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cellcyclegenes_whitfield2002

list of cell cycle genes identified in Whitfield et al. 2002.

Description

List of cell cycle genes and their associated cell cycle state as reported in Whitfield et al. 2002.

Usage

data(cellcyclegenes_whitfield2002)
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Format

A list with the follwing elements

hgnc Gene symbol

ensembl ENSEMBL gene ID

phase Marker phase identified in Whitfield et al. 2002

circ_dist Pairwise distance between two circular variables

Description

We define distance between two angles: the minimum of the differences in both clockwise and
counterclockwise directions.

Usage

circ_dist(y1, y2)

Arguments

y1 A vector of angles.

y2 A vector of angles.

Value

A vector of distances between angles.

Author(s)

Joyce Hsiao, Matthew Stephens

Examples

# a vector of angles
theta_ref <- seq(0,2*pi, length.out=100)

# shift the origin of theta_ref to pi
theta_compare <- shift_origin(theta_ref, origin = pi)
mean(circ_dist(theta_ref, theta_compare))

# after rotation of angles, difference is 0 between the original
# and the shifted angles
theta_compare_rotated <- rotation(ref_var=theta_ref,

shift_var=theta_compare)
mean(circ_dist(theta_ref, theta_compare_rotated))
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cycle_npreg_insample Obtain cyclic trend estimates from the training data

Description

Estimates cyclic trends of gene expression levels using training data.

Usage

cycle_npreg_insample(Y, theta, ncores = 2, polyorder = 2,
method.trend = c("trendfilter", "loess", "bspline"))

Arguments

Y A matrix of normalized and transformed gene expression values. Gene by sam-
ple.

theta A vector of angles.

ncores We use doParallel package for parallel computing.

polyorder We estimate cyclic trends of gene expression levels using nonparamtric trend
filtering. The default fits second degree polynomials.

method.trend Varous methods that can be applied to estimate cyclic trend of gene expression
levels.

Value

A list with four elements:

Y Gene expression marix.

theta Vector of angles or cell cycle phases.

sigma_est Estimated standard error of the cyclic trend for each gene.

funs_est A list of functions for approximating the cyclic trends of gene express levels for
each gene.

Author(s)

Joyce Hsiao

See Also

cycle_npreg_mstep for estimating cyclic functions given inferred phases from cycle_npreg_loglik,
cycle_npreg_outsample for predicting cell cycle phase using parameters learned from cycle_npreg_insample

Other peco classifier functions: cycle_npreg_loglik, cycle_npreg_mstep, cycle_npreg_outsample,
initialize_grids
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Examples

# see \code{\link{cycle_npreg_insample}}

cycle_npreg_loglik Infer angles or cell cycle phase based on gene expression data

Description

Infer angles or cell cycle phase based on gene expression data

Usage

cycle_npreg_loglik(Y, sigma_est, funs_est, grids = 100,
method.grid = c("pca", "uniform"))

Arguments

Y Gene by sample expression matrix.
sigma_est A vector of standard errors for each gene from the training data.
funs_est A vector of cyclic functions estimated for each gene from the training data.
grids number of bins to be selected along 0 to 2pi.
method.grid The approach to initialize angles in the computation. uniform creates k equally-

spaced bins (grids). pca uses gene expression values to infer angles, and then
use these pca-based angles to move the cells to the closest bin (as defined by
uniform).

Value

A list with the following three elements:

cell_times_est Inferred angles or cell cycle phases, NOT ordered.
loglik_est Log-likelihood estimates for each gene.
prob_per_cell_by_celltimes

Probabilities of each cell belong to each bin.

Author(s)

Joyce Hsiao

See Also

initialize_grids for selecting angles in cycle_npreg_loglik, cycle_npreg_mstep for esti-
mating cyclic functions given inferred phases from cycle_npreg_loglik, cycle_npreg_outsample
for predicting cell cycle phase using parameters learned from cycle_npreg_insample

Other peco classifier functions: cycle_npreg_insample, cycle_npreg_mstep, cycle_npreg_outsample,
initialize_grids
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cycle_npreg_mstep Estimate parameters of the cyclic trends

Description

This is used in both cycle_npreg_insample (training data fitting) and cycle_npreg_outsample (test-
ing data prediction) to estimate cyclic trends of gene expression values. The function outputs for
each gene standard error of the cyclic trend, cyclic function, and the estimated expression levels
given the cyclic function.

Usage

cycle_npreg_mstep(Y, theta, method.trend = c("trendfilter", "loess",
"bspline"), polyorder = 2, ncores = 2)

Arguments

Y Gene by sample expression matrix (log2CPM).

theta Observed cell times.

method.trend How to estimate cyclic trend of gene expression values? We offer three op-
tions: ’trendfilter’ (fit_trendfilter()), ’loess’ (fit_loess()) and ’bsplines’
(fit_bspline()). ’trendfilter’ provided the best fit in our study. But ’trendfil-
ter‘ uses cross-validation and takes some time. Therefore, we recommend using
bspline for quick results.

polyorder We estimate cyclic trends of gene expression levels using nonparamtric trend
filtering. The default fits second degree polynomials.

ncores How many computing cores to use? We use doParallel package for parallel
computing.

Value

A list with the following elements:

Y Input gene expression data.

theta Input angles.

mu_est Estimated expression levels given the cyclic function for each gene.

sigma_est Estimated standard error of the cyclic trends for each gene

funs Estimated cyclic functions

Author(s)

Joyce Hsiao
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See Also

cycle_npreg_insample for estimating cyclic functions given known phasesfrom training data,
cycle_npreg_outsample for predicting cell cycle phase using parameters learned from cycle_npreg_insample

Other peco classifier functions: cycle_npreg_insample, cycle_npreg_loglik, cycle_npreg_outsample,
initialize_grids

cycle_npreg_outsample Predict test-sample ordering using training labels (no update)

Description

Apply the estimates of cycle_npreg_insample to another gene expression dataset to infer an angle
or cell cycle phase for each cell.

Usage

cycle_npreg_outsample(Y_test, sigma_est, funs_est,
method.trend = c("trendfilter", "loess", "bspline"), normed = TRUE,
polyorder = 2, method.grid = "uniform", ncores = 2, grids = 100,
get_trend_estimates = FALSE)

Arguments

Y_test A SingleCellExperiment object.

sigma_est Input from training data. A vector of gene-specific standard error of the cyclic
trends.

funs_est Input fron training data. A vector of cyclic functions estimating cyclic trends.

method.trend Varous methods that can be applied to estimate cyclic trend of gene expression
levels.

normed Is the data already normalized? TRUE or FALSE.

polyorder We estimate cyclic trends of gene expression levels using nonparamtric trend
filtering. The default fits second degree polynomials.

method.grid Method for defining bins along the circle.

ncores We use doParallel package for parallel computing.

grids number of bins to be selected along 0 to 2pi.

get_trend_estimates

To re-estimate the cylic trend based on the predicted cell cycle phase or not (T or
F). Default FALSE. This step calls trendfilter and is computationally intensive.
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Value

A list with the following elements:

Y The input gene expression marix.

cell_times_est Inferred angles or cell cycle phases, NOT ordered.

loglik_est Log-likelihood estimates for each gene.
cell_times_reordered

The inferred angles reordered (in ascending order).

Y_reorded The input gene expression matrix reordered by cell_times_reordered.
sigma_reordered

Estimated standard error of the cyclic trend for each gene, reordered by cell_times_reordered.

funs_reordered A list of functions for approximating the cyclic trends of gene express levels for
each gene, reordered by cell_times_reordered.

mu_reordered Estimated cyclic trend of gene expression values for each gene, reordered by
cell_times_reordered.

prob_per_cell_by_celltimes

Probabilities of each cell belong to each bin.

See Also

cycle_npreg_insample for obtaining parameteres for cyclic functions from training data, cycle_npreg_loglik
for log-likehood at angles between 0 to 2pi, initialize_grids for selecting angles in cycle_npreg_loglik,
cycle_npreg_mstep for estimating cyclic functions given inferred phases from cycle_npreg_loglik

Other peco classifier functions: cycle_npreg_insample, cycle_npreg_loglik, cycle_npreg_mstep,
initialize_grids

Examples

# import data
library(SingleCellExperiment)
data(sce_top101genes)

# select top 5 cyclic genes
sce_top5 <- sce_top101genes[order(rowData(sce_top101genes)$pve_fucci,

decreasing=TRUE)[1:5],]

# Select samples from NA18511 for our prediction example
coldata <- colData(sce_top5)
which_samples_train <- rownames(coldata)[coldata$chip_id != "NA18511"]
which_samples_predict <- rownames(coldata)[coldata$chip_id == "NA18511"]

# learning cyclic functions of the genes using our training data
sce_top5 <- data_transform_quantile(sce_top5)
expr_quant <- assay(sce_top5, "cpm_quantNormed")
Y_train <- expr_quant[, colnames(expr_quant) %in% which_samples_train]
theta_train <-

coldata$theta_shifted[rownames(coldata) %in% which_samples_train]
names(theta_train) <-
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rownames(coldata)[rownames(coldata) %in% which_samples_train]

# obtain cyclic function estimates
model_5genes_train <- cycle_npreg_insample(Y = Y_train,

theta = theta_train,
polyorder=2,
ncores=2,
method.trend="trendfilter")

# predict cell cycle
model_5genes_predict <- cycle_npreg_outsample(

Y_test=sce_top5[,colnames(sce_top5) %in% which_samples_predict],
sigma_est=model_5genes_train$sigma_est,
funs_est=model_5genes_train$funs_est,
method.trend="trendfilter",
ncores=2,
get_trend_estimates=FALSE)

# estimate cyclic gene expression levels given cell cycle for each gene
predict_cyclic <-

fit_cyclical_many(Y=assay(model_5genes_predict$Y,"cpm_quantNormed"),
theta=colData(model_5genes_predict$Y)$cellcycle_peco)

all.equal(names(predict_cyclic[[2]]), colnames(predict_cyclic[[1]]))

par(mfrow=c(2,3), mar=c(4,4,3,1))
for (g in seq_along(rownames(model_5genes_predict$Y))) {

plot(assay(model_5genes_predict$Y,"cpm_quantNormed")[
rownames(model_5genes_predict$Y)[g],],
x=colData(model_5genes_predict$Y)$cellcycle_peco, axes=FALSE,
xlab="FUCCI phase",
ylab="Predicted phase")

points(y=predict_cyclic$cellcycle_function[[
rownames(model_5genes_predict$Y)[g]]](

seq(0, 2*pi, length.out = 100)),
x=seq(0, 2*pi, length.out = 100),
pch=16, col="royalblue")

axis(2); axis(1,at=c(0,pi/2, pi, 3*pi/2, 2*pi),
labels=c(0,expression(pi/2), expression(pi),

expression(3*pi/2), expression(2*pi)))
abline(h=0, lty=1, col="black", lwd=.7)
title(rownames(model_5genes_predict$Y_reordered)[g])

}
title("Predicting cell cycle phase for NA18511", outer=TRUE)

data_transform_quantile

Transform counts by first computing counts-per-million (CPM), then
quantile-normalize CPM for each gene
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Description

For each gene, transform counts to CPM and then to a normal distribution.

Usage

data_transform_quantile(sce, ncores = 2)

Arguments

sce SingleCellExperiment Object.

ncores We use doParallel package for parallel computing.

Value

SingleCellExperiment Object with an added slot of cpm_quant, cpm slot is added if it doesn’t exist.

Author(s)

Joyce Hsiao

Examples

# use our data
library(SingleCellExperiment)
data(sce_top101genes)

# perform CPM normalization using scater, and
# quantile-normalize the CPM values of each gene to normal distribution
sce_top101genes <- data_transform_quantile(sce_top101genes, ncores=2)

plot(y=assay(sce_top101genes, "cpm_quantNormed")[1,],
x=assay(sce_top101genes, "cpm")[1,],
xlab = "CPM bbefore quantile-normalization",
ylab = "CPM after quantile-normalization")

fit_bspline Use bsplies to cyclic trend of gene expression levels

Description

Use bsplies to cyclic trend of gene expression levels

Usage

fit_bspline(yy, time)
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Arguments

yy A vector of gene expression values for one gene. The expression values are as-
sumed to have been normalized and transformed to standard normal distribution.

time A vector of angels (cell cycle phase).

Value

A list with one element, pred.yy, giving the estimated cyclic trend.

Author(s)

Joyce Hsiao

Examples

library(SingleCellExperiment)
data(sce_top101genes)

# select top 10 cyclic genes
sce_top10 <- sce_top101genes[order(rowData(sce_top101genes)$pve_fucci,

decreasing=TRUE)[1:10],]
coldata <- colData(sce_top10)

# cell cycle phase based on FUCCI scores
theta <- coldata$theta
names(theta) <- rownames(coldata)

# normalize expression counts
sce_top10 <- data_transform_quantile(sce_top10, ncores=2)
exprs_quant <- assay(sce_top10, "cpm_quantNormed")

# order FUCCI phase and expression
theta_ordered <- theta[order(theta)]
yy_ordered <- exprs_quant[1, names(theta_ordered)]

fit <- fit_bspline(yy_ordered, time=theta_ordered)

plot(x=theta_ordered, y=yy_ordered, pch=16, cex=.7, axes=FALSE,
ylab="quantile-normalized expression values", xlab="FUCCI phase",
main = "bspline fit")

points(x=theta_ordered, y=fit$pred.yy, col="blue", pch=16, cex=.7)
axis(2)
axis(1,at=c(0,pi/2, pi, 3*pi/2, 2*pi),

labels=c(0,expression(pi/2), expression(pi), expression(3*pi/2),
expression(2*pi)))

abline(h=0, lty=1, col="black", lwd=.7)
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fit_cyclical_many Compute proportation of variance explained by cyclic trends in the
gene expression levels for each gene.

Description

We applied quadratic (second order) trend filtering using the trendfilter function in the genlasso
package (Tibshirani, 2014). The trendfilter function implements a nonparametric smoothing method
which chooses the smoothing parameter by cross-validation and fits a piecewise polynomial regres-
sion. In more specifics: The trendfilter method determines the folds in cross-validation in a non-
random manner. Every k-th data point in the ordered sample is placed in the k-th fold, so the folds
contain ordered subsamples. We applied five-fold cross-validation and chose the smoothing penalty
using the option lambda.1se: among all possible values of the penalty term, the largest value such
that the cross-validation standard error is within one standard error of the minimum. Furthermore,
we desired that the estimated expression trend be cyclical. To encourage this, we concatenated the
ordered gene expression data three times, with one added after another. The quadratic trend filtering
was applied to the concatenated data series of each gene.

Usage

fit_cyclical_many(Y, theta, polyorder = 2, ncores = 2)

Arguments

Y A matrix (gene by sample) of gene expression values. The expression values are
assumed to have been normalized and transformed to standard normal distribu-
tion.

theta A vector of cell cycle phase (angles) for single-cell samples.

polyorder We estimate cyclic trends of gene expression levels using nonparamtric trend
filtering. The default fits second degree polynomials.

ncores doParallel package is used to perform parallel computing to reduce computa-
tional time.

Value

A list containing the following objects

predict.yy A matrix of predicted expression values at observed cell cycle.
cellcycle_peco_ordered

A vector of predicted cell cycle. The values range between 0 to 2pi
cellcycle_function

A list of predicted cell cycle functions.

pve A vector of proportion of variance explained in each gene by the predicted cell
cycle.
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Author(s)

Joyce Hsiao

See Also

fit_trendfilter for fitting one gene using trendfilter

Examples

library(SingleCellExperiment)
data(sce_top101genes)

# select top 10 cyclic genes
sce_top10 <- sce_top101genes[order(rowData(sce_top101genes)$pve_fucci,

decreasing=TRUE)[1:10],]
coldata <- colData(sce_top10)

# cell cycle phase based on FUCCI scores
theta <- coldata$theta
names(theta) <- rownames(coldata)

# normalize expression counts
sce_top10 <- data_transform_quantile(sce_top10, ncores=2)
exprs_quant <- assay(sce_top10, "cpm_quantNormed")

# order FUCCI phase and expression
theta_ordered <- theta[order(theta)]
yy_ordered <- exprs_quant[, names(theta_ordered)]

fit <- fit_cyclical_many(Y=yy_ordered, theta=theta_ordered)

fit_loess Use loess to estimate cyclic trends of expression values

Description

Use loess to estimate cyclic trends of expression values

Usage

fit_loess(yy, time)

Arguments

yy A vector of gene expression values for one gene. The expression values are as-
sumed to have been normalized and transformed to standard normal distribution.

time A vector of angles (cell cycle phase).
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Value

A list with one element, pred.yy, giving the estimated cyclic trend.

Author(s)

Joyce Hsiao

Examples

library(SingleCellExperiment)
data(sce_top101genes)

# select top 10 cyclic genes
sce_top10 <- sce_top101genes[order(rowData(sce_top101genes)$pve_fucci,

decreasing=TRUE)[1:10],]
coldata <- colData(sce_top10)

# cell cycle phase based on FUCCI scores
theta <- coldata$theta
names(theta) <- rownames(coldata)

# normalize expression counts
sce_top10 <- data_transform_quantile(sce_top10, ncores=2)
exprs_quant <- assay(sce_top10, "cpm_quantNormed")

# order FUCCI phase and expression
theta_ordered <- theta[order(theta)]
yy_ordered <- exprs_quant[1, names(theta_ordered)]

fit <- fit_loess(yy_ordered, time=theta_ordered)

plot(x=theta_ordered, y=yy_ordered, pch=16, cex=.7, axes=FALSE,
ylab="quantile-normalized expression values", xlab="FUCCI phase",
main = "loess fit")

points(x=theta_ordered, y=fit$pred.yy, col="blue", pch=16, cex=.7)
axis(2)
axis(1,at=c(0,pi/2, pi, 3*pi/2, 2*pi),

labels=c(0,expression(pi/2), expression(pi), expression(3*pi/2),
expression(2*pi)))

abline(h=0, lty=1, col="black", lwd=.7)

fit_trendfilter Using trendfiltering to estimate cyclic trend of gene expression

Description

We applied quadratic (second order) trend filtering using the trendfilter function in the genlasso
package (Tibshirani, 2014). The trendfilter function implements a nonparametric smoothing method
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which chooses the smoothing parameter by cross-validation and fits a piecewise polynomial regres-
sion. In more specifics: The trendfilter method determines the folds in cross-validation in a non-
random manner. Every k-th data point in the ordered sample is placed in the k-th fold, so the folds
contain ordered subsamples. We applied five-fold cross-validation and chose the smoothing penalty
using the option lambda.1se: among all possible values of the penalty term, the largest value such
that the cross-validation standard error is within one standard error of the minimum. Furthermore,
we desired that the estimated expression trend be cyclical. To encourage this, we concatenated the
ordered gene expression data three times, with one added after another. The quadratic trend filtering
was applied to the concatenated data series of each gene.

Usage

fit_trendfilter(yy, polyorder = 2)

Arguments

yy A vector of gene expression values for one gene that are ordered by cell cycle
phase. Also, the expression values are normalized and transformed to standard
normal distribution.

polyorder We estimate cyclic trends of gene expression levels using nonparamtric trend
filtering. The default fits second degree polynomials.

Value

A list with two elements:

trend.yy The estimated cyclic trend.

pve Proportion of variance explained by the cyclic trend in the gene expression lev-
els.

Author(s)

Joyce Hsiao

Examples

library(SingleCellExperiment)
data(sce_top101genes)

# select top 10 cyclic genes
sce_top10 <- sce_top101genes[order(rowData(sce_top101genes)$pve_fucci,

decreasing=TRUE)[1:10],]
coldata <- colData(sce_top10)

# cell cycle phase based on FUCCI scores
theta <- coldata$theta
names(theta) <- rownames(coldata)

# normalize expression counts
sce_top10 <- data_transform_quantile(sce_top10, ncores=2)
exprs_quant <- assay(sce_top10, "cpm_quantNormed")
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# order FUCCI phase and expression
theta_ordered <- theta[order(theta)]
yy_ordered <- exprs_quant[1, names(theta_ordered)]

fit <- fit_trendfilter(yy_ordered)

plot(x=theta_ordered, y=yy_ordered, pch=16, cex=.7, axes=FALSE,
ylab="quantile-normalized expression values", xlab="FUCCI phase",
main = "trendfilter fit")

points(x=theta_ordered, y=fit$trend.yy, col="blue", pch=16, cex=.7)
axis(2)
axis(1,at=c(0,pi/2, pi, 3*pi/2, 2*pi),

labels=c(0,expression(pi/2), expression(pi), expression(3*pi/2),
expression(2*pi)))

abline(h=0, lty=1, col="black", lwd=.7)

initialize_grids For prediction, initialize grid points for cell cycle phase on a circle.

Description

For prediction, initialize grid points for cell cycle phase on a circle.

Usage

initialize_grids(Y, grids = 100, method.grid = c("pca", "uniform"))

Arguments

Y Gene expression matrix. Gene by sample.

grids number of bins to be selected along 0 to 2pi.

method.grid The approach to initialize angles in the computation. uniform creates k equally-
spaced bins (grids). pca uses gene expression values to infer angles, and then
use these pca-based angles to move the cells to the closest bin (as defined by
uniform).

Value

A vector of initialized angles to be used in cycle_npreg_loglik to infer angles.

Author(s)

Joyce Hsiao
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See Also

cycle_npreg_loglik for log-likehood at angles between 0 to 2pi, cycle_npreg_mstep for esti-
mating cyclic functions given inferred phases from cycle_npreg_loglik, cycle_npreg_outsample
for predicting cell cycle phase using parameters learned from cycle_npreg_insample

Other peco classifier functions: cycle_npreg_insample, cycle_npreg_loglik, cycle_npreg_mstep,
cycle_npreg_outsample

intensity2circle Infer angles for each single-cell samples using fluorescence intensities

Description

We use FUCCI intensities to infer the position of the cells in cell cycle progression. The result is a
vector of angles on a unit circle corresponding to the positions of the cells in cell cycle progression.

Usage

intensity2circle(mat, plot.it = FALSE, method = c("trig", "algebraic"))

Arguments

mat A matrix of two columns of summarized fluorescence intensity. Rows corre-
spond to samples.

plot.it TRUE or FALSE. Plot the fitted results.
method The method used to fit the circle. trig uses trignometry to transform intensity

measurements from cartesian coordinates to polar coordinates. algebraic uses
an algebraic approach for circle fitting, using the conicfit package.

Value

The inferred angles on unit circle based on the input intensity measurements.

Author(s)

Joyce Hsiao

Examples

# use our data
library(SingleCellExperiment)
data(sce_top101genes)

# FUCCI scores - log10 transformed sum of intensities that were
# corrected for background noise
ints <- colData(sce_top101genes)[,c("rfp.median.log10sum.adjust",

"gfp.median.log10sum.adjust")]
intensity2circle(ints, plot.it=TRUE, method = "trig")
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model_5genes_predict A SingleCellExperiment object

Description

Pre-computed results. Applied cycle_npreg_outsample and results stored in model_5genes_train to
predict cell cycle phase for single-cell samples of NA19098. The predicted cell cycle is stored as
variable cellcycle_peco.

Usage

data(model_5genes_predict)

Format

A list with the follwing elements

cellcycle_peco Predict cell cycle, the values ranged between 0 to 2pi

model_5genes_train Traing model results among samples from 5 individuals.

Description

Pre-computed results. Applied cycle_npreg_insample to obtain gene-specific cyclic trend parame-
ters using samples from 5 individuals

Usage

data(model_5genes_train)

Format

A list with the follwing elements

Y a data.frame (gene by sample) of quantile-normailzed gene expression values

theta a vector of cell cycl phase values (range between 0 to 2pi)

sigma_est a vector of estimated standard errors

funs_est a list of estimated cyclic functions
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rotation Rotate circular variable shift_var to minimize distance between
ref_var and shift_var

Description

Because the origin of the cell cycle phases is arbitrary, we transform the angles prior to computing
the distance (rotation and shifting) to minimize the distance between two vectors. After this, one
can apply circ_dist to compute the distance between the output value and ref_var.

Usage

rotation(ref_var, shift_var)

Arguments

ref_var A vector of reference angles.

shift_var A vector of angles to be compared to ref_var.

Value

The transformed values of shift_var after rotation and shifting.

Author(s)

Matthew Stephens

Examples

# a vector of angles
theta_ref <- seq(0,2*pi, length.out=100)

# shift the origin of theta_ref to pi
theta_compare <- shift_origin(theta_ref, origin = pi)

# rotate theta_compare in a such a way that the distance
# between theta_ref and thet_compare is minimized
theta_compare_rotated <- rotation(ref_var=theta_ref, shift_var=theta_compare)

par(mofrow=c(1,2))
plot(x=theta_ref, y = theta_compare)
plot(x=theta_ref, y = theta_compare_rotated)
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sce_top101genes Molecule counts of the 101 significant cyclical genes in the 888 sam-
ples analyzed in the study.

Description

A SingleCellExperiment object (require SingleCellExperiment package) including molecule count
data after gene and smaple filtering. The ‘colData()‘ slot contains sample phenotype information
and the ‘rowData()‘ slot contains gene feature information.

Usage

data(sce_top101genes)

Format

A SingleCellExperiment object with 888 samples and the 101 significant cyclic genes,

theta Inferred angles of each cell along a circle, also known as FUCCI phase.

shift_origin Shift origin of the angles

Description

Shift origin of the angles for visualization

Usage

shift_origin(phase, origin)

Arguments

phase A vector of angles (in radians).

origin the new origin of the angles.

Value

A vector of angles shifted to the new origin.

Author(s)

Joyce Hsiao
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Examples

# make a vector of angles
theta <- seq(0,2*pi, length.out=100)

# shift the origin of theta to pi
theta_shifted <- shift_origin(theta, origin = pi)

plot(x=theta, y = theta_shifted)

training_human Training data from 888 single-cell samples and 101 top cyclic genes

Description

Pre-computed results. Applied fit_cyclic_many to 888 single-cell samples that have both normalized
gene expression values and cell cycle labels to obtain training results that can be used as input for
predicting cell cycle phase in other data.

Usage

data(training_human)

Format

A list with the follwing elements

predict.yy Estimated cyclic expression values in the training data

cellcycle_peco_ordered Training labels ordered from 0 to 2pi

cell_cycle function Nonparametric function of cyclic gene expression trend obtained by trendfilter
function in genlasso

pve Proportion of variance explained in each gene by the cell cycl phase label
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