSet

Examples

This example curated from the vignette -- please see vignette("pepStat")
for more information
if (require("pepDat")) {

Get example GPR files + associated mapping file
dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")
mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

Make a peptide set
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

Plot array images -- useful for quality control
plotArrayImage(pSet, array.index = 1)
plotArrayResiduals(pSet, array.index = 1, smooth = TRUE)

Summarize peptides, using pep_hxb2 as the position database
data(pep_hxb2)
psSet <- summarizePeptides(pSet, summary = "mean", position = pep_hxb2)

Normalize the peptide set
pnSet <- normalizeArray(psSet)

Smooth
psmSet <- slidingMean(pnSet, width = 9)

Make calls
calls <- makeCalls(psmSet, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR", verbose = TRUE)

Produce a summary of the results
summary <- restab(psmSet, calls)

}

makePeptideSet peptideSet constructor

Description

This function reads GenePix results (.gpr) files and creates a peptideSet object gathering experiment
information.

Usage

makePeptideSet(files = NULL, path = NULL, mapping.file = NULL,
use.flags = FALSE, rm.control.list = NULL, empty.control.list = NULL,
bgCorrect.method = "normexp", log = TRUE, check.row.order = FALSE,
verbose = FALSE)

makePeptideSet 7

Arguments

files A character vector. If NULL, all files with a .gpr extension in the specified
path will be read.

path A character string. The directory where the .gpr files to read are located.

mapping.file A character string or data.frame. A mapping file that gives information for
each sample. See details section below for a list of required fields.

use.flags A logical. Should spots with flag value -99 or lower be excluded?
rm.control.list

A character vector. The name of the controls to be excluded from the pep-
tideSet.

empty.control.list

A character vector. The name of the empty controls. If non NULL, the inten-
sity of these empty spots will be substracted from remaining intensities.

bgCorrect.method

A character string. The name of the method used for background correction.
This is passed to limma’s backgroundCorrect method. See details section below
and ?backgroundCorrect for more information.

log A logical. If TRUE, intensities will be log2 transformed after BG correction.
check.row.order

A logical. Should slides be reduced to a common set of peptides?

verbose A logical. Displays progress and additional information.

Details

GenePix results files (.gpr) are read when found in either the files or path arguments. By default,
the foreground and background median intensities of the "red" channels, "F635 Median" and "B635
Median", are read. The background correction specified in bgCorrect.method is passed to the back-
groundCorrect method in the limma package.

The mapping.file can be either a filename or a data.frame. In any case, it should contain at least
three columns labeled "filename", "ptid" and "visit". The filenames given here should match those
read from the path or files argument, or be a subset of it. For each ptid (patient ID), the visit column
should have at least one "pre" and one "post" sample. Any additional column will be kept into the
resulting peptideSet and can be used later on for groupping.

If check.row.order = TRUE, the final set of probes is taken to be those with IDs found in all arrays
that were read.

Row, Column and Block spatial array position for each probe are stored in the featureRanges slot
of the returned object.

Value

A peptideSet object that contain the intensities, peptide sequences and annotations available in
the mapping file.

Author(s)

Raphael Gottardo, Gregory Imholte

8 normalizeArray

See Also

peptideSet, read.maimages, backgroundCorrect

Examples

Read gpr files
library(pepDat)
mapFile <- system.file("extdata/mapping.csv", package = "pepDat")
dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

Specify controls to be removed and empty controls
to be used for background correction.
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log = TRUE,
rm.control.list = c("JPT-control", "Ig", "Cy3"),
empty.control.list= c("empty", "blank control"))

normalizeArray Normalize tiling array data using sequence information

Description

This function is used to normalize the peptide microarray data using sequence information.

Usage

normalizeArray(peptideSet, method = "ZpepQuad", robust = TRUE,
centered = TRUE)

Arguments

peptideSet A peptideSet. The expression data for the peptides as well as annotations and
ranges.

method A character. The normalization method to be used. Can be "Zpep" or "ZpepQuad".

robust A logical. If TRUE, reweigthed least-squares estimates are computed.

centered A logical. If TRUE, recenter the data.

Details

The available methods are "Zpep" and "ZpepQuad". These methods fit a linear model using either
linear or linear and quadratic terms (respectively), regressing intensity on the peptides’ five Z-scale
scores. A peptide Z-scale score is obtained by summing over the Z-scale values in Sandburg et al
(1998) of the amino acids the peptide comprises.

Peptide Z-scale scores may be provided in the featureRange slot of peptideSet. This slot is a
GRanges object x, and the function will seek five columns labelled z1 through z5 in values(x).

normalizeArray 9

If these are not found, the function attempts to calculate Z-scales from sequence information found
in peptide(peptideSet)

If robust = TRUE the linear model is fit with t_4 distributed errors. The method returns the residuals
of each peptide intensity in the fitted linear model. If centered = TRUE the fitted intercept term is
added back to the residuals of the fit.

Value

A peptideSet object with updated normalized intensity values.

Author(s)

Raphael Gottardo, Gregory Imholte

References

Sandberg, M., Eriksson, L., Jonsson, J., Sjostrom, M., and Wold, S. (1998). New chemical descrip-
tors relevant for the design of biologically active peptides. A multivariate characterization of 87
amino acids. Journal of Medicinal Chemistry 41, 2481-2491.

See Also

summarizePeptides, makeCalls

Examples

This example curated from the vignette -- please see vignette("pepStat")
for more information
if (require("pepDat")) {

Get example GPR files + associated mapping file
dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")
mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

Make a peptide set
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

Plot array images -- useful for quality control
plotArrayImage(pSet, array.index = 1)
plotArrayResiduals(pSet, array.index = 1, smooth = TRUE)

Summarize peptides, using pep_hxb2 as the position database
data(pep_hxb2)
psSet <- summarizePeptides(pSet, summary = "mean", position = pep_hxb2)

Normalize the peptide set
pnSet <- normalizeArray(psSet)

Smooth
psmSet <- slidingMean(pnSet, width = 9)

10 peptideSet

Make calls
calls <- makeCalls(psmSet, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR", verbose = TRUE)

Produce a summary of the results
summary <- restab(psmSet, calls)

}

peptideSet peptideSet class

Description

This class gathers all information from gpr files, annotation data and sequence data

Details

See ?`peptideSet-methods` for a list of accessors and method associated with the class.

Slots

featureRange A GRangesobject. The ranges and sequences of the peptides and their associated
annotation.

phenoData An AnnotatedDataFrame. Annotation for the samples.

assayData

featureData

annotation

protocolData Slots inherited from ExpressionSet.

Author(s)

Greg Imholte

See Also

ExpressionSet, peptideSet-methods

peptideSet-methods 11

peptideSet-methods peptideSet methods

Description

Methods for handling peptideSet objects

Accessors

nrow(x): The number of peptides in x.

ncol(x): The number of samples in x.

start(x): Get the starts of the peptides.

end(x): Get the ends of the peptides.

width(x): Get the widths of the peptides.

position(x): Get the coordinates of the central amino-acid of each peptide, given by: round((start(x)
+ end(x))/2).

ranges(x): Returns a GRanges object that contains the annotations for the peptides.

ranges(x)<- value Set annotations for the peptides.

values(x): Returns a SplitDataFrameList. Accessor for the values of the featureRange slot.

clade(x): If available, returns the clade information for each peptide as a matrix.

peptide(x): Get the sequence of the peptides.

peptide(x) <- value Set the sequence of the peptides.

featureID(x): Get the ID of the peptides.

pepZscore(x): If available, returns a matrix of the zScores for each peptide.

pepZscore(x) <- value Set the zScores for each peptide

Display

show(object): Display a peptideSet object.

summary(object): Summarize a peptideSet object.

Subset

x[i, j]: Subset x by peptides (i), or samples (j).

subset(x, subset, drop=FALSE): Subset x given an expression ’subset’.

12 plotArrayImage

plotArrayImage Plot microarray images

Description

Plot a color image of the intensities on a slide. These plots are helpful to diagnose spatial abnor-
malities.

Usage

plotArrayImage(peptideSet, array.index = NULL, low = "white",
high = "steelblue", ask = dev.interactive(orNone = TRUE) & 1 <
length(array.index))

plotArrayResiduals(peptideSet, array.index = NULL, smooth = FALSE,
low = "blue", high = "red", ask = dev.interactive(orNone = TRUE) & 1 <
length(array.index))

Arguments

peptideSet A peptideSet object. The object must contain all the original probes. See
details below.

array.index A vector subsetting exprs(peptideSet), indicating which slides to plot

smooth A logical, a 2D spatial smoother is applied to residuals, the fitted residuals are
plotted.

low A character string. The color of the lowest slide intensity. passed to scale_fill_gradient2.
the fitted residuals are plotted.

high A character string. The color of the highest slide intensity. passed to scale_fill_gradient2.

ask A logical. If TRUE, the user is asked before each plot. See par(ask=.).

Details

The most coherent results are achieved when the peptideSet object is read with makePeptideSet
with empty.control.list = NULL and rm.control.list = NULL

Author(s)

Gregory Imholte

Examples

This example curated from the vignette -- please see vignette("pepStat")
for more information
if (require("pepDat")) {

Get example GPR files + associated mapping file

restab 13

dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")
mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

Make a peptide set
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

Plot array images -- useful for quality control
plotArrayImage(pSet, array.index = 1)
plotArrayResiduals(pSet, array.index = 1, smooth = TRUE)

Summarize peptides, using pep_hxb2 as the position database
data(pep_hxb2)
psSet <- summarizePeptides(pSet, summary = "mean", position = pep_hxb2)

Normalize the peptide set
pnSet <- normalizeArray(psSet)

Smooth
psmSet <- slidingMean(pnSet, width = 9)

Make calls
calls <- makeCalls(psmSet, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR", verbose = TRUE)

Produce a summary of the results
summary <- restab(psmSet, calls)

}

restab Result table

Description

Tabulate the results of a peptide microarray analysis.

Usage

restab(peptideSet, calls)

Arguments

peptideSet A peptideSet object.

calls A matrix, as returned by the makeCalls function.

Details

The peptideSet should be the one used in the function call to makeCalls that generated the calls
used. They should have identical peptides.

14 shinyPepStat

Value

A data.frame with the peptides and some information from the peptideSet as well as the fre-
quency of binding for each group of the calls.

Examples

This example curated from the vignette -- please see vignette("pepStat")
for more information
if (require("pepDat")) {

Get example GPR files + associated mapping file
dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")
mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

Make a peptide set
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

Plot array images -- useful for quality control
plotArrayImage(pSet, array.index = 1)
plotArrayResiduals(pSet, array.index = 1, smooth = TRUE)

Summarize peptides, using pep_hxb2 as the position database
data(pep_hxb2)
psSet <- summarizePeptides(pSet, summary = "mean", position = pep_hxb2)

Normalize the peptide set
pnSet <- normalizeArray(psSet)

Smooth
psmSet <- slidingMean(pnSet, width = 9)

Make calls
calls <- makeCalls(psmSet, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR", verbose = TRUE)

Produce a summary of the results
summary <- restab(psmSet, calls)

}

shinyPepStat Launch the pepStat Shiny Application

Description

Launches the pepStat Shiny application, providing an interactive interface for constructing peptide
sets, normalizing intensities, generating calls. Quality control is also facilitated through interactive
plotting features.

slidingMean 15

Usage

shinyPepStat()

Examples

if (interactive()) {
shinyPepStat()

}

slidingMean Data smoothing for peptide microarray.

Description

This function applies a sliding mean window to intensities to reduce noise generated by experimen-
tal variation, as well as take advantage of the overlapping nature of array peptides to share signal.

Usage

slidingMean(peptideSet, width = 9, verbose = FALSE, split.by.clade = TRUE)

Arguments

peptideSet A peptideSet. The expression data for the peptides as well as annotations and
ranges. The range information is required to run this function.

width A numeric. The width of the sliding window.

verbose A logical. If set to TRUE, progress information will be displayed.

split.by.clade A logical. If TRUE, the peptides will be smoothed by clade (See details sec-
tion below for more information).

Details

Peptide membership in the sliding mean window is determined by its position and the width argu-
ment. Two peptides are in the same window if the difference in their positions is less than or equal
to width/2. A peptide’s position is taken to be position(peptideSet).

A peptide’s intensity is replaced by the mean of all peptide intensities within the peptide’s sliding
mean window.

When split.by.clade = TRUE, peptides are smoothed within clades defined by the clade column of
the GRanges object occupying the featureRange slot of peptideSet. If set to FALSE, a peptide at
a given position will borrow information from the neighboring peptides as well as the ones from
other clades around this position.

Value

A peptideSet object with smoothed intensities.

16 summarizePeptides

Author(s)

Gregory Imholte

See Also

summarizePeptides, normalizeArray

Examples

This example curated from the vignette -- please see vignette("pepStat")
for more information
if (require("pepDat")) {

Get example GPR files + associated mapping file
dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")
mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

Make a peptide set
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

Plot array images -- useful for quality control
plotArrayImage(pSet, array.index = 1)
plotArrayResiduals(pSet, array.index = 1, smooth = TRUE)

Summarize peptides, using pep_hxb2 as the position database
data(pep_hxb2)
psSet <- summarizePeptides(pSet, summary = "mean", position = pep_hxb2)

Normalize the peptide set
pnSet <- normalizeArray(psSet)

Smooth
psmSet <- slidingMean(pnSet, width = 9)

Make calls
calls <- makeCalls(psmSet, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR", verbose = TRUE)

Produce a summary of the results
summary <- restab(psmSet, calls)

}

summarizePeptides Add information to a peptideSet and summarize peptides

summarizePeptides 17

Description

This function merges the replicates and adds information from a peptide collection to a peptideSet.
This collection can include coordinates, alignment information, Z-scales, and other peptide infor-
mation.

Usage

summarizePeptides(peptideSet, summary = "median", position = NULL)

Arguments

peptideSet A peptideSet, as created by makePeptideSet

summary A character string. The method used for merging replicates. Available are:
"mean" and "median".

position A data.frame or GRanges object. A peptide collection such as the ones avail-
able in pepDat. See details below and vignettes for more information.

Details

The object in the position argument will be passed to create_db, it can either be a GRanges object
with a peptide as a metadata column, or a data.frame that can be used to create such GRanges.

Some peptide collections can be found in the pepDat package.

Value

An object of class peptideSet with added columns and updated ranges.

Author(s)

Raphael Gottardo, Greory Imholte

See Also

makePeptideSet, create_db, create_db

Examples

This example curated from the vignette -- please see vignette("pepStat")
for more information
if (require("pepDat")) {

Get example GPR files + associated mapping file
dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")
mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

Make a peptide set
pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

Plot array images -- useful for quality control

18 summarizePeptides

plotArrayImage(pSet, array.index = 1)
plotArrayResiduals(pSet, array.index = 1, smooth = TRUE)

Summarize peptides, using pep_hxb2 as the position database
data(pep_hxb2)
psSet <- summarizePeptides(pSet, summary = "mean", position = pep_hxb2)

Normalize the peptide set
pnSet <- normalizeArray(psSet)

Smooth
psmSet <- slidingMean(pnSet, width = 9)

Make calls
calls <- makeCalls(psmSet, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR", verbose = TRUE)

Produce a summary of the results
summary <- restab(psmSet, calls)

}

Index

[,peptideSet,ANY,ANY,ANY-method
(peptideSet-methods), 11

backgroundCorrect, 8
baseline_correct, 3
baselineCorrect.pSet, 2

clade (peptideSet-methods), 11
clade,GRanges-method

(peptideSet-methods), 11
clade,peptideSet-method

(peptideSet-methods), 11
clade-methods (peptideSet-methods), 11
create_db, 3, 17

end,peptideSet-method
(peptideSet-methods), 11

ExpressionSet, 10

featureID (peptideSet-methods), 11
featureID,peptideSet-method

(peptideSet-methods), 11
featureID-method (peptideSet-methods),

11

GRanges, 4

makeCalls, 4, 9
makePeptideSet, 6, 17

NormalizeArray (normalizeArray), 8
normalizeArray, 8, 16

peptide (peptideSet-methods), 11
peptide,peptideSet-method

(peptideSet-methods), 11
peptide-method (peptideSet-methods), 11
peptide<- (peptideSet-methods), 11
peptide<-,peptideSet,character-method

(peptideSet-methods), 11
peptideSet, 8, 10

peptideSet-class (peptideSet), 10
peptideSet-methods, 11
pepZscore (peptideSet-methods), 11
pepZscore,GRanges-method

(peptideSet-methods), 11
pepZscore,peptideSet-method

(peptideSet-methods), 11
pepZscore-method (peptideSet-methods),

11
pepZscore<- (peptideSet-methods), 11
pepZscore<-,GRanges,data.frame-method

(peptideSet-methods), 11
pepZscore<-,peptideSet,data.frame-method

(peptideSet-methods), 11
plotArrayImage, 12
plotArrayResiduals (plotArrayImage), 12
position (peptideSet-methods), 11
position,peptideSet-method

(peptideSet-methods), 11
position-method (peptideSet-methods), 11

ranges,peptideSet-method
(peptideSet-methods), 11

ranges<-,peptideSet-method
(peptideSet-methods), 11

read.maimages, 8
restab, 13

shinyPepStat, 14
show,peptideSet-method

(peptideSet-methods), 11
slidingMean, 15
start,peptideSet-method

(peptideSet-methods), 11
subset,peptideSet-method

(peptideSet-methods), 11
summarizePeptides, 9, 16, 16
summary,peptideSet-method

(peptideSet-methods), 11

19

20 INDEX

values,peptideSet-method
(peptideSet-methods), 11

width,peptideSet-method
(peptideSet-methods), 11

	baselineCorrect.pSet
	baseline_correct
	create_db
	makeCalls
	makePeptideSet
	normalizeArray
	peptideSet
	peptideSet-methods
	plotArrayImage
	restab
	shinyPepStat
	slidingMean
	summarizePeptides
	Index

