Package ‘pathview’

February 2, 2026
Type Package

Title a tool set for pathway based data integration and visualization
Version 1.51.0

Date 2025-03-28

Author Weijun Luo

Maintainer Weijun Luo <luo_weijun@yahoo.com>

Description Pathview is a tool set for pathway based data integration
and visualization. It maps and renders a wide variety of
biological data on relevant pathway graphs. All users need is
to supply their data and specify the target pathway. Pathview
automatically downloads the pathway graph data, parses the data
file, maps user data to the pathway, and render pathway graph
with the mapped data. In addition, Pathview also seamlessly
integrates with pathway and gene set (enrichment) analysis tools for
large-scale and fully automated analysis.

biocViews Pathways, GraphAndNetwork, Visualization, GeneSetEnrichment,
DifferentialExpression, GeneExpression, Microarray, RNASeq,
Genetics, Metabolomics, Proteomics, SystemsBiology, Sequencing

Depends R (>=2.10)

Imports KEGGgraph, XML, Rgraphviz, graph, png, AnnotationDbi,
org.Hs.eg.db, KEGGREST, methods, utils

Suggests gage, org.Mm.eg.db, RUnit, BiocGenerics
License GPL (>=3.0)

URL https://github.com/datapplab/pathview, https://pathview.uncc.edu/
LazyLoad yes

LazyData yes

git_url https://git.bioconductor.org/packages/pathview

git_branch devel

git_last_commit b3l1fele

git_last_commit_date 2025-10-29

https://github.com/datapplab/pathview
https://pathview.uncc.edu/

2 pathview-package

Repository Bioconductor 3.23
Date/Publication 2026-02-01

Contents
pathview-package e e e 2
combineKEGGnodes e 3
CPALACCS . o o o e e e e 4
cpdidmap 5
demo.data L e e e e e e 7
download.kegg 7
eg2id . .. 9
kegg.species.code e e e e e 11
Korg . . e 12
MOLSUM Lo e e e e e 13
node.color e 15
node.nfo L e e e e e 17
NOdE.MAD o o e e e e e e e e e e e 18
pathview 20
pathview-internal 27
simmol.data 28
WOrdwrap e 30

Index 32

pathview-package Pathway based data integration and visualization
Description

Pathway based data integration and visualization

Details
Package: pathview
Type: Package
Version: 1.0
Date: 2012-12-26
License: What license is it under?

LazyLoad: yes

~~ An overview of how to use the package, including the most important ~~ ~~ functions ~~

combineKEGGnodes 3

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

Maintainer: Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

combineKEGGnodes Special treatment of nodes or edges for KEGG pathway rendering

Description
combineKEGGnodes combines nodes into a group in a KEGG pathway graph. reaction2edge
converts reactions into edges in KEGG pathway graph.

Usage

combineKEGGnodes(nodes, graph, combo.node)
reaction2edge(path, gR)

Arguments
nodes character, names of the names to be combined.
graph, gR a object of "graphNEL" class, the graph parsed and converted from KEGG path-
way.
path a object of "KEGGPathway" class, the parsed KEGG pathway.
combo. node character, the name of result combined node.
Details

combineKEGGnodes not only combines nodes in the graph object, but also corresponding node
data in the KEGG pathway object. This function is needed for KEGG-defined group nodes and
parsed enzyme groups involved in the same reaction. reaction2edge converts a reaction into 2
consecutive edges between substrate and enzyme and enzyme and product. This function is needed
as to faithfully show the compound-enzyme nodes and their interactions in Graphviz-style view of
KEGG pathway.

Value

The results returned by combineKEGGnodes is a combined graph of "graphNEL" class. The re-
sults returned by reaction2edge is a list of 3 elements: gR, the converted graph ("graphNEL");
edata.new, the new edge data ("KEGGEdge"); ndata.new, the new node data ("KEGGNode").

4 cpd.accs

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References
Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285
See Also

node. info the main parser function

cpd.accs Mapping data between compound or gene IDs and KEGG accessions

Description

Mapping data between compound or gene IDs and KEGG accessions

Usage

data(cpd.accs)
data(cpd.names)
data(kegg.met)
data(ko.ids)
data(rn.list)
data(gene.idtype.list)
data(gene.idtype.bods)
data(cpd.simtypes)

Format

cpd.accs is a data frame with 30054 observations on the following 4 variables. cpd.names is a data
frame with 12314 observations on the following 5 variables. kegg.met is a character matrix of 694
rows and 3 columns. ko.ids is a character vector 8511 KEGG ortholog gene IDs, as used in KEGG
ortholog pathways. rn.list is a namedlist of 21 vectors. Each vector records the row numbers for
one of 21 dfferent compound ID types in cpd.accs data.frame. gene.idtype.list is a character vector
of 13 common gene, transcript or protein ID types. Note some ID types are species specific, for
example TAIR or ORF. gene.idtype.bods is a list of character vectors ofcommon gene, transcript or
protein ID types for the 19 major research species in bods. Each element corresponds to a species.
cpd.simtypes is a character vector of 7 common compound related ID types, each of them has over
1000 unique entries. Hence these ID types are good for generating simulation compound data.

Source

ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/
http://www.genome.jp/kegg-bin/get_htext?br08001 .keg

cpdidmap 5

Examples

data(cpd.accs)

data(rn.list)

names(rn.list)

cpd.accs[rn.list[[1]]1[1:41,]

lapply(rn.list[1:4], function(rn) cpd.accs[rn[1:4],1)

data(kegg.met)
head(kegg.met)

cpdidmap Mapping between compound IDs and KEGG accessions

Description

These auxillary compound ID mappers connect KEGG compound/glycan/drug accessions to com-
pound names/synonyms and other commonly used compound-related IDs.

Usage

cpdidmap(in.ids, in.type, out.type)

cpd2kegg(in.ids, in.type)

cpdkegg2name(in.ids, in.type = c("KEGG", "KEGG COMPOUND accession”)[1])
cpdname2kegg(in.ids)

Arguments
in.ids character, input IDs to be mapped.
in.type character, the input ID type, needs to be either "KEGG" (including compound,
glycan and durg) or one of the compound-related ID types used in CHEMBL
database. For a full list of the CHEMBL IDs, dodata(rn.list); names(rn.list).
For cpdkegg2name), default in.type = "KEGG".
out.type character, the output ID type, needs to be either "KEGG" (including compound/glycan/durg)
or one of the compound-related ID types used in CHEMBL database. For a full
list of the CHEMBL IDs, do data(rn.list); names(rn.list).
Details

character, the output ID type, needs to be either "KEGG" or one of the compound-related 1D
types used in CHEMBL database. For a full list of the CHEMBL IDs, do data(rn.list);
names(rn.list).

KEGG has its own compound ID system, including compound (glycan/durg) accessions. Therefore,
all compound data need to be mapped to KEGG accessions when working with KEGG pathways.
Function cpd2kegg does this mapping by calling cpdname2kegg or cpdidmap. On the other hand,
we frequently want to check or show compound full names or other commonly used IDs instead
of the less informative KEGG accessions when working with KEGG compound nodes, Functions

6 cpdidmap

cpdkegg2name and cpdidmap do this reverse mapping. These functions are written as part of the
Pathview mapper module, they are equally useful for other compound ID or data mapping tasks.

The use of these functions depends on a few data objects: "cpd.accs", "cpd.names", "keg.met" and
"rn.list", which are included in this package. To access them, use data() function.

Value

a 2-column character matrix recording the mapping between input IDs to the target ID type.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

eg2id and id2eg the auxillary gene ID mappers, mol.sum the auxillary molecular data mapper,
node.map the node data mapper function.

Examples

data(cpd.simtypes)

#generate simulated compound data named with non-KEGG ("CAS Registry Number")IDs

cpd.cas <- sim.mol.data(mol.type = "cpd”, id.type = cpd.simtypes[2],
nmol = 10000)

#construct map between non-KEGG ID and KEGG ID ("KEGG COMPOUND accession”)

id.map.cas <- cpdidmap(in.ids = names(cpd.cas), in.type = cpd.simtypes[2],
out.type = "KEGG COMPOUND accession™)

#Map molecular data onto standard KEGG IDs

cpd.kc <- mol.sum(mol.data = cpd.cas, id.map = id.map.cas)

#check the results

head(cpd.cas)

head(id.map.cas)

head(cpd.kc)

#map KEGG ID to compound name
cpd.names=cpdkegg2name(in.ids=id.map.cas[,2])
head(cpd.names)

demo.data 7

demo.data Data for demo purpose

Description

demo.paths includes pathway ids and optimal plotting parameters when calling pathview.

GSE16873 is a breast cancer study (Emery et al, 2009) downloaded from Gene Expression Omnibus
(GEO). Dataset gse16873 is pre-processed using FARMS method and includes 6 patient cases, each
with HN (histologically normal) and DCIS (ductal carcinoma in situ) RMA samples. The same
dataset is also used in gage package. Dataset gse16873.d includes the gene expression changes of
two pairs of DCIS vs HN samples.

paths.hsa includes the full list of human pathway ID/names from KEGG.

Usage

data(demo.paths)
data(gse16873.d)
data(paths.hsa)

Format

demo.paths is a named list with ids and plotting parameters for 3 pathways. For details do:
data(demo.paths); demo.paths

gse16873.d is a numeric matrix with over 10000 rows (genes) and 2 columns (samples). For details
do: data(gse16873.d); str(gse16873.d).

paths.hsa is a named vector mapping KEGG pathway ID to human pathway names.

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16873

download.kegg Download KEGG pathway graphs and associated KGML data

Description

This is the downloader function for KEGG pathways, automatically download graph images and
associated KGML data.

Usage

non

download.kegg(pathway.id = "00010", species = "hsa", kegg.dir = ".",
file.type=c("xml", "png"))

Arguments

pathway.id

species

kegg.dir

file.type

Details

download.kegg

character, 5-digit KEGG pathway IDs. Default pathway.id="00010".

character, either the KEGG code, scientific name or the common name of the
target species. When KEGG ortholog pathway is considered, species="ko".
Default species="hsa", it is equivalent to use either "Homo sapiens" (scientific
name) or "human" (common name).

character, the directory of KEGG pathway data file (.xml) and image file (.png).

non

Default kegg.dir="." (current working directory).

character, the file type(s) to be downloaded, either KEGG pathway data file
(xml) or image file (png). Default include both types.

Species can be specified as either kegg code, scientific name or the common name. Scientific name
and the common name are always mapped to kegg code first. Length of species should be either 1
or the same as pathway.id, if not, the same set of pathway.id will be applied to all species.

Value

anamed character vector, either "succeed" or "failed", indicating the download status of correspond-

ing pathways.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

pathview the main function, node. info the parser,

Examples

data(demo.paths)

sel.2paths=demo.paths$sel.paths[1:2]
download.kegg(pathway.id = sel.2paths, species = "hsa")
#pathway files should be downloaded into current working directory

eg2id 9

eg2id Mapping between different gene ID and annotation types

Description

These auxillary gene ID mappers connect different gene ID or annotation types, especially they are
used to map Entrez Gene ID to external gene, transcript or protein IDs or vise versa.

Usage
eg2id(eg, category = gene.idtype.list[1:2], org = "Hs", pkg.name = NULL,
o)
id2eg(ids, category = gene.idtype.list[1], org = "Hs", pkg.name = NULL, ...)

geneannot.map(in.ids, in.type, out.type, org="Hs", pkg.name=NULL,
unique.map=TRUE, na.rm=TRUE, keep.order=TRUE)

Arguments
eg character, input Entrez Gene IDs.
ids character, input gene/transcript/protein IDs to be converted to Entrez Gene IDs.
in.ids character, input gene/transcript/protein IDs to be converted or mapped to other
Gene IDs or annotation types.
category character, for eg2id the output ID types to map from Entrez Gene, d to be

c("SYMBOL", "GENENAME"); for id2eg, the input ID type to be mapped
to Entrez Gene, default to be "SYMBOL".

in.type character, the input gene/transcript/protein ID type to be mapped or converted
to other ID/annotation types.

out.type character, the output gene/transcript/protein ID type to be mapped or converted
to other ID/annotation types.

org character, the two-letter abbreviation of organism name, or KEGG species code,
or the common species name, used to determine the gene annotation package.
For all potential values check: data(bods); bods. Default org="Hs", and can
also be "hsa" or "human" (case insensitive). Only effective when pkg.name is
not NULL.

pkg.name character, name of the gene annotation package. This package should be one
of the standard annotation packages from Bioconductor, such as "org.Hs.eg.db".
Check data(bods); bods for a full list of standard annotation packages. You
may also use your custom annotation package built with AnnotationDbi, the
Bioconductor Annotation Database Interface. Default pkg.name=NULL, hence
argument org should be specified.

unique.map logical, whether to combine multiple entries mapped to the same input ID as a
single entry (separted by "; "). Default unique.map=TRUE.

na.rm logical, whether to remove the lines where input ID is not mapped (NA for
mapped entries). Default na.rm=TRUE.

10 eg2id

keep.order logical, whether to keep the original input order even with all unmapped input
IDs. Default keep.order=TRUE.

other arguments to be passed to geneannot.map function.

Details

KEGG uses Entrez Gene ID as its standard gene ID. Therefore, all gene data need to be mapped
to Entrez Genes when working with KEGG pathways. Function id2eg does this mapping. On
the other hand, we frequently want to check or show gene symbols or full names instead of the
less informative Entrez Gene ID when working with KEGG gene nodes, Function eg2id does this
reverse mapping. Both id2eg and eg2id are wrapper functions of geneannot.map function. The
latter can be used to map between a range of major gene/transcript/protein IDs or annotation types,
not just Entrez Gene ID. These functions are written as part of the Pathview mapper module, they are
equally useful for other gene ID or data mapping tasks. The use of these functions depends on gene
annotation packages like "org.Hs.eg.db", which are Bioconductor standard. IFf no such packages
not available for your interesting organisms, you may build one with Bioconductor AnnotationDbi
package.

Value

a 2- or multi-column character matrix recording the mapping between input IDs to the target ID
type(s).

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

cpd2kegg etc the auxillary compound ID mappers, mol. sum the auxillary molecular data mapper,
node.map the node data mapper function.

Examples

data(gene.idtype.list)
#generate simulated gene data named with non-KEGG/Entrez gene IDs
gene.ensprot <- sim.mol.data(mol.type = "gene", id.type = gene.idtype.list[4],
nmol = 50000)
#construct map between non-KEGG ID and KEGG ID (Entrez gene)
id.map.ensprot <- id2eg(ids = names(gene.ensprot),
category = gene.idtype.list[4], org = "Hs")
#Map molecular data onto Entrez Gene IDs
gene.entrez <- mol.sum(mol.data = gene.ensprot, id.map = id.map.ensprot)
#check the results
head(gene.ensprot)

kegg.species.code 11

head(id.map.ensprot)
head(gene.entrez)

#map Entrez Gene to Gene Symbol and Name
eg.symbname=eg2id(eg=id.map.ensprot[,2])

#entries with more than 1 Entrez Genes are not mapped
head(eg.symbname)

#not run: map between other ID types for other species
#ath.tair=sim.mol.data(id. type="tair", species="ath”, nmol=1000)
#data(gene.idtype.bods)

#gid.map <-geneannot.map(in.ids=names(ath.tair)[rep(1:100,each=2)1],
#in.type="tair", out.type=gene.idtype.bods$ath[-1], org="At")
#gid.map1 <-geneannot.map(in.ids=names(ath.tair)[rep(1:100,each=2)1,
#in.type="tair", out.type=gene.idtype.bods$ath[-1], org="At",
#unique.map=F, keep.order=F)

#str(gid.map)

#str(gid.map1)

kegg.species.code Mapping species name to KEGG code

Description

This function maps species name to KEGG code.

Usage

kegg.species.code(species = "hsa”, na.rm = FALSE, code.only = TRUE)

Arguments
species character, either the KEGG code, scientific name or the common name of the
target species. Default species="hsa", it is equivalent to use either "Homo sapi-
ens" (scientific name) or "human" (common name).
na.rm logical, should unmapped entris be removed. Default na.rm = FALSE.
code.only logical, whether to extract KEGG species code only or with gene ID usage info
too. Default , code.only = TRUE.
Value

a character vector of mapped KEGG code of species.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

12 korg

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

korg the species and KEGG code mapping data, cpd2kegg etc the auxillary compound ID mappers,
download.kegg the downloader function.

Examples
species=c("ptr”, "Mus musculus”, "dog", "happ")
kcode=kegg.species.code(species = species, na.rm = FALSE)
print(kcode)
korg Mapping data on KEGG species code and corresponding Bioconduc-
tor gene annotation package
Description

Data on KEGG species, including taxonomy IDs, KEGG code, scientific name, common name,
corresponding gene ID types, and gene annotation package names in Bioconductor

Usage

data(korg)
data(bods)

Format

korg is a character matrix of ~4800 rows and 10 columns. First 5 columns are KEGG and NCBI
taxonomy IDs, KEGG species code, scientific name and common name, followed columns on gene
ID types used for each species: entrez.gnodes ("1" or "0", whether EntrezGene is the default gene
ID) and representative KEGG gene ID, NCBI or Entrez Gene ID, NCBI protein and Uniprot ID.
Note korg includes 4800 KEGG species (as of 06/2017), in the meantime, an updated version of
korg is now checked out from Pathview Web server each time pathview package is loaded.

bods is a character matrix of 19 rows and 3 columns on the mapping between gene annotation
package names in Bioconductor, common name and KEGG code of most common research species.

Source

http://www.genome.jp/kegg-bin/get_htext?br08601 keg
http://bioconductor.org/packages/release/BiocViews.html#___OrgDb

mol.sum

Examples

data(korg)
data(bods)
head(korg)
head(bods)

13

mol.sum

Mapping and summation of molecular data onto standard IDs

Description

Molecular data like gene or metabolite data are frequently annotated by various types of IDs. This
function maps and summarize molecular data onto standard gene or compound IDs. It would be
straightforward to integrate, analyze or visualize the "standardized" data with pathways or func-

tional categories.

Usage
mol.sum(mol.data, id.map, gene.annotpkg = "org.Hs.eg.db", sum.method =
c("sum”, "mean”, "median”, "max", "max.abs”, "random")[1])
Arguments
mol.data Either vector (single sample) or a matrix-like data (multiple sample). Vector
should be numeric with molecule IDs as names or it may also be character of
molecule IDs. Character vector is treated as discrete or count data. Matrix-
like data structure has molecules as rows and samples as columns. Row names
should be molecule IDs. Default mol.data=NULL. This argument is equivalent
to gene.data or cpd.data in the pathview function. Check pahtview function for
more information.
id.map a two-column character matrix, giving the mapping between molecular IDs used

gene.annotpkg

sum.method

in mol.data and taget/standard molecular IDs. Then mol.data are gene data,
id.map may also be a character specifying the type of IDs used in mol.data.
The two-column mapping matrix will be generated automatically.

character, name of the gene annotation package. This package should be one
of the standard annotation packages from Bioconductor, such as "org.Hs.eg.db"
(default). Check data(bods); bods for a full list of standard annotation pack-
ages. You may also use your custom annotation package built with Annota-
tionDbi, the Bioconductor Annotation Database Interface. Only effective when
mol.data are gene.data and id.map gives the ID type being used.

character, the method name to calculate node summary given that multiple genes

non non

or compounds are mapped to it. Poential options include "sum","mean", "me-

non non

dian", "max", "max.abs" and "random". Default sum.method="sum".

14 mol.sum

Details

This function is called in pathview main function when gene.idtype or cpd.idtype is not the standard
type, so that the molecular data can be mapped and summarized onto standard IDs. This is needed
for further mapping to KEGG pathways. The same standard ID mapping is needed when carry out
pathway or functional analysis on molecular data, which are labeled by non-standard (or alien) IDs
or probe names, like in most of the microarray or metabolomics datasets. In other words, function
mol.sum can be useful in all these situations.

Value

a numeric vector or matrix. Its dimensionality is the same as the input mol.data except row names
are standard molecular IDs.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

node . map the node data mapper function. id2eg, cpd2kegg etc the auxillary molecular ID mappers,
pathview the main function,

Examples

data(gene.idtype.list)
#generate simulated gene data named with non-KEGG/Entrez gene IDs
gene.ensprot <- sim.mol.data(mol.type = "gene", id.type = gene.idtype.list[4],
nmol = 50000)
#construct map between non-KEGG ID and KEGG ID (Entrez gene)
id.map.ensprot <- id2eg(ids = names(gene.ensprot),
category = gene.idtype.list[4], org = "Hs")
#Map molecular data onto Entrez Gene IDs
gene.entrez <- mol.sum(mol.data = gene.ensprot, id.map = id.map.ensprot)
#check the results
head(gene.ensprot)
head(id.map.ensprot)
head(gene.entrez)

node.color

15

node.color

Code molecular data as pseudo colors on the pathway graph

Description

node. color converts the mapped molecular (gene, protein or metabolite etc) data as pseudo colors
on pathway nodes. col.key draws color key(s) for mapped molecular data on the pathway graph.

Usage
node.color(plot.data = NULL, discrete=FALSE, limit, bins, both.dirs =
TRUE, low = "green”, mid = "gray"”, high = "red”, na.col = "transparent”,
trans.fun = NULL)

col.key(discrete=FALSE, limit = 1, bins

10, cols = NULL, both.dirs =

TRUE, low = "green”, mid = "gray”, high = "red"”, graph.size, node.size,
size.by.graph = TRUE, key.pos = "topright", off.sets = c(x = 0, y = 0),

n.n

align = "n", cex =1, lwd = 1)

Arguments

plot.data

discrete

limit

bins

both.dirs

trans. fun

the result returned by node . map function. It is a data.frame composed of parsed
KGML data and summary molecular data for each mapped node. Rows are
mapped nodes, and columns are parsed or mapped node data. Check node.map
for details.

logical, whether to treat the molecular data or node summary data as discrete.
d discrete=FALSE, otherwise, mol.data will be a charactor vector of molecular
IDs.

a list of two numeric elements with "gene" and "cpd" as the names. This ar-
gument specifies the limit values for gene.data and cpd.data when converting
them to pseudo colors. Each element of the list could be of length 1 or 2.
Length 1 suggests discrete data or 1 directional (positive-valued) data, or the
absolute limit for 2 directional data. Length 2 suggests 2 directional data. De-
fault limit=list(gene=0.5, cpd=1).

a list of two integer elements with "gene" and "cpd" as the names. This argument
specifies the number of levels or bins for gene.data and cpd.data when converting
them to pseudo colors. Default limit=list(gene=10, cpd=10).

a list of two logical elements with "gene" and "cpd" as the names. This argu-
ment specifies whether gene.data and cpd.data are 1 directional or 2 directional
data when converting them to pseudo colors. Default limit=list(gene=TRUE,
cpd=TRUE).

a list of two function (not character) elements with "gene" and "cpd" as the
names. This argument specifies whether and how gene.data and cpd.data are
transformed. Examples are 1log, abs or users’ own functions. Default limit=list(
gene=NULL, cpd=NULL).

16 node.color

low, mid, high each is a list of two colors with "gene" and "cpd" as the names. This argument
specifies the color spectra to code gene.data and cpd.data. When data are 1
directional (TRUE value in both.dirs), only mid and high are used to specify the
color spectra. Default spectra (low-mid-high) "green"-"gray"-"red" and "blue"-
"gray"-"yellow" are used for gene.data and cpd.data respectively. The values for
’low, mid, high’ can be given as color names (’red’), plot color index (2=red),
and HTML-style RGB, ("\#FF0000"=red).

na.col color used for NA’s or missing values in gene.data and cpd.data. d na.col="transparent".

cols character, specifying a discrete spectrum of colors to be plotted as color key.
Note this argument is usually NULL (default), otherwise, the number of discrete
colors has to match bins.

graph.size numeric vector of length 2, i.e. the sizes (width, height) of the pathway graph
panel. This is needed to determine the sizes and exact location of the color key.

node.size numeric vector of length 2, i.e. the sizes (width, height) of the standard gene
nodes (rectangles). This is needed to determine the sizes and exact location of
the color key when size.by.graph=FALSE.

size.by.graph logical, whether to determine the sizes and exact location of the color key with
respect to the size of the whole graph panel or that of a single node. Default
size.by.graph=TRUE.

key.pos character, controlling the position of color key(s). Potentail values are "bottom-
left", "bottomright", "topleft" and "topright". d key.pos="topright".

nyn

off.sets numeric vector of length 2, with "x" and "y" as the names. This argument spec-
ifies the offset values in x and y axes when plotting a new color key, as to avoid
overlap with existing color keys or boundaries. Note that the of f. sets value is
reset and returned each time col . key function is called, as for the reference of
plotting the next color key. Default off.sets=c(0,0).

align character, controlling how the color keys are aligned when needed. Potential

values are "x", aligned by x coordinates, and "y", aligned by y coordinates.
Default align="x"".

cex A numerical value giving the amount by which legend text and symbols should
be scaled relative to the default 1.
1wd numeric, the line width, a _positive_ number, defaulting to *1°.
Details

node.color converts the mapped molecular data (gene.data or cpd.data) by node.map function into
pseudo colors, which then can be plotted on the pathway graph. col.key is used in combination
with node.color in pathview, although this function can be used independently for similar tasks.

Value

node. color returns a vector or matrix of colors. Its dimensionality is the same as the corresponding
gene.data or cpd.data. col.key plots a color key on existing pathway graph, then returns a updated
version of off.sets for the reference of next color key.

node.info 17

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

keggview.native and keggview.graph the viwer functions, node . map the node data mapper func-
tion.

Examples

xml.file=system.file("extdata”, "hsa04110.xml"”, package = "pathview")
node.data=node.info(xml.file)
names(node.data)
data(gse16873.d)
plot.data.gene=node.map(mol.data=gse16873.d[,1], node.data,
node. types="gene")
head(plot.data.gene)
cols.ts.gene=node.color(plot.data.gene, limit=1, bins=10)
head(cols.ts.gene)

node.info Extract node information from KEGG pathway

Description

The parser function, parser KGML file and/or extract node information from KEGG pathway.

Usage

node.info(object, short.name = TRUE)

Arguments
object either a character specifying the full KGML file name (with directory), or a
object of "KEGGPathway" class, or a object of "graphNEL" class. The latter
two are parsed results of KGML file.
short.name logical, if TRUE, the short labels, i.e. the first iterm separated by "," in the long
labels are parsed out as node labels. Default short.name=TRUE.
Details

Parser function node.info extract node data from parsed KEGG pathways. KGML files are parsed
using parseKGML2 and KEGGpathway2Graph2. These functions from KEGGgraph package have
been heavily modified for reaction parsing and conversion to edges.

18 node.map

Value

non non non "non nongn o non

anamed list of 10 elements: "kegg.names", "type", "component", "size", "labels", "shape", "x", "y",
"width" and "height". Each elements record the corresponding attribute for all nodes in the parsed
KEGG pathway.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

pathview the main function, combineKEGGnodes and reaction2edge for special treatment of
nodes or edges.

Examples

xml.file=system.file("extdata”, "hsa04110.xml"”, package = "pathview")
node.data=node.info(xml.file)

names(node.data)

#or parse into a graph object, then extract node info
gR1=pathview: : :parseKGML2Graph2(xml.file, genesOnly=FALSE, expand=FALSE, split.group=FALSE)
node.data=node.info(gR1)

node.map Map molecular data onto KEGG pathway nodes

Description

The mapper function, mapping molecular data(gene expression, metabolite abundance etc)to nodes
in KEGG pathway.

Usage

node.map(mol.data = NULL, node.data, node.types = c("gene", "ortholog",
"compound”)[1], node.sum = c("sum”, "mean”, "median”, " "max.abs",
"random”)[1], entrez.gnodes=TRUE)

n

max"”,

node.map 19

Arguments

mol.data Either vector (single sample) or a matrix-like data (multiple sample). Vector
should be numeric with molecule IDs as names or it may also be character of
molecule IDs. Character vector is treated as discrete or count data. Matrix-
like data structure has molecules as rows and samples as columns. Row names
should be molecule IDs. Default mol.data=NULL. This argument is equivalent
to gene.data or cpd.data in the pathview function. Check pahtview function for
more information.

node.data a named list of 10 elements, the results returned by node. info, check the func-
tion for details.

non

node. types character, sepcify the node type to map the mol.data to, either "gene", "com-
pound”, or "compound”. Default node.types="gene".
node.sum character, the method name to calculate node summary given that multiple genes

non non

or compounds are mapped to it. Poential options include "sum","mean", "me-

non non

dian", "max", "max.abs" and "random". Default node.sum="sum".

entrez.gnodes logical, whether EntrezGene (NCBI GenelD) is used as the default gene ID in
the KEGG data files. This is needed because KEGG uses different types default
gene ID for different species. Some most common model species use Entrez-
Gene, but majority of others use Locus tag. Default entrez.gnodes=TRUE.

Details

Mapper function node.map maps user supplied molecular data to KEGG pathways. This function
takes standard KEGG molecular IDs (Entrez Gene ID or KEGG Compound Accession) and map
them to pathway nodes. None KEGG molecular gene IDs or Compound IDs are pre-mapped to
standard KEGG IDs by calling another function mol.sum. When multiple molecules map to one
node, the corresponding molecular data are summarized into a single node summary by calling
function specified by node . sum. This mapped node summary data together with the parsed KGML
data are then returned for further processing. Proper input data include: gene expression, protein
expression, genetic association, metabolite abundance, genomic data, literature, and other data types
mappable to pathways. The input mol.data may be NULL, then no molecular data are actually
mapped, but all nodes of the specified node.type are considered "mappable"” and their parsed KGML
data returned.

Value

A data.frame composed of parsed KGML data and summary molecular data for each mapped node.
Each row is a mapped node, and columns are:

kegg.names standard KEGG IDs/Names for mapped nodes. It’s Entrez Gene ID or KEGG
Compound Accessions.

labels Node labels to be used when needed

type node type, currently 4 types are supported: "gene","enzyme", "compound" and
"ortholog".

X x coordinate in the original KEGG pathway graph.

y y coordinate in the original KEGG pathway graph.

20 pathview

width node width in the original KEGG pathway graph.
height node height in the original KEGG pathway graph.

other columns columns of the mapped gene/compound data

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

mol.sum the auxillary molecular data mapper, id2eg, cpd2kegg etc the auxillary molecular ID
mappers, node. color the node color coder, pathview the main function, node. info the parser.

Examples

xml.file=system.file("extdata”, "hsa04110.xml"”, package = "pathview")
node.data=node.info(xml.file)
names(node.data)
data(gsel16873.d)
plot.data.gene=node.map(mol.data=gse16873.d[,1], node.data,
node. types="gene")
head(plot.data.gene)

pathview Pathway based data integration and visualization

Description

Pathview is a tool set for pathway based data integration and visualization. It maps and renders
user data on relevant pathway graphs. All users need is to supply their gene or compound data
and specify the target pathway. Pathview automatically downloads the pathway graph data, parses
the data file, maps user data to the pathway, and render pathway graph with the mapped data.
Pathview generates both native KEGG view and Graphviz views for pathways. keggview.native
and keggview.graph are the two viewer functions, and pathview is the main function providing a
unified interface to downloader, parser, mapper and viewer functions.

Usage

pathview(gene.data = NULL, cpd.data = NULL, pathway.id,

species = "hsa", kegg.dir = ".", cpd.idtype = "kegg", gene.idtype =
"entrez", gene.annotpkg = NULL, min.nnodes = 3, kegg.native = TRUE,
map.null = TRUE, expand.node = FALSE, split.group = FALSE, map.symbol =
TRUE, map.cpdname = TRUE, node.sum = "sum”, discrete=list(gene=FALSE,

pathview 21

cpd=FALSE), limit = list(gene = 1, cpd = 1), bins = list(gene = 10, cpd
= 10), both.dirs = list(gene = T, cpd = T), trans.fun = list(gene =
NULL, cpd = NULL), low = list(gene = "green", cpd = "blue"”), mid
list(gene = "gray”, cpd = "gray"), high = list(gene = "red”, cpd
"yellow"”), na.col = "transparent”, ...)

keggview.native(plot.data.gene = NULL, plot.data.cpd = NULL,
cols.ts.gene = NULL, cols.ts.cpd = NULL, node.data, pathway.name,
out.suffix = "pathview”", kegg.dir = ".", multi.state=TRUE, match.data =
TRUE, same.layer = TRUE, res = 300, cex = 0.25, discrete =
list(gene=FALSE, cpd=FALSE), limit= list(gene = 1, cpd = 1), bins =
list(gene = 10, cpd = 10), both.dirs =list(gene = T, cpd = T), low =
list(gene = "green", cpd = "blue”), mid = list(gene = "gray”, cpd =
"gray”), high = list(gene = "red”, cpd = "yellow"), na.col =
"transparent”, new.signature = TRUE, plot.col.key = TRUE, key.align =

ny,n

x", key.pos = "topright", ...)

keggview.graph(plot.data.gene = NULL, plot.data.cpd = NULL, cols.ts.gene
= NULL, cols.ts.cpd = NULL, node.data, path.graph, pathway.name,
out.suffix = "pathview”, pdf.size = c(7, 7), multi.state=TRUE,
same.layer = TRUE, match.data = TRUE, rankdir = c("LR", "TB")[1],
is.signal = TRUE, split.group = F, afactor = 1, text.width = 15, cex =
0.5, map.cpdname = FALSE, cpd.lab.offset = 1.0,

discrete=list(gene=FALSE, cpd=FALSE), limit = list(gene = 1, cpd = 1),
bins = list(gene = 10, cpd = 10), both.dirs = list(gene = T, cpd = T),
low = list(gene = "green”, cpd = "blue”), mid = list(gene = "gray", cpd

= "gray"), high = list(gene = "red”, cpd = "yellow"), na.col =
"transparent”, new.signature = TRUE, plot.col.key = TRUE, key.align =

"x", key.pos = "topright”, sign.pos = "bottomright”, ...)
Arguments
gene.data either vector (single sample) or a matrix-like data (multiple sample). Vector

should be numeric with gene IDs as names or it may also be character of gene
IDs. Character vector is treated as discrete or count data. Matrix-like data struc-
ture has genes as rows and samples as columns. Row names should be gene IDs.
Here gene ID is a generic concepts, including multiple types of gene, transcript
and protein uniquely mappable to KEGG gene IDs. KEGG ortholog IDs are also
treated as gene IDs as to handle metagenomic data. Check details for mappable
ID types. Default gene.data=NULL.

numeric, character, continuous

cpd.data the same as gene.data, excpet named with IDs mappable to KEGG compound
IDs. Over 20 types of IDs included in CHEMBL database can be used here.
Check details for mappable ID types. Default cpd.data=NULL. Note that gene.data
and cpd.data can’t be NULL simultaneously.

pathway.id character vector, the KEGG pathway ID(s), usually 5 digit, may also include the
3 letter KEGG species code.

22

species

kegg.dir

cpd.idtype

gene.idtype

gene.annotpkg

min.nnodes

kegg.native

map.null

expand.node

split.group

map . symbol

map . cpdname

pathview

character, either the kegg code, scientific name or the common name of the tar-
get species. This applies to both pathway and gene.data or cpd.data. When
KEGG ortholog pathway is considered, species="ko". Default species="hsa", it
is equivalent to use either "Homo sapiens" (scientific name) or "human" (com-
mon name).

character, the directory of KEGG pathway data file (.xml) and image file (.png).
Users may supply their own data files in the same format and naming convention
of KEGG’s (species code + pathway id, e.g. hsa04110.xml, hsa04110.png etc)

in this directory. Default kegg.dir="." (current working directory).

character, ID type used for the cpd.data. Default cpd.idtype="kegg" (include
compound, glycan and drug accessions).

character, ID type used for the gene.data, case insensitive. Default gene.idtype="entrez",

i.e. Entrez Gene, which are the primary KEGG gene ID for many common
model organisms. For other species, gene.idtype should be set to "KEGG" as
KEGG use other types of gene IDs. For the common model organisms (to check
the list, do: data(bods); bods), you may also specify other types of valid IDs.
To check the ID list, do: data(gene.idtype.list); gene.idtype.list.

character, the name of the annotation package to use for mapping between other

gene ID types including symbols and Entrez gene ID. Default gene.annotpkg=NULL.

"non non

integer, minimal number of nodes of type "gene","enzyme", "compound" or "or-
tholog" for a pathway to be considered. Default min.nnodes=3.

logical, whether to render pathway graph as native KEGG graph (.png) or using
graphviz layout engine (.pdf). Default kegg.native=TRUE.

logical, whether to map the NULL gene.data or cpd.data to pathway. When
NULL data are mapped, the gene or compound nodes in the pathway will be
rendered as actually mapped nodes, except with NA-valued color. When NULL
data are not mapped, the nodes are rendered as unmapped nodes. This argument
mainly affects native KEGG graph view, i.e. when kegg.native=TRUE. Default
map.null=TRUE.

logical, whether the multiple-gene nodes are expanded into single-gene nodes.
Each expanded single-gene nodes inherits all edges from the original multiple-

gene node. This option only affects graphviz graph view, i.e. when kegg.native=FALSE.

This option is not effective for most metabolic pathways where it conflits with
converting reactions to edges. Default expand.node=FLASE.

logical, whether split node groups are split to individual nodes. Each split mem-
ber nodes inherits all edges from the node group. This option only affects
graphviz graph view, i.e. when kegg.native=FALSE. This option also effects
most metabolic pathways even without group nodes defined orginally. For these
pathways, genes involved in the same reaction are grouped automatically when
converting reactions to edges unless split.group=TRUE. d split.group=FLASE.

logical, whether map gene IDs to symbols for gene node labels or use the graphic
name from the KGML file. This option is only effective for kegg.native=FALSE
or same.layer=FALSE when kegg.native=TRUE. For same.layer=TRUE when

kegg.native=TRUE, the native KEGG labels will be kept. Default map.symbol=TRUE.

logical, whether map compound IDs to formal names for compound node labels
or use the graphic name from the KGML file (KEGG compound accessions).

pathview 23

This option is only effective for kegg.native=FALSE. When kegg.native=TRUE,
the native KEGG labels will be kept. Default map.cpdname=TRUE.

node.sum character, the method name to calculate node summary given that multiple genes

non non

or compounds are mapped to it. Poential options include "sum","mean", "me-

non non

dian", "max", "max.abs" and "random". Default node.sum="sum".

discrete a list of two logical elements with "gene" and "cpd" as the names. This argu-
ment tells whether gene.data or cpd.data should be treated as discrete. Default
dsicrete=list(gene=FALSE, cpd=FALSE), i.e. both data should be treated as
continuous.

limit a list of two numeric elements with "gene" and "cpd" as the names. This ar-
gument specifies the limit values for gene.data and cpd.data when converting
them to pseudo colors. Each element of the list could be of length 1 or 2.
Length 1 suggests discrete data or 1 directional (positive-valued) data, or the
absolute limit for 2 directional data. Length 2 suggests 2 directional data. De-
fault limit=list(gene=1, cpd=1).

bins alist of two integer elements with "gene" and "cpd" as the names. This argument
specifies the number of levels or bins for gene.data and cpd.data when converting
them to pseudo colors. Default limit=list(gene=10, cpd=10).

both.dirs a list of two logical elements with "gene" and "cpd" as the names. This argu-
ment specifies whether gene.data and cpd.data are 1 directional or 2 directional
data when converting them to pseudo colors. Default limit=list(gene=TRUE,
cpd=TRUE).

trans. fun a list of two function (not character) elements with "gene" and "cpd" as the
names. This argument specifies whether and how gene.data and cpd.data are
transformed. Examples are 1og, abs or users’ own functions. Default limit=list(gene=NULL,
cpd=NULL).

low, mid, high each is a list of two colors with "gene" and "cpd" as the names. This argument
specifies the color spectra to code gene.data and cpd.data. When data are 1
directional (TRUE value in both.dirs), only mid and high are used to specify the
color spectra. Default spectra (low-mid-high) "green"-"gray"-"red" and "blue"-
"gray"-"yellow" are used for gene.data and cpd.data respectively. The values for
’low, mid, high’ can be given as color names (’red’), plot color index (2=red),
and HTML-style RGB, ("\W#FF0000"=red).

na.col color used for NA’s or missing values in gene.data and cpd.data. d na.col="transparent".
extra arguments passed to keggview.native or keggview.graph function.

special arguments for keggview.native or keggview.graph function.

plot.data.gene data.frame returned by node.map function for rendering mapped gene nodes, in-
cluding node name, type, positions (X, y), sizes (width, height), and mapped

gene.data. This data is also used as input for pseduo-color coding through
node.color function. Default plot.data.gene=NULL.

plot.data.cpd same as plot.data.gene function, except for mapped compound node data. d
plot.data.cpd=NULL. Default plot.data.cpd=NULL. Note that plot.data.gene and
plot.data.cpd can’t be NULL simultaneously.

cols.ts.gene vector or matrix of colors returned by node.color function for rendering gene.data.
Dimensionality is the same as the latter. Default cols.ts.gene=NULL.

24

cols.ts.cpd

node.data

pathway.name

out.suffix

multi.state

match.data
same. layer
res
cex

new.signature

plot.col.key

key.align

key.pos

sign.pos

path.graph

pathview

same as cols.ts.gene, except corresponding to cpd.data. d cols.ts.cpd=NULL.
Note that cols.ts.gene and cols.ts.cpd plot.data.gene can’t be NULL simultane-
ously.

list returned by node.info function, which parse KGML file directly or indirectly,
and extract the node data.

character, the full KEGG pathway name in the format of 3-letter species code
with 5-digit pathway id, eg "hsa04612".

character, the suffix to be added after the pathway name as part of the output
graph file. Sample names or column names of the gene.data or cpd.data are also
added when there are multiple samples. Default out.suffix="pathview".

logical, whether multiple states (samples or columns) gene.data or cpd.data
should be integrated and plotted in the same graph. Default match.data=TRUE.
In other words, gene or compound nodes will be sliced into multiple pieces cor-
responding to the number of states in the data.

logical, whether the samples of gene.data and cpd.data are paired. Default
match.data=TRUE. When let sample sizes of gene.data and cpd.data be m and
n, when m>n, extra columns of NA’s (mapped to no color) will be added to
cpd.data as to make the sample size the same. This will result in the smae num-
ber of slice in gene nodes and compound when multi.state=TRUE.

logical, control plotting layers: 1) if node colors be plotted in the same layer
as the pathway graph when kegg.native=TRUE, 2) if edge/node type legend be
plotted in the same page when kegg.native=FALSE.

The nominal resolution in ppi which will be recorded in the bitmap file, if a
positive integer. Also used for "units’ other than the default, and to convert points
to pixels. This argument is only effective when kegg.native=TRUE. Default
res=300.

A numerical value giving the amount by which plotting text and symbols should
be scaled relative to the default 1. Default cex=0.25 when kegg.native=TRUE,
cex=0.5 when kegg.native=FALSE.

logical, whether pathview signature is added to the pathway graphs. Default
new.signature=TRUE.

logical, whether color key is added to the pathway graphs. Default plot.col.key=
TRUE.

character, controlling how the color keys are aligned when both gene.data and
cpd.data are not NULL. Potential values are "x", aligned by x coordinates, and

nyn

"y", aligned by y coordinates. Default key.align="x".

character, controlling the position of color key(s). Potentail values are "bottom-
left", "bottomright", "topleft" and "topright". d key.pos="topright".

character, controlling the position of pathview signature. Only effective when
kegg.native=FALSE, Signature position is fixed in place of the original KEGG
signature when kegg.native=TRUE. Potentail values are "bottomleft", "bottom-

right", "topleft" and "topright". d sign.pos="bottomright".

a graph object parsed from KGML file, only effective when kegg.native=FALSE.

pathview 25

pdf.size a numeric vector of length 2, giving the width and height of the pathway graph
pdf file. Note that pdf width increase by half when same.layer=TRUE to accom-
modate legends. Only effective when kegg.native=FALSE. Default pdf.size=c(7,7).

rankdir character, either "LR" (left to right) or "TB" (top to bottom), specifying the path-
way graph layout direction. Only effective when kegg.native=FALSE. Default
rank.dir="LR".

is.signal logical, if the pathway is treated as a signaling pathway, where all the uncon-

nected nodes are dropped. This argument also affect the graph layout type, i.e.
"dot" for signals or "neato" otherwise. Only effective when kegg.native=FALSE.
Default is.signal=TRUE.

afactor numeric, node amplifying factor. This argument is for node size fine-tuning,
its effect is subtler than expected. Only effective when kegg.native=FALSE.
Default afctor=1.

text.width numeric, specifying the line width for text wrap. Only effective when kegg.native=
FALSE. Default text.width=15 (characters).

cpd.lab.offset numeric, specifying how much compound labels should be put above the default
position or node center. This argument is useful when map.cpdname=TRUE, i.e.
compounds are labelled by full name, which affects the look of compound nodes
and color. Only effective when kegg.native=FALSE. Default cpd.lab.offset=1.0.

Details

Pathview maps and renders user data on relevant pathway graphs. Pathview is a stand alone program
for pathway based data integration and visualization. It also seamlessly integrates with pathway
and functional analysis tools for large-scale and fully automated analysis. Pathview provides strong
support for data Integration. It works with: 1) essentially all types of biological data mappable to
pathways, 2) over 10 types of gene or protein IDs, and 20 types of compound or metabolite IDs, 3)
pathways for over 2000 species as well as KEGG orthology, 4) varoius data attributes and formats,
i.e. continuous/discrete data, matrices/vectors, single/multiple samples etc. To see mappable exter-
nal gene/protein IDs do: data(gene.idtype.list), to see mappable external compound related
IDs do: data(rn.list); names(rn.list). Pathview generates both native KEGG view and Graphviz
views for pathways. Currently only KEGG pathways are implemented. Hopefully, pathways from
Reactome, NCI and other databases will be supported in the future.

Value

From viersion 1.9.3, pathview can accept either a single pathway or multiple pathway ids. The
result returned by pathview function is a named list corresponding to the input pathway ids. Each
element (for each pathway itself is a named list, with 2 elements ("plot.data.gene", "plot.data.cpd").
Both elements are data.frame or NULL depends on the corresponding input data gene.data and
cpd.data. These data.frames record the plot data for mapped gene or compound nodes: rows are

mapped genes/compounds, columns are:

kegg.names standard KEGG IDs/Names for mapped nodes. It’s Entrez Gene ID or KEGG
Compound Accessions.

labels Node labels to be used when needed.

all.mapped All molecule (gene or compound) IDs mapped to this node.

26 pathview

type node type, currently 4 types are supported: "gene","enzyme", "compound" and
"ortholog".

X x coordinate in the original KEGG pathway graph.

y y coordinate in the original KEGG pathway graph.

width node width in the original KEGG pathway graph.

height node height in the original KEGG pathway graph.

other columns columns of the mapped gene/compound data and corresponding pseudo-color
codes for individual samples

The results returned by keggview.native and codekeggview.graph are both a list of graph plotting
parameters. These are not intended to be used externally.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

download.kegg the downloader, node. info the parser, node.map and node.color the mapper.

Examples

#load data
data(gse16873.d)
data(demo.paths)

#KEGG view: gene data only

i<-1

pv.out <- pathview(gene.data = gsel16873.d[, 1], pathway.id =
demo.paths$sel.paths[i], species = "hsa”, out.suffix = "gsel6873",
kegg.native = TRUE)

str(pv.out)

head(pv.out$plot.data.gene)

#result PNG file in current directory

#Graphviz view: gene data only

pv.out <- pathview(gene.data = gsel16873.d[, 1], pathway.id =
demo.paths$sel.paths[i], species = "hsa”, out.suffix = "gsel6873",
kegg.native = FALSE, sign.pos = demo.paths$spos[i])

#result PDF file in current directory

#KEGG view: both gene and compound data
sim.cpd.data=sim.mol.data(mol. type="cpd”, nmol=3000)
i<-3

print(demo.paths$sel.paths[i])

pathview-internal 27

pv.out <- pathview(gene.data = gse16873.d[, 1], cpd.data = sim.cpd.data,

pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix =

"gse16873.cpd”, keys.align = "y", kegg.native = TRUE, key.pos = demo.paths$kpos1[i])
str(pv.out)

head(pv.out$plot.data.cpd)

#multiple states in one graph
set.seed(10)
sim.cpd.data2 = matrix(sample(sim.cpd.data, 18000,
replace = TRUE), ncol = 6)
pv.out <- pathview(gene.data = gsel16873.d[, 1:3],
cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],
species = "hsa", out.suffix = "gse16873.cpd.3-2s", keys.align = "y",
kegg.native = TRUE, match.data = FALSE, multi.state = TRUE, same.layer = TRUE)
str(pv.out)
head(pv.out$plot.data.cpd)

#result PNG file in current directory

##more examples of pathview usages are shown in the vignette.

pathview-internal Internal functions

Description

Not intended to be called by the users.

Details

These functions are not to be called by the user directly.

Functions parseReaction2, parseKGML2, KEGGpathway2Graph2 and parseKGML2Graph?2 parse
KEGG pathways from KGML files. Function subtypeDisplay.kedge and data KEGGEdgeSubtype
extact and store edge subtypes and corresponding rendering information. All these functions/data
were modified from the original copies in KEGGgraph package.

Function kegg.legend generates legend for KEGG edge and node types. Function pathview.stamp
generates pathview sisgnature on graphs.

Function colorpanel2 comes from gplots package function colorpanel.

Functions max.abs and random among others are method to summarize data at molecular level or
node level when multiple items mapping to the same ID/node.

Function circles, ellipses and sliced.shapes draw KEGG nodes in colored shapes (circles and el-
lipses).

Functions deComp and rownorm were written by Weijun Luo, the author of gage package.

28

sim.mol.data

sim.mol.data

Simulate molecular data for pathview experiment

Description

The molecular data simulator generates either gene.data or cpd.data of different ID types, molecule
numbers, sample sizes, either continuous or discrete.

Usage

sim.mol.data(mol.type = c("gene", "gene.ko", "cpd”)[1]1, id.type = NULL,
species="hsa", discrete = FALSE, nmol = 1000, nexp = 1, rand.seed=100)

Arguments

mol . type

id.type

species

discrete

nmol

nexp

rand.seed

character of length 1, specifing the molecular type, either "gene" (including tran-
scripts, proteins), or "gene.ko" (KEGG ortholog genes, as defined in KEGG or-
tholog pathways), or "cpd" (including metabolites, glycans, drugs). Note that
KEGG ortholog gene are considered "gene" in function pathview. Default
mol.type="gene".

character of length 1, the molecular ID type. When mol.type="gene", proper
ID types include "KEGG" and "ENTREZ" (Entrez Gene). Multiple other ID
types are also valid When species is among 19 major species fully annotated in
Bioconductor, e.g. "hsa" (human), "mmu" (mouse) etc, check:

data(gene.idtype.bods); gene.idtype.bods for other valid ID types. When
mol.type="cpd", check data(cpd.simtypes); cpd.simtypes for valid ID types.
Default id.type=NULL, then "Entrez" and "KEGG COMPOUND accession"
will be assumed for mol.type = "gene" or "cpd".

character, either the kegg code, scientific name or the common name of the tar-
get species. This is only effective when mol.type = "gene". Setting species="ko"
is equilvalent to mol.type="gene.ko". Default species="hsa", equivalent to ei-
ther "Homo sapiens" (scientific name) or "human" (common name). Gene data
id.type has multiple other choices for 19 major research species, for details do:
data(gene.idtype.bods); gene.idtype.bods. When other species are spec-
ified, gene id.type is limited to "KEGG" and "ENTREZ".

logical, whether to generate discrete or continuous data. d discrete=FALSE,
otherwise, mol.data will be a charactor vector of molecular IDs.

integer, the target number of different molecules. Note that the specified id.type
may not have as many different IDs as nmol. In this case, all IDs of id.type are
used.

integer, the sample size or the number of columns in the result simulated data.

numeric of length 1, the seed number to start the random sampling process.
This argumemnt makes the simulation reproducible as long as its value keeps
the same. Default rand.seed=100.

sim.mol.data 29

Details

This function is written mainly for simulation or experiment with pathview package. With the
simulated molecular data, you may check whether and how pathview works for molecular data of
different types, IDs, format or sample sizes etc. You may also generate both gene.data and cpd.data
and check data pathway based integration with pathview.

Value

either vector (single sample) or a matrix-like data (multiple sample), depends on the value of nexp.
Vector should be numeric with molecular IDs as names or it may also be character of molecular IDs
depending on the value of discrete. Matrix-like data structure has molecules as rows and samples
as columns. Row names should be molecular IDs.

This returned data can be used directly as gene.data or cpd.data input of pathview main function.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References

Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285

See Also

node.map the node data mapper function. mol.sum the auxillary molecular data mapper, id2eg,
cpd2kegg etc the auxillary molecular ID mappers, pathview the main function,

Examples

#continuous compound data

cpd.data.c=sim.mol.data(mol. type="cpd"”, nmol=3000)

#discrete compound data

cpd.data.d=sim.mol.data(mol. type="cpd", nmol=3000, discrete=TRUE)

head(cpd.data.c)

head(cpd.data.d)

#continuous compound data named with "CAS Registry Number”

cpd.cas <- sim.mol.data(mol.type = "cpd”, id.type = "CAS Registry Number”, nmol = 10000)

#gene data with two samples
gene.data.2=sim.mol.data(mol.type="gene", nmol=1000, nexp=2)
head(gene.data.?2)

#KEGG ortholog gene data
ko.data=sim.mol.data(mol. type="gene.ko", nmol=5000)

30 wordwrap

wordwrap Wrap or break strings into lines of specified width

Description

strfit does hard wrapping, i.e. break within long words, wordwrap is a wrapper of strfit but also
provides soft wrapping option, i.e. break only between words, and keep long words intact.

Usage

wordwrap(s, width = 20, break.word = FALSE)
strfit(s, width = 20)

Arguments
s characcter, strings to be wrapped or broken down.
width integer, target line width in terms of number of characters. d width=20.
break.word logical, whether to break within words or only between words as to fit the line
width. Default break.word=FALSE, i.e. keep words intact and only break be-
tween words. Therefore, some line may exceed the width limit.
Details

These functions are called as to wrap long node labels into shorter lines on pathway graphs in
keggview. graph function (when keggview.native=FALSE). They are equally useful for wrapping
long labels in other types of graphs or output formats.

Value

character of the same length of s except that each element has been wrapped softly or hardly.

Author(s)

Weijun Luo <luo_weijun@yahoo.com>

References
Luo, W. and Brouwer, C., Pathview: an R/Bioconductor package for pathway based data integration
and visualization. Bioinformatics, 2013, 29(14): 1830-1831, doi: 10.1093/bioinformatics/btt285
See Also

strwrap in R base.

wordwrap

Examples

n

long.str="(S)-Methylmalonate semialdehyde
wri=wordwrap(long.str, width=15)

#long word intact

cat(wrl, sep="\n")

wr2=strfit(long.str, width=15)

#long word split

cat(wr2, sep="\n")

31

Index

+ datasets
cpd.accs, 4
demo.data, 7
korg, 12
* internal
pathview-internal, 27
+ package
pathview-package, 2

bods (korg), 12

circles (pathview-internal), 27
col.key (node.color), 15
colorpanel?2 (pathview-internal), 27
combineKEGGnodes, 3, 18
cpd.accs, 4

cpd.names (cpd.accs), 4
cpd.simtypes (cpd.accs), 4
cpd2kegg, 10, 12, 14, 20, 29
cpd2kegg (cpdidmap), 5
cpdidmap, 5

cpdkegg2name (cpdidmap), 5
cpdname2kegg (cpdidmap), 5

demo.data, 7
demo.paths (demo.data), 7
download.kegg, 7, 12, 26

eg2id, 6,9
ellipses (pathview-internal), 27

gene.idtype.bods (cpd.accs), 4
gene.idtype.list (cpd.accs), 4
geneannot.map (eg2id), 9
gse16873.d (demo.data), 7

id2eg, 6, 14, 20, 29
id2eg (eg2id), 9

kegg.legend (pathview-internal), 27
kegg.met (cpd.accs), 4

32

kegg.species.code, 11

KEGGEdgeSubtype (pathview-internal), 27

KEGGpathway2Graph2 (pathview-internal),
27

keggview.graph, 17

keggview.graph (pathview), 20

keggview.native, 17

keggview.native (pathview), 20

ko.ids (cpd.accs), 4

korg, 12,12

max.abs (pathview-internal), 27
mol.sum, 6, 10, 13, 20, 29

node.color, 15, 20, 26
node.info, 4, 8, 17, 20, 26
node.map, 6, 10, 14, 17, 18, 26, 29

parseKGML2.R (pathview-internal), 27
parseKGML2Graph?2 (pathview-internal), 27
parseReaction2 (pathview-internal), 27
paths.hsa (demo.data), 7
pathview, 8, 14, 18, 20, 20, 29
pathview-internal, 27
pathview-package, 2

pathview.stamp (pathview-internal), 27

random (pathview-internal), 27
reaction2edge, I8

reaction2edge (combineKEGGnodes), 3
rn.list (cpd.accs), 4

sim.mol.data, 28

sliced.shapes (pathview-internal), 27

strfit (wordwrap), 30

subtypeDisplay.kedge
(pathview-internal), 27

wordwrap, 30

	pathview-package
	combineKEGGnodes
	cpd.accs
	cpdidmap
	demo.data
	download.kegg
	eg2id
	kegg.species.code
	korg
	mol.sum
	node.color
	node.info
	node.map
	pathview
	pathview-internal
	sim.mol.data
	wordwrap
	Index

