Package ‘ontoProc’
February 2, 2026

Title processing of ontologies of anatomy, cell lines, and so on

Description Support harvesting of diverse bioinformatic ontologies,
making particular use of the ontologyIndex package on CRAN.
We provide snapshots of key ontologies for terms about
cells, cell lines, chemical compounds, and anatomy, to help
analyze genome-scale experiments, particularly cell x compound
screens. Another purpose is to strengthen development of
compelling use cases for richer interfaces to emerging ontologies.

Version 2.5.0

Imports Biobase, S4Vectors, methods, stats, utils, BiocFileCache,
shiny, graph, Rgraphviz, ontologyPlot, dplyr, magrittr, DT,
igraph, AnnotationHub, SummarizedExperiment, reticulate,
R.utils, httr, basilisk, jsonlite, RBGL, ellmer

Suggests knitr, org.Hs.eg.db, org.Mm.eg.db, testthat, BiocStyle,
SingleCellExperiment, celldex, rmarkdown, AnnotationDbi,
magick,

Depends R (>=4.1), ontologyIndex

License Artistic-2.0

LazyLoad yes

biocViews Infrastructure, GO

RoxygenNote 7.3.2

VignetteBuilder knitr

Encoding UTF-8

Collate 'CLextend.R' 'CLfeats.R' 'autism_details.R'
'available_ontos.R' 'basilisk.R' 'bind_formal_tags.R'
'bioregistry.R' 'clfixer.R' '‘common_classes.R'
'‘connect_classes.R' 'countClasses.R' 'ctmarks.R' 'data.R’
'dropStop.R' 'fastGrep.R' 'findCommonAncestors.R' 'formalize.R'
'getOntos.R' 'get_ordo_owl_path.R' 'graphNEL.R' 'mapNaive.R'
'nio_details.R' 'ontoDiff.R' 'owl2cache.R' 'owl_ops.R'
‘plot.owlents.R' 'quickOnto.R' 'roots.R' 'setup_entities2.R'

'seurTab.R' 'shiny.R' 'subset_descendants.R' 'sym2CellOnto.R'
'termProc.R' 'treeproc.R’

2 Contents

URL https://github.com/vjcitn/ontoProc

BugReports https://github.com/vjcitn/ontoProc/issues
git_url https://git.bioconductor.org/packages/ontoProc
git_branch devel

git_last_commit a09f239

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Vincent Carey [ctb, cre] (ORCID:
<https://orcid.org/0000-0003-4046-0063>),
Sara Stankiewicz [ctb],
Victor Tarca [ctb] (ORCID: <https://orcid.org/0009-0003-1976-0392>)

Maintainer Vincent Carey <stvjc@channing.harvard.edu>

Contents
allGOterms e e e e e e e e e e e e 4
ANCESTOIS . . . v vt et e e e e e e e e e e e 4
ANCEStOrS_NAMES« . v v e o e 5
available_ontos L e e e e e e e e 6
bind_formal_tags 6
bioregistry_OlIS_reSOurces v vttt e e e e 7
browse_ontos e e e 7
c,TermSet-method 8
cellTypeToGO o e e e 8
children_names e 9
cleanCLONames e e e 10
CLfeats e e e e e e e 10
common_clasSes e e 11
connect_classes e e 12
ctmarks e e e e e e e e e 12
cyclicSigset e 13
demoOADPD o e 14
dropStop e 15
fastGrep e 15
findCommoOnANCEStOrS i i e e e e e e e e e 16
formalize e e e e e e 17
getChebiliite L 18
getLeavesFromTermo 20
getONtO L e e 20
get_Classes e e 21
get_ordo_owl_path 21
graph2paths 22

humrna e 22

https://github.com/vjcitn/ontoProc
https://github.com/vjcitn/ontoProc/issues
https://orcid.org/0000-0003-4046-0063
https://orcid.org/0009-0003-1976-0392

Contents

Index

3
improveNOdes e e e e e e 23
jowl2classgraph L 23
jowl2classgraph_nio 24
labels.owlents L e 25
IdfToTerms e e e e e e e e e e e e 25
liberalMap 27
makeSelectlnput oL L 28
make_graphNEL_from_ontology_plot, . 29
MAPZ2PIOSE « . v ¢ v v e 29
mapOneNaive L e e e e e 30
MINICOIPUS « « . v v v v e et e e e e e e e e e e e e 31
nomenCheckup 31
ontoDiff L. 32
onto_plot2 L. e e 33
ONEO_TOOLS .« « o v v v v e et e e e e e e e e e e 34
owl2cache L e e e 34
packDesc2019 L e 35
packDesc2021 35
packDesc2022 L 36
packDesc2023 L L e e e 36
PATENts L e e e e e e e e 37
plotowlents e e e e 38
print.owlents L 38
PROSYM . . . e 39
quickONto e e e e e e 40
recognizedPredicates 40
search_labels 41
secLevGen L e e e 41
selectFromMap L e 42
SEtUP_ENLItIeS e e e e 43
SEtUP_eNtities2 e e e e e e e e e e e e 43
seurdkTab L 44
siblings_TAG e 45
StopWords L e e e e e e e 46
subclasses 46
subset_descendants L L. e e e 47
sym2CellOnto e 48
TermSet-class e e e e 48
url_okK . . . e 49
valid_ontonames e 50
[LoWlents e e e 50

4 ancestors

allGOterms allGOterms: data.frame with ids and terms

Description

allGOterms: data.frame with ids and terms

Usage

allGOterms

Format

data.frame instance

Source

This is a snapshot of all the terms available from GO.db (3.4.2), August 2017, using keys(GO.db,
keytype="TERM").

Examples

data(allGOterms)
head(allGOterms)

ancestors retrieve ancestor ’sets’

Description

retrieve ancestor ’sets’

Usage

ancestors(oe)

Arguments

oe owlents instance

Value

a list of sets

ancestors_names

Examples

pa = get_ordo_owl_path()
02 = try(reticulate::import(”"owlready2"), silent=TRUE)
if (!inherits(o2, "try-error”)) {

orde = setup_entities(pa)

orde

ancestors(orde[1:5])

labels(orde[1:5])

3

ancestors_names obtain list of names of a set of ancestors

Description

obtain list of names of a set of ancestors

Usage

ancestors_names(anclist)

Arguments

anclist output of ‘ancestors*

Value

list of vectors of character()

Note

non-entities are removed and names are extracted

Examples

pa = get_ordo_owl_path()

02 = try(reticulate::import(”"owlready2"), silent=TRUE)
if (linherits(o2, "try-error")) {

orde = setup_entities(pa)

al = ancestors(orde[1001:1002])

ancestors_names(al)

}

6 bind_formal_tags

available_ontos interrogate the cache for owl files and serialized ontologylndex in-
stances

Description

interrogate the cache for owl files and serialized ontologyIndex instances

Usage

available_ontos(ca = BiocFileCache: :BiocFileCache(), token = "owl|OIRDS")

Arguments
ca defaults to BiocFileCache::BiocFileCache()
token character(1) defaults to "owllOIRDS"
Value

NULL if nothing relevant is found in cache, otherwise a data.frame with all cached information

bind_formal_tags add mapping from informal to formal cell type tags to a Summarized-
Experiment colData

Description

add mapping from informal to formal cell type tags to a SummarizedExperiment colData

Usage

bind_formal_tags(se, informal, tagmap, force = FALSE)

Arguments
se SummarizedExperiment instance
informal character(1) name of colData element with uncontrolled vocabulary
tagmap data.frame with columns ’informal’ and ’formal’
force logical(1), defaults to FALSE; if TRUE, allows clobbering existing colData vari-
able named "formal"
Value

SummarizedExperiment instance with a new colData column ’label.ont’ giving the formal tags
associated with each sample

bioregistry_ols_resources 7

Note

This function will fail if the value of ‘informal‘ is not among the colData variable names, or if
"formal" is among the colData variable names.

bioregistry_ols_resources
produce bioregistry_ols table

Description

produce bioregistry_ols table

Usage

bioregistry_ols_resources()

Value

data.frame

Note

This uses the ‘resources‘ method of the bioregistry module from pip to isolate resources with a
non-null ‘ols* component.

Examples

tab = bioregistry_ols_resources()
head(tab[,1:3])

browse_ontos browse available ontologies with datatable

Description

browse available ontologies with datatable

Usage

browse_ontos(ca = BiocFileCache::BiocFileCache(), token = "owl|OIRDS")
Arguments

ca defaults to BiocFileCache::BiocFileCache()

token character(1) defaults to "owllOIRDS"

8 cellTypeToGO
c,TermSet-method combine TermSet instances
Description
combine TermSet instances
Usage
S4 method for signature 'TermSet'
c(x, ...)
Arguments
X TermSet instance
additional instances
Value
TermSet instance
cellTypeToGO utilities for approximate matching of cell type terms to GO categories
and annotations
Description
utilities for approximate matching of cell type terms to GO categories and annotations
Usage
cellTypeToGO(celltypeString, gotab, ...)
cellTypeToGenes(
celltypeString,
gotab,
orgDb,

cols = c("ENSEMBL", "SYMBOL"),

children_names

Arguments

celltypeString character atom to be used to search GO terms using

gotab a data.frame with columns GO (goids) and TERM (term strings) agrep
additional arguments to agrep
orgDb instances of orgDb
cols columns to be retrieved in select operation
Value
data.frame
data.frame
Note

Very primitive, uses agrep to try to find relevant terms.

Examples

library(org.Hs.eg.db)

data(allGOterms)

head(cellTypeToGO("serotonergic neuron”, allGOterms))
head(cellTypeToGenes("serotonergic neuron”, allGOterms, org.Hs.eg.db))

children_names obtain list of names of a set of subclasses/children

Description

obtain list of names of a set of subclasses/children

Usage

children_names(sclist)

Arguments

sclist output of ‘subclasses*

Value

list of vectors of character()

Note

non-entities are removed and names are extracted

10 ClLfeats

Examples

pa = get_ordo_owl_path()

02 = try(reticulate::import(”"owlready2"), silent=TRUE)
if (!linherits(o2, "try-error”)) {

orde = setup_entities(pa)

al = subclasses(orde[100:120])

children_names(al)

3
cleanCLOnames obtain named character vector of terms from Cell Line Ontology, omit-
ting obsolete and trailing ’cell’
Description

obtain named character vector of terms from Cell Line Ontology, omitting obsolete and trailing
“cell’

Usage

cleanCLOnames ()

Value

character()

Examples

cleanCLOnames()[1:10]

CLfeats produce a data.frame of features relevant to a Cell Ontology class

Description

produce a data.frame of features relevant to a Cell Ontology class

Usage
CLfeats(ont, tag = "CL:0001054", pr, go)

Arguments
ont instance of ontologylndex ontology
tag character(1) a CL: class tag
pr instance of ontologyIndex PRO protein ontology

go instance of ontologylndex GO gene ontology

common_classes 11

Value

a data.frame instance

Note

This function will look in the intersection_of and has_part, lacks_part components of the CL entry
to find properties asserted of or inherited by the cell type identified in ’tag’. As of 1.19, this function
does not look in global environment for ontologies. We use 2021 versions in the examples because
some changes in ontologies omit important relationships; revisions to package code after 1.19.4
will attempt to address these.

Examples

cl = getOnto("cellOnto”, year_added="2021")

pr = getOnto("Pronto”, "2021") # legacy tag, for 2022 would be PROnto
go = getOnto("goOnto”, "2021")

CLfeats(cl, tag="CL:0001054", pr=pr, go=go)

common_classes list and count samples with common ontological annotation in two SEs

Description

list and count samples with common ontological annotation in two SEs

Usage

common_classes(ont, sel, se2)

Arguments
ont instance of ontologyIndex ontology
sel a SummarizedExperiment using ‘label.ont‘ in colData to provide ontological
tags (from ‘ont‘) for samples
se2 a SummarizedExperiment using ‘label.ont‘ in colData to provide ontological
tags (from ‘ont®) for samples
Value

a data.frame with rownames given by the common tags, the class names as column ‘clname‘, and
counts of samples bearing the given tags in remaining columns.

12 ctmarks

Examples

if (requireNamespace("celldex")) {
imm = celldex::ImmGenData()
if ("label.ont” %in% names(SummarizedExperiment::colData(imm))) {
cl = getOnto("cellOnto")
blu = celldex: :BlueprintEncodeData()
common_classes(cl, imm, blu)

}
}
connect_classes connect ontological categories between related, annotated Summa-
rizedExperiments
Description

connect ontological categories between related, annotated SummarizedExperiments

Usage

connect_classes(ont, sel, se2)

Arguments
ont an ontologyIndex ontology instance
sel SummarizedExperiment instance with ‘label.ont® among colData columns
se2 SummarizedExperiment instance with ‘label.ont® among colData columns
Value

a list with two sublists mapping from terms in one SE to descendant terms in the other SE

ctmarks app to review molecular properties of cell types via cell ontology

Description

app to review molecular properties of cell types via cell ontology

Usage

ctmarks(cl, pr, go)

cyclicSigset 13

Arguments
cl an import of a Cell Ontology (or extended Cell Ontology) in ontology_index
form
pr an import of a Protein Ontology in ontology_index form
go an import of a Gene Ontology in ontology_index form
Value

a data.frame with features for selected cell types

Note

Prototype of harvesting of cell ontology by searching has_part, has_plasma_membrane_part, inter-
section_of and allied ontology relationships. Uses shiny. Can perform better if getPROnto() and
getGeneOnto() values are in .GlobalEnv as pr and go respectively.

Examples

if (interactive()) {
co = getOnto("cellOnto”, year_added="2023") # has plasma membrane relations
go = getOnto("goOnto”, "2023")
pr = getOnto("Pronto”, "2021") # peculiar tag used in legacy, would be PROnto with 2022
ctmarks(co, go, pr)

3
cyclicSigset as in Bakken et al. (2017 PMID 29322913) create gene signatures for
k cell types, each of which fails to express all but one gene in a set of k
genes
Description

as in Bakken et al. (2017 PMID 29322913) create gene signatures for k cell types, each of which
fails to express all but one gene in a set of k genes

Usage

cyclicSigset(

idvec,

conds = c("hasExp", "lacksExp"),

tags = paste@("CL:X", 1:length(idvec))
)

14 demoApp

Arguments
idvec character vector of identifiers, must have names() set to identify cells bearing
genes
conds character(2) tokens used to indicate condition to which signature element con-
tributes
tags character vector of cell-type identifiers; for Cell Ontology use CL: as prefix, one
element for each element of idvec
Value

a long data.frame

Examples

sigels = c("CL:XQ1"="GRIK3", "CL:X02"="NTNG1", "CL:X03"="BAGE2",
"CL:X@4"="MC4R", "CL:X05"="PAX6", "CL:X06"="TSPAN12", "CL:XQ7"="hSHISA8",
"CL:X@8"="SNCG", "CL:X09"="ARHGEF28", "CL:X10"="EGF")
sigdf = cyclicSigset(sigels)
head(sigdf)

demoApp demonstrate the use of makeSelectInput

Description

demonstrate the use of makeSelectInput

Usage

demoApp ()

Value

Run only for side effect of starting a shiny app.

Examples

if (interactive()) {
require(shiny)
print(demoApp())
3

dropStop 15

dropStop dropStop is a utility for removing certain words from text data

Description

dropStop is a utility for removing certain words from text data

Usage
dropStop(x, drop, lower = TRUE, splitby =" ")
Arguments
X character vector of strings to be cleaned
drop character vector of words to scrub
lower logical, if TRUE, x converted with tolower
splitby character, used with strsplit to tokenize x
Value

non

a list with one element per input string, split by " ", with elements in drop removed

Examples

data(minicorpus)
minicorpus[1:3]
dropStop(minicorpus)[1:3]

fastGrep some fields of interest are lists, and grep per se should not be used —
this function checks and uses grep within vapply when appropriate

Description
some fields of interest are lists, and grep per se should not be used — this function checks and uses
grep within vapply when appropriate

Usage

fastGrep(patt, onto, field, ...)

16 findCommonAncestors

Arguments
patt a regular expression whose presence in field should be checked
onto an ontologylIndex instance
field the ontologyIndex component to be searched
passed to grep
Value

logical vector indicating vector or list elements where a match is found

Examples

cheb = getOnto("chebi_lite")
ind = fastGrep("tanespimycin”, cheb, "name")
cheb$name[ind]

findCommonAncestors Find common ancestors

Description

Given a set of ontology terms, find their latest common ancestors based on the term hierarchy.

Usage
findCommonAncestors(..., g, remove.self = TRUE, descriptions = NULL)
Arguments
One or more (possibly named) character vectors containing ontology terms.
g A graph object containing the hierarchy of all ontology terms.
remove.self Logical scalar indicating whether to ignore ancestors containing only a single

term (themselves).

descriptions Named character vector containing plain-English descriptions for each term.
Names should be the term identifier while the values are the descriptions.

Details

This function identifies all terms in g that are the latest common ancestor (LCA) of any subset of
terms in An LCA is one that has no children that have the exact same set of descendent terms
in ..., i.e., it is the most specific term for that set of observed descendents. Knowing the LCA is
useful for deciding how terms should be rolled up to broader definitions in downstream applications,
usually when the exact terms in . . . are too specific for practical use.

The descendents DataFrame in each row of the output describes the descendents for each LCA,
stratified by their presence or absence in each entry of This is particularly useful for seeing how
different sets of terms would be aggregated into broader terms, e.g., when harmonizing annotation
from different datasets or studies. Note that any names for . .. will be reflected in the columns of
the DataFrame for each LCA.

formalize 17

Value

A DataFrame where each row corresponds to a common ancestor term. This contains the columns
number, the number of descendent terms across all vectors in ...; and descendents, a List of
DataFrames containing the identities of the descendents. It may also contain the column description,
containing the description for each term.

Author(s)

Aaron Lun

Examples

co <- getOnto(”cellOnto")

TODO: wrap in utility function.

parents <- co$parents

self <- rep(names(parents), lengths(parents))
library(igraph)

g <- make_graph(rbind(unlist(parents), self))

Selecting random terms:
LCA <- ontoProc:::findCommonAncestors(A=sample(names(V(g)), 20),
B=sample(names(V(g)), 20), g=g)

LCALT,]
LCAL1,"descendents”1[[1]]

formalize use an LLM to match informal terms to terms in an ontology

Description

use an LLM to match informal terms to terms in an ontology

Usage

formalize(
informal_terms,
ontology_terms,
ontology_tags,
ellmer_chatfun = ellmer::chat_openai,
11lm_model = "gpt-4.1-2025-04-14"

18 getChebiLite

Arguments

informal_terms character() vector of terms not necessarily found in ontology
ontology_terms character() vector of ontology terms

ontology_tags character() vector of tags for ontology terms, must be of same length as ontol-
ogy_terms

ellmer_chatfun function available in ellmer to connect to chatbot

11m_model character(1) used with chat_openai in ellmer, defaults to "gpt-4.1-2025-04-14",
or other models for other providers available through ellmer.

Value

A data.frame with columns informal_term, formal_term, similarity_score, and tag. Invisible at-
tributes chat_tokens, chat_cost, and chat_provider are also present.

Note

Expects to have OPENAI_API_KEY set if an openai chatfun is used, or GOOGLE_API_KEY if,
e.g., a gemini chatfun is used.

Examples

if (interactive()) {

ctypes = c("tPlasma cells”, "tMoMacDC", "tT cells”, # from Zilionis
"tB cells”, "tNK cells”, "tNeutrophils”, "Fibroblasts”, "Type II cells”,
"tpDC", "Endothelial cells”, "tMast cells”, "Smooth muscle cells”,
"ND", "Club cells"”, "bNeutrophils"”, "bT cells"”, "bMonocytes”,
"bNK cells”, "bRBC", "bpDC", "bB cells”, "bPlasma cells”, "bPlatelets”,
"tRBC", "Type I cells”, "Ciliated cells"”, "bBasophils")

cc = owl2cache(url="http://purl.obolibrary.org/obo/cl.owl")

cloi = setup_entities2(cc)

oname = cloi$name

actual = grep("CL_", names(oname))

oterms = as.character(onamel[actuall)

otags = names(oname[actuall)

octy = formalize(ctypes, oterms, otags)

head(octy)

attr(octy, "chat_tokens")

onto_plot2(cloi, unique(na.omit(octy$tag)), cex=.55)

getChebilite basic getters in old style, retained 2023 for deprecation interval

Description

basic getters in old style, retained 2023 for deprecation interval

getChebiLite 19

Usage
getChebilLite()
getCellosaurusOnto()
getUBERON_NE ()
getChebiOnto()
getOncotreeOnto()
getDiseaseOnto()
getGeneOnto()
getHCAOnto ()
getPRONnto()
getPATOnto ()
getMondoOnto()

getSI00nto()

Value

instance of ontology_index (S3) from ontologyIndex

Note

getChebiOnto loads ontoRda/chebi_full.rda
getOncotreeOnto loads ontoRda/oncotree.rda
getDiseaseOnto loads ontoRda/diseaseOnto.rda

getHCAOnto loads ontoRda/hcaOnto.rda produced from hcao.owl at https://github.com/HumanCellAtlas/ontology/releases/t:
2/11/2019, python pronto was used to convert OWL to OBO.

getPROnto loads ontoRda/PRonto.rda, produced from http://purl.obolibrary.org/obo/pr.obo ’rea-
soned’” ontology from OBO foundry, 02-08-2019. In contrast to other ontologies, this is imported
via get_OBO with ‘extract_tags="minimal’ ‘.

getPATOnto loads ontoRda/patoOnto.rda, produced from https://raw.githubusercontent.com/pato-
ontology/pato/master/pato.obo from OBO foundry, 02-08-2019.

20 getOnto

getLeavesFromTerm obtain childless descendents of a term (including query)

Description

obtain childless descendents of a term (including query)

Usage

getlLeavesFromTerm(x, ont)

Arguments

X a character(1) id element for ontology_index instance

ont an ontology_index instance as defined in ontologyIndex package
Value

character vector of ’leaves’ of ontology tree

Examples

ch = getOnto("chebi_lite")
alldr = getlLeavesFromTerm("CHEBI:23888", ch)
head(ch$name[alldr[1:15]1)

getOnto get the ontology based on a short tag and year

Description

get the ontology based on a short tag and year

Usage

getOnto(ontoname = "cellOnto”, year_added = "2023")

Arguments
ontoname character(1) must be an element in ‘valid_ontonames()*
year_added character(1) refers to ‘rdatadateadded‘ in AnnotationHub metadata
Note

This queries AnnotationHub for "ontoProcData" and then filters to find the AnnotationHub acces-
sion number and retrieves the ontologyIndex serialization of the associated OBO representation of
the ontology.

get_classes 21

Examples

co = getOnto()
tail(co$name[1000:15007)

get_classes return a generator with ontology classes

Description

return a generator with ontology classes

Usage

get_classes(owlfile)

Arguments

owlfile reference to OWL file, can be URL, will be processed by owlready2.get_ontology

Value

generator with output of classes() on the loaded ontology

get_ordo_owl_path decompress ordo owl file

Description

decompress ordo owl file

Usage

get_ordo_owl_path(target = tempdir())

Arguments

target character(1) path to where decompressed owl will live

22 humrna

graph2paths produce list of vectors of (shortest) paths from root to all nodes in gr

Description

produce list of vectors of (shortest) paths from root to all nodes in gr

Usage
graph2paths(gr, root = "http://www.ifomis.org/bfo/1.1#Entity"”, excise = NULL)

Arguments
gr graphNEL (package graph) instance representing an ontology
root character(1) node from which to produce paths
excise character() or NULL, path steps to exclude

Examples

if (!requireNamespace("graph”)) stop("install graph package from Bioconductor to use this function")
jpath = system.file("json"”, "aut.json.gz", package="ontoProc")
cg = jowl2classgraph(jpath,
dropstrings = "http://purl.org/autism-ontology/1.0/autism-rules.owl#")
evec = grep("span\\#|snap\\#", graph::nodes(cg), value=TRUE)
paths = graph2paths(cg, excise=evec)
tail(paths)

humrna humrna: a data.frame of SRA metadata related to RNA-seq in humans

Description

humrna: a data.frame of SRA metadata related to RNA-seq in humans

Usage

humrna

Format

data.frame

Note

arbitrarily chosen from RNA-seq studies for taxon 9606

improveNodes

Source

NCBI SRA

Examples

data(humrna)
names (humrna)
head(humrnal,1:5])

improveNodes inject linefeeds for node names for graph, with textual annotation from
ontology

Description

inject linefeeds for node names for graph, with textual annotation from ontology

Usage

improveNodes(g, ont)

Arguments
g graphNEL instance
ont instance of ontology from ontologyIlndex
jowl2classgraph extract class relationship graph from JSON representation of OWL
Description

extract class relationship graph from JSON representation of OWL

Usage

jowl2classgraph(
jsonpath,
dropstrings = c("http://www.ifomis.org/bfo/1.1/snap#",
"http://purl.org/autism-ontology/1.0/autism-rules.owl#")

Arguments

jsonpath character(1) path to JSON, typically generated by java robot applied to owl

dropstrings character(), strings to be excised from class names

24 jowl2classgraph_nio

Value

graphNEL with edgemode ’directed’

Examples

if (!requireNamespace("graph”)) stop("install graph package from Bioconductor to use this function")
jpath = system.file("json"”, "aut.json.gz", package="ontoProc")
cg = jowl2classgraph(jpath,
dropstrings = "http://purl.org/autism-ontology/1.0/autism-rules.owl#")
head(graph: :nodes(cg))

jowl2classgraph_nio extract class relationship graph from JSON representation of OWL for
NIO

Description

extract class relationship graph from JSON representation of OWL for NIO

Usage

jowl2classgraph_nio(jsonpath, dropstrings = NULL)

Arguments
jsonpath character(1) path to JSON, typically generated by java robot applied to owl
dropstrings character(), strings to be excised from class names

Value

graphNEL with edgemode ’directed’

Examples

if (!requireNamespace("graph”)) stop("install graph package from Bioconductor to use this function”)
jpath = system.file(”json”, "nio.json.gz", package="ontoProc")
cg = jowl2classgraph_nio(jpath,
dropstrings = "http://purl.org/autism-ontology/1.0/autism-rules.owl#")
head(graph: :nodes(cg))

labels.owlents 25

labels.owlents retrieve labels with names

Description

retrieve labels with names

Usage
S3 method for class 'owlents'
labels(object, ...)
Arguments
object owlents instance
not used
Note

When multiple labels are present, only first is silently returned. Note that reticulate 1.35.0 made
a change that appears to imply that ‘[0]° can be used to retrieve the desired components. To get
ontology tags, use ‘names(labels(...))*. Note: This function was revised Jul 12 2024 to allow terms
that lack labels (like CHEBI references in cl.owl) to be processed, returning NA. The previous
functionality which failed is available, not exported, as labelsOLD.owlents.

Examples

Not run:

clont_path = owl2cache(url="http://purl.obolibrary.org/obo/cl.owl")
02 = try(reticulate::import(”"owlready2"), silent=TRUE)

if (!inherits(o2, "try-error”)) {

clont = setup_entities(clont_path)

labels(clont[1:5])

labels(clont[51:55])

}

End(Not run) # dontrun introduced because of ambiguity in STATO term usage; see vignettes for repaired example

1dfToTerms use output of cyclicSigset to generate a series of character vectors
constituting OBO terms

Description

use output of cyclicSigset to generate a series of character vectors constituting OBO terms

26 IdfToTerms

Usage
1dfToTerms(
1df,
propmap,
sigels,
prologMaker = function(id, ...) sprintf("id: %s", id)
)
Arguments
1df a’long format’ data.frame as created by cyclicSigset
propmap a character vector with names of elements corresponding to ’abbreviated’ re-
lationship tokens and element values corresponding to full relationship-naming
strings
sigels a named character vector associating cell types (names) to genes expressed in a
cyclic set, one element per type
prologMaker a function with arguments (id, ...), in which id is character(1), that generates a
vector of strings that will be used for each cell type-specific term.
Value

a character vector, strings can be concatenated to OBO

Note

1dfToTerms is not sufficiently general to produce terms for any reasonably populated long data
frame/propmap combination, but it is a working example for the cyclic set context.

Examples
a set of cell types -- names are cell type token, values are genes expressed in a
cyclic set -- each cell type expresses exactly one gene in the set and fails to

express all the other genes in the set. See Figs 3 and 4 of Bakken et al [PMID 29322913].

sigels = c("CL:X0@1"="GRIK3", "CL:X02"="NTNG1", "CL:X@3"="BAGE2",
"CL:XQ4"="MC4R", "CL:X05"="PAX6", "CL:X06"="TSPAN12", "CL:XQ7"="hSHISA8",
"CL:X@8"="SNCG", "CL:XQ9"="ARHGEF28", "CL:X10"="EGF")

create the associated long data frame

1ldf = cyclicSigset(sigels)

describe the abbreviations

pmap = c("hasExp"”="has_expression_of", lacksExp="lacks_expression_of")

now define the prolog for each cell type
makeIntnProlog = function(id, ...) {
make type-specific prologs as key-value pairs
c(
sprintf("id: %s", id),
sprintf(”"name: %s-expressing cortical layer 1 interneuron, human”, ...),
sprintf("def: '%s-expressing cortical layer 1 interneuron, human described via RNA-seq observations' [PMID 293
"is_a: CL:0000099 ! interneuron”,
"intersection_of: CL:0000099 ! interneuron”)

liberalMap 27

}
tms = 1dfToTerms(1ldf, pmap, sigels, makeIntnProlog)
cat(tms[[1]1], sep="\n")

liberalMap Produce a data.frame with a set of naive terms mapped to all matching
ontology ids and their formal terms

Description

Produce a data.frame with a set of naive terms mapped to all matching ontology ids and their formal

terms
Usage
liberalMap(terms, onto, useAgrep = FALSE, ...)
Arguments
terms character() vector, can use grep-compatible regular expressions
onto an instance of ontologyIndex::ontology_index
useAgrep logical(1) if TRUE, agrep will be used
passed to agrep if used
Value

a data.frame

Examples
cands = c("astrocyte$”, "oligodendrocyte”, "oligodendrocyte precursor”,
"neoplastic”, "“neuron$”, "“vascular”, "badterm")

#co = ontoProc::getCellOnto()
co = getOnto("cellOnto”, year_added="2023")
liberalMap(cands, co)

28 makeSelectInput

makeSelectInput generate a selectInput control for an ontologyIndex slice

Description

generate a selectInput control for an ontologyIndex slice

Usage

makeSelectInput(
onto,
term,
type = "siblings”,
inputld,
label,
multiple = TRUE,

)
Arguments
onto ontologylndex instance
term character(1) term used as basis for term list option set in the control
type character(1) ’siblings’ or ’children’, relationship to ’term’ that the options will
satisfy
inputId character(1) for use in server
label character(1) for labeling in ui
multiple logical(1) passed to selectInput
additional parameters passed to selectInput
Value

a selectInput control

Examples

makeSelectInput

make_graphNEL_from_ontology_plot

29

make_graphNEL_from_ontology_plot
obtain graphNEL from ontology_plot instance of ontologyPlot

Description

obtain graphNEL from ontology_plot instance of ontologyPlot

Usage

make_graphNEL_from_ontology_plot(x)

Arguments

X instance of S3 class ontology_plot

Value

instance of S4 graphNEL class

Examples

requireNamespace("Rgraphviz")

requireNamespace("graph")

cl = getOnto("cellOnto")

cl3k = c("CL:0000492", "CL:0001054", "CL:0000236", "CL:0000625",
"CL:0000576", "CL:0000623", "CL:0000451", "CL:0000556")

p3k = ontologyPlot::onto_plot(cl, cl3k)

gnel = make_graphNEL_from_ontology_plot(p3k)

gnel improveNodes(gnel, cl)

graph: :graph.par(list(nodes=1list(shape="plaintext”, cex=.8)))

gnel = Rgraphviz::layoutGraph(gnel)

Rgraphviz: :renderGraph(gnel)

map2prose use prose terminology with output of connect_classes

Description

use prose terminology with output of connect_classes

Usage

map2prose(x, cl)

30 mapOneNaive

Arguments
X a component of connect_classes output
cl an ontologyIndex ontology instance
Value

a decorated list

mapOneNaive use grep or agrep to find a match for a naive token into ontology

Description

use grep or agrep to find a match for a naive token into ontology

Usage

mapOneNaive(naive, onto, useAgrep = FALSE, ...)
Arguments

naive character(1)

onto an instance of ontologyIndex::ontology_index

useAgrep logical(1) if TRUE, agrep will be used

passed to agrep if used

Value

if a match is found, the result of grep/agrep with value=TRUE is returned; otherwise a named
NA_character_ is returned

named vector, names are ontology identifiers, values are matched strings

Examples

#co = ontoProc::getCellOnto()
co = getOnto("cellOnto", year_added="2023")
mapOneNaive("astrocyte”, co)

minicorpus 31

minicorpus minicorpus: a vector of annotation strings found in 'study title’ of SRA
metadata.

Description

minicorpus: a vector of annotation strings found in ’study title’ of SRA metadata.

Usage

minicorpus

Format

character vector

Note

arbitrarily chosen from titles of RNA-seq studies for taxon 9606

Source

NCBI SRA

Examples

data(minicorpus)
head(minicorpus)

nomenCheckup repair nomenclature mismatches (to curated term set) in a vector of
terms

Description

repair nomenclature mismatches (to curated term set) in a vector of terms

Usage

nomenCheckup(cand, namedOffic, n = 1, tagcolname = "tag", ...)

32 ontoDiff

Arguments
cand character vector of candidate terms
namedOffic named character vector of curated terms, the names are regarded as tags, in-
tended to be identifiers in curated ontologies
n numeric(1) number of nearest neighbors to return
tagcolname character(1) prefix used to name columns for tags in output
passed to adist
Value

a data.frame instance with 2n+1 columns (column 1 is candidate, remaining n pairs of columns are
(term, tag) for n nearest neighbors as measured by adist.

Examples

candidates = c("JHH7", "HUT1@2", "HS739T", "NCIH716")

the candidates are cell line names returned in the text dump from

https://portals.broadinstitute.org/ccle/page?gene=AHR

note that one must travel to the third nearest neighbor

to find the match (and tag) for Hs 739.T

in this example, we compare to cell line names in Cell Line Ontology
nomenCheckup(candidates, cleanCLOnames(), n=3, tagcolname="clo")

ontoDiff Display Version Differences

Description

Highlights in green the terms that are present in the new ontology but not the old one

Usage

ontoDiff(newonto, oldonto, terms2use, cex = 0.8, ...)
Arguments

newonto the newest version of the ontology

oldonto the old version of the ontology

terms2use terms of interest

cex numeric(1) defaults to .8, supplied to Rgraphviz::graph.par

passed to onto_plot of ontologyPlot

Value

onto_plot2 style plot with version differences highlighted

onto_plot2 33

Note

Credit to ontoPlot for the use of some of its functions.

Examples

cl = getOnto("diseaseOnto"”)

cl2 = getOnto(ontoname = "diseaseOnto”, year_added = "2021")

cl3k = c("DOID:0040064","DOID:0040076","DOID:0081127","DOID:0081126","DOID:0081131","DOID:0060034")
ontoDiff(cl,cl2,cl3k)

onto_plot2 high-level use of graph/Rgraphviz for rendering ontology relations

Description

high-level use of graph/Rgraphviz for rendering ontology relations

Usage
onto_plot2(ont, terms2use, cex = 0.8, ...)
Arguments
ont instance of ontology from ontologyIndex
terms2use character vector
cex numeric(1) defaults to .8, supplied to Rgraphviz::graph.par
passed to onto_plot of ontologyPlot
Value

graphNEL instance (invisibly)

Examples

cl = getOnto("cellOnto")

cl3k = c("CL:0000492", "CL:0001054", "CL:0000236", "CL:0000625",
"CL:0000576", "CL:0000623", "CL:0000451", "CL:0000556")

onto_plot2(cl, cl3k)

34

owl2cache

onto_roots list parentless nodes in ontology_index instance

Description

list parentless nodes in ontology_index instance

Usage

onto_roots(x)

Arguments

X an ontology_index instance

Value

a report (produced by cat()) of root ids and associated names

Examples

onto_roots

owl2cache cache an owl file accessible via URL

Description

cache an owl file accessible via URL

Usage

owl2cache(cache = BiocFileCache: :BiocFileCache(), url)

Arguments
cache BiocFileCache instance or equivalent
url character(1)

Note

This function will check for presence of url in cache using bfcquery; if a hit is found, returns the
rpath associated with the last matching record. etags can be available for use with bfcneedsupdate.

packDesc2019 35

Examples

ca = BiocFileCache: :BiocFileCache()

02 = try(reticulate::import(”"owlready2"), silent=TRUE)

if (!linherits(o2, "try-error”)) {

hppa = owl2cache(ca,
url="http://purl.obolibrary.org/obo/hp/releases/2023-10-09/hp-base.owl")

setup_entities(hppa)

3

packDesc2019 packDesc2019: overview of ontoProc resources

Description

packDesc2019: overview of ontoProc resources

Usage
packDesc2019

Format

data.frame instance

Note

Brief survey of functions available to load serialized ontology_index instances imported from OBO.

Examples

data(packDesc2019)
head(packDesc2019)

packDesc2021 packDesc2021: overview of ontoProc resources

Description

packDesc2021: overview of ontoProc resources

Usage
packDesc2021

Format

data.frame instance

36 packDesc2023

Note

Brief survey of functions available to load serialized ontology_index instances imported from OBO.
Focus is on versions added in 2021.

Examples

data(packDesc2021)
head(packDesc2021)

packDesc2022 packDesc2022: overview of ontoProc resources

Description

packDesc2022: overview of ontoProc resources

Usage

packDesc2022

Format

data.frame instance

Note

Brief survey of functions available to load serialized ontology_index instances imported from OBO.
Focus is on versions added in 2022.

Examples

data(packDesc2022)
head(packDesc2022)

packDesc2023 packDesc2023: overview of ontoProc resources

Description

packDesc2023: overview of ontoProc resources

Usage

packDesc2023

parents 37

Format

data.frame instance

Note

Brief survey of functions available to load serialized ontology_index instances imported from OBO.
Focus is on versions added in 2023. Several manual interventions were needed — cellosaurus was too
large to use the script in inst/scripts/desc.R, and a number of ontologies do not have 2023 versions.

Examples

data(packDesc2023)
head(packDesc2023)

parents retrieve is_a

Description

retrieve is_a

Usage

parents(oe)

Arguments

oe owlents instance

Value

list of vectors of tags of parents

Examples

pa = get_ordo_owl_path()
02 = try(reticulate::import("owlready2"), silent=TRUE)
if (linherits(o2, "try-error”)) {

orde = setup_entities(pa)

orde

parents(orde[1000:1001])

labels(orde[1000:1001])

3

38 print.owlents

plot.owlents visualize ontology selection via onto_plot2, based on owlents

Description

visualize ontology selection via onto_plot2, based on owlents

Usage
plot.owlents(x, y, ..., dropThing = TRUE)
Arguments
X owlents instance
y character() vector of entries in x$clnames
passed to onto_plot2
dropThing logical(1) defaults to TRUE; if "Thing" is present in terms to display, it is re-
moved
Examples

cl3k = c("CL:0000492", "CL:0001054", "CL:0000236",
"CL:0000625", "CL:0000576",
"CL:0000623", "CL:0000451", "CL:0000556")
cl3k = gsub(":", "_", cl3k)
clont_path = owl2cache(url="http://purl.obolibrary.org/obo/cl.owl"”)
tmp = readLines(clont_path)
deal with ambiguity not accommodated by owlready?2
bad = grep("STAT0_0000416", tmp)[1:2] # see https://github.com/obophenotype/cell-ontology/issues/3237
tmp = tmp[-bad]
bad = grep("STAT0_0000663", tmp)[1:2] # see https://github.com/obophenotype/cell-ontology/issues/3237
tmp = tmp[-bad]
tf = tempfile()
writeLines(tmp, tf)
cle = setup_entities2(tf)
ntag = gsub(":", "_", cl3k)
onto_plot2(cle, ntag)

print.owlents short printer

Description

short printer

PROSYM 39

Usage

S3 method for class 'owlents'

print(x, ...)
Arguments

X owlents instance

not used
PROSYM PROSYM: HGNC symbol synonyms for PR (protein ontology) entries
identified in Cell Ontology

Description

PROSYM: HGNC symbol synonyms for PR (protein ontology) entries identified in Cell Ontology

Usage

PROSYM

Format

data.frame instance

Note

This is a snapshot of the synonyms component of an extract_tags="everything’ import of PR. The
"EXACT.*PRO-short.*:DNx’ pattern is used to retrieve HGNC symbols. See ?getPROnto for more
provenance information.

Source

OBO Foundry

Examples

data(PROSYM)
head (PROSYM)

40 recognizedPredicates

quickOnto Probe the cache for entries found by bfcquery using the given query.

Description

Probe the cache for entries found by bfcquery using the given query.

Usage
quickOnto(query, cache = BiocFileCache::BiocFileCache(), gans.only = FALSE)

Arguments

query character(1), will be used by BiocFileCache::bfcquery

cache instance of class(BiocFileCache::BiocFileCache())

gans.only logical, defaulting to FALSE, if TRUE, just return the bfcquery result.
Note

Take only the last entry found if there are multiple hits. Use ‘setup_entities2‘ to transform owl to
ontologylndex and cache the result if this is absent for the owl identified by query.

Examples

aeo = quickOnto("aeo.owl")
str(aeo)

recognizedPredicates enumerate ontological relationships used in ontoProc utilities

Description

enumerate ontological relationships used in ontoProc utilities

Usage

recognizedPredicates()

Value

character vector, names of elements are abbreviated tokens that may be used in code

Examples

head(recognizedPredicates())

search_labels 41

search_labels use owlready?2 ontology search facility on term labels

Description

use owlready?2 ontology search facility on term labels

Usage

search_labels(ontopath, regexp, case_sensitive = TRUE)

Arguments
ontopath character(1) path to owl file
regexp character(1) simple regular expression

case_sensitive logical(1) should case be respected in search?

Value

A named list: term labels are elements, tags are names of elements. Will return NULL if nothing is
found.

Examples

pa = get_ordo_owl_path()

ol = search_labels(pa, "xImmunogx")
orde = setup_entities2(pa)
onto_plot2(orde, names(ol))

secLevGen simple generation of children of ’choices’ given as terms, returned as
TermSet

Description

simple generation of children of "choices’ given as terms, returned as TermSet

Usage

secLevGen(choices, ont)

Arguments

choices vector of terms

ont instance of ontology_index (S3) from ontologyIndex package

42 selectFromMap

Value

TermSet instance

Examples

efoOnto = getOnto("efoOnto")
secLevGen("disease”, efoOnto)

selectFromMap select a set of elements from a term 'map’ and return a contribution to
a data.frame

Description

select a set of elements from a term *map’ and return a contribution to a data.frame

Usage

selectFromMap(namedvec, index)

Arguments
namedvec named character vector, as returned from mapOneNaive
index numeric() or integer(), typically of length one

Value

a data.frame; if index does not inherit from numeric, a data.frame of one row with columns *ontoid’
and "term’ populated with NA_character_ is returned, otherwise a similarly named data.frame is
returned with contents from the selected elements of namedvec

Examples

#co = ontoProc::getCellOnto()

co = getOnto("cellOnto", year_added="2023")
mast = mapOneNaive("astrocyte”, co)
selectFromMap(mast, 1)

setup_entities 43

setup_entities construct owlents instance from an owl file

Description

construct owlents instance from an owl file

Usage

setup_entities(owlfn)

Arguments

owlfn character(1) path to valid owl ontology

Value

instance of owlents, which is a list with clnames (a vector of term names in form ‘[names-
pace]_[tag]‘), allents (a list with python references to owlready?2 entities, that can be operated on
using owlready2.EntityClass methods), owlfn (filename), iri (IRI), call (record of call producing the
entity.)

Examples

pa = get_ordo_owl_path()

02 = try(reticulate::import("owlready2"”), silent=TRUE)
if (!inherits(o2, "try-error”)) {

orde = setup_entities(pa)

orde

ancestors(orde[1000:1001])

labels(orde[1000:1001])

3
setup_entities? preparing for a small number of entry points to owlready2 mediated
by basilisk, this setup function will ingest OWL, enumerate classes and
their names, and produce the ’parents’ list, which can then be used
with ontology_index to produce a functional ontology representation
Description

preparing for a small number of entry points to owlready2 mediated by basilisk, this setup function
will ingest OWL, enumerate classes and their names, and produce the ’parents’ list, which can then
be used with ontology_index to produce a functional ontology representation

44 seur3kTab

Usage

setup_entities2(owlfn, cache_object = TRUE)

Arguments

owlfn character(1) path to OWL file

cache_object logical(1) if TRUE, cache the ‘ontology_index‘ instance in BiocFileCache::BiocFileCache()

Note

Production of an ‘ontology_index‘ instance will often throw a warning when "Thing" is part of the
ontology. suppressWarnings has been used in the code to suppress this. This may be too aggressive
an approach.

Examples

pa = get_ordo_owl_path()
orde = setup_entities2(pa)
orde

seur3kTab tabulate the basic outcome of PBMC 3K tutorial of Seurat

Description

tabulate the basic outcome of PBMC 3K tutorial of Seurat

Usage

seur3kTab()

Value

a data.frame

Examples

seur3kTab()

siblings_TAG

45

siblings_TAG generate a TermSet with siblings of a given term, excluding that term
by default

Description

generate a TermSet with siblings of a given term, excluding that term by default
acquire the label of an ontology subject tag

acquire the labels of children of an ontology subject tag

Usage
siblings_TAG(Tagstring = "EF0:1001209", ontology, justSibs = TRUE)
label _TAG(Tagstring = "EF0:0000311", ontology)

children_TAG(Tagstring = "EF0:1001209", ontology)

Arguments
Tagstring a character(1) that identifies a term
ontology instance of ontology_index (S3) from ontologyIndex
justSibs character(1)

Value

TermSet instance
character(1)

TermSet instance

Note

for label_TAG, Tagstring may be a vector

Examples

efoOnto = getOnto("efoOnto")
siblings_TAG("EF0:1001209", efoOnto)
efoOnto = getOnto("efoOnto™)

label _TAG("EF0:0000311", efoOnto)
efoOnto = getOnto("efoOnto")
children_TAG(ontology = efoOnto)

46 subclasses

stopWords stopWords: vector of stop words from xpo6.com

Description

stopWords: vector of stop words from xpo6.com

Usage

stopWords

Format

character vector

Note
"Stop words" are english words that are assumed to contribute limited semantic value in the analysis
of free text.

Source

http://xpo6.com/list-of-english-stop-words/

Examples

data(stopWords)
head(stopWords)

subclasses retrieve subclass entities

Description

retrieve subclass entities

Usage

subclasses(oe)

Arguments

oe owlents instance

http://xpo6.com/list-of-english-stop-words/

subset_descendants 47
Examples
pa = get_ordo_owl_path()
02 = try(reticulate::import(”"owlready2"), silent=TRUE)
if (!linherits(o2, "try-error”)) {
orde = setup_entities(pa)
orde
sc <- subclasses(orde[1:5])
labels(orde[3])
03 = reticulate::iterate(sc[[3]1])
print(length(o3))
o3[[2]1]
labels(orde["Orphanet_100011"])
3
subset_descendants subset a SummarizedExperiment to which ontology tags have been
bound using 'bind_formal_tags’, obtaining the 'descendants’ of the
class of interest
Description

subset a SummarizedExperiment to which ontology tags have been bound using *bind_formal_tags’,

obtaining the ’descendants’ of the class of interest

Usage
subset_descendants(
se,
onto,
class_name,
class_tag,
formal_cd_name = "label.ont”
)
Arguments
se SummarizedExperiment instance
onto representation of an ontology using representation from ontologyIndex package
class_name character(1) if ’class_tag’ is missing, this will be grepped in onto[["name"]] to
find class and its descendants
class_tag character(1) used if given to identify "ontological descendants" of this term in

N

formal_cd_name character(1) tells name used for ontology tag column in ‘colData(se)

Value

instance of SummarizedExperiment

48 TermSet-class

sym2CellOnto use Cell Ontology and Protein Ontology to identify cell-type defining
conditions in which a given gene is named

Description

use Cell Ontology and Protein Ontology to identify cell-type defining conditions in which a given
gene is named

Usage

sym2CellOnto(sym, cl, pr)

Arguments
sym gene symbol, must be used in protein ontology as a PRO:DNx exact match token
cl result of getOnto("cellOnto")
pr result of getOnto("PROnto")

Value

DataFrame if any hits are found. A field ’cond’ abbreviates the identified conditions: (has/lacks)PMP
(plasma membrane part) (hi/lo)PMAmt (plasma membrane amount), (has/lacks)Part.

Note

Currently just checks for *plasma_membrane_part, *plasma_membrane_amount, and *Part condi-
tions.

Examples

if (lexists("cl”)) cl = getOnto("cellOnto"”)
if (lexists("pr")) pr = getOnto("PROnto")
sym2CellOnto("ITGAM", cl, pr)
sym2CellOnto("FOXP3", cl, pr)

TermSet-class manage ontological data with tags and a DataFrame instance

Description

manage ontological data with tags and a DataFrame instance

abbreviated display for TermSet instances

url ok

Usage

S4 method for signature 'TermSet'
show(object)

Arguments

object instance of TermSet class

Value

instance of TermSet

Examples

efoOnto = getOnto("efoOnto")

defsibs = siblings_TAG("EF0:1001209", efoOnto)
class(defsibs)

defsibs

49

url_ok check that a URL can get a 200 for a HEAD request

Description

check that a URL can get a 200 for a HEAD request

Usage

url_ok(url)

Arguments

url character(1)

Value

logical(1)

50

[.owlents

valid_ontonames give a vector of valid 'names’ of ontoProc ontologies

Description

give a vector of valid 'names’ of ontoProc ontologies

Usage

valid_ontonames()

Examples

head(valid_ontonames())

[.owlents subset method

Description

subset method

Usage

S3 method for class 'owlents'
x[i, j, drop = FALSE]

Arguments
X owlents instance
i character or numeric vector
j not used

drop not used

Index

x datasets formalize, 17
allGOterms, 4
humrna, 22 get_classes, 21
minicorpus, 31 get_ordo_owl_path, 21
packDesc2019, 35 getCellosaurusOnto (getChebilLite), 18
packDesc2021, 35 getChebilite, 18
packDesc2022, 36 getChebiOnto (getChebilite), 18
packDesc2023, 36 getDiseaseOnto (getChebilite), 18
PROSYM, 39 getGeneOnto (getChebilite), 18
stopWords, 46 getHCAONnto (getChebilite), 18
[.owlents, 50 getlLeavesFromTerm, 20
getMondoOnto (getChebilite), 18
adist, 32 getOncotreeOnto (getChebilite), 18
agrep, 9 getOnto, 20
allGOterms, 4 getPATOnto (getChebilite), 18
ancestors, 4 getPRONnto (getChebilite), 18
ancestors_names, 5 getSI0Onto (getChebilite), 18
available_ontos, 6 getUBERON_NE (getChebilite), 18
graph, 16
bind_formal_tags, 6 graph2paths, 22
bioregistry_ols_resources, 7
browse_ontos, 7 humrna, 22
c,TermSet-method, 8 improveNodes, 23
cellTypeToGenes (cellTypeToGO), 8
cellTypeToGO, 8 jowl2classgraph, 23
children_names, 9 jowl2classgraph_nio, 24
children_TAG (siblings_TAG), 45
cleanCLOnames, 10 label_TAG (siblings_TAG), 45
CLfeats, 10 labels.owlents, 25
common_classes, 11 ldfToTerms, 25
connect_classes, 12 liberalMap, 27
ctmarks, 12 List, 17

cyclicSigset, 13
make_graphNEL_from_ontology_plot, 29

DataFrame, 17 makeSelectInput, 28
demoApp, 14 map2prose, 29
dropStop, 15 mapOneNaive, 30, 42

minicorpus, 31
fastGrep, 15
findCommonAncestors, 16 nomenCheckup, 31

51

52 INDEX

onto_plot2, 33
onto_roots, 34
ontoDiff, 32

owl2cache, 34

packDesc2019, 35
packDesc2021, 35
packDesc2022, 36
packDesc2023, 36
parents, 37

plot.owlents, 38
print.owlents, 38
PROSYM, 39

quickOnto, 40
recognizedPredicates, 40

search_labels, 41
secLevGen, 41
selectFromMap, 42
selectInput, 28
setup_entities, 43
setup_entities2, 43
seur3kTab, 44

show (TermSet-class), 48
show, TermSet-method (TermSet-class), 48
siblings_TAG, 45
stopWords, 46
subclasses, 46
subset_descendants, 47
sym2CellOnto, 48

TermSet-class, 48
tolower, 15

url_ok, 49

valid_ontonames, 50

	allGOterms
	ancestors
	ancestors_names
	available_ontos
	bind_formal_tags
	bioregistry_ols_resources
	browse_ontos
	c,TermSet-method
	cellTypeToGO
	children_names
	cleanCLOnames
	CLfeats
	common_classes
	connect_classes
	ctmarks
	cyclicSigset
	demoApp
	dropStop
	fastGrep
	findCommonAncestors
	formalize
	getChebiLite
	getLeavesFromTerm
	getOnto
	get_classes
	get_ordo_owl_path
	graph2paths
	humrna
	improveNodes
	jowl2classgraph
	jowl2classgraph_nio
	labels.owlents
	ldfToTerms
	liberalMap
	makeSelectInput
	make_graphNEL_from_ontology_plot
	map2prose
	mapOneNaive
	minicorpus
	nomenCheckup
	ontoDiff
	onto_plot2
	onto_roots
	owl2cache
	packDesc2019
	packDesc2021
	packDesc2022
	packDesc2023
	parents
	plot.owlents
	print.owlents
	PROSYM
	quickOnto
	recognizedPredicates
	search_labels
	secLevGen
	selectFromMap
	setup_entities
	setup_entities2
	seur3kTab
	siblings_TAG
	stopWords
	subclasses
	subset_descendants
	sym2CellOnto
	TermSet-class
	url_ok
	valid_ontonames
	[.owlents
	Index

