
Package ‘mutscan’
February 2, 2026

Title Preprocessing and Analysis of Deep Mutational Scanning Data

Version 1.1.0

Description Provides functionality for processing and statistical analysis
of multiplexed assays of variant effect (MAVE) and similar data. The
package contains functions covering the full workflow from raw FASTQ
files to publication-ready visualizations. A broad range of library
designs can be processed with a single, unified interface.

Depends R (>= 4.5.0)

Imports BiocGenerics, S4Vectors, methods, SummarizedExperiment, Rcpp,
edgeR (>= 3.42.0), dplyr, Matrix, limma, tidyr, stats, GGally,
ggplot2, tidyselect (>= 1.2.0), tibble, rlang, grDevices, csaw,
rmarkdown, xfun, DT, ggrepel, IRanges, utils, DelayedArray,
tools

Suggests testthat (>= 3.0.0), BiocStyle, knitr, Biostrings, pwalign,
plotly, scattermore, BiocManager

SystemRequirements GNU make

biocViews GeneticVariability, GenomicVariation, Preprocessing

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

LinkingTo Rcpp

Config/testthat/edition 3

URL https://github.com/fmicompbio/mutscan

BugReports https://github.com/fmicompbio/mutscan/issues

git_url https://git.bioconductor.org/packages/mutscan

git_branch devel

git_last_commit 30e3669

git_last_commit_date 2025-10-29

1

https://github.com/fmicompbio/mutscan
https://github.com/fmicompbio/mutscan/issues

2 calcNearestStringDist

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Charlotte Soneson [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3833-2169>),

Michael Stadler [aut] (ORCID: <https://orcid.org/0000-0002-2269-4934>),
Friedrich Miescher Institute for Biomedical Research [cph]

Maintainer Charlotte Soneson <charlottesoneson@gmail.com>

Contents
calcNearestStringDist . 2
calculateFitnessScore . 3
calculateRelativeFC . 4
collapseMutantsBySimilarity . 6
digestFastqs . 8
generateQCReport . 15
groupSimilarSequences . 17
linkMultipleVariants . 18
plotDistributions . 20
plotFiltering . 21
plotMeanDiff . 22
plotPairs . 23
plotTotals . 25
plotVolcano . 26
relabelMutPositions . 27
summarizeExperiment . 28

Index 30

calcNearestStringDist Calculate distances to the nearest string

Description

Given a character vector, calculate the distance for each element to the nearest neighbor amongst
all the other elements.

Usage

calcNearestStringDist(x, metric = "hamming", nThreads = 1L)

Arguments

x A character vector.
metric A character scalar defining the string distance metric. One of "hamming" (de-

fault), "hamming_shift" or "levenshtein".
nThreads numeric(1), number of threads to use for parallel processing.

https://orcid.org/0000-0003-3833-2169
https://orcid.org/0000-0002-2269-4934

calculateFitnessScore 3

Value

An integer vector of the same length as x.

Examples

calcNearestStringDist(c("lazy", "hazy", "crazy"))
calcNearestStringDist(c("lazy", "hazy", "crazy"), metric = "hamming_shift")
calcNearestStringDist(c("lazy", "hazy", "crazy"), metric = "levenshtein")

calculateFitnessScore Calculate fitness scores.

Description

Using sequence counts before and after selection, calculate fitness scores as described by Diss and
Lehner (2018).

Usage

calculateFitnessScore(
se,
pairingCol,
ODCols,
comparison,
WTrows,
selAssay = "counts"

)

Arguments

se SummarizedExperiment object as returned by summarizeExperiment.

pairingCol Name of column in colData(se) with replicate/pairing information. Samples
with the same value in this column will be paired.

ODCols Name(s) of column(s) in colData(se) with OD values (numeric), used to nor-
malize for different numbers of cells.

comparison 3-element character vector of the form (column, numerator, denominator).
column is the name of the column in colData(se) with experimental condi-
tions. numerator and denominator define the comparison, e.g. c("cond",
"output", "input") will look in the "cond" column and calculate fitness for
the ratio of "output" over "input" counts.

WTrows Vector of row names that will be used as the reference when calculating fitness
scores. If more than one value is provided, the average of the corresponding
fitness scores is used as a reference. If NULL, no division by WT scores will be
done.

selAssay Assay to select from se for the analysis.

4 calculateRelativeFC

Value

A numeric vector with fitness scores.

Author(s)

Michael Stadler and Charlotte Soneson

References

"The genetic landscape of a physical interaction." Diss G and Lehner B. Elife. 2018;7:e32472. doi:
10.7554/eLife.32472.

Examples

se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",
package = "mutscan"))

Check that the wildtype sequence is present in the data
stopifnot("f.0.WT" %in% rownames(se))
Calculate PPI scores as defined in Diss & Lehner (2018)
ppis <- calculateFitnessScore(

se = se, pairingCol = "Replicate",
ODCols = c("OD1", "OD2"),
comparison = c("Condition", "cis_output", "cis_input"),
WTrows = "f.0.WT")

Matrix with PPI scores for each replicate
head(ppis)

calculateRelativeFC Calculate logFCs relative to WT using edgeR

Description

Calculate logFCs and associated p-values for a given comparison, using either limma or the Nega-
tive Binomial quasi-likelihood framework of edgeR. The observed counts for the WT variants can
be used as offsets in the model.

Usage

calculateRelativeFC(
se,
design,
coef = NULL,
contrast = NULL,
WTrows = NULL,
selAssay = "counts",
pseudocount = 1,
method = "edgeR",
normMethod = ifelse(is.null(WTrows), "TMM", "sum")

)

calculateRelativeFC 5

Arguments

se SummarizedExperiment object.

design Design matrix. The rows of the design matrix must be in the same order as the
columns in se.

coef Coefficient(s) to test with edgeR or limma.

contrast Numeric contrast to test with edgeR or limma.

WTrows Vector of row names that will be used as the reference when calculating logFCs
and statistics. If more than one value is provided, the sum of the corresponding
counts is used to generate offsets. If NULL, offsets will be defined as the effective
library sizes (using TMM normalization factors).

selAssay Assay to select from se for the analysis.

pseudocount Pseudocount to add when calculating log-fold changes.

method Either ’edgeR’ or ’limma’. If set to ’limma’, voom is used to transform the
counts and estimate observation weights before applying limma. In this case,
the results also contain the standard errors of the logFCs.

normMethod Character scalar indicating which normalization method should be used to cal-
culate size factors. Should be either "TMM" or "csaw" when WTrows is NULL, and
"geomean" or "sum" when WTrows is provided.

Value

A data.frame with output from the statistical testing framework (edgeR or limma).

Author(s)

Charlotte Soneson, Michael Stadler

Examples

library(SummarizedExperiment)
se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",

package = "mutscan"))[1:200,]
design <- model.matrix(~ Replicate + Condition,

data = colData(se))

Calculate "absolute" log-fold changes with edgeR
res <- calculateRelativeFC(se, design, coef = "Conditioncis_output",

method = "edgeR")
head(res)
Calculate log-fold changes relative to the WT sequence with edgeR
stopifnot("f.0.WT" %in% rownames(se))
res <- calculateRelativeFC(se, design, coef = "Conditioncis_output",

method = "edgeR", WTrows = "f.0.WT")
head(res)

Calculate "absolute" log-fold changes with limma
res <- calculateRelativeFC(se, design, coef = "Conditioncis_output",

method = "limma")

6 collapseMutantsBySimilarity

head(res)
Calculate log-fold changes relative to the WT sequence with limma
stopifnot("f.0.WT" %in% rownames(se))
res <- calculateRelativeFC(se, design, coef = "Conditioncis_output",

method = "limma", WTrows = "f.0.WT")
head(res)

collapseMutantsBySimilarity

Collapse mutants by similarity

Description

These functions can be used to collapse variants, either by similarity or according to a pre-defined
grouping. The functions collapseMutants and collapseMutantsByAA assume that a grouping
variable is available as a column in rowData(se) (collapseMutantsByAA is a convenience function
for the case when this column is "mutantNameAA", and is provided for backwards compatibility).
The collapseMutantsBySimilarity will generate the grouping variable based on user-provided
thresholds on the sequence similarity (defined by the Hamming distance), and subsequently collapse
based on the derived grouping.

Usage

collapseMutantsBySimilarity(
se,
assayName,
scoreMethod = "rowSum",
sequenceCol = "sequence",
collapseMaxDist = 0,
collapseMinScore = 0,
collapseMinRatio = 0,
verbose = TRUE

)

collapseMutantsByAA(se)

collapseMutants(se, nameCol)

Arguments

se A SummarizedExperiment generated by summarizeExperiment

assayName The name of the assay that will be used to calculate a "score" (typically derived
from the read counts) for each variant.

scoreMethod Character scalar giving the approach used to calculate ranking scores from the
assay defined by assayName. Currently, this can be one of "rowSum" or "rowMean".
All filtering criteria will be applied to these scores.

collapseMutantsBySimilarity 7

sequenceCol Character scalar giving the name of the column in rowData(se) that contains
the nucleotide sequence of the variants.

collapseMaxDist

Numeric scalar defining the tolerance for collapsing similar sequences. If the
value is in [0, 1), it defines the maximal Hamming distance in terms of a frac-
tion of sequence length: (round(collapseMaxDist * nchar(sequence))). A
value greater or equal to 1 is rounded and directly used as the maximum allowed
Hamming distance. Note that sequences can only be collapsed if they are all of
the same length.

collapseMinScore

Numeric scalar, indicating the minimum score for the sequence to be considered
for collapsing with similar sequences.

collapseMinRatio

Numeric scalar. During collapsing of similar sequences, a low-frequency se-
quence will be collapsed with a higher-frequency sequence only if the ratio be-
tween the high-frequency and the low-frequency scores is at least this high. The
default value of 0 indicates that no such check is performed.

verbose Logical, whether to print progress messages.

nameCol A character scalar providing the column of rowData(se) that contains the amino
acid mutant names (that will be the new row names).

Value

A SummarizedExperiment where counts have been aggregated by the mutated amino acid(s).

Author(s)

Charlotte Soneson, Michael Stadler

Examples

library(SummarizedExperiment)
se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",

package = "mutscan"))[1:200,]
The rows of this object correspond to individual codon variants
dim(se)
head(rownames(se))

Collapse by amino acid
sec <- collapseMutantsByAA(se)
The rows of the collapsed object correspond to amino acid variants
dim(sec)
head(rownames(sec))
The mutantName column contains the individual codon variants that were
collapsed
head(rowData(sec))

Collapse similar sequences
sec2 <- collapseMutantsBySimilarity(

8 digestFastqs

se = se, assayName = "counts", scoreMethod = "rowSum",
sequenceCol = "sequence", collapseMaxDist = 2,
collapseMinScore = 0, collapseMinRatio = 0)

dim(sec2)
head(rownames(sec2))
head(rowData(sec2))
collapsed count matrix
assay(sec2, "counts")

digestFastqs Read, filter and digest sequences from fastq file(s).

Description

Read sequences for one or a pair of fastq files and digest them (extract umis, constant and variable
parts, filter, extract mismatch information from constant and count the observed unique variable
parts). Alternatively, primer sequences could be specified, in which case the sequence immediately
following the primer will be considered the variable sequence.

Usage

digestFastqs(
fastqForward,
fastqReverse = NULL,
mergeForwardReverse = FALSE,
minOverlap = 0,
maxOverlap = 0,
minMergedLength = 0,
maxMergedLength = 0,
maxFracMismatchOverlap = 1,
greedyOverlap = TRUE,
revComplForward = FALSE,
revComplReverse = FALSE,
adapterForward = "",
adapterReverse = "",
elementsForward = "",
elementLengthsForward = numeric(0),
elementsReverse = "",
elementLengthsReverse = numeric(0),
primerForward = c(""),
primerReverse = c(""),
wildTypeForward = "",
wildTypeReverse = "",
constantForward = c(""),
constantReverse = c(""),
avePhredMinForward = 20,
avePhredMinReverse = 20,

digestFastqs 9

variableNMaxForward = 0,
variableNMaxReverse = 0,
umiNMax = 0,
nbrMutatedCodonsMaxForward = 1,
nbrMutatedCodonsMaxReverse = 1,
nbrMutatedBasesMaxForward = -1,
nbrMutatedBasesMaxReverse = -1,
forbiddenMutatedCodonsForward = "",
forbiddenMutatedCodonsReverse = "",
useTreeWTmatch = FALSE,
collapseToWTForward = FALSE,
collapseToWTReverse = FALSE,
mutatedPhredMinForward = 0,
mutatedPhredMinReverse = 0,
mutNameDelimiter = ".",
constantMaxDistForward = -1,
constantMaxDistReverse = -1,
umiCollapseMaxDist = 0,
filteredReadsFastqForward = "",
filteredReadsFastqReverse = "",
maxNReads = -1,
verbose = FALSE,
nThreads = 1,
chunkSize = 1e+05,
maxReadLength = 1024

)

Arguments

fastqForward, fastqReverse
Character vectors, paths to gzipped FASTQ files corresponding to forward and
reverse reads, respectively. If more than one forward/reverse sequence file is
given, they need to be provided in the same order. Note that if multiple fastq
files are provided, they are all assumed to correspond to the same sample, and
will effectively be concatenated.

mergeForwardReverse

Logical scalar, whether to fuse the forward and reverse variable sequences.
minOverlap, maxOverlap

Numeric scalar, the minimal and maximal allowed overlap between the forward
and reverse reads when merging. Only used if mergeForwardReverse is TRUE.
If set to 0, only overlaps covering the full length of the shortest of the two reads
will be considered.

minMergedLength, maxMergedLength
Numeric scalar, the minimal and maximal allowed total length of the merged
product (if mergeForwardReverse is TRUE). If set to 0, any length is allowed.

maxFracMismatchOverlap

Numeric scalar, maximal mismatch rate in the overlap. Only used if mergeForwardReverse
is TRUE.

10 digestFastqs

greedyOverlap Logical scalar. If TRUE, the first overlap satisfying minOverlap, maxOverlap,
minMergedLength, maxMergedLength and maxFracMismatchOverlap will be
retained. If FALSE, all valid overlaps will be scored and the one with the highest
score (largest number of matches) will be retained.

revComplForward, revComplReverse
Logical scalar, whether to reverse complement the forward/reverse variable and
constant sequences, respectively.

adapterForward, adapterReverse
Character scalars, the adapter sequence for forward/reverse reads, respectively.
If a forward/reverse read contains the corresponding adapter sequence, the se-
quence pair will be filtered out. If set to NULL, no adapter filtering is performed.
The number of filtered read pairs are reported in the return value.

elementsForward, elementsReverse
Character scalars representing the composition of the forward and reverse reads,
respectively. The strings should consist only of the letters S (skip), C (constant),
U (umi), P (primer), V (variable), and cover the full extent of the read. Most
combinations are allowed (and a given letter can appear multiple times), but
there can be at most one occurrence of P. If a given letter is included multiple
times, the corresponding sequences will be concatenated in the output.

elementLengthsForward, elementLengthsReverse
Numeric vectors containing the lengths of each read component from elementsForward/elementsReverse,
respectively. If the length of one element is set to -1, it will be inferred from the
other lengths (as the remainder of the read). At most one number (or one num-
ber on each side of the primer P) can be set to -1. The indicated length of the
primer is not used (instead it’s inferred from the provided primer sequence) and
can also be set to -1.

primerForward, primerReverse
Character vectors, representing the primer sequence(s) for forward/reverse reads,
respectively. Only read pairs that contain perfect matches to both the forward
and reverse primers (if given) will be retained. Multiple primers can be specified
- they will be considered in order and the first match will be used.

wildTypeForward, wildTypeReverse
Character scalars or named character vectors, the wild type sequence for the
forward and reverse variable region. If given as a single string, the reference
sequence will be named ’f’ (for forward) or ’r’ (for reverse).

constantForward, constantReverse
Character vectors giving, the expected constant forward and reverse sequences.
If more than one sequence is provided, they must all have the same length.

avePhredMinForward, avePhredMinReverse
Numeric scalar, the minimum average Phred score in the variable region for a
read to be retained. If a read pair contains both forward and reverse variable
regions, the minimum average Phred score has to be achieved in both for a read
pair to be retained.

variableNMaxForward, variableNMaxReverse
Numeric scalar, the maximum number of Ns allowed in the variable region for
a read to be retained.

digestFastqs 11

umiNMax Numeric scalar, the maximum number of Ns allowed in the UMI for a read to
be retained.

nbrMutatedCodonsMaxForward, nbrMutatedCodonsMaxReverse
Numeric scalar, the maximum number of mutated codons that are allowed.
Note that for the forward and reverse sequence, respectively, exactly one of
nbrMutatedCodonsMax and nbrMutatedBasesMax must be -1, and the other
must be a non-negative number. The one that is not -1 will be used to filter and
name the identified mutants.

nbrMutatedBasesMaxForward, nbrMutatedBasesMaxReverse
Numeric scalar, the maximum number of mutated bases that are allowed. Note
that for the forward and reverse sequence, respectively, exactly one of nbrMutatedCodonsMax
and nbrMutatedBasesMax must be -1, and the other must be a non-negative
number. The one that is not -1 will be used to filter and name the identified
mutants.

forbiddenMutatedCodonsForward, forbiddenMutatedCodonsReverse
Character vector of codons (can contain ambiguous IUPAC characters, see IUPAC_CODE_MAP).
If a read pair contains a mutated codon matching this pattern, it will be filtered
out.

useTreeWTmatch Logical scalar. Should a tree-based matching to wild type sequences be used if
possible? If the number of allowed mismatches is small, and the number of wild
type sequences is large, this is typically faster.

collapseToWTForward, collapseToWTReverse
Logical scalar, indicating whether to just represent the observed variable se-
quence by the closest wildtype sequence rather than retaining the information
about the mutations.

mutatedPhredMinForward, mutatedPhredMinReverse
Numeric scalar, the minimum Phred score of a mutated base for the read to be
retained. If any mutated base has a Phred score lower than mutatedPhredMin,
the read (pair) will be discarded.

mutNameDelimiter

Character scalar, the delimiter used in the naming of mutants. Generally, mu-
tants will be named as XX{.}YY{.}NNN, where XX is the closest provided
reference sequence, YY is the mutated base or codon number (depending on
whether nbrMutatedBases* or nbrMutatedCodons* is specified), and NNN is
the mutated base or codon. Here, {.} is the provided mutNameDelimiter. The
delimiter must be a single character (not "_"), and can not appear in any of the
provided reference sequence names.

constantMaxDistForward, constantMaxDistReverse
Numeric scalars, the maximum allowed Hamming distance between the ex-
tracted and expected constant sequence. If multiple constant sequences are pro-
vided, the most similar one is used. Reads with a larger distance to the expected
constant sequence are discarded. If set to -1, no filtering is done.

umiCollapseMaxDist

Numeric scalar defining the tolerances for collapsing similar UMI sequences. If
the value is in [0, 1), it defines the maximal Hamming distance in terms of a frac-
tion of sequence length: (round(umiCollapseMaxDist * nchar(umiSeq))). A
value greater or equal to 1 is rounded and directly used as the maximum allowed
Hamming distance.

12 digestFastqs

filteredReadsFastqForward, filteredReadsFastqReverse
Character scalars, the names of a (pair of) FASTQ file(s) where filtered-out reads
will be written. The name(s) should end in .gz (the output will always be com-
pressed). If empty, filtered reads will not be written to a file.

maxNReads Integer scalar, the maximum number of reads to process. The first maxNReads
read (pairs) in the FASTQ file(s) will be used. If set to -1, all reads in the FASTQ
file(s) will be processed.

verbose Logical scalar, whether to print out progress messages.

nThreads Numeric scalar, the number of threads to use for parallel processing.

chunkSize Numeric scalar, the number of read (pairs) to keep in memory for parallel pro-
cessing. Reduce from the default value if you run out of memory.

maxReadLength Numeric scalar, the maximum allowed read length. Longer read lengths lead to
higher memory allocation, and may require the chunkSize to be decreased.

Details

The processing of a read pair goes as follows:

1. Search for perfect matches to forward/reverse adapter sequences, filter out the read pair if a
match is found in either the forward or reverse read.

2. If primer sequences are provided, search for perfect matches, and filter out the read pair if not
all provided primer sequences can be found.

3. Extract the UMI, constant and variable sequence from forward and reverse reads, based on the
definition of the respective read composition.

4. If requested, collapse forward and reverse variable regions by retaining, for each position, the
base with the highest reported base quality.

5. Filter out the read (pair) if the average quality in the variable region is below avePhredMinForward/avePhredMinReverse,
in either the forward or reverse read (or the merged read).

6. Filter out the read (pair) if the number of Ns in the variable region exceeds variableNMaxForward/variableNMaxReverse.

7. Filter out the read (pair) if the number of Ns in the combined forward and reverse UMI se-
quence exceeds umiNMax

8. If one or more wild type sequences (for the variable region) are provided, find the mismatches
between the (forward/reverse) variable region and the provided wild type sequence (if more
than one wild type sequence is provided, first find the one that is closest to the read).

9. Filter out the read (pair) if any mutated base has a quality below mutatedPhredMinForward/mutatedPhredMinReverse.

10. Filter out the read (pair) if the number of mutated codons exceeds nbrMutatedCodonsMaxForward/nbrMutatedCodonsMaxReverse.

11. Filter out the read (pair) if any of the mutated codons match any of the codons encoded by
forbiddenMutatedCodonsForward/forbiddenMutatedCodonsReverse.

12. Assign a ’mutation name’ to the read (pair). This name is a combination of parts of the
form XX{.}YY{.}NNN, where XX is the name of the most similar reference sequence, YY
is the mutated codon number, and NNN is the mutated codon. {.} is a delimiter, specified
via mutNameDelimiter. If no wildtype sequences are provided, the variable sequence will be
used as the mutation name’.

Based on the retained reads following this filtering process, count the number of reads, and the
number of unique UMIs, for each variable sequence (or pair of variable sequences).

digestFastqs 13

Value

A list with four entries:

summaryTable A data.frame that contains, for each observed mutation combination, the cor-
responding variable region sequences (or pair of sequences), the number of observed such
sequences, and the number of unique UMIs observed for the sequence. It also has addi-
tional columns: ’maxNbrReads’ contains the number of reads for the most frequent observed
sequence represented by the feature (only relevant if similar variable regions are collapsed).
’nbrMutBases’, ’nbrMutCodons’ and ’nbrMutAAs’ give the number of mutated bases, codons
or amino acids in each variant. Alternative variant names based on base, codon or amino
acid sequence are provided in columns mutantNameBase’, ’mutantNameCodon’, ’mutant-
NameAA’. In addition, mutantNameBaseHGVS’ and ’mutantNameAAHGVS’ give base- and
amino acid-based names following the HGVS nomenclature (https://varnomen.hgvs.org/). Please
note that the provided reference sequence names are used for the HGVS sequence identifiers.
It is up to the user to use appropriately named reference sequences in order to obtain valid
HGVS variant names.

filterSummary A data.frame that contains the number of input reads, the number of reads filtered
out in the processing, and the number of retained reads. The filters are named according to
the convention "fxx_filter", where "xx" indicates the order in which the filters were applied,
and "filter" indicates the type of filter. Note that filters are applied successively, and the reads
filtered out in one step are not considered for successive filtering steps.

errorStatistics A data.frame that contains, for each Phred quality score between 0 and 99, the
number of bases in the extracted constant sequences with that quality score that match/mismatch
with the provided reference constant sequence.

parameters A list with all parameter settings that were used in the processing. Also contains the
version of the package and the time of processing.

Examples

See the vignette for complete worked-out examples for different types of
data sets

--
Process a single-end data set, assume that the full read represents
the variable region
out <- digestFastqs(

fastqForward = system.file("extdata", "cisInput_1.fastq.gz",
package = "mutscan"),

elementsForward = "V", elementLengthsForward = -1
)
Table with read counts and mutant information
head(out$summaryTable)
Filter summary
out$filterSummary

--
Process a single-end data set, specify the read as a combination of
UMI, constant region and variable region (skip the first base)
out <- digestFastqs(

14 digestFastqs

fastqForward = system.file("extdata", "cisInput_1.fastq.gz",
package = "mutscan"),

elementsForward = "SUCV", elementLengthsForward = c(1, 10, 18, 96),
constantForward = "AACCGGAGGAGGGAGCTG"

)
Table with read counts and mutant information
head(out$summaryTable)
Filter summary
out$filterSummary
Error statistics
out$errorStatistics

--
Process a single-end data set, specify the read as a combination of
UMI, constant region and variable region (skip the first base), provide
the wild type sequence to compare the variable region to and limit the
number of allowed mutated codons to 1
out <- digestFastqs(

fastqForward = system.file("extdata", "cisInput_1.fastq.gz",
package = "mutscan"),

elementsForward = "SUCV", elementLengthsForward = c(1, 10, 18, 96),
constantForward = "AACCGGAGGAGGGAGCTG",
wildTypeForward = c(FOS = paste0(

"ACTGATACACTCCAAGCGGAGACAGACCAACTAGAAGATGAGAAGTC",
"TGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGGAGAAGGAAAAACTA")),

nbrMutatedCodonsMaxForward = 1
)
Table with read counts and mutant information
head(out$summaryTable)
Filter summary
out$filterSummary
Error statistics
out$errorStatistics

--
Process a paired-end data set where both the forward and reverse reads
contain the same variable region and thus should be merged to generate
the final variable sequence, specify the reads as a combination of
UMI, constant region and variable region (skip the first and/or last
base), provide the wild type sequence to compare the variable region to
and limit the number of allowed mutated codons to 1
out <- digestFastqs(

fastqForward = system.file("extdata", "cisInput_1.fastq.gz",
package = "mutscan"),

fastqReverse = system.file("extdata", "cisInput_2.fastq.gz",
package = "mutscan"),

mergeForwardReverse = TRUE,
revComplForward = FALSE, revComplReverse = TRUE,
elementsForward = "SUCV", elementLengthsForward = c(1, 10, 18, 96),
elementsReverse = "SUCVS", elementLengthsReverse = c(1, 7, 17, 96, -1),
constantForward = "AACCGGAGGAGGGAGCTG",
constantReverse = "GAGTTCATCCTGGCAGC",
wildTypeForward = c(FOS = paste0(

generateQCReport 15

"ACTGATACACTCCAAGCGGAGACAGACCAACTAGAAGATGAGAAGTC",
"TGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGGAGAAGGAAAAACTA")),

nbrMutatedCodonsMaxForward = 1
)
Table with read counts and mutant information
head(out$summaryTable)
Filter summary
out$filterSummary
Error statistics
out$errorStatistics

--
Process a paired-end data set where the forward and reverse reads
contain variable regions corresponding to different proteins, and thus
should not be merged, specify the reads as a combination of
UMI, constant region and variable region (skip the first base), provide
the wild type sequence to compare the variable region to and limit the
number of allowed mutated codons to 1
out <- digestFastqs(

fastqForward = system.file("extdata", "transInput_1.fastq.gz",
package = "mutscan"),

fastqReverse = system.file("extdata", "transInput_2.fastq.gz",
package = "mutscan"),

mergeForwardReverse = FALSE,
elementsForward = "SUCV", elementLengthsForward = c(1, 10, 18, 96),
elementsReverse = "SUCV", elementLengthsReverse = c(1, 8, 20, 96),
constantForward = "AACCGGAGGAGGGAGCTG",
constantReverse = "GAAAAAGGAAGCTGGAGAGA",
wildTypeForward = c(FOS = paste0(

"ACTGATACACTCCAAGCGGAGACAGACCAACTAGAAGATGAGAAGTC",
"TGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGGAGAAGGAAAAACTA")),

wildTypeReverse = c(JUN = paste0(
"ATCGCCCGGCTGGAGGAAAAAGTGAAAACCTTGAAAGCTCAGAACTC",
"GGAGCTGGCGTCCACGGCCAACATGCTCAGGGAACAGGTGGCACAGCTT")),

nbrMutatedCodonsMaxForward = 1,
nbrMutatedCodonsMaxReverse = 1

)
Table with read counts and mutant information
head(out$summaryTable)
Filter summary
out$filterSummary
Error statistics
out$errorStatistics

generateQCReport Generate QC report

Description

Generate QC report

16 generateQCReport

Usage

generateQCReport(
se,
outFile,
reportTitle = "mutscan QC report",
forceOverwrite = FALSE,
...

)

Arguments

se A SummarizedExperiment object, typically generated with summarizeExperiment().

outFile Character string providing the name of the output file. Should have the extension
.html.

reportTitle Character string specifying the title of the QC report.

forceOverwrite Logical scalar, indicating whether an existing file with the same name as outFile
should be overwritten.

... Additional parameters to be forwarded to render, for example quiet = TRUE.

Value

Invisibly, the path to the generated html file.

Author(s)

Charlotte Soneson

See Also

render used to render the html output file.

Examples

Load SummarizedExperiment object
se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",

package = "mutscan"))
Define output file
outfile <- tempfile(fileext = ".html")

Generate QC report
generateQCReport(se, outfile)

groupSimilarSequences 17

groupSimilarSequences Create a conversion table for collapsing similar sequences

Description

Create a conversion table for collapsing similar sequences

Usage

groupSimilarSequences(
seqs,
scores,
collapseMaxDist = 0,
collapseMinScore = 0,
collapseMinRatio = 0,
verbose = FALSE

)

Arguments

seqs Character vector with nucleotide sequences (or pairs of sequences concatenated
with "_") to be collapsed. The sequences must all be of the same length.

scores Numeric vector of "scores" for the sequences. Typically the total read/UMI
count. A higher score will be preferred when deciding which sequence to use as
the representative for a group of collapsed sequences.

collapseMaxDist

Numeric scalar defining the tolerance for collapsing similar sequences. If the
value is in [0, 1), it defines the maximal Hamming distance in terms of a frac-
tion of sequence length: (round(collapseMaxDist * nchar(sequence))). A
value greater or equal to 1 is rounded and directly used as the maximum allowed
Hamming distance. Note that sequences can only be collapsed if they are all of
the same length. The default value is 0.

collapseMinScore

Numeric scalar, indicating the minimum score required for a sequence to be
considered as a representative for a group of similar sequences (i.e., to allow
other sequences to be collapsed into it). The default value is 0.

collapseMinRatio

Numeric scalar. During collapsing of similar sequences, a low-frequency se-
quence will be collapsed with a higher-frequency sequence only if the ratio be-
tween the high-frequency and the low-frequency scores is at least this high. A
value of 0 indicates that no such check is performed.

verbose Logical scalar, whether to print progress messages.

Value

A data.frame with two columns, containing the input sequences and the representatives for the
groups resulting from grouping similar sequences, respectively.

18 linkMultipleVariants

Author(s)

Michael Stadler, Charlotte Soneson

Examples

seqs <- c("AACGTAGCA", "ACCGTAGCA", "AACGGAGCA", "ATCGGAGCA", "TGAGGCATA")
scores <- c(5, 1, 3, 1, 8)
groupSimilarSequences(seqs = seqs, scores = scores,

collapseMaxDist = 1, collapseMinScore = 0,
collapseMinRatio = 0, verbose = FALSE)

linkMultipleVariants Process an experiment with multiple variable sequences

Description

This function enables the processing of data sets with multiple variable sequences, which should
potentially be handled in different ways. For example, a barcode association experiment with two
variable sequences (the barcode and the biological variant) that need to be processed differently, e.g.
in terms of matching to wildtype sequences or collapsing of similar sequences. In contrast, while
digestFastqs allow the specification of multiple variable sequences (within each of the forward
and reverse reads), they will be concatenated and processed as a single unit.

Usage

linkMultipleVariants(combinedDigestParams = list(), ...)

Arguments

combinedDigestParams

A named list of arguments to digestFastqs for the combined ("naive") run.

... Additional arguments providing arguments to digestFastqs for the separate
runs (processing each variable sequence in turn). Each argument must be a
named list of arguments to digestFastqs. In addition, arguments collapseMaxDist,
collapseMinScore and collapseMinRatio can be specified, and will be passed
on to collapseMutantsBySimilarity.

Details

linkMultipleVariants will process the input in the following way:

• First, run digestFastqs with the parameters provided in combinedDigestParams. Typically,
this will be a "naive" counting run, where the frequencies of all observed variants are tabulated.
The variable sequences within the forward and reverse reads, respectively, will be processed
as a single sequence.

linkMultipleVariants 19

• Next, run digestFastqs with each of the additional parameter sets provided (...). Each of
these should correspond to a single variable sequence from the combined run (i.e., if there
are two Vs in the element specifications in the combined run, there should be two additional
parameter sets provided, each corresponding to the processing of one variable sequence part).
It is assumed that the order of the additional arguments correspond to the order of the variable
sequences in the combined run, in such a way that if the variable sequences extracted in each
of the separate runs are concatenated in the order that the parameter sets are provided to
linkMultipleVariants, they will form the variable sequence extracted in the combined run.

• The result of each of the separate runs is a ’conversion table’, containing the final set of
identified sequence variants as well as all individual sequences corresponding to each of them.
This is then combined with the count table from the combined, "naive" run in order to create
an aggregated count table. More precisely, each sequence in the combined run is split into the
constituent variable sequences, and each variable sequence is then matched to the output from
the right separate run, from which the final feature ID (mutant name, or collapsed sequence)
will be extracted and used to replace the original sequence in the combined count table. Once
all the matches are done, rows with NAs (where no match could be found in the separate
run) are removed and the counts are aggregated across all identical combinations of variable
sequences.

In order to define the elementsForward and elementsReverse arguments for the separate runs, a
strategy that often works is to simply copy the arguments from the combined run, and successively
replace all but one of the ’V’s by ’S’. This will effectively process one variable sequence at the time,
while keeping all other elements of the reads consistent (since this can affect e.g. filtering criteria).
Note that to process individual variable sequences in the reverse read, you also need to swap the
’forward’ and ’reverse’ specifications (since digestFastqs requires a forward read).

Value

A list with the following elements:

• countAggregated - a tibble with columns corresponding to each of the variable sequences,
and a column with the total observed read count for the combination.

• convSeparate - a list of conversion tables from the respective separate runs.

• outCombined - the digestFastqs output for the combined run.

Author(s)

Charlotte Soneson, Michael Stadler

Examples

fqFile <- system.file("extdata", "cisInput_1.fastq.gz",
package = "mutscan")

out <- linkMultipleVariants(
combinedDigestParams = list(fastqForward = fqFile,

elementsForward = "SVCV",
elementLengthsForward = c(1, 10, 18, 96)),

the first variable sequence is the UMI
umi = list(fastqForward = fqFile, elementsForward = "SVCS",

elementLengthsForward = c(1, 10, 18, 96)),

20 plotDistributions

the second variable sequence is the amplicon variant
var = list(fastqForward = fqFile, elementsForward = "SSCV",

elementLengthsForward = c(1, 10, 18, 96),
collapseMaxDist = 3, collapseMinScore = 1)

)
conversion tables
lapply(out$convSeparate, head)
aggregated count table
head(out$countAggregated)

plotDistributions Plot distribution of observed values

Description

Plot distribution of observed values

Usage

plotDistributions(
se,
selAssay = "counts",
groupBy = NULL,
plotType = "density",
facet = FALSE,
pseudocount = 0

)

Arguments

se A SummarizedExperiment object, typically generated by summarizeExperiment().

selAssay Character scalar specifying the assay in se to use for the plotting.

groupBy Character scalar specifying a column from colData(se) to use for coloring or
stratifying the plots.

plotType Character scalar specifying the type of plot to construct. Either 'density',
'histogram' or 'knee'.

facet Logical scalar, indicating whether or not to facet the plot by the values specified
in the groupBy column.

pseudocount Numeric scalar, representing the number to add to the observed values in the
selAssay assay before plotting.

Value

A ggplot object.

plotFiltering 21

Author(s)

Charlotte Soneson

Examples

se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",
package = "mutscan"))[1:200,]

plotDistributions(se)

plotFiltering Visualize the filtering procedure

Description

Display the number (or fraction) of reads remaining after each step of the internal mutscan filtering.

Usage

plotFiltering(
se,
valueType = "reads",
onlyActiveFilters = TRUE,
displayNumbers = TRUE,
numberSize = 4,
plotType = "remaining",
facetBy = "sample"

)

Arguments

se A SummarizedExperiment object, e.g. from summarizeExperiment.

valueType Either "reads" or "fractions", indicating whether to plot the number of reads, or
the fraction of the total number of reads, that are retained after/filtered out in
each filtering step.

onlyActiveFilters

Logical scalar, whether to only include the active filters (i.e., where any read
was filtered out in any of the samples). Defaults to TRUE.

displayNumbers Logical scalar, indicating whether to display the number (or fraction) of reads
retained at every filtering step.

numberSize Numeric scalar, indicating the size of the displayed numbers (if displayNumbers
is TRUE).

plotType Character scalar, indicating what to show in the plot. Either "remaining" or
"filtered".

facetBy Character scalar, indicating the variable by which the plots should be facetted.
Either "sample" or "step".

22 plotMeanDiff

Details

The function assumes that the number of reads filtered out in each step are provided as columns
of colData(se), with column names of the form f[0-9]_filteringreason, and that all filtering
columns occur between the columns named nbrTotal and nbrRetained.

Value

A ggplot object.

Author(s)

Charlotte Soneson

Examples

se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",
package = "mutscan"))[1:200,]

plotFiltering(se)

plotMeanDiff Construct an MA (mean-difference) plot

Description

Construct an MA (mean-difference) plot

Usage

plotMeanDiff(
res,
meanCol = NULL,
logFCCol = NULL,
pvalCol = NULL,
padjCol = NULL,
padjThreshold = 0.05,
pointSize = "small",
interactivePlot = FALSE,
nTopToLabel = 0

)

Arguments

res data.frame (typically output from calculateRelativeFC()) with columns
corresponding to the average abundance (logCPM or AveExpr), log-fold change
(logFC) and significance (FDR or adj.P.Val).

plotPairs 23

meanCol, logFCCol, pvalCol, padjCol
Character scalars indicating the columns from res that will be used to represent
the mean value (x-axis), logFC (y-axis), nominal p-value (used to find the top
features to label) and adjusted p-value (used for coloring). If NULL (default), pre-
specified values will be used depending on the available columns ("logCPM" or
"AveExpr", "logFC", "PValue" or "P.Value", and "FDR" or "adj.P.Val",
respectively).

padjThreshold Numeric scalar indicating the adjusted p-value threshold to use for coloring the
points. All features with adjusted p-value below the treshold will be shown in
red.

pointSize Either "small" or "large", indicating which of the two available plot styles
that will be used.

interactivePlot

Logical scalar, indicating whether an interactive plot should be returned, in
which one can hover over the individual points and obtain further information.

nTopToLabel Numeric scalar, indicating the number of points that should be labeled in the
plot. The points will be ranked by the pvalCol column, and the top nTopToLabel
values will be labeled by the corresponding row names. Only used if interactivePlot
is FALSE.

Value

If interactivePlot is TRUE, a plotly object. If interactivePlot is FALSE, a ggplot2 object.

Author(s)

Charlotte Soneson

Examples

library(SummarizedExperiment)
se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",

package = "mutscan"))[1:200,]
design <- model.matrix(~ Replicate + Condition,

data = colData(se))
res <- calculateRelativeFC(se, design, coef = "Conditioncis_output")
plotMeanDiff(res, pointSize = "large", nTopToLabel = 3)

plotPairs Make pairs plot of selected assay from a SummarizedExperiment ob-
ject

Description

Construct a pairs plot of all columns of a given assay. The lower-triangular panels display the scatter
plots, the upper-triangular ones print out the (Pearson or Spearman) correlations, and the diagonal
panels show histograms of the respective columns.

24 plotPairs

Usage

plotPairs(
se,
selAssay = "counts",
doLog = TRUE,
pseudocount = 1,
corMethod = "pearson",
histBreaks = 40,
pointsType = "points",
corSizeMult = 5,
corSizeAdd = 2,
pointSize = 0.1,
pointAlpha = 0.3,
colorByCorrelation = TRUE,
corrColorRange = NULL,
addIdentityLine = FALSE

)

Arguments

se A SummarizedExperiment object, e.g. the output of summarizeExperiment

selAssay Character scalar, the assay to use as the basis for the pairs plot.

doLog Logical scalar, whether or not to log-transform the values before plotting.

pseudocount Numeric scalar, the pseudocount to add to the values before log-transforming (if
doLog is TRUE).

corMethod Either "pearson" or "spearman", the type of correlation to calculate.

histBreaks Numeric scalar, the number of breaks in the histograms to put in the diagonal
panels.

pointsType Either "points", "smoothscatter", "scattermore" or "scattermost" (the latter two
require the "scattermore" package to be installed), determining the type of plots
that will be made.

corSizeMult, corSizeAdd
Numeric scalars determining how the absolute correlation value is transformed
into a font size. The transformation is corSizeMult * abs(corr) + corSizeAdd.

pointSize, pointAlpha
Numeric scalars determining the size and opacity of points in the plot.

colorByCorrelation

Logical scalar, indicating whether the correlation panels should be colored ac-
cording to the correlation value.

corrColorRange Numeric vector of length 2, providing the lower and upper limits of the color
scale when coloring by correlation. Both values should be positive; the same
range is used for negative correlations. If NULL (the default), the range is inferred
from the data.

addIdentityLine

Logical scalar, indicating whether the identity line should be added (only used
if pointsType = "points").

plotTotals 25

Value

A ggplot object.

Author(s)

Charlotte Soneson

Examples

se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",
package = "mutscan"))[1:200,]

plotPairs(se)

plotTotals Plot the column totals of a selected assay

Description

Plot the column totals of a selected assay

Usage

plotTotals(se, selAssay = "counts", groupBy = NULL)

Arguments

se A SummarizedExperiment object, typically generated by summarizeExperiment().

selAssay Character scalar specifying the assay in se to use for the plotting.

groupBy Character scalar indicating a column in rowData(se) to group the features by
before calculating the column sums.

Value

A ggplot object.

Author(s)

Charlotte Soneson

Examples

se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",
package = "mutscan"))[1:200,]

plotTotals(se)

26 plotVolcano

plotVolcano Construct a volcano plot

Description

Construct a volcano plot

Usage

plotVolcano(
res,
logFCCol = NULL,
pvalCol = NULL,
padjCol = NULL,
padjThreshold = 0.05,
pointSize = "small",
interactivePlot = FALSE,
nTopToLabel = 0

)

Arguments

res data.frame (typically output from calculateRelativeFC()) with columns
corresponding to the log-fold change (logFC), p-value (PValue or P.Value) and
significance (FDR or adj.P.Val).

logFCCol, pvalCol, padjCol
Character scalars indicating the columns from res that will be used to represent
the logFC (x-axis), p-value (y-axis) and adjusted p-value (used for coloring).
If NULL (default), pre-specified values will be used depending on the available
columns ("logFC", "PValue" or "P.Value", and "FDR" or "adj.P.Val", re-
spectively).

padjThreshold Numeric scalar indicating the adjusted p-value threshold to use for coloring the
points. All features with adjusted p-value below the treshold will be shown in
red.

pointSize Either "small" or "large", indicating which of the two available plot styles
that will be used.

interactivePlot

Logical scalar, indicating whether an interactive plot should be returned, in
which one can hover over the individual points and obtain further information.

nTopToLabel Numeric scalar, indicating the number of points that should be labeled in the
plot. The points will be ranked by the pvalCol column, and the top nTopToLabel
values will be labeled by the corresponding row names. Only used if interactivePlot
is FALSE.

Value

If interactivePlot is TRUE, a plotly object. If interactivePlot is FALSE, a ggplot2 object.

relabelMutPositions 27

Author(s)

Charlotte Soneson

Examples

library(SummarizedExperiment)
se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",

package = "mutscan"))[1:200,]
design <- model.matrix(~ Replicate + Condition,

data = colData(se))
res <- calculateRelativeFC(se, design, coef = "Conditioncis_output")
plotVolcano(res, pointSize = "large", nTopToLabel = 3)

relabelMutPositions Relabel the positions of mutations in the designated ID

Description

Relabel the positions of mutations in the designated ID

Usage

relabelMutPositions(se, conversionTable, mutNameDelimiter = ".")

Arguments

se SummarizedExperiment object, with row names of the form XX{.}AA{.}NNN,
where XX is the name of the reference sequence, AA is the position of the mu-
tated codon, and NNN is the mutated codon or amino acid. {.} is the delimiter,
to be specified in the mutNameDelimiter argument. For rows corresponding to
sequences with multiple mutated codons, the row names contain multiple names
of the form above in a single string, separated by "_".

conversionTable

data.frame with at least three columns:

• seqname The reference sequence name (should match XX in the mutation
name)

• position The codon position (should match AA in the mutation name)
• name The new name for the codon (will replace AA in the mutation name,

if the reference sequence matches seqname)
mutNameDelimiter

The delimiter used in the mutation name ({.} above).

Value

A SummarizedExperiment object with modified row names.

28 summarizeExperiment

Author(s)

Charlotte Soneson

Examples

x <- readRDS(system.file("extdata", "GSE102901_cis_se.rds",
package = "mutscan"))

conversionTable <- data.frame(seqname = "f", position = 0:32)
conversionTable$name = paste0((conversionTable$position - 1) %/% 7 + 1,

c("", rep(letters[1:7], 6))[1:33])
out <- relabelMutPositions(x, conversionTable)

summarizeExperiment Summarize and collapse multiple mutational scanning experiments

Description

Combine multiple sequence lists (as returned by digestFastqs into a SummarizedExperiment,
with observed variable sequences (sequence pairs) in rows and samples in columns.

Usage

summarizeExperiment(x, coldata, countType = "umis")

Arguments

x A named list of objects returned by digestFastqs. Names are used to link the
objects to the metadata provided in coldata.

coldata A data.frame with at least one column "Name", which will be used to link to
objects in x. A potentially subset and reordered version of coldata is stored in
the colData of the returned SummarizedExperiment.

countType Either "reads" or "umis". If "reads", the "count" assay of the returned object
will contain the observed number of reads for each sequence (pair). If "umis",
the "count" assay will contain the number of unique UMIs observed for each
sequence (pair).

Value

A SummarizedExperiment x with

assays(x)$counts containing the observed number of sequences or sequence pairs (if countType
= "reads"), or the observed number of unique UMIs for each sequence or sequence pair (if
countType = "umis").

rowData(x) containing the unique sequences or sequence pairs.

colData(x) containing the metadata provided by coldata.

summarizeExperiment 29

Author(s)

Michael Stadler, Charlotte Soneson

Examples

Input sample
inp <- digestFastqs(

fastqForward = system.file("extdata", "cisInput_1.fastq.gz",
package = "mutscan"),

elementsForward = "SUCV", elementLengthsForward = c(1, 10, 18, 96),
constantForward = "AACCGGAGGAGGGAGCTG",
wildTypeForward = c(FOS = paste0(

"ACTGATACACTCCAAGCGGAGACAGACCAACTAGAAGATGAGAAGTC",
"TGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGGAGAAGGAAAAACTA")),

nbrMutatedCodonsMaxForward = 1
)
Output sample
outp <- digestFastqs(

fastqForward = system.file("extdata", "cisOutput_1.fastq.gz",
package = "mutscan"),

elementsForward = "SUCV", elementLengthsForward = c(1, 10, 18, 96),
constantForward = "AACCGGAGGAGGGAGCTG",
wildTypeForward = c(FOS = paste0(

"ACTGATACACTCCAAGCGGAGACAGACCAACTAGAAGATGAGAAGTC",
"TGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGGAGAAGGAAAAACTA")),

nbrMutatedCodonsMaxForward = 1
)
Combine
se <- summarizeExperiment(

x = list(r1inp = inp, r1outp = outp),
coldata = data.frame(Name = c("r1inp", "r1outp"),

Condition = c("input", "output"),
Replicate = c("rep1", "rep1")),

countType = "umis"
)
se

Index

calcNearestStringDist, 2
calculateFitnessScore, 3
calculateRelativeFC, 4
collapseMutants

(collapseMutantsBySimilarity),
6

collapseMutantsByAA
(collapseMutantsBySimilarity),
6

collapseMutantsBySimilarity, 6

digestFastqs, 8, 28

generateQCReport, 15
groupSimilarSequences, 17

IUPAC_CODE_MAP, 11

linkMultipleVariants, 18

plotDistributions, 20
plotFiltering, 21
plotMeanDiff, 22
plotPairs, 23
plotTotals, 25
plotVolcano, 26

relabelMutPositions, 27
render, 16

SummarizedExperiment, 6, 7, 28
summarizeExperiment, 3, 6, 28

30

	calcNearestStringDist
	calculateFitnessScore
	calculateRelativeFC
	collapseMutantsBySimilarity
	digestFastqs
	generateQCReport
	groupSimilarSequences
	linkMultipleVariants
	plotDistributions
	plotFiltering
	plotMeanDiff
	plotPairs
	plotTotals
	plotVolcano
	relabelMutPositions
	summarizeExperiment
	Index

