Package ‘optimalFlow’

February 2, 2026

Type Package

Title optimalFlow

Version 1.23.0

Author Hristo Inouzhe <hristo.inouzhe@gmail.com>

Maintainer Hristo Inouzhe <hristo.inouzhe@gmail.com>

Description Optimal-transport techniques applied to supervised flow cytometry gating.
License Artistic-2.0

Encoding UTF-8

LazyData true

Depends dplyr, optimalFlowData, rlang (>= 0.4.0)

Imports transport, parallel, Rfast, robustbase, dbscan, randomForest,
foreach, graphics, doParallel, stats, flowMeans, rgl, ellipse

Suggests knitr, BiocStyle, rmarkdown, magick
VignetteBuilder knitr

biocViews Software, FlowCytometry, Technology
RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/optimalFlow
git_branch devel

git_last_commit 09d158c

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents

costWasserMatchingEllipse L
cytoPlot e
cytoPlot3d
cytoPlotDatabase

Index

costWasserMatchingEllipse

cytoPlotDatabase3d 6
estimationCellBarycenter 8
estimCovCellGeneral 8
flScore L 9
flScoreVoting 10
labelTransfer e 11
labelTransferEllipse 12
optimalFlowClassification 13
optimalFlowTemplates 15
gdaClassification e 17
tclustWithlnitialization 18
tclust H e 19
trimmedKBarycenter L 21
voteLabelTransfer L 22
W2dISt . . . e 23
wasserCostFunction oL 24

25

costWasserMatchingEllipse

costWasserMatchinEllipse

Description

Calculates a similarity distance based on the 2-Wassertein distance between mixtures of multivariate
normal distributions.

Usage

costWasserMatchingEllipse(

)

test.cytometry,
training.cytometries,
equal.weights = FALSE

Arguments

test.cytometry A clusetering represented as a list of clusters. Each cluster is a list with elements

mean, cov, weight and type.

training.cytometries

A list of clusterings with the same format as test.cytometry.

equal.weights If True, weights assigned to every cluster in a partion are uniform (1/number

of clusters) when calculating the similarity distance. If False, weights assigned
to clusters are the proportions of points in every cluster compared to the total
amount of points in the partition.

cytoPlot 3

Value

A vector representing the similarity distance between test.cytometry and the elements in train-
ing.cytometries.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-
transport approach to flow cytometry gating and population matching. arXiv:1907.08006

Examples

partitionl <- list(list(mean = c(1, 1), cov = diag(1, 2), weight = 0.5, type = '1"),

list(mean = c(-1, -1), cov = diag(1, 2), weight = 0.5, type = '2'))
partition2 <- list(list(list(mean = c(1, -1), cov = diag(1, 2),

weight = 0.5, type = '1"), list(mean = c(-1, 1), cov =diag(1, 2), weight = 0.5, type = "'2")))
costWasserMatchingEllipse(partitionl, partition2)

cytoPlot cytoPlot

Description

A plot wrapper for cytometries as a mixture of multivariate normals as used in optimalFlowTem-
plates.

Usage

cytoPlot(
cytometry.as.mixture,
dimensions = c(1, 2),

xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL
)
Arguments

cytometry.as.mixture
A list, where each element contains the parameters of a component of the mix-
ture as a list with entries: mean, cov, weight and type.

dimensions A vector containing the two variables on which to perform the projection.

x1im the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’. The default value, NULL, indicates that the range of the finite
values to be plotted should be used.

ylim the y limits of the plot.

4 cytoPlot3d

x1lab a label for the x axis, defaults to a description of x.
ylab a label for the y axis, defaults to a description of y.
Value

A two dimensional plot of ellipses containing the 95

Examples

database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))
templates.optimalFlow <-
optimalFlowTemplates(
database = database, templates.number = 5, cl.paral = 1

)
cytoPlot(templates.optimalFlow$templates[[3]], dimensions = c(4, 3), xlim = c(@, 8000), ylim = c(0, 8000), xlab ="

cytoPlot3d cytoPlot3d

Description

A rgl::plot3d wrapper for cytometries as a mixture of multivariate normals as used in optimalFlowTem-
plates.

Usage

cytoPlot3d(
cytometry.as.mixture,
dimensions = c(1, 2),

xlim = NULL,
ylim = NULL,
zlim = NULL,
xlab = NULL,
ylab = NULL,
zlab = NULL
)
Arguments

cytometry.as.mixture
A list, where each element contains the parameters of a component of the mix-
ture as a list with entries: mean, cov, weight and type.

dimensions A vector containing the three variables on which to perform the projection.

cytoPlotDatabase 5

x1im the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’. The default value, NULL, indicates that the range of the finite
values to be plotted should be used.

ylim the y limits of the plot.

zlim the z limits of the plot.

x1lab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

zlab a label for the z axis, defaults to a description of z.
Value

A three dimensional plot of ellipsoids containing the 95

Examples

database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))
templates.optimalFlow <-
optimalFlowTemplates(
database = database, templates.number = 5, cl.paral = 1
)
To execute requires an actual monitor since it uses rgl.
cytoPlot3d(templates.optimalFlow$templates[[3]], dimensions = c(4, 3, 9), xlim = c(@, 8000), ylim = c(0, 8000), z

cytoPlotDatabase cytoPlotDatabase

Description

A plot wrapper for a database (list) of cytometries as a mixture of multivariate normals as used in
optimalFlowTemplates.

Usage

cytoPlotDatabase(
database.cytometries.as.mixtures,
dimensions = c(1, 2),
xlim = c(@, 8000),
ylim = c(@, 8000),
xlab = "",
ylab = "",
colour = TRUE

6 cytoPlotDatabase3d

Arguments

database.cytometries.as.mixtures
A list where each component is a mixture distribution. That is, each component
is a list, where each element contains the parameters of a component of the
mixture as a list with entries: mean, cov, weight and type.

dimensions A vector containing the two variables on which to perform the projection.

x1lim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’. The default value, NULL, indicates that the range of the finite
values to be plotted should be used.

ylim the y limits of the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

colour If TRUE plots elements of a mixture distribution in different colours. If FALSE

plots them in black.

Value

A two dimensional plot of ellipses containing the 95

Examples

database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))
templates.optimalFlow <-
optimalFlowTemplates(
database = database, templates.number = 5, cl.paral = 1

)
cytoPlotDatabase(templates.optimalFlow$database.elliptical[which(templates.optimalFlow$clustering == 3)], dimen

cytoPlotDatabase3d cytoPlotDatabase3d

Description

A plot3d wrapper for a database (list) of cytometries as a mixture of multivariate normals as used
in optimalFlowTemplates.

Usage

cytoPlotDatabase3d(
database.cytometries.as.mixtures,
dimensions = c(1, 2, 3),
xlim = c(@, 8000),
ylim = c(0, 8000),

cytoPlotDatabase3d 7

zlim = c(0, 8000),
xlab = "",

ylab = Il”,

zlab = "",

colour = TRUE

Arguments

database.cytometries.as.mixtures
A list where each component is a mixture distribution. That is, each component
is a list, where each element contains the parameters of a component of the
mixture as a list with entries: mean, cov, weight and type.

dimensions A vector containing the two variables on which to perform the projection.

x1im the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’. The default value, NULL, indicates that the range of the finite
values to be plotted should be used.

ylim the y limits of the plot.

zlim the z limits of the plot.

x1lab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

zlab a label for the z axis, defaults to a description of z.

colour If TRUE plots elements of a mixture distribution in different colours. If FALSE

plots them in black.

Value

A three dimensional plot of ellipsoids containing the 95

Examples

database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))
templates.optimalFlow <-
optimalFlowTemplates(
database = database, templates.number = 5, cl.paral = 1
)
To execute requires an actual monitor since it uses rgl.
cytoPlotDatabase3d(templates.optimalFlow$database.elliptical[which(templates.optimalFlow$clustering == 3)], d:

8 estimCovCellGeneral

estimationCellBarycenter
estimationCellBarycenter

Description

Estimates a Wasserstein barycenter for a cluster type using a collection of partitions.

Usage

estimationCellBarycenter(cell, cytometries)

Arguments
cell Name of the cluster of interest.
cytometries List of clusterings.

Value

A list representing the (1-)barycenter:

mean Mean of the barycenter.

cov Covariance of the barycenter.

weight Weight associated to the barycenter.
type Type of the cluster.

Examples

partitionl <- list(list(mean = c(1, 1), cov = diag(1, 2), weight = 0.5, type = '1"),
list(mean = c(-1, -1), cov = diag(1, 2), weight = 0.5, type = '2'))

partition2 <- list(list(mean = c(1, -1), cov = diag(1, 2), weight = 0.5, type = '1'),
list(mean = c(-1, 1), cov = diag(1, 2), weight = 0.5, type = '2"))

cytometries <- list(partitionl, partition2)

estimationCellBarycenter('1',cytometries)

estimCovCellGeneral estimCovCellGeneral

Description

Estimation of mean and covariance for a label in a partition.

Usage

estimCovCellGeneral(cell, cytometry, labels, type = "standard”, alpha = 0.85)

f1Score 9

Arguments

cell Labell of the clsuter of interest.

cytometry Data of the partition, without labels.

labels Labels of the partition.

type How to estimate covariance matrices of a cluster. ’standard’ is for using cov(),

while "robust’ is for using robustbase::covMcd.

alpha Only when type = "robust’. Indicates the value of alpha in robustbase::covMcd.

Value

A list containing:

mean Mean of the cluster.

cov Covariance of the cluster.

weight Weight associated to the cluster.
type Type of the cluster.

Examples

estimCovCellGeneral('Basophils', Cytometry1[,1:10], Cytometryl1[,11])

f1Score flScore

Description

Calculates the F1 score fore each group in a partition.

Usage

f1Score(clustering, cytometry, noise.cells)

Arguments
clustering The labels of the new classification.
cytometry Data of the clustering, where the last variable contains the original labels.
noise.cells An array of labels to be considered as noise.

Value

A matrix where the first row is the F1 score, the second row is the Precision and the third row is the
Recall.

10 fl1ScoreVoting

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-
transport approach to flow cytometry gating and population matching. arXiv:1907.08006

Examples

f1Score(dplyr: :pull(Cytometry3[c(sample(1:250,250),251: (dim(Cytometry3)[1])),]1,11),
Cytometry3, noise.types)

f1ScoreVoting f1ScoreVoting

Description

Calculates the F1 score fore each group in a partition, when provided with a fuzzy classification.

Usage

f1ScoreVoting(voting, clustering, cytometry, nivel_sup, noise.cells)

Arguments
voting A list where each entry is a vote on the respective label.
clustering Labels of the partition.
cytometry Data of the clustering, where the last variable contains the original labels.
nivel_sup level of tolerance for assigning a hard clustering. Should be greater or equal
than 1. Class A is assigned if class A > nivel_sup * Class B.
noise.cells An array of labels to be considered as noise.
Value

A matrix where the first row is the F1 score, the second row is the Precision and the third row is the
Recall.

Examples

We construct a simple database selecting only some of the Cytometries and some cell types for simplicity and for
database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))

templates.optimalFlow <- optimalFlowTemplates(database = database, templates.number = 5,
cl.paral = 1)

classification.optimalFlow <- optimalFlowClassification(as.data.frame(Cytometryl)[
which(match(Cytometry1$-Population ID (name)~, c('Monocytes', 'CD4+CD8-',

labelTransfer 11

'Mature SIg Kappa', 'TCRgd-'), nomatch = @) > @), 1:10], database, templates.opti
classif.method = 'matching', cost.function = 'ellipses', cl.paral = 1)

f1ScoreVoting(classification.optimalFlow$cluster.vote, classification.optimalFlow$cluster,
as.data.frame(Cytometryl1)[which(match(Cytometry1$~Population ID (name)~,
c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'), nomatch =0) > 0), 1,

labelTransfer labelTransfer

Description

Label transfer between a test partition and a training set of partitions.

Usage

labelTransfer(
training.cytometry,
test.cytometry,
test.partition,
equal.weights = FALSE
)

Arguments

training.cytometry
List of partitions, where each partition is a dataframe where the last column
contains the labels of the partition.

test.cytometry Test data, a dataframe without labels.
test.partition Labels of a partition of the test data.

equal.weights If True, weights assigned to every cluster in a partion are uniform (1/number
of clusters) when calculating the similarity distance. If False, weights assigned
to clusters are the proportions of points in every cluster compared to the total
amount of points in the partition.

Value

A fuzzy relabeling consistent of a transportation plan.

Examples

data.example <- data.frame(vl = c(rnorm(50, 2, 1), rnorm(50, -2, 1)),

v2 = c(rnorm(50, 2, 1), rnorm(50, -2, 1)), id = c(rep(@, 50), rep(1, 50)))
test.labels <- c(rep('a', 50), rep('b', 50))
labelTransfer(data.example, data.example[, 1:2], test.labels)

12 labelTransferEllipse

labelTransferEllipse labelTransferEllipse

Description

Label transfer between a test partition and a training partitions viewed as a mixture of gaussians.

Usage

labelTransferEllipse(
i,
test.cytometry.ellipses,
training.cytometries.barycenter,
equal.weights = FALSE

)

Arguments

i A dummy variable, should be any integral. Ment for use with lapply.
test.cytometry.ellipses

A test clustering viewed as a mixture of multivariate normal distributions.
training.cytometries.barycenter

A training partition viewed as a mixture of multivariate normal distributions.
equal.weights If True, weights assigned to every cluster in a partion are uniform (1/number

of clusters) when calculating the similarity distance. If False, weights assigned

to clusters are the proportions of points in every cluster compared to the total
amount of points in the partition.

Value

A fuzzy relabeling consistent of a transportation plan.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-
transport approach to flow cytometry gating and population matching. arXiv:1907.08006

Examples

partitionl <- list(list(mean = c(1, 1), cov = diag(l, 2), weight = 0.5, type = '1'"),
list(mean = c(-1, -1), cov = diag(1, 2), weight = 0.5, type = '2"))
partition2 <- list(list(mean = c(1, 1), cov = diag(1, 2), weight = 0.5, type = 'a'),
list(mean = c(-1, -1), cov = diag(1, 2), weight = 0.5, type = 'b'))
labelTransferEllipse(1, partition2, partition1)

optimalFlowClassification 13

optimalFlowClassification

optimalFlowClassification

Description

Performs a supervised classification of input data when a database and a partition of the database

are provided.

Usage
optimalFlowClassification(

X,
database,
templates,
consensus.method = "pooling”,
cov.estimation = "standard”,
alpha.cov = 0.85,
initial.method = "supervized”,
max.clusters = NA,
alpha.tclust = 0,

restr.factor.tclust = 1000,
classif.method = "qda",
qda.bar = TRUE,

cost.function
cl.paral =1,

= "points”,

equal.weights.voting = TRUE,
equal.weights.template = TRUE

)
Arguments
X Datasample to be classified.
database A list where each entry is a partition (clustering) represented as dataframe, of the
same dimensions, where the last variable represents the labels of the partition.
templates List of the consensus clusterings for every group in the partition of the database

obtained by optimalFlowTemplates

consensus.method

cov.estimation

alpha.cov

initial.method

The consensus.method value that was used in optimalFlowTemplates.

How to estimate covariance matrices in each cluster of a partition. "standard" is
for using cov(), while "robust" is for using robustbase::covMcd.

Only when cov.estimation = "robust". Indicates the value of alpha in robust-
base::covMcd.

Indicates how to obtain a partition of X. Takes values in c("supervized", "unsu-
pervized"). Supervized uses tclust initilized by templates. Unsupevized usese
flowMeans.

14

optimalFlowClassification

max.clusters The maximum numbers of clusters for flowMeans. Only when initial. method =
unsupervized.

alpha.tclust Level of trimming allowed fo tclust. Only when initial. method = supervized.
restr.factor.tclust
Fixes the restr.fact parameter in tclust. Only when initial. method = supervized.

classif.method Indicates what type of supervised learning we want to do. Takes values on

non non

¢("matching", "qda", "random forest").

qda.bar Only if classif.method = "qda". If True then the appropriate consensus clustering
(template, prototype) is used for learning. If False, the closest partition in the
appropriate group is used.

cost.function Only if classif.method = "matching". Indicates the cost function, distance be-
tween clusters, to be used for label matching.

cl.paral Number of cores to be used in parallel procedures.

equal.weights.voting
only when classif.method = "qda" and gqda.bar =F, or when classif.method =
"random forest". Indicates the weights structure when looking for the most sim-
ilar partition in a group.

equal.weights.template
If True, weights assigned to every cluster in a partion are uniform (1/number of
clusters). If False, weights assigned to clusters are the proportions of points in
every cluster compared to the total amount of points in the partition.

Value

A list formed by:

cluster Labels assigned to the input data.

clusterings A list that contains the initial unsupervized or semi-supervized clusterings of the cy-
tometry of interest. Can have as much entries as the number of templates in the semi-
supervized case (initial.method = "supervized), or only one entry in the case of initial. method
= "unsupervized". Each entry is a list where the most relevant argument for the clusterings is
cluster.

assigned.template.index Label of the group for which the template is closer to the data. When
classical qda or random forest ares used for classification there is a secon argument indicating
the index of the cytometry in the cluster used for learning.

cluster.vote Only when classif.method = "matching" or when consensus.method in ¢("hierarchical”,
"k-barycenter"). Vote on the type of every label in the partition of the data. In essence, cluster
+ cluster.vote return a fuzzy clustering of the data of interest.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-
transport approach to flow cytometry gating and population matching. arXiv:1907.08006

optimalFlowTemplates 15

Examples

We construct a simple database selecting only some of the Cytometries and some cell types for simplicity and for
database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))
To select the appropriate number of templates, via hierarchical tree, in an interactive fashion and produce a clt
templates.optimalFlow <- optimalFlowTemplates(database = database)
templates.optimalFlow <- optimalFlowTemplates(database = database, templates.number = 5,
cl.paral = 1)
classification.optimalFlow <- optimalFlowClassification(Cytometry1[
which(match(Cytometry1$~Population ID (name)™,c("Monocytes”, "CD4+CD8-", "Mature SIg Kappa",
"TCRgd-"), nomatch = @) > @), 1:10], database, templates.optimalFlow, cl.paral =
scoreF1.optimalFlow <- optimalFlow::f1Score(classification.optimalFlow$cluster,
Cytometryl[which(match(Cytometry1$~Population ID (name)",
c("Monocytes”, "CD4+CD8-", "Mature SIg Kappa"”, "TCRgd-"),

optimalFlowTemplates optimalFlowTemplates

Description

Returns a partition of the input clusterings with a respective consensus clustering for every group.

Usage
optimalFlowTemplates(
database,
database.names = NULL,
cov.estimation = "standard",

alpha.cov = 0.85,
equal.weights.template = TRUE,
hclust.method = "complete”,
trimm.template = FALSE,

templates.number = NA,

minPts = 2,

eps = 1,

consensus.method = "pooling”,

barycenters.number = NA,
bar.repetitions = 40,
alpha.bar = 0.05,

bar.ini.method = "plus-plus”,
consensus.minPts = 3,
cl.paral =1

16 optimalFlowTemplates

Arguments

database A list where each entry is a partition (clustering) represented as dataframe, of the
same dimensions, where the last variable represents the labels of the partition.

database.names Names of the elements in the database.

cov.estimation How to estimate covariance matrices in each cluster of a partition. ’standard’ is
for using cov(), while 'robust’ is for using robustbase::covMcd.

alpha.cov Only when cov.estimation = ’robust’. Indicates the value of alpha in robust-
base::covMcd.

equal.weights.template
If True, weights assigned to every cluster in a partion are uniform (1/number of
clusters). If False, weights assigned to clusters are the proportions of points in
every cluster compared to the total amount of points in the partition.

hclust.method Indicates what kind of hierarchical clustering to do with the similarity distances
matrix of the partitions. Takes values in c(’complete’, ’single’, *average’, "hdb-
scan’, ’dbscan’).

trimm.template Logical value. Indicates if it is allowed to not take into account some of the
entries of database. Default is False.

templates.number
Only if hclust.method in c(’complete’, ’single’, ’average’). Indicates the number
of clusters to use with cutree. If set to NA (default), plots the hierarchical tree
and asks the user to introduce an appropriate number of clusters.

minPts Only if helust.method in c(Chdbscan’, *dbscan’). Indicates the value of argument
minPts in dbscan::dbscan and dbscan::hdbscan.

eps Only if hclust.method = ’dbscan’. Indicates the value of eps in dbscan::dbscan.

consensus.method
Sets the way of doing consensus clustering when clusters are viewed as Multi-
variate Distributions. Can take values in c¢(’pooling’, ’k-barycenter’, "hierarchi-
cal’). See details.

barycenters.number
Only if consensus.method = ’k-barycenter’. Sets the number, k, of barycenters
when using k-barycenters.

bar.repetitions
Only if consensus.method = "k-barycenter’. How many times to repeat the k-
barycenters procedure. Equivalent to nstart in kmeans.

alpha.bar Only if consensus.method = ’k-barycenter’. The level of trimming allowed dur-
ing the k-barycenters procedure.

bar.ini.method Only if consensus.method = k-barycenter’. Takes values in c(’rnd’, "plus-plus’).
See details.

consensus.minPts

Only if consensus.method = ’hierarchical’. The value of argument minPts for
dbscan::hdbscan.

cl.paral Number of cores to be used in parallel procedures.

qdaClassification 17

Value

A list containting:

templates A list representing the consensus clusterings for every group in the partition of the
database. Each element of the list is a template partition. Hence it is a list itself, containig the
cell types in the prototype, where each element has components: mean, cov, weight and type.

clustering Clustering of the input partitions.

database.elliptical A list containig each cytometry in the database viewed as a mixture distribu-
tion. Each element of the list is a cytometry viewed as a mixture. Hence it is a list itself,
containig the cell types in the cytometry, where each element has components: mean, cov,
weight and type.

References

E del Barrio, H Inouzhe, JM Loubes, C Matran and A Mayo-Iscar. (2019) optimalFlow: Optimal-
transport approach to flow cytometry gating and population matching. arXiv:1907.08006

Examples

We construct a simple database selecting only some of the Cytometries and some cell types for simplicity and for
database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))

To select the appropriate number of templates, via hierarchical tree, in an interactive fashion and produce a clt
templates.optimalFlow <- optimalFlowTemplates(database = database)

templates.optimalFlow <- optimalFlowTemplates(database = database, templates.number = 5,
cl.paral = 1)

gdaClassification qdaClassification

Description

Gives quadratic discriminant scores to the points in data for a multivariate normal.

Usage

gdaClassification(normal, data)

Arguments

normal A list with arguments mean, covaruance and weight.

data Data frame or matrix on which to perform qda.

18 tclustWithlInitialization

Value

A score for each point.

Examples

data.qgda = cbind(rnorm(50), rnorm(50))
exp(gdaClassification(list(mean = c(@,0), cov = diag(1,2), weight = 1), data.qda))

tclustWithInitialization
telustWithinitialization

Description

A wrapper for the function tclust_H.

Usage
tclustWithInitialization(
initialization,
cytometry,
i.sol.type = "points”,
trimming = 0.05,
restr.fact = 1000
)
Arguments

initialization Initial solution for parameters provided by the user. Can be a matrix of data
containing observations anc cluster assignations or can be a list spesifying a
multivariate mixture of gaussians.

cytometry A matrix or data.frame of dimension n X p, containing the observations (row-
wise).
i.sol.type Type of initial solutions in c¢(’points’, barycenters’). *points’ refers to a classi-

fied data matrix, while *barycenters’ to a multivariate mixture.
trimming The proportion of observations to be trimmed.

restr.fact The constant restr.fact >= 1 constrains the allowed differences among group
scatters. Larger values imply larger differences of group scatters, a value of 1
specifies the strongest restriction.

tclust_ H 19

Value

A list with entries:

cluster A numerical vector of size n containing the cluster assignment for each observation. Cluster
names are integer numbers from 1 to k, 0 indicates trimmed observations.

n_clus Number of clusters actually found.

obj he value of the objective function of the best (returned) solution.

Examples

x <= rbind(matrix(rnorm(100), ncol = 2), matrix(rnorm(100) + 2, ncol
matrix(rnorm(100) + 4, ncol = 2))
robust cluster obtention from a sample x asking for 3 clusters,
trimming level 0.05 and constrain level 12
k <- 3; alpha <- 0.05; restr.fact <- 12
output = tclust_H(x = x, k = k, alpha = alpha, nstart = 50, iter.max = 20,
restr = 'eigen', restr.fact = restr.fact, sol_ini_p = FALSE, sol_ini = NA,
equal.weights = FALSE, trace = @, zero.tol = 1e-16)
cluster assigment
output2 <- tclustWithInitialization(data.frame(x, output$cluster), x, 'points', .05, 10)

2))

tclust_H telust H

Description

A wrapper for the internal fucntion tclust_. Performs robust non spherical clustering, tclust, where
initial solutions are allowed.

Usage

tclust_H(
X,
k =3,
alpha = 0.05,
nstart = 50,
iter.max = 20,
restr = "eigen”,
restr.fact = 12,
sol_ini_p = FALSE,
sol_ini = NA,
equal .weights = FALSE,
trace = 0,
zero.tol = le-16

20 tclust H

Arguments

X A matrix or data.frame of dimension n X p, containing the observations (row-
wise).

k The number of clusters initially searched for.

alpha The proportion of observations to be trimmed.

nstart The number of random initializations to be performed. Only when sol_ini_p =
FALSE.

iter.max The maximum number of concentration steps to be performed. The concentra-
tion steps are stopped, whenever two consecutive steps lead to the same data
partition.

restr The type of restriction to be applied on the cluster scatter matrices. Valid values
are "eigen" (default).

restr.fact The constant restr.fact >= 1 constrains the allowed differences among group

scatters. Larger values imply larger differences of group scatters, a value of 1
specifies the strongest restriction.

sol_ini_p Initial solution for parameters provided by the user TRUE/FALSE, if TRUE is
stored in sol_ini.

sol_ini Initial solution for parameters provided by the user.

equal.weights A logical value, specifying whether equal cluster weights (TRUE) or not (FALSE)
shall be considered in the concentration and assignment steps.

trace Defines the tracing level, which is set to 0 by default. Tracing level 2 gives
additional information on the iteratively decreasing objective function’s value.

zero.tol The zero tolerance used. By default set to 1e-16.

Details

This iterative algorithm initializes k clusters randomly and performs "concentration steps"” in or-
der to improve the current cluster assignment. The number of maximum concentration steps to be
performed is given by iter.max. For approximately obtaining the global optimum, the system is ini-
tialized nstart times and concentration steps are performed until convergence or iter.max is reached.
When processing more complex data sets higher values of nstart and iter.max have to be specified
(obviously implying extra computation time). However, if more then half of the iterations would
not converge, a warning message is issued, indicating that nstart has to be increased.

The parameter restr defines the cluster’s shape restrictions, which are applied on all clusters during
each iteration. Options "eigen"/"deter" restrict the ratio between the maximum and minimum eigen-
value/determinant of all cluster’s covariance structures to parameter restr.fact. Setting restr.factto 1,
yields the strongest restriction, forcing all eigenvalues/determinants to be equal and so the method
looks for similarly scattered (respectively spherical) clusters. Option "sigma" is a simpler restric-
tion, which averages the covariance structures during each iteration (weighted by cluster sizes) in
order to get similar (equal) cluster scatters.

Value

A list with values:

trimmedKBarycenter 21

centers A matrix of size p x k containing the centers (column-wise) of each cluster.
cov An array of size p x p X k containing the covariance matrices of each cluster.

cluster A numerical vector of size n containing the cluster assignment for each observation. Cluster
names are integer numbers from 1 to k, 0 indicates trimmed observations.

par A list, containing the parameters the algorithm has been called with (x, if not suppressed by
store.x = FALSE, k, alpha, restr.fact, nstart, KStep, and equal.weights).

weights A numerical vector of length k, containing the weights of each cluster.

obj he value of the objective function of the best (returned) solution.

References

Fritz, H., Garcia-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An r package for a trimming
approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.

Examples

x <= rbind(matrix(rnorm(100), ncol = 2), matrix(rnorm(100) + 2, ncol = 2),
matrix(rnorm(100) + 4, ncol = 2))
robust cluster obtention from a sample x asking for 3 clusters,
trimming level 0.05 and constrain level 12
k <- 3; alpha <- 0.05; restr.fact <- 12
output <- tclust_H(x = x, k = k, alpha = alpha, nstart = 50, iter.max = 20,
restr = "eigen”, restr.fact = restr.fact, sol_ini_p = FALSE, sol_ini = NA,
equal.weights = FALSE, trace = @, zero.tol = 1e-16)
cluster assigment
output$cluster
plot(x, col = output$cluster)

trimmedKBarycenter trimmedKBarycenter

Description

Calculates a 2-Wasserstein k-barycenter of a list of multivariate normal distributions.

Usage

trimmedKBarycenter(k, alpha@, type.ini = "rnd”, reps.list)

Arguments
k Number k of elements in the k-barycenter.
alphao Level of trimming.
type.ini of initialization in c('rnd’, ’plus-plus’). 'rnd’ makes the common random initi-
laization while "plus-plus’ initializes in a similar fashion to k-means++.
reps.list List of multivariate normals for which the trimmed k-barycenter should be per-

formed.

22 voteLabelTranster

Value

A list with values:

variacion_wasser A double giving the Waserstein variation.

baricentro A list of k elements, each of which is a member of the k-barycenter. Each eement is a
normal distribution characterized by a mean and a covariance.

cluster The assignment of the original entries to each member of the k-barycenter.

Examples

normals <- list(list(mean = c(1, 1), cov =diag(2, 2)), list(mean = c(1, 1),cov =diag(1, 2)),
list(mean = c(3, 3), cov = diag(1, 2)))
trimmedKBarycenter(2, @, 'rnd', normals)

votelLabelTransfer voteLabelTransfer

Description

A wrapper for doing either labelTransfer or labelTransferEllipse.

Usage

votelLabelTransfer(
type = "points”,
test.partition,
test.cytometry,
test.partition.ellipse,
training.cytometries,
training.cytometries.barycenter,
test = 1,
op.syst,
cl.paral =1,
equal.weights = FALSE

Arguments

type ’points’ indicates use of labelTransfer; "ellipses’ of labelTransferEllipse.
test.partition Only when type = ’points’. Labels of a partition of the test data.

test.cytometry Only when type = ’points’. Test data, a dataframe without labels.

test.partition.ellipse
Only when type = ’ellipses’. A test clustering viewed as a mixture of multivari-
ate normal distributions.

w2dist 23

training.cytometries
Only when type = ’points’. List of partitions, where each partition is a dataframe
wher the last column contains the labels of the partition.
training.cytometries.barycenter

Only when type = ’ellipses’. A training partition viewed as a mixture of multi-
variate normal distributions.

test Only when type = "ellipses’. A dummy variable, should be any integral. Ment
for use with lapply.

op.syst Type of system, takes values in c(Cunix’, ’windows’).

cl.paral Number of cores to be used in parallel procedures.

equal.weights If True, weights assigned to every cluster in a partion are uniform (1/number
of clusters) when calculating the similarity distance. If False, weights assigned
to clusters are the proportions of points in every cluster compared to the total
amount of points in the partition.

Value
A list containing:

final.vote A list for the votes on each cell.

complete.vote A more complete list for the votes on each cell.

Examples

data.example <- data.frame(vl = c(rnorm(50, 2, 1), rnorm(50, -2, 1)),
v2 = c(rnorm(50, 2, 1), rnorm(50, -2, 1)), id = c(rep(@, 50), rep(1, 50)))
test.labels <- c(rep('a', 50), rep('b', 50))
voteLabelTransfer(test.partition = test.labels, test.cytometry = data.example[, 1:2],
training.cytometries = list(data.example), op.syst = .Platform$0S.type)$final.vote[[1]]

w2dist w2dist

Description

The 2-Wasserstein distance between two multivariate normal distributions

Usage
w2dist(P, Q)

Arguments

A multivariate normal distribution given as a list with arguments mean and cov.

Q A multivariate normal distribution given as a list with arguments mean and cov.

24 wasserCostFunction

Value

A double giving the 2-Wasserstein distance between the two distributions.

Examples

P <- list(mean = c(1, 1), cov = diag(1, 2))

Q <- list(mean = c(@, @), cov = 1.1xdiag(1, 2))
Q <- list(mean = c(@, @), cov = 1.1xdiag(1, 2))
w2dist(P, Q)

wasserCostFunction wasserCostFunction

Description

Calculates the similarity distance between elements j and i of a list of partitions.

Usage

wasserCostFunction(j, i, cytometries, equal.weights = FALSE)

Arguments
b An entry of the list of partitions.
i An entry of the list of partitions.
cytometries The list of partitions.

equal.weights If True, weights assigned to every cluster in a partion are uniform (1/number
of clusters) when calculating the similarity distance. If False, weights assigned
to clusters are the proportions of points in every cluster compared to the total
amount of points in the partition.

Value

A double giving the value of the similarity distance.

Examples

We construct a simple database selecting only some of the Cytometries and some cell types for simplicity and for
database <- buildDatabase(
dataset_names = paste@('Cytometry', c(2:5, 7:9, 12:17, 19, 21)),
population_ids = c('Monocytes', 'CD4+CD8-', 'Mature SIg Kappa', 'TCRgd-'))

templates.optimalFlow <- optimalFlowTemplates(database = database, templates.number = 5,
cl.paral = 1)

print(wasserCostFunction(1, 2, list(templates.optimalFlow$database.ellipticall[[1]],
templates.optimalFlow$database.ellipticall[2]]1)))

Index

costWasserMatchingEllipse, 2
cytoPlot, 3

cytoPlot3d, 4
cytoPlotDatabase, 5
cytoPlotDatabase3d, 6

estimationCellBarycenter, 8
estimCovCellGeneral, 8

f1Score, 9
f1ScoreVoting, 10

labelTransfer, 11
labelTransferEllipse, 12

optimalFlowClassification, 13
optimalFlowTemplates, 15

gdaClassification, 17

tclust_H, 19
tclustWithInitialization, 18
trimmedKBarycenter, 21

voteLabelTransfer, 22

w2dist, 23
wasserCostFunction, 24

25

	costWasserMatchingEllipse
	cytoPlot
	cytoPlot3d
	cytoPlotDatabase
	cytoPlotDatabase3d
	estimationCellBarycenter
	estimCovCellGeneral
	f1Score
	f1ScoreVoting
	labelTransfer
	labelTransferEllipse
	optimalFlowClassification
	optimalFlowTemplates
	qdaClassification
	tclustWithInitialization
	tclust_H
	trimmedKBarycenter
	voteLabelTransfer
	w2dist
	wasserCostFunction
	Index

