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addLegend Adds a legend

Description

Adds a legend to a plot2D figure.

Usage

addLegend(
object,
fcol = "markers”,
where = c("bottomleft”, "bottom”, "bottomright”, "left", "topleft”, "top"”, "topright",
"right”, "center”, "other"),
col,
bg,
palette = "light",
t =20.3,
pch,
lwd,
bty = "n",
unknown = "unknown",



addLegend

Arguments

object
fcol

where

col

bg
palette

pch
lwd
bty
unknown

Details

An instance of class MSnSet

Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers.

One of "bottomleft” (default), "bottomright”, "topleft”, "topright"” or
"other” defining the location of the legend. "other” opens a new graphics
device, while the other locations are passed to legend.

A character defining point colours.
background (fill) color for the open plot symbols given by pch = 21: 25.

A character defining which palette colour theme to use, can either defined as
"light" (default) or "dark".

A numeric between 0 and 1. Defining the degree of lightening of the colours in
the palette. Default is 0.3.

A character of appropriate length defining point character.
A numeric defining the line width for drawing symbols. Default is 1.5.
Box type, as in legend. Default is set to "n".

A character (default is "unknown") defining how proteins of unknown/un-
labelled localisation are labelled.

Additional parameters passed to legend.

The function has been updated in version 1.3.6 to recycle the default colours when more organelle
classes are provided. See plot2D for details.

Value

Invisibly returns NULL

Author(s)

Laurent Gatto, Lisa Breckels

Examples

## Load an example MSnSet
library("pRolocdata”)

data(dunkley2006)

## Adding a legend inside a plot
plot2D(dunkley2006)
addLegend(dunkley2006, where = "topleft")

## Adding a legend outside a plot
par(mfrow = c(1, 2))
plot2D(dunkley2006)
addLegend(dunkley2006, where = "other")



6 addMarkers

addMarkers Adds markers to the data

Description

The function adds a "markers’ feature variable. These markers are read from a comma separated
values (csv) spreadsheet file. This markers file is expected to have 2 columns (others are ignored)
where the first is the name of the marker features and the second the group label. Alternatively, a
markers named vector as provided by the pRolocmarkers function can also be used.

Usage
addMarkers(object, markers, mcol = "markers"”, fcol, verbose = TRUE)
Arguments
object An instance of class MSnSet.
markers A character with the name the markers’ csv file or a named character of mark-
ers as provided by pRolocmarkers.
mcol A character of length 1 defining the feature variable label for the newly added
markers. Default is "markers”.
fcol An optional feature variable to be used to match against the markers. If missing,
the feature names are used.
verbose A logical indicating if number of markers and marker table should be printed
to the console.
Details

It is essential to assure that featureNames(object) (or fcol, see below) and marker names (first
column) match, i.e. the same feature identifiers and case fold are used.

Value

A new instance of class MSnSet with an additional markers feature variable.

Author(s)

Laurent Gatto

See Also

See pRolocmarkers for a list of spatial markers and markers for details about markers encoding.
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Examples

library("pRolocdata”)

data(dunkley2006)

atha <- pRolocmarkers("atha")

try(addMarkers(dunkley2006, atha)) ## markers already exists
fData(dunkley2006)$markers.org <- fData(dunkley2006)$markers
fData(dunkley2006)$markers <- NULL

marked <- addMarkers(dunkley2006, atha)

fvarLabels(marked)

## if 'makers' already exists

marked <- addMarkers(marked, atha, mcol = "markers2")
fvarLabels(marked)
stopifnot(all.equal(fData(marked)$markers, fData(marked)$markers2))
plot2D(marked)

addLegend(marked, where = "topleft”, cex = .7)

AnnotationParams-class
Class "AnnotationParams”

Description

Class to store annotation parameters to automatically query a Biomart server, retrieve relevant an-
notation for a set of features of interest using, for example getGOFromFeatures and makeGoSet.

Objects from the Class

Objects can be created and set with the setAnnotationParams function. Object are created by call-

ing without any arguments setAnnotationParams(), which will open an interactive interface. De-
pending on the value of "many.graphics"” option, a graphical of a text-based menu will open (the

text interface can be forced by setting the graphics argument to FALSE: setAnnotationParams(graphics
= FALSE)). The menu will allow to select the species of interest first and the type of features (EN-
SEMBL gene identifier, Entrez id, ...) second.

The species that are available are those for which ENSEMBL data is available in Biomart and have
a set of attributes of interest available. The compatible identifiers for downstream queries are then
automatically filtered and displayed for user selection.

It is also possible to pass a parameter inputs, a character vector of length 2 containing a pattern
uniquely matching the species of interest (in position 1) and a patterns uniquely matching the feature
types (in position 2). If the matches are not unique, an error will be thrown.

A new instance of the AnnotationParams will be created to enable easy and automatic query of the
Mart instance. The instance is invisibly returned and stored in a global variable in the pRoloc pack-
age’s private environment for automatic retrieval. If a variable containing an AnnotationParams in-
stance is already available, it can be set globally by passing it as argument to the setAnnotationParams
function. Globally set AnnotationParams instances can be accessed with the getAnnotationParams
function.

See the pRoloc-theta vignette for details.
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Slots

mart: Object of class "Mart” from the biomaRt package.

martname: Object of class "character"” with the name of the mart instance.

dataset: Object of class "character” with the data set of the mart instance.

filter: Object of class "character"” with the filter to be used when querying the mart instance.
date: Object of class "character” indicating when the current instance was created.

biomaRtVersion: Object of class "character” with the biomaRt version used to create the AnnotationParams
instance.

.__classVersion__: Object of class "Versions” with the version of the AnnotationParams

class of the current instance.

Methods

show signature(object = "AnnotationParams"”): to display objects.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

See Also

The pRoloc-theta vignette.

Examples

#data(andy2011params)
#data(dunkley2006params)
#andy2011params
#dunkley2006params

#try(setAnnotationParams(inputs = c("nomatch1”, "nomatch2")))
#setAnnotationParams(inputs = c("Human genes",

# "UniProtKB/Swiss-Prot ID"))
#getAnnotationParams()

checkFeatureNamesOverlap
Check feature names overlap

Description

Checks the marker and unknown feature overlap of two MSnSet instances.

Usage

checkFeatureNamesOverlap(x, y, fcolx = "markers", fcoly, verbose = TRUE)



checkFvarOverlap

Arguments

X

Yy
fcolx

fcoly
verbose

Value
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An MSnSet instance.
An MSnSet instance.
The feature variable to separate unknown (fData(y) $coly == "unknown") from

the marker features in the x object.
As fcolx, for the y object. If missing, the value of fcolx is used.
If TRUE (default), the overlap is printed out on the console.

Invisibly returns a named list of common markers, unique x markers, unique y markers in, common
unknowns, unique x unknowns and unique y unknowns.

Author(s)

Laurent Gatto

Examples

library(”"pRolocdata”)

data(andy2011)

data(andy2011goCC)

checkFeatureNamesOverlap(andy2011, andy2011goCC)
featureNames(andy2011goCC)[1] <- "ABC"

res <- checkFeatureNamesOverlap(andy2011, andy2011goCC)

res$markersX
res$markersY

checkFvarOverlap

Compare a feature variable overlap

Description

Extracts qualitative feature variables from two MSnSet instances and compares with a contingency

table.
Usage
checkFvarOverlap(x, y, fcolx = "markers", fcoly, verbose = TRUE)
Arguments
X An MSnSet instance.
y An MSnSet instance.
fcolx The feature variable to separate unknown (fData(y) $coly == "unknown") from
the marker features in the x object.
fcoly As fcolx, for the y object. If missing, the value of fcolx is used.
verbose If TRUE (default), the contingency table of the the feature variables is printed out.
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Value
Invisibly returns a named list with the values of the diagonal, upper and lower triangles of the
contingency table.

Author(s)

Laurent Gatto

Examples

library("pRolocdata”)

data(dunkley2006)
res <- checkFvarOverlap(dunkley2006, dunkley2006,
"markers”, "markers.orig")
str(res)
chi2-methods The PCP ’chi square’ method
Description

In the original protein correlation profiling (PCP), Andersen et al. use the peptide normalised pro-
files along gradient fractions and compared them with the reference profiles (or set of profiles) by

€Tr;—aT 2 . . . . . .
computing Chi? values, Z(‘;Ei”), where x; is the normalised value of the peptide in fraction i
and x,, is the value of the marker (from Wiese et al., 2007). The protein C'hi? is then computed as
the median of the peptide C'hi? values. Peptides and proteins with similar profiles to the markers
will have small C'hi? values.

The chi2 methods implement this idea and compute such Chi*2 values for sets of proteins.

Methods

signature(x = "matrix”, y = "matrix", method = "character”, fun="NULL", na.rm="logical")
Compute nrow(x) times nrow(y) Chi? values, for each x, y feature pair. Method is one of
"Andersen2003" or "Wiese2007"; the former (default) computed the Chi? as sum(y-x)*2/length(x),
while the latter uses sum( (y-x)*2/x). na.rmdefines if missing values (NA and NaN) should be
removed prior to summation. fun defines how to summarise the Chi? values; default, NULL,
does not combine the C'hi? values.

signature(x = "matrix”, y = "numeric”, method = "character”, na.rm= "logical”) Computes
nrow(x) Chi? values, for all the (z;,y) pairs. See above for the other arguments.

signature(x = "numeric”, y = "matrix"”, method = "character”, na.rm= "logical”) Computes
nrow(y) Chi? values, for all the (x,y;) pairs. See above for the other arguments.

signature(x = "numeric”, y = "numeric”, method = "character”, na.rm= "logical”) Computes
the C'hi? value for the (z,y) pairs. See above for the other arguments.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>
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References
Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P. et al., Proteomic characterization of the
human centrosome by protein correlation profiling. Nature 2003, 426, 570 - 574.

Wiese, S., Gronemeyer, T., Ofman, R., Kunze, M. et al., Proteomics characterization of mouse
kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell.
Proteomics 2007, 6, 2045 - 2057.

See Also

empPvalues

Examples

mrk <- rnorm(6)

prot <- matrix(rnorm(60), ncol = 6)
chi2(mrk, prot, method = "Andersen2003")
chi2(mrk, prot, method = "Wiese2007")

pepmark <- matrix(rnorm(18), ncol = 6)

pepprot <- matrix(rnorm(60), ncol = 6)

chi2(pepmark, pepprot)

chi2(pepmark, pepprot, fun = sum)
classWeights Calculate class weights

Description

Calculates class weights to be used for parameter optimisation and classification such as svmOptimisation
or svmClassification - see the pRoloc tutorial vignette for an example. The weights are calcu-
lated for all non-unknown classes the inverse of the number of observations.

Usage

classWeights(object, fcol = "markers")
Arguments

object An instance of class MSnSet

fcol The name of the features to be weighted
Value

A table of class weights

Author(s)

Laurent Gatto
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Examples

library(”"pRolocdata")
data(hyperLOPIT2015)
classWeights(hyperLOPIT2015)
data(dunkley2006)
classWeights(dunkley2006)

clustDist Pairwise Distance Computation for Protein Information Sets

Description

This function computes the mean (normalised) pairwise distances for pre-defined sets of proteins.

Usage

clustDist(object, k = 1:5, fcol = "GOAnnotations”, n = 5, verbose = TRUE, seed)

Arguments
object An instance of class "MSnSet".
k The number of clusters to try fitting to the protein set. Defaultis k = 1:5.
fcol The feature meta-data containing matrix of protein sets/ marker definitions. De-
fault is GOAnnotations.
n The minimum number of proteins per set. If protein sets contain less than n
instances they will be ignored. Defualt is 5.
verbose A logical defining whether a progress bar is displayed.
seed An optional seed for the random number generator.
Details

The input to the function is a MSnSet dataset containing a matrix appended to the feature data slot
identifying the membership of protein instances to a pre-defined set(s) e.g. a specific Gene Ontology
term etc.

For each protein set, the clustDist function (i) extracts all instances belonging to the set, (ii)
using the kmeans algorithm fits and tests k = ¢(1:5) (default) cluster components to each set, (iii)
calculates the mean pairwise distance for each k tested.

Note: currently distances are calcualted in Euclidean space, but other distance metrics will be sup-
ported in the future).

The output is a list of ClustDist objects, one per information cluster. The ClustDist class sum-
marises the algorithm information such as the number of k’s tested for the kmeans, and mean and
normalised pairwise Euclidean distances per numer of component clusters tested. See ?ClustDist
for more details.
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Value

An instance of "ClustDistList” containing a "ClustDist" instance for every protein set, which
summarises the algorithm information such as the number of k’s tested for the kmeans, and mean
and normalised pairwise Euclidean distances per numer of component clusters tested.

Author(s)
Lisa Breckels

See Also

For class definitions see "ClustDistList"” and "ClustDist".

Examples

library(pRolocdata)

data(dunkley2006)

## Convert annotation data e.g. markers, to a matrix e.g. MM
xx <- mrkVecToMat(dunkley2006, vfcol = "markers"”", mfcol = "MM")
## get distances for protein sets

dd <- clustDist(xx, fcol = "MM" 6 k = 1:3)

## plot clusters for first 'ClustDist' object

## in the 'ClustDistList'

plot(dd[[11], xx)

## plot normalised distances for all protein sets
plot(dd)

## plot mean distances for all protein sets
plot(dd, method = "mean"”)

##' ## plot raw distances for all protein sets
plot(dd, method = "raw")

## Extract normalised distances

## Normalisation factor default is n*1/3

minDist <- getNormDist(dd)

## Get new order according to lowest distance

o <- order(minDist)

## Re-order annotations

fData(xx)$MM <- fData(xx)$MM[, o]

if (interactive()) {

pRolocVis(xx, fcol = "MM")

3

ClustDist-class Class "ClustDist”

Description

The ClustDist summaries algorithm information, from running the clustDist function, such as
the number of k’s tested for the kmeans, and mean and normalised pairwise (Euclidean) distances
per numer of component clusters tested.
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Objects from the Class

Object of this class are created with the clustDist function.

Slots

k: Object of class "numeric” storing the number of k clusters tested.
dist: Object of class "1ist" storing the list of distance matrices.
term: Object of class "character"” describing GO term name.

nrow: Object of class "numeric” showing the number of instances in the set

ClustDist-class

clustsz: Object of class "1ist” describing the number of instances for each cluster for each k
tested

components: Object of class "vector” storing the class membership of each protein for each k
tested.

fcol: Object of class "character” showing the feature column name in the corresponding MSnSet
where the protein set information is stored.

Methods

plot Plots the kmeans clustering results.

show

Author(s)

Shows the object.

Lisa M Breckels <Ims79 @cam.ac.uk>

Examples

showClass("ClustDist")

lib
dat

##
XX

##
dd

##
XX
XX

##
dd

#H#
##
plo

rary(pRolocdata)
a(dunkley2006)

Convert annotation data e.g. markers, to a matrix e.g. MM
<- mrkVecToMat (dunkley2006, vfcol = "markers”, mfcol = "MM")

get distances for protein sets

<- clustDist(xx, fcol = "MM", k = 1:3)
filter
<- filterMinMarkers(xx, n = 50, fcol = "MM")

.25, fcol = "MM")

<- filterMaxMarkers(xx, p

get distances for protein sets
<- clustDist(xx, fcol = "MM")

plot clusters for first 'ClustDist' object
in the 'ClustDistList'
t(dd[[11], xx)
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## plot distances for all protein sets
plot(dd)

ClustDistList-class Storing multiple ClustDist instances

Description

A class for storing lists of ClustDist instances.

Objects from the Class

Object of this class are created with the clustDist function.

Slots

x: Object of class 1ist containing valid ClustDist instances.

log: Object of class 1ist containing an object creation log, containing among other elements the
call that generated the object.

.__classVersion__: The version of the instance. For development purposes only.

Methods
"[[" Extracts a single ClustDist at position.
"[" Extracts one of more ClustDists as ClustDistList.
length Returns the number of ClustDists.
names Returns the names of ClustDists, if available. The replacement method is also available.
show Display the object by printing a short summary.

lapply(x, FUN, ...) Apply function FUN to each element of the input x. If the application of FUN
returns and ClustDist, then the return value is an ClustDistList, otherwise a list.

plot Plots a boxplot of the distance results per protein set.

Author(s)

Lisa M Breckels <lms79 @cam.ac.uk>

Examples

library(pRolocdata)
data(dunkley2006)

## Convert annotation data e.g. markers, to a matrix e.g. MM
xx <- mrkVecToMat(dunkley2006, vfcol = "markers"”, mfcol = "MM")

## get distances for protein sets
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dd <- clustDist(xx, fcol = "MM", k = 1:3)

## filter
xx <- filterMinMarkers(xx, n = 50, fcol = "MM")
xx <- filterMaxMarkers(xx, p = .25, fcol = "MM")

## get distances for protein sets
dd <- clustDist(xx, fcol = "MM")

## plot distances for all protein sets
plot(dd)

names (dd)

## Extract a sub-list of ClustDist objects

dd[1]
## Extract 1st ClustDist object
dd[[1]]
Deprecated pRoloc Deprecated and Defunct
Description

The function, class, or data object you have asked for has been deprecated or made defunct.
Deprecated: minClassScore; use the replacement getPredictions
Defunct:

Deprecated functions are provided for compatibility with older versions of the pRoloc package
only, and will be defunct at the next release.

empPvalues Estimate empirical p-values for Chi”2 protein correlations.

Description

Andersen et al. (2003) used a fixed C'hi? threshold of 0.05 to identify organelle-specific candi-
dates. This function computes empirical p-values by permutation the markers relative intensities
and computed null Chi? values.

Usage

empPvalues(marker, corMatrix, n = 100, ...)



fDataToUnknown

Arguments

marker

corMatrix

Value
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A numerics with markers relative intensities.

A matrixof nrow(corMatrix) protein relative intensities to be compares against
the marker.

The number of iterations.

Additional parameters to be passed to chi2.

A numeric of length nrow(corMatrix).

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

References

Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P. et al., Proteomic characterization of the
human centrosome by protein correlation profiling. Nature 2003, 426, 570 - 574.

See Also

chi2 for Chi? calculation.

Examples

set.seed(1)

mrk <- rnorm(6, 5, 1)
prot <- rbind(matrix(rnorm(120, 5, 1), ncol = 6),

mrk + rnorm(6))

mrk <- mrk/sum(mrk)
prot <- prot/rowSums(prot)
empPvalues(mrk, prot)

fDataToUnknown

Update a feature variable

Description

This function replaces a string or regular expression in a feature variable using the sub function.

Usage

fDataToUnknown(object, fcol = "markers”, from = "*$", to = "unknown"”, ...)
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Arguments
object An instance of class MSnSet.
fcol Feature variable to be modified. Default is "markers”. If NULL, all feature
variables will updated.
from A character defining the string or regular expression of the pattern to be re-
placed. Default is the empty string, i.e. the regular expression "*$"”. See sub
for details. If NA, then NA values are replaced by to.
to A replacement for matched pattern. Default is "unknown”. See sub for details.
Additional arguments passed to sub.
Value

An updated MSnSet.

Author(s)

Laurent Gatto

Examples

library(”"pRolocdata")
data(dunkley2006)
getMarkers(dunkley2006, "markers")
dunkley2006 <- fDataToUnknown(dunkley2006,
from = "unknown"”, to = "unassigned")
getMarkers(dunkley2006, "markers")

filterBinMSnSet Filter a binary MSnSet

Description

Removes columns or rows that have a certain proportion or absolute number of 0 values.

Usage
filterBinMSnSet(object, MARGIN = 2, t, q, verbose = TRUE)

Arguments
object An MSnSet
MARGIN 1 or 2. Default is 2.
t Rows/columns that have t or less 1s, it will be filtered out. When t and q are
missing, defaultis touse t = 1.
q If a row has a higher quantile than defined by q, it will be filtered out.

verbose A logical defining of a message is to be printed. Default is TRUE.
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Value

A filtered MSnSet.

Author(s)

Laurent Gatto

See Also

zerosInBinMSnSet, filterZeroCols, filterZeroRows.

Examples

set.seed(1)

m <- matrix(sample(@:1, 25, replace=TRUE), 5)
ml1, 1<-0

m[, 1] <- 0

rownames(m) <- colnames(m) <- letters[1:5]

fd <- data.frame(row.names = letters[1:5])

X <- MSnSet(exprs = m, fData = fd, pData = fd)
exprs(x)

## Remove columns with no 1s
exprs(filterBinMSnSet(x, MARGIN = 2, t = 0))
## Remove columns with one 1 or less
exprs(filterBinMSnSet(x, MARGIN = 2, t = 1))
## Remove columns with two 1s or less
exprs(filterBinMSnSet(x, MARGIN = 2, t = 2))
## Remove columns with three 1s
exprs(filterBinMSnSet(x, MARGIN = 2, t = 3))
## Remove columns that have half or less of 1s
exprs(filterBinMSnSet(x, MARGIN = 2, q = 0.5))
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filterMaxMarkers Removes class/annotation information from a matrix of candidate
markers that appear in the fData.

Description

Removes annotation information that contain more that a certain number/percentage of proteins

Usage

filterMaxMarkers(object, n, p = 0.2, fcol = "GOAnnotations”, verbose = TRUE)
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Arguments

object

n

p

fcol

verbose

Value

filterMinMarkers

An instance of class MSnSet.
Maximum number of proteins allowed per class/information term.

Maximum percentage of proteins per column. Default is 0.2 i.e. remove columns
that have information for greater than 20 of the total number of proteins in the
dataset (note: this is useful for example, if information is GO terms, for remov-
ing very general and uninformative terms).

The name of the matrix of marker information. Default is GOAnnotations.

Number of marker candidates retained after filtering.

An updated MSnSet

See Also

filterMinMarkers and example therein.

filterMinMarkers

Removes class/annotation information from a matrix of candidate
markers that appear in the fData.

Description

Removes annotation information that contain less that a certain number/percentage of proteins

Usage

filterMinMarkers(object, n = 10, p, fcol = "GOAnnotations"”, verbose = TRUE)

Arguments
object
n

p
fcol

verbose

Value

An instance of class MSnSet.

Minimum number of proteins allowed per column. Default is 10.
Minimum percentage of proteins per column.

The name of the matrix of marker information. Default is GOAnnotations.

Number of marker candidates retained after filtering.

An updated MSnSet.

Author(s)
Lisa M Breckels
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Examples

library(pRolocdata)
data(dunkley2006)

xx <- dunkley2006

## create a matrix of markers

xx <- mrkVecToMat(xx, vfcol = "markers"”, mfcol = "Markers")
## Remove marker classes with less than 15 members, from matrix of markers
xx <- filterMinMarkers(xx, n = 15, fcol = "Markers")
## Remove marker classes with more than 50 members, from matrix of markers
xx <- filterMaxMarkers(xx, p = .2, fcol = "Markers")
filterZeroCols Remove 0 columns/rows
Description

Removes all assay data columns/rows that are composed of only 0, i.e. have a colSum/rowSum of 0.

Usage

filterZeroCols(object, verbose = TRUE)

filterZeroRows(object, verbose = TRUE)

Arguments

object A MSnSet object.

verbose Print a message with the number of filtered out columns/row (if any).

Value

An MSnSet.

Author(s)

Laurent Gatto

Examples

library("pRolocdata”)
data(andy2011goCC)
any(colSums(exprs(andy2011goCC)) == @)
exprs(andy2011goCC)[, 1:5] <- @

ncol (andy2011goCC)

ncol (filterZeroCols(andy2@11goCC))
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GenRegRes-class Class "GenRegRes" and "ThetaRegRes"

Description

Regularisation framework containers.

Objects from the Class

Object of this class are created with the respective regularisation function: knnOptimisation,
svmOptimisation, plsdaOptimisation, knntlOptimisation, ...

Slots

algorithm: Object of class "character” storing the machine learning algorithm name.
hyperparameters: Object of class "1ist"” with the respective algorithm hyper-parameters tested.

design: Object of class "numeric” describing the cross-validation design, the test data size and
the number of replications.

log: Object of class "1ist"” with warnings thrown during the hyper-parameters regularisation.
seed: Object of class "integer” with the random number generation seed.

results: Object of class "matrix” of dimenstions times (see design) by number of hyperpa-
rameters + 1 storing the macro F1 values for the respective best hyper-parameters for each
replication.

f1Matrices: Object of class "1ist"” with respective times cross-validation F1 matrices.
cmMatrices: Object of class "1ist"” with respective times contingency matrices.
testPartitions: Object of class "list” with respective times test partitions.

datasize: Object of class "list" with details about the respective inner and outter training and
testing data sizes.

Only in ThetaRegRes:

predictions: A list of predictions for the optimisation iterations.

otherWeights: Alternative best theta weigts: a vector per iterations, NULL if no other best weights
were found.

Methods

getF1Scores Returns a matrix of F1 scores for the optimisation parameters.

fl1Count signature(object = "GenRegRes"”, t = "numeric"”) and signature(object = "ThetaRegRes",
t = "numeric”): Constructs a table of all possible parameter combination and count how
many have an F1 scores greater or equal than t. When t is missing (default), the best F1 score
is used. This method is useful in conjunctin with plot.
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getParams Returns the best parameters. It is however strongly recommended to inspect the op-
timisation results. For a ThetaRegRes optimisation result, the method to chose the best pa-
rameters can be "median” (default) or "mean” (the median or mean of the best weights is
chosen), "max” (the first weights with the highest macro-F1 score, considering that multiple
max scoring combinations are possible) or "count” (the observed weight that get the maxi-
mum number of observations, see f1Count). The favourP argument can be used to prioritise
weights that favour the primary data (i.e. heigh weights). See favourPrimary below.

getSeed Returns the seed used for the optimisation run.
getWarnings signature(object = "GenRegRes"): Returns a vector of recorded warnings.

levelPlot signature(object = "GenRegRes"): Plots a heatmap of of the optimisation results.
Only for "GenRegRes" instances.

plot Plots the optisisation results.

show Shows the object.

Other functions

Only for ThetaRegRes:
combineThetaRegRes(object) Takes a list of ThetaRegRes instances to be combined and re-
turnes a new ThetaRegRes instance.

favourPrimary(primary, auxiliary, object, verbose = TRUE) Takes the primary and auxiliary
data sources (two MSnSet instances) and a ThetaRegRes object and returns and updated
ThetaRegRes instance containing best parameters/weigths (see the getParams function) favour-
ing the primary data when multiple best theta weights are available.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

Examples

showClass("GenRegRes")
showClass("ThetaRegRes")

getMarkerClasses Returns the organelle classes in an ’"MSnSet’

Description
Convenience accessor to the organelle classes in an "MSnSet’. This function returns the organelle
classes of an MSnSet instance. As a side effect, it prints out the classes.

Usage

getMarkerClasses(object, fcol = "markers”, ...)
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Arguments
object An instance of class "MSnSet".
fcol The name of the markers column in the featureData slot. Default is markers.
Additional parameters passed to sort from the base package.
Value

A character vector of the organelle classes in the data.

Author(s)

Lisa Breckels and Laurent Gatto

See Also

getMarkers to extract the marker proteins. See markers for details about spatial markers storage
and encoding.

Examples

library(”"pRolocdata”)

data(dunkley2006)

organelles <- getMarkerClasses(dunkley2006)

## same if markers encoded as a matrix

dunkley2006 <- mrkVecToMat(dunkley2006, mfcol = "Markers")
organelles2 <- getMarkerClasses(dunkley2006, fcol = "Markers")
stopifnot(all.equal(organelles, organelles2))

getMarkers Get the organelle markers in an MSnSet

Description
Convenience accessor to the organelle markers in an MSnSet. This function returns the organelle
markers of an MSnSet instance. As a side effect, it print out a marker table.

Usage

getMarkers(object, fcol = "markers"”, names = TRUE, verbose = TRUE)

Arguments
object An instance of class "MSnSet".
fcol The name of the markers column in the featureData slot. Defaultis "markers”.
names A logical indicating if the markers vector should be named. Ignored if markers
are encoded as a matrix.
verbose If TRUE, a marker table is printed and the markers are returned invisibly. If

FALSE, the markers are returned.
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Value

A character (matrix) of length (ncol) ncol(object), depending on the vector or matrix encoding
of the markers.

Author(s)

Laurent Gatto

See Also

See getMarkerClasses to get the classes only. See markers for details about spatial markers
storage and encoding.

Examples

library("pRolocdata”)

data(dunkley2006)

## marker vectors

myVmarkers <- getMarkers(dunkley2006)

head(myVmarkers)

## marker matrix

dunkley2006 <- mrkVecToMat(dunkley2006, mfcol = "Markers")
myMmarkers <- getMarkers(dunkley2006, fcol = "Markers")
head(myMmarkers)

getNormDist Extract Distances from a "ClustDistList" object

Description

This function computes and outputs normalised distances from a "ClustDistList" object.

Usage

getNormDist(object, p = 1/3)

Arguments
object An instance of class "ClustDistList".
p The normalisation factor. Default is 1/3.
Value

An numeric of normalised distances, one per protein set in the ClustDistList.

Author(s)
Lisa Breckels
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See Also

"ClustDistList"”, "ClustDist", and examples in clustDist.

Examples

library(pRolocdata)

data(dunkley2006)

## Convert annotation data e.g. markers, to a matrix e.g. MM
xx <- mrkVecToMat(dunkley2006, vfcol = "markers”, mfcol = "MM")
## get distances for protein sets

dd <- clustDist(xx, fcol = "MM" 6 k = 1:3)

## plot clusters for first 'ClustDist' object

## in the 'ClustDistList'

plot(dd[[11], xx)

## plot normalised distances for all protein sets
plot(dd)

## plot mean distances for all protein sets
plot(dd, method = "mean"”)

## plot raw distances for all protein sets
plot(dd, method = "raw")

## Extract normalised distances

## Normalisation factor default is n*1/3

minDist <- getNormDist(dd)

## Get new order according to lowest distance

o <- order(minDist)

## Re-order annotations

fData(xx)$MM <- fData(xx)$MM[, o]

if (interactive()) {

pRolocVis(xx, fcol = "MM")

3

getPredictions Returns the predictions in an "MSnSet’

Description

Convenience accessor to the predicted feature localisation in an "MSnSet’. This function returns
the predictions of an MSnSet instance. As a side effect, it prints out a prediction table.

Usage

getPredictions(object, fcol, scol, mcol = "markers”, t = @, verbose = TRUE)
Arguments

object An instance of class "MSnSet".

fcol The name of the prediction column in the featureData slot.

scol The name of the prediction score column in the featureData slot. If missing,

created by pasting ’.scores’ after fcol.
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mcol
t

verbose

Value
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The feature meta data column containing the labelled training data.

The score threshold. Predictions with score < t are set to "unknown’. Default
is 0. It is also possible to define thresholds for each prediction class, in which
case, t is a named numeric with names exactly matching the unique prediction
class names.

If TRUE, a prediction table is printed and the predictions are returned invisibly.
If FALSE, the predictions are returned.

An instance of class "MSnSet" with fcol.pred feature variable storing the prediction results ac-
cording to the chosen threshold.

Author(s)

Laurent Gatto and Lisa Breckels

See Also

orgQuants for calculating organelle-specific thresholds.

Examples

library("pRolocdata”)

data(dunkley2006)

res <- svmClassification(dunkley2006, fcol = "pd.markers”,

sigma = @.1, cost = 0.5)

fData(res)$svm[500:510]
fData(res)$svm.scores[500:510]

getPredictions(res, fcol = "svm”, t = @) ## all predictions
getPredictions(res, fcol = "svm”, t = .9) ## single threshold
## 50% top predictions per class
ts <- orgQuants(res, fcol = "svm", t = .5)
getPredictions(res, fcol = "svm”, t = ts)
highlightOnPlot Highlight features of interest on a spatial proteomics plot

Description

Highlights a set of features of interest given as a FeaturesOfInterest instance on a PCA plot
produced by plot2D or plot3D. If none of the features of interest are found in the MSnset’s

featureNames, an

Usage

warning is thrown.

highlightOnPlot(object, foi, labels, args = list(), ...)

highlightOnPlot3D(object, foi, labels, args = list(), radius = 0.1 * 3, ...)
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Arguments

object

foi

labels

args

radius

Value

highlightOnPlot

The main dataset described as an MSnSet or a matrix with the coordinates of
the features on the PCA plot produced (and invisibly returned) by plot2D.

An instance of FeaturesOfInterest, or, alternatively, a character of feautre
names.

A character of length 1 with a feature variable name to be used to label the
features of interest. This is only valid if object is an MSnSet. Alternatively,
if TRUE, then featureNames(object) (or rownames(object), if object is a
matrix) are used. Default is missing, which does not add any label.s

A named list of arguments to be passed to plot2D if the PCA coordinates are to
be calculated. Ignored if the PCA coordinates are passed directly, i.e. object is
amatrix.

Additional parameters passed to points or text (when labels is TRUE) when
adding to plot2D, or spheres3d or text3d when adding the plot3D

Radius of the spheres to be added to the visualisation produced by plot3D. De-
fault is 0.3 (i.e plot3D’s radius1 * 3), to emphasise the features with regard to
uknown (radius1 =0.1) and marker (radius1 * 2) features.

NULL; used for its side effects.

Author(s)

Laurent Gatto

Examples

library(”"pRolocdata")

data("tan2009r1")

x <- FeaturesOfInterest(description = "A test set of features of interest”,

fnames = featureNames(tan2009r1)[1:10],
object = tan2009r1)

## using FeaturesOflInterest or feature names

par(mfrow = c(2,
plot2D(tan2009r1)

D))

highlightOnPlot(tan2009r1, x)

plot2D(tan2009r1)

highlightOnPlot(tan2009r1, featureNames(tan2009r1)[1:10])

.pca <- plot2D(tan2009r1)

head(.pca)
highlightOnPlot(.

pca, x, col = "red")

highlightOnPlot(tan2009r1, x, col = "red”, cex = 1.5)
highlightOnPlot(tan2009r1, x, labels = TRUE)

.pca <- plot2D(tan2009r1, dims = c(1, 3))

highlightOnPlot(.

pca, x, pch = "+" dims = c(1, 3))
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highlightOnPlot(tan2009r1, x, args = list(dims = c(1, 3)))

.pca2 <- plot2D(tan2009r1, mirrorX = TRUE, dims = c(1, 3))

## previous pca matrix, need to mirror X axis
highlightOnPlot(.pca, x, pch = "+", args = list(mirrorX = TRUE))
## new pca matrix, with X mirrors (and 1st and 3rd PCs)
highlightOnPlot(.pca2, x, col = "red")

plot2D(tan2009r1)

highlightOnPlot(tan2009r1, x)

highlightOnPlot(tan2009r1, x, labels = TRUE, pos = 3)
highlightOnPlot(tan2009r1, x, labels = "Flybase.Symbol”, pos = 1)

## in 3 dimensions

if (interactive()) {
plot3D(tan2009r1, radiusl = 0.05)
highlightOnPlot3D(tan20@9r1, x, labels = TRUE)
highlightOnPlot3D(tan2009r1, x)

}

knnClassification knn classification

Description

Classification using for the k-nearest neighbours algorithm.

Usage
knnClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
k,
fcol = "markers”,
)
Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by knnOptimisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
k If assessRes is missing, a k must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.

Additional parameters passed to knn from package class.
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Value

An instance of class "MSnSet” with knn and knn. scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- knnOptimisation(dunkley2006, k = c(3, 10), times = 3)
params

plot(params)

f1Count (params)

levelPlot(params)

getParams(params)

res <- knnClassification(dunkley2006, params)
getPredictions(res, fcol = "knn")
getPredictions(res, fcol = "knn", t = 0.75)
plot2D(res, fcol = "knn")

knnOptimisation knn parameter optimisation

Description

Classification parameter optimisation for the k-nearest neighbours algorithm.

Usage
knnOptimisation(

object,
fcol = "markers”,
k = seq(3, 15, 2),
times = 100,
test.size = 0.2,
xval = 5,
fun = mean,
seed,

verbose = TRUE,
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Arguments
object An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.
k The hyper-parameter. Default values are seq(3, 15, 2).
times The number of times internal cross-validation is performed. Default is 100.
test.size The size of test data. Default is 0.2 (20 percent).
xval The n-cross validation. Default is 5.
fun The function used to summarise the xval macro F1 matrices.
seed The optional random number generator seed.
verbose A logical defining whether a progress bar is displayed.
Additional parameters passed to knn from package class.
Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

knnClassification and example therein.

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- knnOptimisation(dunkley2006, k = c(3, 10), times = 3)
params

plot(params)

f1Count(params)

levelPlot (params)

getParams(params)

res <- knnClassification(dunkley2006, params)
getPredictions(res, fcol = "knn")
getPredictions(res, fcol = "knn", t = 0.75)
plot2D(res, fcol = "knn")
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knntlClassification knn transfer learning classification

Description

Classification using a variation of the KNN implementation of Wu and Dietterich’s transfer learning

schema
Usage
knntlClassification(
primary,
auxiliary,
fcol = "markers”,
bestTheta,
K,
scores = c("prediction”, "all”, "none"),
seed
)
Arguments
primary An instance of class "MSnSet".
auxiliary An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.
bestTheta Best theta vector as output from knntlOptimisation, see knntlOptimisation
for details
k Numeric vector of length 2, containing the best k parameters to use for the pri-
mary and auxiliary datasets. If k k is not specified it will be calculated internally.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
seed The optional random number generator seed.
Value

A character vector of the classifications for the unknowns

Author(s)
Lisa Breckels

See Also

knntlOptimisation
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Examples

## Load example primary and auxiliary data from pRolocdata
library(pRolocdata)

data(andy2011)

data(andy2011goCC)

## reducing calculation time of k by pre-running knnOptimisation
x <- c(andy2011, andy2011goCC)
k <- lapply(x, function(z)
knnOptimisation(z, times=5,
fcol = "markers.orig”,
verbose = FALSE))
k <- sapply(k, function(z) getParams(z))

## Use by = 1 in optimisation i.e. give full weight to the
## primary (indicated by 1) or full weight to auxiliary
## (indicated by @) reducing parameter search for example
## in this documentation only. See the transfer learning
## vignette for examples and details.

opt <- knntlOptimisation(andy2011, andy2@11goCC,

fcol = "markers.orig”,
times = 2,

by =1,

k = k)

th <- getParams(opt)
plot(opt)

## Now perform classification after finding the best weights
res <- knntlClassification(andy2011, andy2011goCC,

fcol = "markers.orig”,
th,
k)

knntlOptimisation theta parameter optimisation

Description

Classification parameter optimisation for the KNN implementation of Wu and Dietterich’s transfer
learning schema

Usage

knntlOptimisation(
primary,
auxiliary,
fcol = "markers”,
k,
times = 50,
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test.size
xval = 5,
by = 0.5,

length.out,

th,
xfolds,

knntlOptimisation

0.2,

BPPARAM = BiocParallel: :bpparam(),
method = "Breckels”,

log = FALSE,

seed

Arguments

primary
auxiliary
fcol

k

times
test.size
xval

by
length.out

th

xfolds
BPPARAM

method

log

seed

Details

An instance of class "MSnSet".
An instance of class "MSnSet".
The feature meta-data containing marker definitions. Default is markers.

Numeric vector of length 2, containing the best k parameters to use for the pri-
mary (k[1]) and auxiliary (k[2]) datasets. See knnOptimisation for generat-
ing best k.

The number of times cross-validation is performed. Default is 50.

The size of test (validation) data. Default is 0.2 (20 percent).

The number of rounds of cross-validation to perform.

The increment for theta, must be one of c(1, 0.5,0.25, 0.2, 0.15, 2.1, 0.05)

Alternative to using by parameter. Specifies the desired length of the sequence

of theta to test.

A matrix of theta values to test for each class as generated from the function

thetas, the number of columns should be equal to the number of classes con-

tained in fcol. Note: columns will be ordered according to getMarkerClasses(primary,
fcol). This argument is only valid if the default method *Breckels’ is used.

Option to pass specific folds for the cross validation.

Required for parallelisation. If not specified selects a default BiocParallelParam,
from global options or, if that fails, the most recently registered() back-end.

The k-NN transfer learning method to use. The default is *Breckels’ as described
in the Breckels et al (2016). If "Wu’ is specificed then the original method
implemented Wu and Dietterich (2004) is implemented.

A logical defining whether logging should be enabled. Default is FALSE. Note
that logging produes considerably bigger objects.

The optional random number generator seed.

knntlOptimisation implements a variation of Wu and Dietterich’s transfer learning schema: P.
Wu and T. G. Dietterich. Improving SVM accuracy by training on auxiliary data sources. In Pro-
ceedings of the Twenty-First International Conference on Machine Learning, pages 871 - 878. Mor-
gan Kaufmann, 2004. A grid search for the best theta is performed.
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Value

A list of containing the theta combinations tested, associated macro F1 score and accuracy for each
combination over each round (specified by times).

Author(s)
Lisa Breckels

References

Breckels LM, Holden S, Wonjar D, Mulvey CM, Christoforou A, Groen AJ, Kohlbacher O, Lil-
ley KS, Gatto L. Learning from heterogeneous data sources: an application in spatial proteomics.
bioRxiv. doi: http://dx.doi.org/10.1101/022152

Wu P, Dietterich TG. Improving SVM Accuracy by Training on Auxiliary Data Sources. Proceed-
ings of the 21st International Conference on Machine Learning (ICML); 2004.

See Also

knntlClassification and example therein.

Examples

## Load example primary and auxiliary data from pRolocdata
library(pRolocdata)

data(andy2011)

data(andy2011goCC)

## reducing calculation time of k by pre-running knnOptimisation
x <- c(andy2011, andy2011goCC)
k <- lapply(x, function(z)
knnOptimisation(z, times=5,
fcol = "markers.orig"”,
verbose = FALSE))
k <- sapply(k, function(z) getParams(z))

## Use by = 1 in optimisation i.e. give full weight to the
## primary (indicated by 1) or full weight to auxiliary
## (indicated by @) reducing parameter search for example
## in this documentation only. See the transfer learning
## vignette for examples and details.

opt <- knntlOptimisation(andy2011, andy2@11goCC,

fcol = "markers.orig”,
times = 2,

by =1,

k = k)

th <- getParams(opt)
plot(opt)

## Now perform classification after finding the best weights
res <- knntlClassification(andy2011, andy2011goCC,
fcol = "markers.orig”,
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th,
K)

ksvmClassification ksvm classification

Description

Classification using the support vector machine algorithm.

Usage
ksvmClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
cost,
fcol = "markers”,
)
Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by ksvmOptimisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
cost If assessRes is missing, a cost must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
Additional parameters passed to ksvm from package kernlab.
Value

An instance of class "MSnSet"” with ksvm and ksvm. scores feature variables storing the classifica-
tion results and scores respectively.

Author(s)

Laurent Gatto
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Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- ksvmOptimisation(dunkley2006, cost = 2”seq(-1,4,5), times = 3)

params
plot(params)
f1Count(params)

levelPlot(params)
getParams(params)

res <- ksvmClassification(dunkley2006, params)
getPredictions(res, fcol = "ksvm")
getPredictions(res, fcol = "ksvm", t = 0.75)
plot2D(res, fcol = "ksvm")
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ksvim parameter optimisation

Description

Classification parameter optimisation for the support vector machine algorithm.

Usage
ksvmOptimisation(

object,
fcol = "markers”,
cost = 2*(-4:4),
times = 100,
test.size = 0.2,
xval = 5,
fun = mean,
seed,

verbose = TRUE,

Arguments

object
fcol

cost
times
test.size
xval

fun

An instance of class "MSnSet".
The feature meta-data containing marker definitions. Default is markers.

The hyper-parameter. Default values are 2*-4: 4.

The number of times internal cross-validation is performed. Default is 100.

The size of test data. Default is 0.2 (20 percent).
The n-cross validation. Default is 5.

The function used to summarise the xval macro F1 matrices.
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seed The optional random number generator seed.
verbose A logical defining whether a progress bar is displayed.

Additional parameters passed to ksvm from package kernlab.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

ksvmClassification and example therein.

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- ksvmOptimisation(dunkley2006, cost = 2*seq(-1,4,5), times = 3)
params

plot(params)

f1Count(params)

levelPlot (params)

getParams(params)

res <- ksvmClassification(dunkley2006, params)
getPredictions(res, fcol = "ksvm")
getPredictions(res, fcol = "ksvm", t = 0.75)
plot2D(res, fcol = "ksvm")

MAPParams-class The ‘logPosteriors‘ function can be used to extract the log-posteriors
at each iteration of the EM algorithm to check for convergence.

Description

These functions implement the T augmented Gaussian mixture (TAGM) model for mass spectrometry-
based spatial proteomics datasets using the maximum a posteriori (MAP) optimisation routine.
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Usage

## S4 method for signature 'MAPParams'
show(object)

logPosteriors(x)

tagmMapTrain(
object,
fcol = "markers”,
method = "MAP",
numlIter = 100,

mu@ = NULL,
lambda® = 0.01,
nu@ = NULL,
S0 = NULL,
beta®@ = NULL,
u-= 2,
v =10,
seed = NULL

)

tagmMapPredict(
object,
params,
fcol = "markers”,

probJoint = FALSE,
probOutlier = TRUE

)
Arguments

object An MSnbase: :MSnSet containing the spatial proteomics data to be passed to
tagmMapTrain and tagmPredict.

X An object of class ‘MAPParams*.

fcol The feature meta-data containing marker definitions. Default is markers.

method A charachter () describing the inference method for the TAGM algorithm. De-
fault is "MAP".

numIlter The number of iterations of the expectation-maximisation algorithm. Default is
100.

mu@ The prior mean. Default is colMeans of the expression data.

lambda@ The prior shrinkage. Default is 0.01.

nuo The prior degreed of freedom. Default is ncol (exprs(object)) + 2

N The prior inverse-wishary scale matrix. Empirical prior used by default.

beta@ The prior Dirichlet distribution concentration. Default is 1 for each class.

u The prior shape parameter for Beta(u, v). Default is 2
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v The prior shape parameter for Beta(u, v). Default is 10.

seed The optional random number generator seed.

params An instance of class MAPParams, as generated by tagmMapTrain().

probJoint A logical(1) indicating whether to return the joint probability matrix, i.e. the

probability for all classes as a new tagm.map. joint feature variable.

probOutlier A logical(1) indicating whether to return the probability of being an outlier
as a new tagm.map.outlier feature variable. A high value indicates that the
protein is unlikely to belong to any annotated class (and is hence considered an
outlier).

Details

The tagmMapTrain function generates the MAP parameters (object or class MAPParams) based on an
annotated quantitative spatial proteomics dataset (object of class MSnbase: :MSnSet). Both are then
passed to the tagmPredict function to predict the sub-cellular localisation of protein of unknown
localisation. See the pRoloc-bayesian vignette for details and examples. In this implementation, if
numerical instability is detected in the covariance matrix of the data a small multiple of the identity
is added. A message is printed if this conditioning step is performed.

Value

tagmMapTrain returns an instance of class MAPParams ().

tagmPredict returns an instance of class MSnbase: :MSnSet containing the localisation predictions
as a new tagm.map.allocation feature variable.
Slots

method A character() storing the TAGM method name.

priors A list() with the priors for the parameters

seed An integer () with the random number generation seed.

posteriors A list() with the updated posterior parameters and log-posterior of the model.

datasize A list() with details about size of data

Author(s)

Laurent Gatto
Oliver M. Crook

References
A Bayesian Mixture Modelling Approach For Spatial Proteomics Oliver M Crook, Claire M Mulvey,
Paul D. W. Kirk, Kathryn S Lilley, Laurent Gatto bioRxiv 282269; doi: https://doi.org/10.1101/282269
See Also

The plotEllipse() function can be used to visualise TAGM models on PCA plots with ellipses.
The tagmMapTrain() function to use the TAGM MAP method.
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Examples

## Load example data
library(pRolocdata)
data(dunkley2006)

## Generate MAP parameters (use numIter = 5 for example only)
par <- tagmMapTrain(dunkley2006, numIter = 5)

## Perform classification

dunkley?2006 <- tagmMapPredict(dunkley2006,
params = par,
probJoint = TRUE,
probOutlier = TRUE)

markerMSnSet Extract marker/unknown subsets

Description

These function extract the marker or unknown proteins into a new MSnSet.

Usage

markerMSnSet(object, fcol = "markers")

unknownMSnSet(object, fcol = "markers”)
Arguments
object An instance of class MSnSet
fcol The name of the feature data column, that will be used to separate the mark-

ers from the proteins of unknown localisation. When the markers are encoded
as vectors, features of unknown localisation are defined as fData(object)[,
fcol] == "unknown". For matrix-encoded markers, unlabelled proteins are de-
fined as rowSums (fData(object)[, fcoll) == @. Default is "markers”.

Value

An new MSnSet with marker/unknown proteins only.

Author(s)

Laurent Gatto

See Also

sampleMSnSet testMSnSet and markers for markers encoding.
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Examples

library(”"pRolocdata”)

data(dunkley2006)

mrk <- markerMSnSet(dunkley2006)

unk <- unknownMSnSet (dunkley2006)

dim(dunkley2006)

dim(mrk)

dim(unk)

table(fData(dunkley2006)$markers)

table(fData(mrk)$markers)

table(fData(unk)$markers)

## matrix-encoded markers

dunkley2006 <- mrkVecToMat(dunkley2006)

dim(markerMSnSet (dunkley2006, "Markers"))

stopifnot(all.equal(featureNames(markerMSnSet(dunkley2006, "Markers")),
featureNames(markerMSnSet (dunkley2006, "markers"))))

dim(unknownMSnSet (dunkley2006, "Markers"))

stopifnot(all.equal(featureNames(unknownMSnSet (dunkley2006, "Markers")),
featureNames (unknownMSnSet (dunkley2006, "markers"”))))

MartInstance-class Class "MartInstance”

Description

Internal infrastructure to query/handle several individual mart instance. See MartInterface.R for
details.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

MCMCChains-class Instrastructure to store and process MCMC results

Description

The MCMCParams infrastructure is used to store and process Marchov chain Monte Carlo results for
the T-Augmented Gaussian Mixture model (TAGM) from Crook et al. (2018).
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Usage
chains(object)

## S4 method for signature 'MCMCParams'
show(object)

## S4 method for signature 'ComponentParam'
show(object)

## S4 method for signature 'MCMCChain'
show(object)

## S4 method for signature 'MCMCChains'
length(x)

## S4 method for signature 'MCMCParams'
length(x)

## S4 method for signature 'MCMCChains,ANY,ANY'
x[[i, j = "missing"”, drop = "missing”]]

## S4 method for signature 'MCMCParams,ANY,ANY'
x[[i, j = "missing”, drop = "missing”]]

## S4 method for signature 'MCMCChains,ANY,ANY,ANY'
x[i, j = "missing”, drop = "missing”]

## S4 method for signature 'MCMCParams,ANY,ANY,ANY'
x[i, j = "missing”, drop = "missing”]

## S4 method for signature 'MCMCChains'

show(object)
Arguments
object An instance of appropriate class.
X Object to be subset.
i An integer (). Should be of length 1 for [[.
b Missing.
drop Missing.
Details

Objects of the MCMCParams class are created with the tagmMcmcTrain() function. These objects
store the priors of the generative TAGM model and the results of the MCMC chains, which them-
selves are stored as an instance of class MCMCChains and can be accessed with the chains () func-
tion. A summary of the MCMC chains (or class MCMCSummary) can be further computed with the
tagmMcmcProcess () function.
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See the pRoloc-bayesian vignette for examples.

Slots
chains list() containing the individual full MCMC chain results in an MCMCChains instance.
Each element must be a valid MCMCChain instance.

posteriorEstimates A data.frame documenting the prosterior priors in an MCMCSummary in-
stance. It contains N rows and columns tagm.allocation, tagm.probability, tagm.outlier,
tagm.probability.lowerquantile, tagm.probability.upperquantile and tagm.mean.shannon.

diagnostics A matrix of dimensions 1 by 2 containing the MCMCSummary diagnostics.

tagm.joint A matrix of dimensions N by K storing the joint probability in an MCMCSummary
instance.

method character (1) describing the method in the MCMCParams object.

chains Object of class MCMCChains containing the full MCMC chain results stored in the MCMCParams
object.

priors list()

summary Object of class MCMCSummary the summarised MCMC results available in the MCMCParams
instance.

n integer(1) indicating the number of MCMC interactions. Stored in an MCMCChain instance.
K integer (1) indicating the number of components. Stored in an MCMCChain instance.

N integer (1) indicating the number of proteins. Stored in an MCMCChain instance.

Component matrix(N, n) component allocation results of an MCMCChain instance.
ComponentProb matrix(N, n, K) component allocation probabilities of an MCMCChain instance.
Outlier matrix(N, n) outlier allocation results.

OutlierProb matrix(N, n, 2) outlier allocation probabilities of an MCMCChain instance.

See Also

The function tagmMcmcTrain() to construct object of this class.

mcmc_get_outliers Number of outlier at each iteration of MCMC

Description

Helper function to get the number of outlier at each MCMC iteration.

Helper function to get mean component allocation at each MCMC iteration.
Helper function to get mean probability of belonging to outlier at each iteration.
Wrapper for the geweke diagnostics from coda package also return p-values.
Helper function to pool chains together after processing

Helper function to burn n iterations from the front of the chains

Helper function to subsample the chains, known informally as thinning.

Produces a violin plot with the protein posterior probabilities distributions for all organelles.
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Usage

mcmc_get_outliers(x)

mcmc_get_meanComponent (x)

mcmc_get_meanoutliersProb(x)

geweke_test (k)

mcmc_pool_chains(param)

mcmc_burn_chains(x, n = 50)

mcmc_thin_chains(x, freq = 5)

## S4 method for signature 'MCMCParams,character’
plot(x, vy, ...)

Arguments

Object of class MCMCParams

k A list of coda::mcmc objects, as returned by mcmc_get_outliers, mcmc_get_meanComponent
and mcmc_get_meanoutliersProb.

param An object of class MCMCParams.

n integer (1) defining number of iterations to burn. The default is 50

freq Thinning frequency. The function retains every ‘freq‘th iteration and is an ‘in-

teger(1)‘. The default thinning frequency is ‘5°.
y A ‘character(1)‘ with a protein name.

Currently ignored.

Value

A list of length length(x).

A list of length length(x).

A list of length length(x).

A matrix with the test z- and p-values for each chain.
A pooled MCMCParams object.

An updated MCMCParams object.

A thinned ‘MCMCParams* object.

A ggplot2 object.

Author(s)

Laurent Gatto
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minMarkers Creates a reduced marker variable

Description

This function updates an MSnSet instances and sets markers class to unknown if there are less than
n instances.

Usage

minMarkers(object, n = 10, fcol = "markers")
Arguments

object An instance of class "MSnSet".

n Minumum of marker instances per class.

fcol The name of the markers column in the featureData slot. Default is markers.
Value

An instance of class "MSnSet” with a new feature variables, named after the original fcol variable
and the n value.

Author(s)

Laurent Gatto

See Also

getPredictions to filter based on classification scores.

Examples

library(pRolocdata)
data(dunkley2006)

d2 <- minMarkers(dunkley2006, 20)
getMarkers(dunkley2006)
getMarkers(d2, fcol = "markers20")
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mixing_posterior_check
Model calibration plots

Description

Model calibration model with posterior z-scores and posterior shrinkage

Usage
mixing_posterior_check(object, params, priors, fcol = "markers")
Arguments
object A valid object of class MSnset
params A valid object of class MCMCParams that has been processed and checked for
convergence
priors The prior that were used in the model
fcol The columns of the feature data which contain the marker data.
Value

Used for side effect of producing plot. Invisibily returns an ggplot object that can be further manip-
ulated

Author(s)

Oliver M. Crook <omc25@cam.ac.uk>

Examples

## Not run:
library(”"pRoloc")
data("tan2009r1")

tanres <- tagmMcmcTrain(object = tan2009r1)

tanres <- tagmMcmcProcess(tanres)

tan2009r1 <- tagmMcmcPredict(object = tan2009r1, params = tanres, probJoint = TRUE)
myparams <- chains(e14Tagm_converged_pooled)[[1]]

myparams2 <- chains(mcmc_pool_chains(tanres))[[1]]

priors <- tanres@priors

pRoloc:::mixing_posterior_check(object = tan2009r1, params = myparams2, priors = priors)

## End(Not run)
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MLearn-methods The MLearn interface for machine learning

Description

This method implements MLInterfaces’ MLean method for instances of the class "MSnSet".

Methods

signature(formula = "formula”, data = "MSnSet”, .method = "learnerSchema”, trainInd = "numeric")
The learning problem is stated with the formula and applies the .method schema on the
MSnSet data input using the trainInd numeric indices as train data.

signature(formula = "formula”, data = "MSnSet"”, .method = "learnerSchema”, trainInd = "xvalSpec")
In this case, an instance of xvalSpec is used for cross-validation.

signature(formula = "formula”, data = "MSnSet"”, .method = "clusteringSchema”, trainInd = "missing")
Hierarchical (hclustI), k-means (kmeansI) and partitioning around medoids (pamI) cluster-
ing algorithms using MLInterface’s MLearn interface.

See Also

The MLInterfaces package documentation, in particular MLearn.

move2Ds Displays a spatial proteomics animation

Description
Given two MSnSet instances of one MSnSetList with at least two items, this function produces an
animation that shows the transition from the first data to the second.

Usage

move2Ds(object, pcol, fcol = "markers”, n = 25, hl)

Arguments

object An linkS4class{MSnSet} or a MSnSetList. In the latter case, only the two
first elements of the list will be used for plotting and the others will be silently
ignored.

pcol If object is an MSnSet, a factor or the name of a phenotype variable (phenoData
slot) defining how to split the single MSnSet into two or more data sets. Ignored
if object is aMSnSetList.

fcol Feature meta-data label (fData column name) defining the groups to be differ-

entiated using different colours. Default is markers. Use NULL to suppress any
colouring.
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n Number of frames, Default is 25.

hl An optional instance of class linkS4class{FeaturesOfInterest} to track
features of interest.

Value

Used for its side effect of producing a short animation.

Author(s)

Laurent Gatto

See Also

plot2Ds to a single figure with the two datasets.

Examples

library("pRolocdata”)
data(dunkley2006)

## Create a relevant MSnSetList using the dunkley2006 data
xx <- split(dunkley2006, "replicate”)

xx1 <- xx[[1]1]

xx2 <= xx[[21]

fData(xx1)$markers[374] <- "Golgi”

fData(xx2)$markers[412] <- "unknown"

xx@x[[1]] <- xx1

xx@x[[2]] <- xx2

## The features we want to track
foi <- FeaturesOflInterest(description = "test”,
fnames = featureNames(xx[[1]1)[c(374, 412)]1)

## (1) visualise each experiment separately

par(mfrow = c(2, 1))

plot2D(xx[[1]]1, main = "condition A")
highlightOnPlot(xx[[11], foi)

plot2D(xx[[2]], mirrorY = TRUE, main = "condition B")
highlightOnPlot(xx[[2]], foi, args = list(mirrorY = TRUE))

## (2) plot both data on the same plot

par(mfrow = c(1, 1))

tmp <- plot2Ds(xx)

highlightOnPlot(datal(tmp), foi, lwd = 2)
highlightOnPlot(data2(tmp), foi, pch =5, 1lwd = 2)

## (3) create an animation
move2Ds(xx, pcol = "replicate”)
move2Ds(xx, pcol = "replicate”, hl = foi)
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mrkConsProfiles Marker consensus profiles

Description

A function to calculate average marker profiles.

Usage
mrkConsProfiles(object, fcol = "markers"”, method = mean)
Arguments
object An instance of class MSnSet.
fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers.
method A function to average marker profiles. Default is mean.
Value

A matrix of dimensions number of clusters (exluding unknowns) by number of fractions.

Author(s)

Laurent Gatto and Lisa M. Breckels

See Also

The mrkHClust function to produce a hierarchical cluster.

Examples

library(”"pRolocdata”)
data(dunkley2006)
mrkConsProfiles(dunkley2006)
mrkConsProfiles(dunkley2006, method = median)
mm <- mrkConsProfiles(dunkley2006)
## Reorder fractions
0 <- order(dunkley2006$fraction)
## Plot mean organelle profiles using the
## default pRoloc colour palette.
matplot(t(mm[, ol), type = "1",
xlab = "Fractions”, ylab = "Relative intensity”,
main = "Mean organelle profiles”,
col = getStockcol(), lwd = 2, 1ty = 1)
## Add a legend
addLegend(markerMSnSet (dunkley2006), where = "topleft”)
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mrkHClust Draw a dendrogram of subcellular clusters

Description

This functions calculates an average protein profile for each marker class (proteins of unknown lo-
calisation are ignored) and then generates a dendrogram representing the relation between marker
classes. The colours used for the dendrogram labels are taken from the default colours (see getStockcol)
so as to match the colours with other spatial proteomics visualisations such as plot2D.

Usage
mrkHClust(
object,
fcol = "markers”,
distargs,
hclustargs,
method = mean,
plot = TRUE,
)
Arguments
object An instance of class MSnSet.
fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers.
distargs A list of arguments to be passed to the dist function.
hclustargs A list of arguments to be passed to the hclust function.
method A function to average marker profiles. Default is mean.
plot A logical defining whether the dendrogram should be plotted. Default is TRUE.
Additional parameters passed when plotting the dendrogram.
Value

Invisibly returns a dendrogram object, containing the hierarchical cluster as computed by hclust.

Author(s)

Laurent Gatto

Examples

library("pRolocdata”)
data(dunkley2006)
mrkHClust (dunkley2006)
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mrkVecToMat Create a marker vector or matrix.

Description

Functions producing a new vector (matrix) marker vector set from an existing matrix (vector)

marker set.

Usage
mrkVecToMat(object, vfcol = "markers”, mfcol = "Markers"”)
mrkMatToVec(object, mfcol = "Markers”, vfcol = "markers"”)
mrkMatAndVec(object, vfcol = "markers", mfcol = "Markers")

showMrkMat (object, mfcol = "Markers")

isMrkMat(object, fcol = "Markers")

isMrkVec(object, fcol = "markers")
mrkEncoding(object, fcol = "markers")

Arguments
object An MSnSet object
vfcol The name of the vector marker feature variable. Default is "markers”.
mfcol The name of the matrix marker feature variable. Default is "Markers”.
fcol A marker feature variable name.

Details

Sub-cellular markers can be encoded in two different ways. Sets of spatial markers can be rep-
resented as character vectors (character or factor, to be accurate), stored as feature metadata,
and proteins of unknown or uncertain localisation (unlabelled, to be classified) are marked with the
"unknown" character. While very handy, this encoding suffers from some drawbacks, in particular
the difficulty to label proteins that reside in multiple (possible or actual) localisations. The markers
vector feature data is typically named markers. A new matrix encoding is also supported. Each
spatial compartment is defined in a column in a binary markers matrix and the resident proteins
are encoded with 1s. The markers matrix feature data is typically named Markers. If proteins are
assigned unique localisations only (i.e. no multi-localisation) or their localisation is unknown (un-
labelled), then both encodings are equivalent. When the markers are encoded as vectors, features of
unknown localisation are defined as fData(object)[, fcol] == "unknown". For matrix-encoded
markers, unlabelled proteins are defined as rowSums (fData(object)[, fcoll) == 0.
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The mrkMatToVec and mrkVecToMat functions enable the conversion from matrix (vector) to vector
(matrix). The mrkMatAndVec function generates the missing encoding from the existing one. If
the destination encoding already exists, or, more accurately, if the feature variable of the destina-
tion encoding exists, an error is thrown. During the conversion from matrix to vector, if multiple
possible label exists, they are dropped, i.e. they are converted to "unknown”. Function isMrkVec
and isMrkMat can be used to test if a marker set is encoded as a vector or a matrix. mrkEncoding
returns either "vector” or "matrix” depending on the nature of the markers.

Value

An updated MSnSet with a new vector (matrix) marker set.

Author(s)

Laurent Gatto and Lisa Breckels

See Also

Other functions that operate on markers are getMarkers, getMarkerClasses and markerMSnSet.
To add markers to an existing MSnSet, see the addMarkers function and pRolocmarkers, for a list
of suggested markers.

Examples

library("pRolocdata”)

data(dunkley2006)

dunk <- mrkVecToMat(dunkley2006)

head(fData(dunk)$Markers)

fData(dunk)$markers <- NULL

dunk <- mrkMatToVec(dunk)

stopifnot(all.equal(fData(dunkley2006)$markers,
fData(dunk) $markers))

nbClassification nb classification

Description

Classification using the naive Bayes algorithm.

Usage

nbClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
laplace,
fcol = "markers”,



54 nbOptimisation

Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by nbOptimisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
laplace If assessRes is missing, a 1aplace must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
Additional parameters passed to naiveBayes from package e1071.
Value

An instance of class "MSnSet"” with nb and nb. scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- nbOptimisation(dunkley2006, laplace = c(@, 5), times = 3)
params

plot(params)

f1Count (params)

levelPlot(params)

getParams(params)

res <- nbClassification(dunkley2006, params)
getPredictions(res, fcol = "naiveBayes")
getPredictions(res, fcol = "naiveBayes”, t = 1)
plot2D(res, fcol = "naiveBayes")

nbOptimisation nb paramter optimisation

Description

Classification algorithm parameter for the naive Bayes algorithm.
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Usage
nbOptimisation(
object,
fcol = "markers”,
laplace = seq(@, 5, 0.5),
times = 100,
test.size = 0.2,
xval = 5,
fun = mean,
seed,

verbose = TRUE,

Arguments

object An instance of class "MSnSet".

fcol The feature meta-data containing marker definitions. Default is markers.

laplace The hyper-parameter. Default values are seq(@, 5, 0.5).

times The number of times internal cross-validation is performed. Default is 100.

test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

Additional parameters passed to naiveBayes from package e1071.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

nbClassification and example therein.
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Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- nbOptimisation(dunkley2006, laplace = c(@, 5), times = 3)
params

plot(params)

f1Count(params)

levelPlot(params)

getParams(params)

res <- nbClassification(dunkley2006, params)
getPredictions(res, fcol = "naiveBayes")
getPredictions(res, fcol = "naiveBayes”, t = 1)
plot2D(res, fcol = "naiveBayes")

nicheMeans2D Uncertainty plot organelle means

Description

Produces a pca plot with uncertainty in organelle means projected onto the PCA plot with contours.

Usage
nicheMeans2D(
object,
params,
priors,
dims = c(1, 2),
fcol = "markers”,
aspect = 0.5
)
Arguments
object A valid object of class MSnset
params A valid object of class MCMCParams that has been processed and checked for
convergence
priors The prior that were used in the model
dims The PCA dimension in which to project he data, default is c(1,2)
fcol The columns of the feature data which contain the marker data.
aspect A argument to change the plotting aspect of the PCA
Value

Used for side effect of producing plot. Invisibily returns an ggplot object that can be further manip-
ulated
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Author(s)

Oliver M. Crook <omc25@cam.ac.uk>

Examples

## Not run:
library(”"pRolocdata”)
data("tan2009r1")

tanres <- tagmMcmcTrain(object = tan2009r1)

tanres <- tagmMcmcProcess(tanres)

tan2009r1 <- tagmMcmcPredict(object = tan2009r1, params = tanres, probJoint = TRUE)
myparams <- chains(e14Tagm_converged_pooled)[[1]]

myparams2 <- chains(mcmc_pool_chains(tanres))[[1]]

priors <- tanres@priors

pRoloc:::nicheMeans2D(object = tan2009r1, params = myparams2, priors = priors)

## End(Not run)

nndist-methods Nearest neighbour distances

Description

Methods computing the nearest neighbour indices and distances for matrix and MSnSet instances.

Methods

signature(object = "matrix”, k = "numeric”, dist = "character”, ...) Calculates indices
and distances to the k (default is 3) nearest neighbours of each feature (row) in the input matrix
object. The distance dist can be either of "euclidean” or "mahalanobis”. Additional
parameters can be passed to the internal function FNN: : get.knn. Output is a matrix with 2 *
k columns and nrow(object) rows.

signature(object = "MSnSet"”, k = "numeric”, dist = "character”, ...) As above, but for
an MSnSet input. The indices and distances to the k nearest neighbours are added to the
object’s feature metadata.

signature(object = "matrix"”, query = "matrix”, k = "numeric”, ...) Iftwomatrix instances
are provided as input, the k (default is 3) indices and distances of the nearest neighbours of
query in object are returned as a matrix of dimensions 2 * k by nrow(query). Additional
parameters are passed to FNN: : get.knnx. Only euclidean distance is available.

Examples

library("pRolocdata”)
data(dunkley2006)

## Using a matrix as input
m <- exprs(dunkley2006)
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m{1:4, 1:3]
head(nndist(m, k = 5))
tail(nndist(m[1:100, 1, k = 2, dist = "mahalanobis”))

## Same as above for MSnSet
d <- nndist(dunkley2006, k = 5)
head(fData(d))

d <- nndist(dunkley2006[1:100, ], k
tail(fData(d))

2, dist = "mahalanobis")

## Using a query
nndist(m[1:100, ], m[101:110, 1, k = 2)

nnetClassification nnet classification

Description

Classification using the artificial neural network algorithm.

Usage
nnetClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
decay,
size,
fcol = "markers”,
)
Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by nnetOptimisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
decay If assessRes is missing, a decay must be provided.
size If assessRes is missing, a size must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
Additional parameters passed to nnet from package nnet.
Value

An instance of class "MSnSet"” with nnet and nnet. scores feature variables storing the classifica-
tion results and scores respectively.
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Author(s)

Laurent Gatto

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- nnetOptimisation(dunkley2006, decay = 10*(c(-1, -5)), size = c(5, 10), times = 3)
params

plot(params)

f1Count (params)

levelPlot(params)

getParams(params)

res <- nnetClassification(dunkley2006, params)
getPredictions(res, fcol = "nnet")
getPredictions(res, fcol = "nnet”, t = 0.75)
plot2D(res, fcol = "nnet")

nnetOptimisation nnet parameter optimisation

Description

Classification parameter optimisation for artificial neural network algorithm.

Usage
nnetOptimisation(
object,
fcol = "markers”,

decay = c(@, 10*(-1:-5)),
size = seq(1, 10, 2),

times = 100,
test.size = 0.2,
xval = 5,

fun = mean,
seed,

verbose = TRUE,

)
Arguments
object An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.

decay The hyper-parameter. Default values are c(0, 10*(-1:-5)).
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size The hyper-parameter. Default values are seq(1, 10, 2).

times The number of times internal cross-validation is performed. Default is 100.
test.size The size of test data. Default is 0.2 (20 percent).

xval The n-cross validation. Default is 5.

fun The function used to summarise the xval macro F1 matrices.

seed The optional random number generator seed.

verbose A logical defining whether a progress bar is displayed.

Additional parameters passed to nnet from package nnet.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

nnetClassification and example therein.

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- nnetOptimisation(dunkley2006, decay = 10*(c(-1, -5)), size = c¢(5, 10), times = 3)
params

plot(params)

f1Count(params)

levelPlot(params)

getParams(params)

res <- nnetClassification(dunkley2006, params)
getPredictions(res, fcol = "nnet")
getPredictions(res, fcol = "nnet”, t = 0.75)
plot2D(res, fcol = "nnet")
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orderGoAnnotations Orders annotation information

Description

For a given matrix of annotation information, this function returns the information ordered accord-
ing to the best fit with the data.

Usage
orderGoAnnotations(
object,
fcol = "GOAnnotations”,
k =1:5,
n=>5,
p=1/3,
verbose = TRUE,
seed
)
Arguments
object An instance of class MSnSet.
fcol The name of the annotations matrix. Default is GOAnnotations.
k The number of clusters to test. Defaultis k =1:5
n The minimum number of proteins per component cluster.
p The normalisation factor, per k tested
verbose A logical indicating if a progress bar should be displayed. Default is TRUE.
seed An optional random number generation seed.
Details

As there are typically many protein/annotation sets that may fit the data we order protein sets by
best fit i.e. cluster tightness, by computing the mean normalised Euclidean distance for all instances
per protein set.

For each protein set i.e. proteins that have been labelled with a specified term/information criteria,
we find the best k cluster components for the set (the default is to testk = 1:5) according to the
minimum mean normalised pairwise Euclidean distance over all component clusters. (Note: when
testing k if any components are found to have less than n proteins these components are not included
and k is reduced by 1).

Each component cluster is normalised by N*p (where N is the total number of proteins per com-
ponent, and p is the power). Hueristally, p = 1/3 and normalising by N*1/3 has been found the
optimum normalisation factor.

Candidates in the matrix are ordered according to lowest mean normalised pairwise Euclidean dis-
tance as we expect high density, tight clusters to have the smallest mean normalised distance.

This function is a wrapper for running clustDist, and getNormDist.



62 orgQuants

Value

An updated MSnSet containing the newly ordered fcol matrix.

Author(s)

Lisa M Breckels

orgQuants Returns organelle-specific quantile scores

Description

This function produces organelle-specific quantiles corresponding to the given classification scores.

Usage
orgQuants(object, fcol, scol, mcol = "markers”, t, verbose = TRUE)
Arguments
object An instance of class "MSnSet".
fcol The name of the prediction column in the featureData slot.
scol The name of the prediction score column in the featureData slot. If missing,
created by pasting ’.scores’ after fcol.
mcol The name of the column containing the training data in the featureData slot.
Default is markers.
t The quantile threshold.
verbose If TRUE, the calculated threholds are printed.
Value

A named vector of organelle thresholds.

Author(s)

Lisa Breckels

See Also

getPredictions to get organelle predictions based on calculated thresholds.
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library("pRolocdata”)

data(dunkley2006)
res <- svmClassification(dunkley2006, fcol = "pd.markers”,
sigma = 0.1, cost = 0.5)
## 50% top predictions per class
ts <- orgQuants(res, fcol = "svm", t = .5)
getPredictions(res, fcol = "svm”, t = ts)
perTurboClassification
perTurbo classification
Description
Classification using the PerTurbo algorithm.
Usage
perTurboClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
pRegul,
sigma,
inv,
reg,
fcol = "markers”
)
Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by svmRegularisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
pRegul If assessRes is missing, a pRegul must be provided. See perTurboOptimisation
for details.
sigma If assessRes is missing, a sigma must be provided. See perTurboOptimisation
for details.
inv The type of algorithm used to invert the matrix. Values are : "Inversion Cholesky"
(chol2inv), "Moore Penrose" (ginv), "solve" (solve), "svd" (svd). Default
value is "Inversion Cholesky".
reg The type of regularisation of matrix. Values are "none", "trunc" or "tikhonov".
Default value is "tikhonov".
fcol The feature meta-data containing marker definitions. Default is markers.
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Value

An instance of class "MSnSet"” with perTurbo and perTurbo. scores feature variables storing the
classification results and scores respectively.

Author(s)

Thomas Burger and Samuel Wieczorek

References

N. Courty, T. Burger, J. Laurent. "PerTurbo: a new classification algorithm based on the spectrum
perturbations of the Laplace-Beltrami operator”, The European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2011), D. Gunop-
ulos et al. (Eds.): ECML PKDD 2011, Part I, LNAI 6911, pp. 359 - 374, Athens, Greece, September
2011.

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space

params <- perTurboOptimisation(dunkley2006,
pRegul = 2*seq(-2,2,2),
sigma = 10%*seq(-1, 1, 1),

inv = "Inversion Cholesky",
reg ="tikhonov",
times = 3)
params
plot(params)
f1Count (params)
levelPlot(params)
getParams(params)
res <- perTurboClassification(dunkley2006, params)
getPredictions(res, fcol = "perTurbo")

getPredictions(res, fcol = "perTurbo”, t = 0.75)
plot2D(res, fcol = "perTurbo")

perTurboOptimisation  PerTurbo parameter optimisation

Description

Classification parameter optimisation for the PerTurbo algorithm
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Usage

perTurboOptimisation(
object,
fcol = "markers”,
pRegul = 10*(seq(from = -1, to = @, by = 0.2)),
sigma = 10”(seq(from = -1, to = 1, by = 0.5)),
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inv = c¢("Inversion Cholesky"”, "Moore Penrose”, "solve", "svd"),
reg = c("tikhonov"”, "none", "trunc"),
times = 1,
test.size = 0.2,
xval = 5,
fun = mean,
seed,
verbose = TRUE
)
Arguments
object An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.
pRegul The hyper-parameter for the regularisation (values are in ]0,1] ). If reg =="trunc",
pRegul is for the percentage of eigen values in matrix. If reg =="tikhonov", then
’pRegul’ is the parameter for the tikhonov regularisation. Available configu-
rations are : "Inversion Cholesky" - ("tikhonov" / "none"), "Moore Penrose"
- ("tikhonov" / "none"), "solve" - ("tikhonov" / "none"), "svd" - ("tikhonov" /
"none" / "trunc").
sigma The hyper-parameter.
inv The type of algorithm used to invert the matrix. Values are : "Inversion Cholesky"
(chol2inv), "Moore Penrose" (ginv), "solve" (solve), "svd" (svd). Default
value is "Inversion Cholesky".
reg The type of regularisation of matrix. Values are "none", "trunc" or "tikhonov".
Default value is "tikhonov".
times The number of times internal cross-validation is performed. Default is 100.
test.size The size of test data. Default is 0.2 (20 percent).
xval The n-cross validation. Default is 5.
fun The function used to summarise the times macro F1 matrices.
seed The optional random number generator seed.
verbose A logical defining whether a progress bar is displayed.
Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.
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Value

An instance of class "GenRegRes".

Author(s)

Thomas Burger and Samuel Wieczorek

See Also

perTurboClassification and example therein.

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space

params <- perTurboOptimisation(dunkley2006,
pRegul = 2*seq(-2,2,2),
sigma = 10*seq(-1, 1, 1),

inv = "Inversion Cholesky",
reg ="tikhonov",
times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- perTurboClassification(dunkley2006, params)
getPredictions(res, fcol = "perTurbo”)

getPredictions(res, fcol = "perTurbo”, t = 0.75)
plot2D(res, fcol = "perTurbo")

phenoDisco

phenoDisco Runs the phenoDisco algorithm.

Description

phenoDisco is a semi-supervised iterative approach to detect new protein clusters.

Usage

phenoDisco(
object,
fcol = "markers”,
times = 100,
GS = 10,
alllter = FALSE,
p = 0.05,
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ndims = 2,

modelNames = mclust.options(”emModelNames"),
G=1:9,

BPPARAM,

tmpfile,

seed,

verbose = TRUE,

dimred = c("PCA", "t-SNE"),

)
Arguments

object An instance of class MSnSet.

fcol A character indicating the organellar markers column name in feature meta-
data. Default is markers.

times Number of runs of tracking. Default is 100.

GS Group size, i.e how many proteins make a group. Default is 10 (the minimum
group size is 4).

alllter logical, defining if predictions for all iterations should be saved. Default is
FALSE.

p Significance level for outlier detection. Default is 0.05.

ndims Number of principal components to use as input for the disocvery analysis. De-
fault is 2. Added in version 1.3.9.

modelNames A vector of characters indicating the models to be fitted in the EM phase of clus-
tering using Mclust. The help file for mclust: :mclustModelNames describes
the available models. Default model names are c("EII", "VII", "EEI", "VEI",
"EVI", "VVI", "EEE","EEV", "VEV", "VVV"), asreturned by mclust.options(”emModelNames").
Note that using all these possible models substantially increases the running
time. Legacy models are c("EEE", "EEV","VEV","VVV"), i.e. only ellipsoidal
models.

G An integer vector specifying the numbers of mixture components (clusters) for
which the BIC is to be calculated. The default is G=1:9 (as in Mclust).

BPPARAM Support for parallel processing using the BiocParallel infrastructure. When
missing (default), the default registered BiocParallelParam parameters are
used. Alternatively, one can pass a valid BiocParallelParam parameter in-
stance: SnowParam, MulticoreParam, DoparParanm, ...see the BiocParallel
package for details. To revert to the origianl serial implementation, use NULL.

tmpfile An optional character to save a temporary MSnSet after each iteration. Ignored
if missing. This is useful for long runs to track phenotypes and possibly kill the
run when convergence is observed. If the run completes, the temporary file is
deleted before returning the final result.

seed An optional numeric of length 1 specifing the random number generator seed to

be used. Only relevant when executed in serialised mode with BPPARAM = NULL.
See BPPARAM for details.
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verbose Logical, indicating if messages are to be printed out during execution of the
algorithm.

dimred A characater defining which of Principal Component Analysis ("PCA") or t-
Distributed Stochastic Neighbour Embedding (" t-SNE") should be use to reduce
dimensions prior to running phenoDisco novelty detection.

Additional arguments passed to the dimensionality reduction method. For both
PCA and t-SNE, the data is scaled and centred by default, and these parame-
ters (scale and centre for PCA, and pca_scale and pca_center for t-SNE
can’t be set). When using t-SNE however, it is important to tune the perplexity
and max iterations parameters. See the Dimensionality reduction section in the
pRoloc vignette for details.

Details

The algorithm performs a phenotype discovery analysis as described in Breckels et al. Using this
approach one can identify putative subcellular groupings in organelle proteomics experiments for
more comprehensive validation in an unbiased fashion. The method is based on the work of Yin et
al. and used iterated rounds of Gaussian Mixture Modelling using the Expectation Maximisation
algorithm combined with a non-parametric outlier detection test to identify new phenotype clusters.

One requires 2 or more classes to be labelled in the data and at a very minimum of 6 markers per
class to run the algorithm. The function will check and remove features with missing values using
the filterNA method.

A parallel implementation, relying on the BiocParallel package, has been added in version 1.3.9.
See the BPPARAM arguent for details.

Important: Prior to version 1.1.2 the row order in the output was different from the row order in the
input. This has now been fixed and row ordering is now the same in both input and output objects.

Value

An instance of class MSnSet containing the phenoDisco predictions.

Author(s)

Lisa M. Breckels <Ims79 @cam.ac.uk>

References

Yin Z, Zhou X, Bakal C, Li F, Sun Y, Perrimon N, Wong ST. Using iterative cluster merging with
improved gap statistics to perform online phenotype discovery in the context of high-throughput
RNAI screens. BMC Bioinformatics. 2008 Jun 5;9:264. PubMed PMID: 18534020.

Breckels LM, Gatto L, Christoforou A, Groen AJ, Lilley KS and Trotter MWB. The Effect of
Organelle Discovery upon Sub-Cellular Protein Localisation. J Proteomics. 2013 Aug 2;88:129-
40. doi: 10.1016/j.jprot.2013.02.019. Epub 2013 Mar 21. PubMed PMID: 23523639.
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Examples

## Not run:

library(pRolocdata)

data(tan2009r1)

pdres <- phenoDisco(tan2009r1, fcol = "PLSDA")
getPredictions(pdres, fcol = "pd”, scol = NULL)
plot2D(pdres, fcol = "pd")

## to pre-process the data with t-SNE instead of PCA
pdres <- phenoDisco(tan2009r1, fcol = "PLSDA", dimred = "t-SNE")

## End(Not run)

plot2D Plot organelle assignment data and results.

Description

Generate 2 or 3 dimensional feature distribution plots to illustrate localistation clusters. Rows/features
containing NA values are removed prior to dimension reduction except for the "nipals” method.
For this method, it is advised to set the method argument ‘ncomp* to a low number of dimensions
to avoid computing all components when analysing large datasets.

Usage

plot2D(
object,
fcol = "markers”,
fpch,
unknown = "unknown",
dims = 1:2,
score = 1,
method = "PCA",
methargs,
axsSwitch = FALSE,
mirrorX = FALSE,
mirrorY = FALSE,
col,
bg,
palette = "light",
t =20.3,
pch,
cex,
lwd,
index = FALSE,
idx.cex = 0.75,
addLegend,
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identify = FALSE,

plot = TRUE,

grid = FALSE,
)
## S4 method for signature 'MSnSet'
plot3D(

object,

fcol = "markers”,

dims = c(1, 2, 3),

radius1 = 0.1

’

radius2 = radiusl * 2,

plot = TRUE,

Arguments

object

fcol

fpch

unknown

dims

score

method

An instance of class MSnSet.

Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers. Use NULL to suppress any
colouring.

Featre meta-data label (fData column name) desining the groups to be differen-
tiated using different point symbols.

A character (default is "unknown") defining how proteins of unknown/un-
labelled localisation are labelled.

A numeric of length 2 (or 3 for plot3D) defining the dimensions to be plotted.
Defaults are c(1,2) and c(1, 2, 3).

A numeric specifying the minimum organelle assignment score to consider fea-
tures to be assigned an organelle. (not yet implemented).

A character describe how to transform the data or what to plot. One of "PCA"
(default), "MDS", "kpca”, "nipals”, "t-SNE", "UMAP", or "1da", defining what
dimensionality reduction is applied: principal component analysis (see prcomp),
classical multidimensional scaling (see cmdscale), kernel PCA (see kpca), ni-
pals (principal component analysis by NIPALS, non-linear iterative partial least
squares which support missing values; see nipals) t-SNE (see Rtsne), UMAP
(see umap) or linear discriminant analysis (see 1da). The last method uses fcol
to defined the sub-cellular clusters so that the ration between within ad between
cluster variance is maximised. All the other methods are unsupervised and make
use fcol only to annotate the plot. Prior to t-SNE, duplicated features are re-
moved and a message informs the user if such filtering is needed.

"scree” can also be used to produce a scree plot. "hexbin"” applies PCA to the
data and uses bivariate binning into hexagonal cells from hexbin to emphasise
cluster density.

If the character "none” is used, the data is plotted as is, i.e. without any transfor-
mation. In this case, object can either be an MSnSet or a matrix (as invisibly
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methargs

axsSwitch
mirrorX
mirrorY

col

bg

palette

pch

cex
1wd

index

idx.cex

addLegend

identify

plot

grid

radiusi

radius2
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returned by plot2D). This enables to re-generate the figure without computing
the dimensionality reduction over and over again, which can be time consuming
for certain methods. If object is a matrix, an MSnSet containing the feature
metadata must be provided in methargs (see below for details).

Available methods are listed in plot2Dmethods.

A list of arguments to be passed when method is called. If missing, the data
will be scaled and centred prior to PCA and t-SNE (i.e. Rtsne’s arguments
pca_center and pca_scale are set to TRUE). If method = "none"” and object
is a matrix, then the first and only argument of methargs must be an MSnSet
with matching features with object.

A logical indicating whether the axes should be switched.
A logical indicating whether the x axis should be mirrored.
A logical indicating whether the y axis should be mirrored.
A character of appropriate length defining colours.

Optional background (fill) color for the open plot symbols i.e. can to be used
when pch = 21: 25.

A character defining which palette colour theme to use, can either defined as
"light" (defualt) or "dark".

A numeric between 0 and 1. Defining the degree of lightening of the colours in
the palette. Default is 0.3.

A character of appropriate length defining point character. Default is 21 (filled
circles). See pch for details.

Character expansion: a numerical vector. This works as a multiple of par("cex").
A numeric defining the line width for drawing symbols. Default is 1.5.

A logical (default is FALSE, indicating of the feature indices should be plotted
on top of the symbols.

A numeric specifying the character expansion (default is 0.75) for the feature
indices. Only relevant when index is TRUE.

A character indicating where to add the legend. See addLegend for details. If
missing (default), no legend is added.

A logical (default is TRUE) defining if user interaction will be expected to identify
individual data points on the plot. See also identify.

A logical defining if the figure should be plotted. Useful when retrieving data
only. Default is TRUE.

A logical indicating whether a grid should be plotted. Default is TRUE.
Additional parameters passed to plot and points.

A numeric specifying the radius of feature of unknown localisation. Default is
0.1, which is specidied on the data scale. See plot3d for details.

A numeric specifying the radius of marker feature. Default is radius * 2.
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Details

plot3D relies on the ##  rgl package, that will be loaded automatically.

* Note that plot2D has been update in version 1.3.6 to support more organelle classes than
colours defined in getStockcol. In such cases, the default colours are recycled using the
default plotting characters defined in getStockpch. See the example for an illustration. The
alpha argument is also depreciated in version 1.3.6. Use setStockcol to set colours with
transparency instead. See example below.

* Version 1.11.3: to plot data as is, i.e. without any transformation, method can be set to "none"
(as opposed to passing pre-computed values to method as a matrix, in previous versions). If
object is an MSnSet, the untransformed values in the assay data will be plotted. If object is
amatrix with coordinates, then a matching MSnSet must be passed to methargs.

Value

Used for its side effects of generating a plot. Invisibly returns the 2 or 3 dimensions that are plotted.

Author(s)

Laurent Gatto, Lisa Breckels

See Also

addLegend to add a legend to plot2D figures (the legend is added by default on plot3D) and
plotDist for alternative graphical representation of quantitative organelle proteomics data. plot2Ds
to overlay 2 data sets on the same PCA plot. The plotEllipse function can be used to visualise
TAGM models on PCA plots with ellipses.

Examples

library("pRolocdata”)
data(dunkley2006)
plot2D(dunkley2006, fcol = NULL)
plot2D(dunkley2006, fcol = NULL, col = "black")
plot2D(dunkley2006, fcol = "markers")
addLegend(dunkley?2006,

fcol = "markers”,

where = "topright”,

cex = 0.5, bty = "n", ncol = 3)
title(main = "plot2D example”)

## available methods

plot2Dmethods

plot2D(dunkley2006, fcol = NULL, method = "kpca”, col = "black")

plot2D(dunkley2006, fcol = NULL, method = "kpca”, col = "black”,
methargs = list(kpar = list(sigma = 1)))

plot2D(dunkley2006, method = "1lda")

plot2D(dunkley2006, method = "hexbin")

## Using transparent colours
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setStockcol (paste@(getStockcol(), "80"))
setStockbg(paste@(getStockbg(), "80"))
plot2D(dunkley2006, fcol = "markers")

## New behavious in 1.3.6 when not enough colours
setStockcol (c("blue”, "red", "green"))
getStockcol () ## only 3 colours to be recycled
getMarkers(dunkley2006)

plot2D(dunkley2006)

## Reset colours

setStockcol (NULL)

setStockbg (NULL)

plot2D(dunkley2006, method = "none") ## plotting along 2 first fractions
plot2D(dunkley2006, dims = c(3, 5), method = "none"”) ## plotting along fractions 3 and 5

## Using different light and dark colour themes
plot2D(dunkley2006, palette = "dark")
plot2D(dunkley2006, palette = "dark”, t = .1)
plot2D(dunkley2006, palette = "light")
plot2D(dunkley2006, palette = "light", t = .6)

## Changing the point characters

plot2D(dunkley2006, pch = 22)

setUnknownpch(22)

plot2D(dunkley2006, pch = 22)

setUnknownpch(NULL) ## reset unknowns pch back to default

## pre-calculate PC1 and PC2 coordinates

pca <- plot2D(dunkley2006, plot=FALSE)

head(pca)

plot2D(pca, method = "none”, methargs = list(dunkley2006))

## Adding a legend inside a plot
plot2D(dunkley2006)
addLegend(dunkley2006, where = "topleft")

## Adding a legend outside a plot
par(mfrow = c(1, 2))
plot2D(dunkley2006)
addLegend(dunkley2006, where = "other")

## Plotting information from the fData slot
fvarLabels(dunkley2006)

plot2D(dunkley2006, fcol = "assigned”)

addLegend(dunkley2006, where = "topleft”, ncol = 2, cex = .5)

## plotting in 3 dimenstions
plot3D(dunkley2006)
plot3D(dunkley2006, radius2 = 0.3)
plot3D(dunkley2006, dims = c(2, 4, 6))
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plot2Ds

plot2Ds

Draw 2 data sets on one PCA plot

Description

Takes 2 1inkS4class{MSnSet} instances as input to plot the two data sets on the same PCA plot.
The second data points are projected on the PC1 and PC2 dimensions calculated for the first data

set.
Usage
plot2Ds(
object,
pcol,
fcol = "markers”,
cex.x =1,
cex.y =1,
pch.x = 21,
pch.y = 23,
col,
mirrorX = FALSE,
mirrorY = FALSE,
plot = TRUE,
)
Arguments
object An MSnSet or a MSnSetList. In the latter case, only the two first elements of
the list will be used for plotting and the others will be silently ignored.
pcol Ifobject is anMSnSet, a factor or the name of a phenotype variable (phenoData
slot) defining how to split the single MSnSet into two or more data sets. Ignored
if object is aMSnSetList.
fcol Feature meta-data label (fData column name) defining the groups to be differ-
entiated using different colours. Default is markers. Use NULL to suppress any
colouring.
cex.x Character expansion for the first data set. Default is 1.
cex.y Character expansion for the second data set. Default is 1.
pch.x Plotting character for the first data set. Default is 21.
pch.y Plotting character for the second data set. Default is 23.
col A vector of colours to highlight the different classes defined by fcol. If missing
(default), default colours are used (see getStockcol).
mirrorX A logical indicating whether the x axis should be mirrored?
mirroryY A logical indicating whether the y axis should be mirrored?
plot If TRUE (default), a plot is produced.

Additinal parameters passed to plot and points.
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Value

Used for its side effects of producing a plot. Invisibly returns an object of class plot2Ds, which
is a list with the PCA analyses results (see prcomp) of the first data set and the new coordinates of
the second data sets, as used to produce the plot and the respective point colours. Each of these
elements can be accessed with data1, data2, coll and code2 respectively.

Author(s)

Laurent Gatto

See Also

See plot2D to plot a single data set and move2Ds for a animation.

Examples

library("pRolocdata”)
data(tan2009r1)
data(tan2009r2)
msnl <- MSnSetList(list(tan2009r1, tan2009r2))
plot2Ds(msnl)
## tweaking the parameters
plot2Ds(list(tan2009r1, tan2009r2),
fcol = NULL, cex.x = 1.5)
## input is 1 MSnSet containing 2 data sets
data(dunkley2006)
plot2Ds(dunkley2006, pcol = "replicate”)
## no plot, just the data
res <- plot2Ds(dunkley2006, pcol = "replicate”,
plot = FALSE)
res
head(datal(res))
head(coll1(res))

plotConsProfiles Plot marker consensus profiles.

Description

The function plots marker consensus profiles obtained from mrkConsProfile

Usage

plotConsProfiles(object, order = NULL, plot = TRUE)

Arguments
object A matrix containing marker consensus profiles as output from mrkConsProfiles().
order Order for markers (optional).

plot A logical(1) defining whether the heatmap should be plotted. Default is TRUE.
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Value

Invisibly returns ggplot2 object.

Author(s)

Tom Smith

Examples

library("pRolocdata”)

data(E14TG2aS1)

hc <- mrkHClust(E14TG2aS1, plot = FALSE)

mm <- getMarkerClasses(E14TG2aS1)

ord <- levels(factor(mm))[order.dendrogram(hc)]
fmat <- mrkConsProfiles(E14TG2aS1)
plotConsProfiles(fmat, order = ord)

plotDist

plotDist Plots the distribution of features across fractions

Description

Produces a line plot showing the feature abundances across the fractions.

Usage

plotDist(
object,
markers,
fcol = NULL,
mcol = "steelblue”,
pcol = getUnknowncol(),
alpha = 0.3,
type = "b",
1ty =1,

fractions = sampleNames(object),
ylab = "Intensity"”,

xlab = "Fractions”,
ylim,
unknown = "unknown”,



plotDist

Arguments

object

markers

fcol

mcol

pcol

alpha

type

1ty

fractions

ylab
xlab
ylim

unknown

Value

77

An instance of class MSnSet.

A character, numeric or logical of appropriate length and or content used to
subset object and define the organelle markers.

Feature meta-data label (fData column name) defining the groups to be differen-
tiated using different colours. If NULL (default) ignored and mcol and pcol are
used.

A character define the colour of the marker features. Default is "steelblue”.

A character define the colour of the non-markers features. Default is the colour
used for features of unknown localisation, as returned by getUnknowncol.

A numeric defining the alpha channel (transparency) of the points, where @ <=
alpha <=1, 0 and 1 being completely transparent and opaque.

Character string defining the type of lines. For example "p" for points, "1" for
lines, "b" for both. See plot for all possible types.

Vector of line types for the marker profiles. Default is 1 (solid). See par for
details.

A character defining the phenoData variable to be used to label the fraction
along the x axis. Default is to use sampleNames(object).

y-axis label. Default is "Intensity".

x-axis label. Default is "Fractions".

A numeric vector of length 2, giving the y coordinates range.

Character defining how unlabelled points are defined default is "unknown".

Additional parameters passed to plot.

Used for its side effect of producing a feature distribution plot. Invisibly returns the data matrix.

Author(s)

Laurent Gatto

Examples
library("”pRolocdata”)
data(tan2009r1)
j <- which(fData(tan2009r1)$markers == "mitochondrion")
i <- which(fData(tan2009r1)$PLSDA == "mitochondrion™)

plotDist(tan2009r1[i, 1, markers = featureNames(tan2009r1)[j1)

plotDist(tan2009ri1[i, ], markers = featureNames(tan2009r1)[j],
fractions = "Fractions")

## plot and colour all marker profiles

tanmrk <- markerMSnSet(tan2009r1)

plotDist(tanmrk, fcol = "markers")
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plotEllipse A function to plot probabiltiy ellipses on marker PCA plots to visualise
and assess TAGM models.

Description

Note that when running PCA, this function does not scale the data (centring is performed), as
opposed to [plot2D()]. Only marker proteins are displayed; the protein of unknown location, that
are not used to estimate the MAP parameters, are filtered out.

Usage
plotEllipse(object, params, dims = c(1, 2), method = "MAP", ...)
Arguments
object An [‘MSnbase::MSnset‘] containing quantitative spatial proteomics data.
params An ['MAPParams‘] with the TAGM-MAP parameters, as generated by ‘tag-
mMapTrain‘.
dims A ‘numeric(2)‘ with the principal components along which to project the data.
Default is ‘c(1, 2)°.
method The method used. Currently ‘"MAP" only.
Additional parameters passed to [plot2D()].
Value

A PCA plot of the marker data with probability ellipises. The outer ellipse contains 99 probability
whilst the middle and inner ellipses contain 95 and 90 clusters are represented by black circumpunct
(circled dot).

See Also

[plot2D()] to visualise spatial proteomics data using various dimensionality reduction methods. For
details about TAGM models, see [tagmPredict()] and the *pRoloc-bayesian* vignette.

plsdaClassification plsda classification

Description

Classification using the partial least square distcriminant analysis algorithm.
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Usage
plsdaClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
ncomp,
fcol = "markers”,
)
Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by plsdaOptimisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
ncomp If assessRes is missing, a ncomp must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
Additional parameters passed to plsda from package caret.
Value

An instance of class "MSnSet” with plsda and plsda.scores feature variables storing the classi-
fication results and scores respectively.

Author(s)

Laurent Gatto

Examples

## not running this one for time considerations
library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- plsdaOptimisation(dunkley2006, ncomp = c(3, 10), times = 2)
params

plot(params)

f1Count(params)

levelPlot(params)

getParams(params)

res <- plsdaClassification(dunkley2006, params)
getPredictions(res, fcol = "plsda")
getPredictions(res, fcol = "plsda”, t = 0.9)
plot2D(res, fcol = "plsda")
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plsdaOptimisation plsda parameter optimisation

Description

Classification parameter optimisation for the partial least square distcriminant analysis algorithm.

Usage

plsdaOptimisation(
object,
fcol = "markers”,
ncomp = 2:6,
times = 100,
test.size = 0.2,
xval = 5,
fun = mean,
seed,

verbose = TRUE,

)
Arguments
object An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.
ncomp The hyper-parameter. Default values are 2: 6.
times The number of times internal cross-validation is performed. Default is 100.
test.size The size of test data. Default is 0.2 (20 percent).
xval The n-cross validation. Default is 5.
fun The function used to summarise the xval macro F1 matrices.
seed The optional random number generator seed.
verbose A logical defining whether a progress bar is displayed.
Additional parameters passed to plsda from package caret.
Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".
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Author(s)

Laurent Gatto

## not running this one for time considerations library(pRolocdata) data(dunkley2006) ## reducing
parameter search space and iterations params <- plsdaOptimisation(dunkley2006, ncomp = c(3,
10), times = 2) params plot(params) f1Count(params) levelPlot(params) getParams(params) res
<- plsdaClassification(dunkley2006, params) getPredictions(res, fcol = "plsda") getPredictions(res,
fcol = "plsda", t = 0.9) plot2D(res, fcol = "plsda")

See Also

plsdaClassification and example therein.

pRolocmarkers Organelle markers

Description

This function retrieves a list of organelle markers or, if no species is provided, prints a description
of available marker sets. The markers can be added to and MSnSet using the addMarkers function.
Several marker version are provided (see Details for additional information).

Usage
pRolocmarkers(species, version = "2")
Arguments
species character (1) defining the species of interest. For reference species markers,
this is just the species e.g. "hsap”. For published marker sets this is the species
and author name e.g. "hsap_geladaki”.
version character (1) defining the marker version. Default is "2".
Details

Version 1 of the markers have been contributed by various members of the Cambridge Centre for
Proteomics, in particular Dr Dan Nightingale for yeast, Dr Andy Christoforou and Dr Claire Mul-
vey for human, Dr Arnoud Groen for Arabodopsis and Dr Claire Mulvey for mouse. In addition,
original (curated) markers from the pRolocdata datasets have been extracted (see pRolocdata for
details and references). Curation involved verification of publicly available subcellular localisation
annotation based on the curators knowledge of the organelles/proteins considered and tracing the
original statement in the literature.

Version 2 of the markers (current default) have been updated by Charlotte Hutchings from the Cam-
bridge Centre for Proteomics. Reference species marker sets are the same as those in version 1 with
minor corrections and an updated naming system. Version 2 also contains additional marker sets
from spatial proteomics publications. References for the source publications are provided below:
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* Geladaki, A., Britovsek, N.K., Breckels, L.M., Smith, T.S., Vennard, O.L., Mulvey, C.M.,
Crook, O.M., Gatto, L. and Lilley, K.S. (2019) Combining LOPIT with differential ultracen-
trifugation for high-resolution spatial proteomics. Nature Communications. 10 (1). doi:10.1038/s41467-
018-08191-w

* Christopher, J.A., Breckels, L.M., Crook, O.M., Vazquez—Chantada, M., Barratt, D. and Lil-
ley, K.S. (2024) Global proteomics indicates subcellular-specific anti-ferroptotic responses to
ionizing radiation.p.2024.09.12.611851. doi:10.1101/2024.09.12.611851

* Itzhak, D.N., Tyanova, S., Cox, J. and Borner, G.H. (2016) Global, quantitative and dynamic
mapping of protein subcellular localization. eLife. 5. doi:10.7554/elife.16950

* Villanueva, E., Smith, T., Pizzinga, M., Elzek, M., Queiroz, R.M.L., Harvey, R.F., Breck-
els, L.M., Crook, O.M., Monti, M., Dezi, V., Willis, A.E. and Lilley, K.S. (2023) System-
wide analysis of RNA and protein subcellular localization dynamics. Nature Methods. 1-12.
doi:10.1038/s41592-023-02101-9

e Christoforou, A., Mulvey, C.M., Breckels, L.M., Geladaki, A., Hurrell, T., Hayward, P.C.,
Naake, T., Gatto, L., Viner, R., Arias, A.M. and Lilley, K.S. (2016) A draft map of the mouse
pluripotent stem cell spatial proteome. Nature Communications. 7 (1). doi:10.1038/ncomms9992

* Barylyuk, K., Koreny, L., Ke, H., Butterworth, S., Crook, O.M., Lassadi, 1., Gupta, V.,
Tromer, E., Mourier, T., Stevens, T.J., Breckels, L.M., Pain, A., Lilley, K.S. and Waller, R.F.
(2020) A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT
Provides Spatial Context for Protein Functions. Cell Host and Microbe. 28 (5), 752-766.€9.
doi:10.1016/j.chom.2020.09.011

* Moloney, N.M., Barylyuk, K., Tromer, E., Crook, O.M., Breckels, L.M., Lilley, K.S., Waller,
R.F. and MacGregor, P. (2023) Mapping diversity in African trypanosomes using high reso-
lution spatial proteomics. Nature Communications. 14 (1), 4401. doi:10.1038/s41467-023-
40125-z

Note: These markers are provided as a starting point to generate reliable sets of organelle markers
but still need to be verified against any new data in the light of the quantitative data and the study
conditions.

Value
Prints a description of the available marker lists if species is missing or a named character with

organelle markers.

Author(s)

Laurent Gatto

See Also

addMarkers to add markers to an MSnSet and markers for more information about marker encod-
ing.
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Examples

pRolocmarkers()
pRolocmarkers("hsap")
table(pRolocmarkers("hsap”))

## 01d markers
pRolocmarkers("hsap”, version = "2")["Q9BPW9"]
pRolocmarkers("hsap"”, version = "1")["Q9BPW9"]

QSep-class Quantify resolution of a spatial proteomics experiment

Description

The QSep infrastructure provide a way to quantify the resolution of a spatial proteomics experiment,
i.e. to quantify how well annotated sub-cellular clusters are separated from each other.

The QSep function calculates all between and within cluster average distances. These distances are
then divided column-wise by the respective within cluster average distance. For example, for a
dataset with only 2 spatial clusters, we would obtain

C1 C2
C1 dll d12
[65) d21 d22

Normalised distance represent the ratio of between to within average distances, i.e. how much
bigger the average distance between cluster ¢; and c; is compared to the average distance within

cluster c;.
C1 C2
dp2
C1 1 Eii
da1
Co dil 1

Note that the normalised distance matrix is not symmetric anymore and the normalised distance
ratios are proportional to the tightness of the reference cluster (along the columns).

Missing values only affect the fractions containing the NA when the distance is computed (see the
example below) and further used when calculating mean distances. Few missing values are expected
to have negligible effect, but data with a high proportion of missing data will will produce skewed
distances. In QSep, we take a conservative approach, using the data as provided by the user, and
expect that the data missingness is handled before proceeding with this or any other analysis.

Objects from the Class

Objects can be created by calls using the constructor QSep (see below).
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Slots

x: Object of class "matrix” containing the pairwise distance matrix, accessible with gseq(., norm
= FALSE).

xnorm: Object of class "matrix" containing the normalised pairwise distance matrix, accessible
with gsep(.,norm = TRUE) or gsep(.).

object: Object of class "character” with the variable name of MSnSet object that was used to
generate the QSep object.

.__classVersion__: Object of class "Versions" storing the class version of the object.

Extends

Class "Versioned”, directly.

Methods and functions

QSeq signature(object = "MSnSet”, fcol = "character"): constructor for QSep objects. The
fcol argument defines the name of the feature variable that annotates the sub-cellular clus-
ters. Non-marker proteins, that are marked as "unknown” are automatically removed prior to
distance calculation.

gsep signature{object ="QSep”, norm= "logical"}: accessor for the normalised (when norm
is TRUE, which is default) and raw (when norm is FALSE) pairwise distance matrices.

names signature{object = "QSep”}: method to retrieve the names of the sub-celluar clusters
originally defined in QSep’s fcol argument. A replacement method names(.) <- is also
available.

summary signature(object = "QSep”, ..., verbose = "logical”): Invisible return all between
cluster average distances and prints (when verbose is TRUE, default) a summary of those.

levelPlot signature(object = "QSep”, norm= "logical”,...): plots an annotated heatmap of
all normalised pairwise distances. norm (default is TRUE) defines whether normalised distances
should be plotted. Additional arguments . .. are passed to the levelplot.

plot signature(object = "QSep”, norm = "logical”...): produces a boxplot of all normalised
pairwise distances. The red points represent the within average distance and black points be-
tween average distances. norm (default is TRUE) defines whether normalised distances should
be plotted.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

References

Assessing sub-cellular resolution in spatial proteomics experiments Laurent Gatto, Lisa M Breckels,
Kathryn S Lilley bioRxiv 377630; doi: https://doi.org/10.1101/377630
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Examples

## Test data from Christoforou et al. 2016
library(”"pRolocdata”)
data(hyperLOPIT2015)

## Create the object and get a summary
hlg <- QSep(hyperLOPIT2015)

hlqg

summary (hlq)

## mean distance matrix
gsep(hlg, norm = FALSE)

## normalised average distance matrix
asep(hla)

## Update the organelle cluster names for better
## rendering on the plots

names(hlg) <- sub(”/", "\n", names(hlq))
names(hlqg) <- sub(” - ", "\n", names(hlq))
names(hlq)

## Heatmap of the normalised intensities
levelPlot(hlq)

## Boxplot of the normalised intensities
par(mar = c(3, 10, 2, 1))
plot(hlq)

## Boxplot of all between cluster average distances
x <- summary(hlqg, verbose = FALSE)
boxplot(x)

## Missing data example, for 4 proteins and 3 fractions

X <= rbind(c(1.1, 1.2, 1.3), rep(1, 3), c(NA, 1, 1), c(1, 1, NA))
rownames(x) <- paste@("P"”, 1:4)

colnames(x) <- paste@("F", 1:3)

## P1 is the reference, against which we will calculate distances. P2
## has a complete profile, producing the *real* distance. P3 and P4 have
## missing values in the first and last fraction respectively.

X

## If we drop F1 in P3, which represents a small difference of 0.1, the
## distance only considers F2 and F3, and increases. If we drop F3 in
## P4, which represents a large distance of 0.3, the distance only

## considers F1 and F2, and decreases. dist(x)

rfClassification rf classification
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Description

rfClassification

Classification using the random forest algorithm.

Usage
rfClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
mtry,
fcol = "markers”,
)
Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by rfOptimisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
mtry If assessRes is missing, a mtry must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
Additional parameters passed to randomForest from package randomForest.
Value

An instance of class "MSnSet” with rf and rf.scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- rfOptimisation(dunkley2006, mtry = c(2, 5, 10), times = 3)

params

plot(params)
f1Count(params)
levelPlot (params)
getParams(params)

res <- rfClassification(dunkley2006, params)
getPredictions(res, fcol = "rf")
getPredictions(res, fcol = "rf", t = 0.75)
plot2D(res, fcol = "rf")
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rfOptimisation

svm parameter optimisation

Description

Classification parameter optimisation for the random forest algorithm.

Usage
rfOptimisation(

object,
fcol = "markers”,
mtry = NULL,
times = 100,
test.size = 0.2,
xval = 5,
fun = mean,
seed,

verbose = TRUE,

Arguments

object
fcol

mtry
times
test.size
xval

fun

seed

verbose

Details

An instance of class "MSnSet".

The feature meta-data containing marker definitions. Default is markers.
The hyper-parameter. Default value is NULL.

The number of times internal cross-validation is performed. Default is 100.
The size of test data. Default is 0.2 (20 percent).

The n-cross validation. Default is 5.

The function used to summarise the xval macro F1 matrices.

The optional random number generator seed.

A logical defining whether a progress bar is displayed.

Additional parameters passed to randomForest from package randomForest.

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".
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Author(s)

Laurent Gatto

See Also

rfClassification and example therein.

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- rfOptimisation(dunkley2006, mtry = c(2, 5, 10), times = 3)
params

plot(params)

f1Count(params)

levelPlot(params)

getParams(params)

res <- rfClassification(dunkley2006, params)
getPredictions(res, fcol = "rf")
getPredictions(res, fcol = "rf", t = 0.75)
plot2D(res, fcol = "rf")

sampleMSnSet Extract a stratified sample of an MSnSet

Description

This function extracts a stratified sample of an MSnSet.

Usage
sampleMSnSet (object, fcol = "markers", size = 0.2, seed)
Arguments
object An instance of class MSnSet
fcol The feature meta-data column name containing the marker (vector or matrix)
definitions on which the MSnSet will be stratified. Default is markers.
size The size of the stratified sample to be extracted. Default is 0.2 (20 percent).
seed The optional random number generator seed.
Value

A stratified sample (according to the defined fcol) which is an instance of class "MSnSet".
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Author(s)

Lisa Breckels

See Also

testMSnSet unknownMSnSet markerMSnSet. See markers for details about markers encoding.

Examples

library(pRolocdata)

data(tan2009r1)

dim(tan2009r1)

smp <- sampleMSnSet(tan2009r1, fcol = "markers")
dim(smp)

getMarkers(tan2009r1)

getMarkers(smp)

setlLisacol Manage default colours and point characters

Description

These functions allow to get/set the colours and point character that are used when plotting organelle
clusters and unknown features. These values are parametrised at the session level. Two palettes are
available: the default palette (previously Lisa’s colours) containing 30 colours and the old (original)
palette, containing 13 colours.

Usage

setlLisacol()
getLisacol()
getOldcol ()
setOldcol ()
getStockcol ()
setStockcol(cols)
getStockpch()
setStockpch(pchs)

getUnknowncol ()
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setUnknowncol(col)
getUnknownpch ()
setUnknownpch(pch)
getStockbg()
setStockbg(bg)
getUnknownbg ()
setUnknownbg (bg)
Arguments
cols A vector of colour characters or NULL, which sets the colours to the default
values.
pchs A vector of numeric or NULL, which sets the point characters to the default
values.
col A colour character or NULL, which sets the colour to #E7E7E7 (grey91), the
default colour for unknown features.
pch A numeric vector of length 1 or NULL, which sets the point character to 21, the
default.
bg A colour character or NULL, which sets the background (fill) colour for open
plot symbols given by pch = 21:25 to the default colour for unknown features.
Value
The set functions set (and invisibly returns) colours. The get functions returns a character vector
of colours. For the pch functions, numerics rather than characters.
Author(s)
Laurent Gatto
Examples

## defaults for clusters

getStockcol ()
getStockbg()
getStockpch()

## unknown features
getUnknowncol ()
getUnknownbg ()
getUnknownpch()

## an example
library(pRolocdata)
data(dunkley2006)
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par(mfrow = c(2,
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D))

plot2D(dunkley2006, fcol = "markers”, main = 'Default colours')
setUnknowncol("black")
setUnknownbg("grey")
plot2D(dunkley2006, fcol = "markers”,
main = 'setUnknowncol(”black”) and setUnknownbg("grey”)"')

getUnknowncol ()
getUnknownbg ()

setUnknowncol (NULL)
setUnknownbg (NULL)

getUnknowncol ()
getStockcol ()
get0ldcol ()

spatial2D

Uncertainty plot in localisation probabilities

Description

Produces a pca plot with spatial variation in localisation probabilities

Usage

spatial2D(
object,

dims = c(1, 2

cov.function
theta = 1,

derivative =
k =1,
breaks
aspect

c(o.
Q.5

Arguments

object

dims
cov.function
theta

derivative

k

breaks

aspect

),

= fields: :wendland.cov,
2,

99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7),

A valid object of class MSnset with mcmc prediction results from tagmMCMCpredict
The PCA dimension in which to project he data, default is c(1,2)
The covariance function used default is wendland.cov. See fields package.

A hyperparameter to the covariance function. See fields package. Default is
1.

The number of derivative of the wendland kernel. See fields package. Default
is 2.
A hyperparamter to the covariance function. See fields package. Default is 1.

Probability values at which to draw the contour bands. Default is c(0.99,
0.95,0.9,0.85,0.8,0.75,0.7)

A argument to change the plotting aspect of the PCA
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Value

Used for side effect of producing plot. Invisibily returns an ggplot object that can be further manip-
ulated

Author(s)

Oliver M. Crook <omc25@cam.ac.uk>

Examples

## Not run:
library(”"pRolocdata")
data("tan2009r1")

tanres <- tagmMcmcTrain(object = tan2009r1)

tanres <- tagmMcmcProcess(tanres)

tan2009r1 <- tagmMcmcPredict(object = tan2009r1, params = tanres, probJoint = TRUE)
spatial2D(object = tan2009r1)

## End(Not run)

SpatProtVis-class Class SpatProtVis

Description

A class for spatial proteomics visualisation, that upon instantiation, pre-computes all defined visu-
alisations. Objects can be created with the SpatProtVis constructor and visualised with the plot
method.

The class is essentially a wrapper around several calls to plot2D that stores the dimensionality
reduction outputs, and is likely to be updated in the future.

Usage
SpatProtVis(x, methods, dims, methargs, ...)
Arguments
X An instance of class MSnSet to visualise.
methods Dimensionality reduction methods to be used to visualise the data. Must be
contained in plot2Dmethods (except "scree”). See plot2D for details.
dims A list of numerics defining dimensions used for plotting. Default are 1 and 2. If
provided, the length of this list must be identical to the length of methods.
methargs A list of additional arguments to be passed for each visualisation method. If

provided, the length of this list must be identical to the length of methods.

Additional arguments. Currently ignored.
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Slots

vismats: A "list"” of matrices containing the feature projections in 2 dimensions.
data: The original spatial proteomics data stored as an "MSnSet".
methargs: A "list” of additional plotting arguments.

objname: A "character” defining how to name the dataset. By default, this is set using the
variable name used at object creation.

Methods

plot: Generates the figures for the respective methods and additional arguments defined in the
constructor. If used in an interactive session, the user is prompted to press ’Return’ before
new figures are displayed.

show: A simple textual summary of the object.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

See Also

The data for the individual visualisations is created by plot2D.

Examples

library(”"pRolocdata”)

data(dunkley2006)

## Default parameters for a set of methods
## (in the interest of time, don't use t-SNE)
m <- c("PCA", "MDS", "kpca")

vis <- SpatProtVis(dunkley2006, methods = m)
vis

plot(vis)

plot(vis, legend = "topleft"”)

## Setting method arguments
margs <- c(list(kpar = list(sigma = 0.1)),
list(kpar = list(sigma = 1.0)),
list(kpar = list(sigma = 10)),
list(kpar = list(sigma = 100)))
vis <- SpatProtVis(dunkley2006,
methods = rep("kpca”, 4),
methargs = margs)
par(mfrow = c(2, 2))
plot(vis)

## Multiple PCA plots but different PCs

dims <- list(c(1, 2), c(3, 4))

vis <- SpatProtVis(dunkley2006, methods = c("PCA", "PCA"), dims = dims)
plot(vis)
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subsetMarkers Subsets markers

Description

Subsets a matrix of markers by specific terms

Usage

subsetMarkers(object, fcol = "GOAnnotations”, keep)

Arguments
object An instance of class MSnSet.
fcol The name of the markers matrix. Default is GOAnnotations.
keep Integer or character vector specifying the columns to keep in the markers matrix,
as defined by fcol.
Value

An updated MSnSet

Author(s)
Lisa M Breckels

See Also

filterMinMarkers and example therein.

svmClassification svm classification

Description

Classification using the support vector machine algorithm.

Usage

svmClassification(
object,
assessRes,
scores = c("prediction”, "all”, "none"),
cost,
sigma,
fcol = "markers”,
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Arguments
object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by svmOptimisation.
scores One of "prediction”, "all” or "none” to report the score for the predicted
class only, for all classes or none.
cost If assessRes is missing, a cost must be provided.
sigma If assessRes is missing, a sigma must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
Additional parameters passed to svm from package e1071.
Value

An instance of class "MSnSet” with svm and svm. scores feature variables storing the classification
results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- svmOptimisation(dunkley2006, cost = 2*seq(-2,2,2), sigma = 10*seq(-1, 1, 1), times = 3)
params

plot(params)

f1Count(params)

levelPlot(params)

getParams(params)

res <- svmClassification(dunkley2006, params)
getPredictions(res, fcol = "svm")
getPredictions(res, fcol = "svm”, t = 0.75)
plot2D(res, fcol = "svm")

svmOptimisation Svm parameter optimisation

Description

Classification parameter optimisation for the support vector machine algorithm.



svmOptimisation(
object,
fcol = "markers”,

cost = 2%(-4:4),
sigma = 10" (-3:2),

times = 100,
test.size = 0.2,
xval = 5,

fun = mean,
seed,

verbose = TRUE,

svmOptimisation

Arguments

object
fcol

cost
sigma
times
test.size
xval

fun

seed

verbose

Details

An instance of class "MSnSet".

The feature meta-data containing marker definitions. Default is markers.
The hyper-parameter. Default values are 2*-4: 4.

The hyper-parameter. Default values are 10 (-2:3).

The number of times internal cross-validation is performed. Default is 100.
The size of test data. Default is 0.2 (20 percent).

The n-cross validation. Default is 5.

The function used to summarise the xval macro F1 matrices.

The optional random number generator seed.

A logical defining whether a progress bar is displayed.

Additional parameters passed to svm from package e1071.

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values
are replaced by 0. This decision is motivated by the fact that any class that would have either a NA
precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)).
Replacing NAs by Os leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

svmClassification and example therein.
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Examples

library(pRolocdata)

data(dunkley2006)

## reducing parameter search space and iterations
params <- svmOptimisation(dunkley2006, cost = 2*seq(-2,2,2), sigma = 10*seq(-1, 1, 1), times = 3)
params

plot(params)

f1Count (params)

levelPlot(params)

getParams(params)

res <- svmClassification(dunkley2006, params)
getPredictions(res, fcol = "svm")
getPredictions(res, fcol = "svm”, t = 0.75)
plot2D(res, fcol = "svm")

tagmMcmcTrain Localisation of proteins using the TAGM MCMC method

Description

These functions implement the T augmented Gaussian mixture (TAGM) model for mass spectrometry-
based spatial proteomics datasets using Markov-chain Monte-Carlo (MCMC) for inference.

Usage
tagmMemcTrain(
object,
fcol = "markers”,

method = "MCMC",
numlter = 1000L,
burnin = 100L,
thin = 5L,

mu@ = NULL,
lambda0 = 9.01,
nuo@ = NULL,

SO = NULL,

betad® = NULL,
u=2,

v =10,
numChains = 4L,
BPPARAM = BiocParallel: :bpparam(),
version = 2

tagmMcmcPredict (
object,
params,
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fcol = "markers”,
probJoint = FALSE,
probOutlier = TRUE

)

tagmPredict(
object,
params,
fcol = "markers”,

probJoint = FALSE,
probOutlier = TRUE
)

tagmMcmcProcess(params)

Arguments

object An MSnbase: :MSnSet containing the spatial proteomics data to be passed to
tagmMcmcTrain and tagmPredict.

fcol The feature meta-data containing marker definitions. Default is markers.

method A charachter() describing the inference method for the TAGM algorithm. De-
fault is "MCMC".

numIter The number of iterations of the MCMC algorithm. Default is 1000.

burnin The number of samples to be discarded from the begining of the chain. Default
is 100.

thin The thinning frequency to be applied to the MCMC chain. Default is 5.

mu@ The prior mean. Default is colMeans of the expression data.

lambda@ The prior shrinkage. Default is 0.01.

nuo The prior degreed of freedom. Default is ncol (exprs(object)) + 2

S0 The prior inverse-wishart scale matrix. Empirical prior used by default.

beta® The prior Dirichlet distribution concentration. Default is 1 for each class.

u The prior shape parameter for Beta(u, v). Default is 2

v The prior shape parameter for Beta(u, v). Default is 10.

numChains The number of parrallel chains to be run. Default it 4.

BPPARAM Support for parallel processing using the BiocParallel infrastructure. When
missing (default), the default registered BiocParallelParam parameters are
used. Alternatively, one can pass a valid BiocParallelParam parameter in-
stance: SnowParam, MulticoreParam, DoparParam, ... see the BiocParallel
package for details.

version A new version that is faster and more memory efficient is implemented as default
by setting version == 2. Legacy version is indicated with a 1.

params An instance of class MCMCParams, as generated by tagmMcmcTrain().

probJoint A logical(1) indicating whether to return the joint probability matrix, i.e. the

probability for all classes as a new tagm.mcmc. joint feature variable.
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probOutlier A logical(1) indicating whether to return the probability of being an outlier
as a new tagm.mcmc.outlier feature variable. A high value indicates that the
protein is unlikely to belong to any annotated class (and is hence considered an
outlier).

Details

The tagmMcmcTrain function generates the samples from the posterior distributions (object or
class MCMCParams) based on an annotated quantitative spatial proteomics dataset (object of class
MSnbase: :MSnSet). Both are then passed to the tagmPredict function to predict the sub-cellular
localisation of protein of unknown localisation. See the pRoloc-bayesian vignette for details and
examples. In this implementation, if numerical instability is detected in the covariance matrix of
the data a small multiple of the identity is added. A message is printed if this conditioning step is
performed.

Value

tagmMcmcTrain returns an instance of class MCMCParams.

tagmMcmcPredict returns an instance of class MSnbase: :MSnSet containing the localisation pre-
dictions as a new tagm.mcmc.allocation feature variable. The allocation probability is encoded
as tagm.mcmc.probability (corresponding to the mean of the distribution probability). In ad-
ditionm the upper and lower quantiles of the allocation probability distribution are available as
tagm.mcmc.probability.lowerquantile and tagm.mcmc.probability.upperquantile feature
variables. The Shannon entropy is available in the tagm.mcmc.mean.shannon feature variable,
measuring the uncertainty in the allocations (a high value representing high uncertainty; the highest
value is the natural logarithm of the number of classes).

tagmMcmcProcess returns an instance of class MCMCParams with its summary slot populated.

References

A Bayesian Mixture Modelling Approach For Spatial Proteomics Oliver M Crook, Claire M Mulvey,
Paul D. W. Kirk, Kathryn S Lilley, Laurent Gatto bioRxiv 282269; doi: https://doi.org/10.1101/282269

See Also

The plotEllipse() function can be used to visualise TAGM models on PCA plots with ellipses.

testMarkers Tests marker class sizes

Description

Tests if the marker class sizes are large enough for the parameter optimisation scheme, i.e. the size
is greater that xval + n, where the default xval is 5 and n is 2. If the test is unsuccessful, a warning
is thrown.
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Usage

testMarkers(object, xval = 5, n = 2, fcol = "markers"”, error = FALSE)
Arguments

object An instance of class "MSnSet".

xval The number cross-validation partitions. See the xval argument in the parameter

optimisation function(s). Default is 5.

n Number of additional examples.

fcol The name of the prediction column in the featureData slot. Defaultis "markers”.

error A logical specifying if an error should be thown, instead of a warning.
Details

In case the test indicates that a class contains too few examples, it is advised to either add some or,
if not possible, to remove the class altogether (see minMarkers) as the parameter optimisation is
likely to fail or, at least, produce unreliable results for that class.

Value

If successfull, the test invisibly returns NULL. Else, it invisibly returns the names of the classes that
have too few examples.

Author(s)

Laurent Gatto

See Also

getMarkers and minMarkers

Examples

library("pRolocdata”)

data(dunkley2006)

getMarkers(dunkley2006)
testMarkers(dunkley2006)
toosmall <- testMarkers(dunkley2006, xval = 15)

toosmall

try(testMarkers(dunkley2006, xval = 15, error = TRUE))
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testMSnSet Create a stratified ’test’ MSnSet

Description

This function creates a stratified ’test” MSnSet which can be used for algorihtmic development. A
"MSnSet"” containing only the marker proteins, as defined in fcol, is returned with a new feature
data column appended called test in which a stratified subset of these markers has been relabelled
as “unknowns’.

Usage

testMSnSet(object, fcol = "markers”, size = 0.2, seed)

Arguments
object An instance of class "MSnSet"”
fcol The feature meta-data column name containing the marker definitions on which
the data will be stratified. Default is markers.
size The size of the data set to be extracted. Default is 0.2 (20 percent).
seed The optional random number generator seed.
Value

An instance of class "MSnSet" which contains only the proteins that have a labelled localisation i.e.
the marker proteins, as defined in fcol and a new column in the feature data slot called test which
has part of the labels relabelled as "unknown" class (the number of proteins renamed as "unknown"
is according to the parameter size).

Author(s)

Lisa Breckels

See Also

sampleMSnSet unknownMSnSet markerMSnSet

Examples

library(pRolocdata)

data(tan2009r1)

sample <- testMSnSet(tan2009r1)
getMarkers(sample, "test")

all(dim(sample) == dim(markerMSnSet(tan2009r1)))
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thetas Draw matrix of thetas to test

Description

The possible weights to be considered is a sequence from O (favour auxiliary data) to 1 (favour
primary data). Each possible combination of weights for nclass classes must be tested. The thetas
function produces a weight matrix for nclass columns (one for each class) with all possible weight
combinations (number of rows).

Usage

thetas(nclass, by = 0.5, length.out, verbose = TRUE)

Arguments
nclass Number of marker classes
by The increment of the weights. One of 1, 0.5, 0.25,2,0.1 or 0.05.
length.out The desired length of the weight sequence.
verbose A logical indicating if the weight sequences should be printed out. Default is
TRUE.
Value

A matrix with all possible theta weight combinations.

Author(s)

Lisa Breckels

Examples

dim(thetas(4, by = 0.5))
dim(thetas(4, by = 0.2))
dim(thetas(5, by = 0.2))
dim(thetas(5, length.out = 5))
dim(thetas(6, by = 0.2))
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undocumented Undocumented/unexported entries

Description
This is just a dummy entry for methods from unexported classes that generate warnings during
package checking.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

zerosInBinMSnSet Compute the number of non-zero values in each marker classes

Description

The function assumes that its input is a binary MSnSet and computes, for each marker class, the
number of non-zero expression profiles. The function is meant to be used to produce heatmaps (see
the example) and visualise binary (such as GO) MSnSet objects and assess their utility: all zero
features/classes will not be informative at all (and can be filtered out with filterBinMSnSet) while
features/classes with many annotations (GO terms) are likely not be be informative either.

Usage

zerosInBinMSnSet(object, fcol = "markers”, as.matrix = TRUE, percent = TRUE)

Arguments
object An instance of class MSnSet with binary data.
fcol A character defining the feature data variable to be used as markers. Default
is "markers”.
as.matrix If TRUE (default) the data is formatted and returned as a matrix. Otherwise, a
list is returned.
percent If TRUE, percentages are returned. Otherwise, absolute values.
Value

A matrix or a list indicating the number of non-zero value per marker class.

Author(s)

Laurent Gatto
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See Also

filterBinMSnSet

Examples

library(pRolocdata)
data(hyperLOPIT2015g0CC)
zerosInBinMSnSet (hyperLOPIT2015g0CC)
zerosInBinMSnSet (hyperLOPIT2015g0CC, percent = FALSE)
pal <- colorRampPalette(c("white", "blue"))
library(lattice)
levelplot(zerosInBinMSnSet (hyperLOPIT2015g0CC),
xlab = "Number of non-0s"”,
ylab = "Marker class”,
col.regions = pal(140))



Index

* classes
AnnotationParams-class, 7
ClustDist-class, 13
ClustDistList-class, 15
GenRegRes-class, 22
QSep-class, 83
SpatProtVis-class, 92

+ internal
Deprecated, 16

+x methods
chi2-methods, 10
MLearn-methods, 48
nndist-methods, 57

.MCMCChain (MCMCChains-class), 42

.MCMCChains (MCMCChains-class), 42

.MCMCParams (MCMCChains-class), 42

.MCMCSummary (MCMCChains-class), 42
[,ClustDistList,ANY,ANY,ANY-method

(ClustDistList-class), 15

[,ClustDistList,ANY,missing,missing-method

(ClustDistList-class), 15
[,MCMCChains,ANY,ANY,ANY-method

(MCMCChains-class), 42
[,MCMCParams, ANY,ANY,ANY-method

(MCMCChains-class), 42

[,MartInstancelList,ANY,ANY,ANY-method

(MartInstance-class), 42

[,MartInstancelList,ANY,ANY-method

(MartInstance-class), 42
[,MartInstancelList-method

(MartInstance-class), 42
[[,ClustDistList,ANY,ANY-method

(ClustDistList-class), 15

[[,ClustDistList,ANY,missing-method

(ClustDistList-class), 15
[[,MCMCChains,ANY,ANY-method

(MCMCChains-class), 42
[[,MCMCParams,ANY, ANY-method

(MCMCChains-class), 42

105

[[,MartInstancelList,ANY,ANY-method

(MartInstance-class), 42

[[,MartInstancelList-method

(MartInstance-class), 42

addLegend, 4, 71, 72
addMarkers, 6, 53, 81, 82
AnnotationParams

(AnnotationParams-class), 7

AnnotationParams-class, 7
as.data.frame.MartInstance

(MartInstance-class), 42

as.data.frame.MartInstancelList

(MartInstance-class), 42

chains (MCMCChains-class), 42
checkFeatureNamesOverlap, 8
checkFvarOverlap, 9

chi2, 17

chi2 (chi2-methods), 10
chi2,matrix,matrix-method

(chi2-methods), 10

chi2,matrix,numeric-method

(chi2-methods), 10

chi2,numeric,matrix-method

(chi2-methods), 10

chi2,numeric,numeric-method

(chi2-methods), 10

chi2-methods, 10
chol2inv, 63, 65

class:
class:

class

class

:QSep (QSep-class), 83
AnnotationParams
(AnnotationParams-class), 7

:ClustDist (ClustDist-class), 13
class:

ClustDistlList
(ClustDistList-class), 15

:GenRegRes (GenRegRes-class), 22
class:
class:
class:

MAPParams (MAPParams-class), 38
MCMCChain (MCMCChains-class), 42
MCMCChains (MCMCChains-class), 42



106

class:MCMCParams (MCMCChains-class), 42

class:MCMCSummary (MCMCChains-class), 42

class:SpatProtVis (SpatProtVis-class),
92

class:ThetaRegRes (GenRegRes-class), 22

classWeights, 11

ClustDist, 13,15, 26

ClustDist (ClustDist-class), 13

clustDist, 12

ClustDist-class, 13

ClustDistList, /13, 25, 26

ClustDistList (ClustDistlList-class), 15

ClustDistList-class, 15

cmdscale, 70

coda: :mcmc, 45

coll (plot2Ds), 74

col2 (plot2Ds), 74

combineThetaRegRes (GenRegRes-class), 22

datal (plot2Ds), 74
data2 (plot2Ds), 74
dendrogram, 57
Deprecated, 16
dist, 57

empPvalues, 11, 16

f1Count (GenRegRes-class), 22

f1Count,GenRegRes-method
(GenRegRes-class), 22

f1Count, ThetaRegRes-method
(GenRegRes-class), 22

favourPrimary (GenRegRes-class), 22

fDataToUnknown, 17

FeaturesOfInterest, 28

filterAttrs (MartInstance-class), 42

filterBinMSnSet, 18, 103, 104

filterMaxMarkers, 19

filterMinMarkers, 20

filterNA, 68

filterZeroCols, 19, 21

filterZeroRows, /9

filterZeroRows (filterZeroCols), 21

GenRegRes, 29, 31, 36, 38, 54, 55, 58, 60, 63,
66, 79, 80, 86, 87, 95, 96
GenRegRes (GenRegRes-class), 22
GenRegRes-class, 22
getAnnotationParams
(AnnotationParams-class), 7

INDEX

getF1Scores (GenRegRes-class), 22
getF1Scores, GenRegRes-method
(GenRegRes-class), 22
getF1Scores, ThetaRegRes-method
(GenRegRes-class), 22
getFilterList (MartInstance-class), 42
getGOFromFeatures, 7
getlLisacol (setlLisacol), 89
getMarkerClasses, 23, 25, 53
getMarkers, 24, 24, 53, 100
getMartInstancelist
(MartInstance-class), 42
getMartTab (MartInstance-class), 42
getNormDist, 25
getOldcol (setlLisacol), 89
getParams (GenRegRes-class), 22
getParams,ClustRegRes-method
(undocumented), 103
getParams,GenRegRes-method
(GenRegRes-class), 22
getParams, ThetaRegRes-method
(GenRegRes-class), 22
getPredictions, 16, 26, 46, 62
getRegularisedParams (GenRegRes-class),
22
getRegularisedParams,GenRegRes-method
(GenRegRes-class), 22
getRegularizedParams (GenRegRes-class),
22
getRegularizedParams, GenRegRes-method
(GenRegRes-class), 22
getSeed (GenRegRes-class), 22
getSeed, GenRegRes-method
(GenRegRes-class), 22
getStockbg (setLisacol), 89
getStockcol, 51, 72,74
getStockcol (setlLisacol), 89
getStockpch, 72
getStockpch (setlLisacol), 89
getUnknownbg (setLisacol), 89
getUnknowncol, 77
getUnknowncol (setLisacol), 89
getUnknownpch (setLisacol), 89
getWarnings (GenRegRes-class), 22
getWarnings, GenRegRes-method
(GenRegRes-class), 22
geweke_test (mcmc_get_outliers), 44
ginv, 63, 65



INDEX

hclust, 57

hexbin, 70

highlightOnPlot, 27

highlightOnPlot3D (highlightOnPlot), 27

identify, 71
isMrkMat (mrkVecToMat), 52
isMrkVec (mrkVecToMat), 52

knn, 29, 31

knnClassification, 29, 3/

knnOptimisation, 22, 29, 30

knnOptimization (knnOptimisation), 30

knnPrediction (knnClassification), 29

knnRegularisation (knnOptimisation), 30

knntlClassification, 32, 35

knntlOptimisation, 22, 32, 33

kpca, 70

ksvm, 36, 38

ksvmClassification, 36, 38

ksvmOptimisation, 36, 37

ksvmOptimization (ksvmOptimisation), 37

ksvmPrediction (ksvmClassification), 36

ksvmRegularisation (ksvmOptimisation),
37

lapply,ClustDistList-method
(ClustDistList-class), 15
lapply,MartInstancelList,ANY-method
(MartInstance-class), 42
lapply,MartInstanceList-method
(MartInstance-class), 42
1da, 70
legend, 5
length,ClustDistList-method
(ClustDistList-class), 15
length,MCMCChains-method
(MCMCChains-class), 42
length,MCMCParams-method
(MCMCChains-class), 42
levelPlot (GenRegRes-class), 22
levelplot, 84
levelPlot,ClustRegRes-method
(undocumented), 103
levelPlot, GenRegRes-method
(GenRegRes-class), 22
levelPlot,QSep-method (QSep-class), 83
logPosteriors (MAPParams-class), 38

makeGoSet, 7

107

MAPParams, 40

MAPParams (MAPParams-class), 38

MAPParams (), 40

MAPParams-class, 38

markerMSnSet, 41, 53, 89, 101

markers, 6, 24, 25,41, 82, 89

markers (mrkVecToMat), 52

MartInstance (MartInstance-class), 42

MartInstance-class, 42

MartInstancelList (MartInstance-class),
42

MartInstancelList-class
(MartInstance-class), 42

mcmc_burn_chains (mcmc_get_outliers), 44

mcmc_get_meanComponent
(mcmc_get_outliers), 44

mcmc_get_meanoutliersProb
(mcmc_get_outliers), 44

mcmc_get_outliers, 44

mcmc_pool_chains (mcmc_get_outliers), 44

mcmc_thin_chains (mcmc_get_outliers), 44

MCMCChain (MCMCChains-class), 42

MCMCChain-class (MCMCChains-class), 42

MCMCChains (MCMCChains-class), 42

MCMCChains-class, 42

MCMCParams-class (MCMCChains-class), 42

MCMCSummary (MCMCChains-class), 42

MCMCSummary-class (MCMCChains-class), 42

minClassScore (Deprecated), 16

minMarkers, 46, 100

mixing_posterior_check, 47

MLearn, 48

MLearn, formula,MSnSet,clusteringSchema,missing-method

(MLearn-methods), 48

MLearn, formula,MSnSet, learnerSchema, numeric-method

(MLearn-methods), 48

MLearn, formula,MSnSet,learnerSchema, xvalSpec-method

(MLearn-methods), 48
MLearn-methods, 48
MLearnMSnSet (MLearn-methods), 48
move2Ds, 48, 75
mrkConsProfiles, 50
mrkConsProfiles(), 75
mrkEncoding (mrkVecToMat), 52
mrkHClust, 50, 51
mrkMatAndVec (mrkVecToMat), 52
mrkMatToVec (mrkVecToMat), 52
mrkVecToMat, 52



108

MSnbase: :MSnSet, 39, 40, 98, 99

MSnSet, 12, 23, 24, 26, 27, 29-32, 34, 36, 37.
46, 48, 54, 55, 58, 59, 62-65, 74, 79,
80, 84, 86-88, 92, 95, 96, 100, 101

MSnSetlList, 48, 74

MSnSetMLean (MLearn-methods), 48

naiveBayes, 54, 55
names,ClustDistList-method
(ClustDistList-class), 15
names, QSep-method (QSep-class), 83
names<-,ClustDistList,ANY-method
(ClustDistList-class), 15
names<-,QSep, character-method
(QSep-class), 83
nbClassification, 53, 55
nbOptimisation, 54, 54
nbOptimization (nbOptimisation), 54
nbPrediction (nbClassification), 53
nbRegularisation (nbOptimisation), 54
nDatasets (MartInstance-class), 42
nicheMeans2D, 56
nipals, 70
nndist (nndist-methods), 57
nndist,matrix,matrix-method
(nndist-methods), 57
nndist,matrix,missing-method
(nndist-methods), 57
nndist,MSnSet,missing-method
(nndist-methods), 57
nndist-methods, 57
nnet, 58, 60
nnetClassification, 58, 60
nnetOptimisation, 58, 59
nnetOptimization (nnetOptimisation), 59
nnetPrediction (nnetClassification), 58
nnetRegularisation (nnetOptimisation),
59

orderGoAnnotations, 61
orgQuants, 27, 62

par, 71,77

pch, 71

perTurboClassification, 63, 66

perTurboOptimisation, 63, 64

perTurboOptimization
(perTurboOptimisation), 64

phenoDisco, 66

INDEX

plot, 77

plot,ClustDist,MSnSet-method
(ClustDist-class), 13

plot,ClustDistList,missing-method
(ClustDistList-class), 15

plot,ClustRegRes,missing-method
(undocumented), 103

plot,GenRegRes,missing-method
(GenRegRes-class), 22

plot,MCMCParams,character-method
(mcmc_get_outliers), 44

plot,QSep,missing-method (QSep-class),
83

plot,QSep-method (QSep-class), 83

plot,SpatProtVis,missing-method
(SpatProtVis-class), 92

plot,ThetaRegRes,missing-method
(GenRegRes-class), 22

plot2D, 4, 5,51, 69, 75, 92, 93

plot2Dmethods, 92

plot2Dmethods (plot2D), 69

plot2Ds, 49, 72,74

plot3d, 7/

plot3D,MSnSet-method (plot2D), 69

plotConsProfiles, 75

plotDist, 72, 76

plotEllipse, 72,78

plotEllipse(), 40, 99

plsda, 79, 80

plsdaClassification, 78, 81

plsdaOptimisation, 22, 79, 80

plsdaOptimization (plsdaOptimisation),
80

plsdaPrediction (plsdaClassification),
78

plsdaRegularisation
(plsdaOptimisation), 80

prcomp, 70, 75

pRoloc-defunct (Deprecated), 16

pRoloc-deprecated (Deprecated), 16

pRolocmarkers, 6, 53, 81

QSep (QSep-class), 83
gsep (QSep-class), 83
QSep-class, 83

randomForest, 86, 87
rfClassification, 85, 88
rfOptimisation, 86, 87



INDEX

rfOptimization (rfOptimisation), 87
rfPrediction (rfClassification), 85
rfRegularisation (rfOptimisation), 87
Rtsne, 70

sampleMSnSet, 41, 88, 101
sapply,ClustDistList-method
(ClustDistList-class), 15
sapply,MartInstancelList,ANY-method
(MartInstance-class), 42
sapply,MartInstancelList-method
(MartInstance-class), 42
setAnnotationParams
(AnnotationParams-class), 7
setLisacol, 89
setOldcol (setlLisacol), 89
setStockbg (setlLisacol), 89
setStockcol (setlLisacol), 89
setStockpch (setLisacol), 89
setUnknownbg (setLisacol), 89
setUnknowncol (setLisacol), 89
setUnknownpch (setLisacol), 89
show,AnnotationParams-method
(AnnotationParams-class), 7
show,ClustDist-method
(ClustDist-class), 13
show,ClustDistList-method
(ClustDistList-class), 15
show, ClustRegRes-method (undocumented),
103
show, ComponentParam-method
(MCMCChains-class), 42
show, GenRegRes-method
(GenRegRes-class), 22
show,MAPParams-method
(MAPParams-class), 38
show,MartInstance-method
(MartInstance-class), 42
show,MCMCChain-method
(MCMCChains-class), 42
show,MCMCChains-method
(MCMCChains-class), 42
show,MCMCParams-method
(MCMCChains-class), 42
show,QSep-method (QSep-class), 83
show, SpatProtVis-method
(SpatProtVis-class), 92
show, ThetaRegRes-method
(GenRegRes-class), 22

109

showMrkMat (mrkVecToMat), 52
solve, 63, 65

spatial2D, 91

SpatProtVis (SpatProtVis-class), 92
SpatProtVis-class, 92

sub, 17, 18

subsetMarkers, 94
summary,QSep-method (QSep-class), 83
svd, 63, 65

svm, 95, 96
svmClassification, /1, 94, 96
svmOptimisation, /1, 22, 95, 95
svmOptimization (svmOptimisation), 95
svmPrediction (svmClassification), 94
svmRegularisation, 63
svmRegularisation (svmOptimisation), 95

tagmMapPredict (MAPParams-class), 38
tagmMapTrain (MAPParams-class), 38
tagmMapTrain(), 40

tagmMcmcPredict (tagmMcmcTrain), 97
tagmMcmcProcess (tagmMcmcTrain), 97
tagmMcmcTrain, 97
tagmMcmcTrain(), 98

tagmPredict (tagmMcmcTrain), 97
testMarkers, 99
testMSnSet, 41, 89, 101

ThetaRegRes (GenRegRes-class), 22
ThetaRegRes-class (GenRegRes-class), 22
thetas, 34, 102

umap, 70

undocumented, 103
unknownMSnSet, 89, 101
unknownMSnSet (markerMSnSet), 41

Versioned, 84
xvalSpec, 48

zerosInBinMSnSet, /9, 103



	addLegend
	addMarkers
	AnnotationParams-class
	checkFeatureNamesOverlap
	checkFvarOverlap
	chi2-methods
	classWeights
	clustDist
	ClustDist-class
	ClustDistList-class
	Deprecated
	empPvalues
	fDataToUnknown
	filterBinMSnSet
	filterMaxMarkers
	filterMinMarkers
	filterZeroCols
	GenRegRes-class
	getMarkerClasses
	getMarkers
	getNormDist
	getPredictions
	highlightOnPlot
	knnClassification
	knnOptimisation
	knntlClassification
	knntlOptimisation
	ksvmClassification
	ksvmOptimisation
	MAPParams-class
	markerMSnSet
	MartInstance-class
	MCMCChains-class
	mcmc_get_outliers
	minMarkers
	mixing_posterior_check
	MLearn-methods
	move2Ds
	mrkConsProfiles
	mrkHClust
	mrkVecToMat
	nbClassification
	nbOptimisation
	nicheMeans2D
	nndist-methods
	nnetClassification
	nnetOptimisation
	orderGoAnnotations
	orgQuants
	perTurboClassification
	perTurboOptimisation
	phenoDisco
	plot2D
	plot2Ds
	plotConsProfiles
	plotDist
	plotEllipse
	plsdaClassification
	plsdaOptimisation
	pRolocmarkers
	QSep-class
	rfClassification
	rfOptimisation
	sampleMSnSet
	setLisacol
	spatial2D
	SpatProtVis-class
	subsetMarkers
	svmClassification
	svmOptimisation
	tagmMcmcTrain
	testMarkers
	testMSnSet
	thetas
	undocumented
	zerosInBinMSnSet
	Index

