Package ‘multtest’

February 2, 2026

Title Resampling-based multiple hypothesis testing
Version 2.67.0

Author Katherine S. Pollard, Houston N. Gilbert, Yongchao Ge, Sandra
Taylor, Sandrine Dudoit

Description Non-parametric bootstrap and permutation resampling-based
multiple testing procedures (including empirical Bayes methods)
for controlling the family-wise error rate (FWER), generalized
family-wise error rate (gFWER), tail probability of the
proportion of false positives (TPPFP), and false discovery rate
(FDR). Several choices of bootstrap-based null distribution
are implemented (centered, centered and scaled,
quantile-transformed). Single-step and step-wise methods are
available. Tests based on a variety of t- and F-statistics
(including t-statistics based on regression parameters from
linear and survival models as well as those based on
correlation parameters) are included. When probing hypotheses
with t-statistics, users may also select a potentially faster
null distribution which is multivariate normal with mean zero
and variance covariance matrix derived from the vector
influence function. Results are reported in terms of adjusted
p-values, confidence regions and test statistic cutoffs. The
procedures are directly applicable to identifying
differentially expressed genes in DNA microarray experiments.

Maintainer Katherine S. Pollard <katherine.pollard@gladstone.ucsf.edu>
Depends R (>=2.10), methods, BiocGenerics, Biobase

Imports survival, MASS, stats4

Suggests snow

License LGPL

LazyLoad yes

biocViews Microarray, DifferentialExpression, MultipleComparison

git_url https://git.bioconductor.org/packages/multtest

git_branch devel

2 boot.null

git_last_commit 877b1b4
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Contents
boot.null e 2
corr.null . .. oL L e e e 7
EBMTP e 11
EBMTP-class e 16
fwer2gfwer e e e 22
getindexX e 24
golub . . . L 25
Hsets . . . o o e 26
MEANX . . . e e e e e e e e e 29
mtmaxT e 33
mt.ploto e 36
mtrawp2adjp e 38
MEIEJECT . . o v v v v e e e e e e e e e e e 41
mt.sample.teststato L. e e e e e e e e 42
MEEESISTAt L e e e e e e e 44
MTP . . 46
MTP-Class o e e e e e e e 55
MTP-methods e 60
multtest-internal Lo 62
ss.maxT e e e e 63
WappLy . . . e e e 66

Index 68

boot.null Non-parametric bootstrap resampling function in package ‘multtest’
Description

Given a data set and a closure, which consists of a function for computing the test statistic and its en-
closing environment, this function produces a non-parametric bootstrap estimated test statistics null
distribution. The observations in the data are resampled using the ordinary non-parametric boot-
strap is used to produce an estimated test statistics distribution. This distribution is then transformed
to produce the null distribution. Options for transforming the nonparametric bootstrap distribution
include center.only, center.scale, and quant. trans. Details are given below. These functions
are called by MTP and EBMTP.

boot.null 3

Usage
boot.null(X, label, stat.closure, W=NULL, B = 1000, test, nulldist, thetad® =0, taud = 1, marg.null = Nl
ncp = @, perm.mat, alternative = "two.sided”, seed = NULL,
cluster = 1, dispatch = 0.05, keep.nulldist, keep.rawdist)
boot.resample(X, label, p, n, stat.closure, W, B, test)
center.only(muboot, theta®, alternative)

center.scale(muboot, theta®, tau@, alternative)

quant.trans(muboot, marg.null, marg.par, ncp, alternative, perm.mat)

Arguments
X A matrix, data.frame or ExpressionSet containing the raw data. In the case of
an ExpressionSet, exprs(X) is the data of interest and pData(X) may contain
outcomes and covariates of interest. For boot.resample X must be a matrix.
For currently implemented tests, one hypothesis is tested for each row of the
data.
label A vector containing the class labels for t- and F-tests.

stat.closure A closure for test statistic computation, like those produced internally by the
MTP function. The closure consists of a function for computing the test statistic
and its enclosing environment, with bindings for relevant additional arguments
(such as null values, outcomes, and covariates).

W A vector or matrix containing non-negative weights to be used in computing the
test statistics. If a matrix, W must be the same dimension as X with one weight for
each value in X. If a vector, W may contain one weight for each observation (i.e.
column) of X or one weight for each variable (i.e. row) of X. In either case, the
weights are duplicated appropriately. Weighted F-tests are not available. Default
is ’NULL".

B The number of bootstrap iterations (i.e. how many resampled data sets) or the
number of permutations (if nulldist is ’perm’). Can be reduced to increase the
speed of computation, at a cost to precision. Default is 1000.

test Character string specifying the test statistics to use. See MTP for a list of tests.

theta0 The value used to center the test statistics. For tests based on a form of t-
statistics, this should be zero (default). For F-tests, this should be 1.

taud The value used to scale the test statistics. For tests based on a form of t-statistics,
this should be 1 (default). For F-tests, this should be 2/(K-1), where K is the
number of groups. This argument is missing when center.only is chosen for
transforming the raw bootstrap test statistics.

marg.null If nulldist="boot.qt', the marginal null distribution to use for quantile trans-
formation. Can be one of 'normal’, ’t’, ’f’ or ’perm’. Default is "NULL’, in
which case the marginal null distribution is selected based on choice of test
statistics. Defaults explained below. If ’perm’, the user must supply a vector

marg.par

ncp

perm.mat

alternative

seed

cluster

csnull

dispatch

boot.null

or matrix of test statistics corresponding to another marginal null distribution,
perhaps one created externally by the user, and possibly referring to empirically
derived marginal permutation distributions, although the statistics could repre-
sent any suitable choice of marginal null distribution.

If nulldist="boot.qt"', the parameters defining the marginal null distribution
in marg.null to be used for quantile transformation. Default is 'NULL’, in
which case the values are selected based on choice of test statistics and other
available parameters (e.g., sample size, number of groups, etc.). Defaults ex-
plained below. User can override defaults, in which case a matrix of marginal
null distribution parameters can be accepted. Providing a matrix of values al-
lows the user to perform multiple testing using parameters which may vary with
each hypothesis, as may be desired in common-quantile minP procedures. In
this way, factors affecting multiple testing procedure performance such as sam-
ple size or missingness may be assessed.

If nulldist="boot.qt"', a value for a possible noncentrality parameter to be
used during marginal quantile transformation. Default is 'NULL’.

If nulldist="boot.qt' and marg.null="perm', a matrix of user-supplied test
statistics from a particular distribution to be used during marginal quantile trans-
formation. The statistics may represent empirically derived marginal permuta-
tion values, may be theoretical values, or may represent a sample from some
other suitable choice of marginal null distribution.

Character string indicating the alternative hypotheses, by default "two.sided’.
For one-sided tests, use ’less’ or *greater’ for null hypotheses of ’greater than or
equal’ (i.e. alternative is ’less’) and ’less than or equal’, respectively.

Integer or vector of integers to be used as argument to set. seed to set the seed
for the random number generator for bootstrap resampling. This argument can
be used to repeat exactly a test performed with a given seed. If the seed is
specified via this argument, the same seed will be returned in the seed slot of
the MTP object created. Else a random seed(s) will be generated, used and
returned. Vector of integers used to specify seeds for each node in a cluster used
to to generate a bootstrap null distribution.

Integer of 1 or a cluster object created through the package snow. With clus-
ter=1, bootstrap is implemented on single node. Supplying a cluster object re-
sults in the bootstrap being implemented in parallel on the provided nodes. This
option is only available for the bootstrap procedure.

DEPRECATED as of multtest v. 2.0.0 given expanded null distribution op-
tions. Previously, this argument was an indicator of whether the bootstrap es-
timated test statistics distribution should be centered and scaled (to produce a
null distribution) or not. If csnull=FALSE, the (raw) non-null bootstrap esti-
mated test statistics distribution was returned. If the non-null bootstrap distri-
bution should be returned, this object is now stored in the ‘rawdist’ slot when
keep.rawdist=TRUE.

The number or percentage of bootstrap iterations to dispatch at a time to each
node of the cluster if a computer cluster is used. If dispatch is a percentage,
B*dispatch must be an integer. If dispatch is an integer, then B/dispatch must
be an integer. Default is 5 percent.

boot.null

p
n

muboot

keep.nulldist

keep.rawdist

Value

An integer of the number of variables of interest to be tested.
An integer of the total number of samples.
A matrix of bootstrapped test statistics.

Logical indicating whether to return the computed bootstrap null distribution,
by default "TRUE’. Not available for nulldist="perm’. Note that this matrix
can be quite large.

Logical indicating whether to return the computed non-null (raw) bootstrap dis-
tribution, by default "FALSE’. Not available for when using nulldist="perm’
or ’ic’. Note that this matrix can become quite large. If one wishes to use subse-
quent calls to update in which one updates choice of bootstrap null distribution,
keep.rawdist must be TRUE. To save on memory, update only requires that
one of keep.nulldist or keep.rawdist be "TRUE’.

A list with the following elements:

rawboot

muboot

If keep.rawdist=TRUE, the matrix of non-null, non-transformed bootstrap test
statistics. If "TFALSE’, an empty matrix with dimension 0-by-0.

If keep.rawdist=TRUE (default), the matrix of appropriately transformed null
test statistics as given by one of center.scale, center.only, or quant. trans.
This is the estimated joint test statistics null distribution.

Both list elements rawboot and muboot contain matrices of dimension the num-
ber of hypotheses (typically nrow(X)) by the number of bootstrap iterations (B).
Each row of muboot is the bootstrap estimated marginal null distribution for a
single hypothesis. For boot.null and center.scale, each column of muboot
is a centered and scaled resampled vector of test statistics. For boot.null and
center.only, each column of muboot is a centered, resampled vector of test
statistics.

For boot.null and quant.trans, each column of muboot is a marginal null
quantile-transformed resampled vector of test statistics. For each choice of
marginal null distribution (defined by marg.null and marg.par), a random
sample of size B is drawn and then rearranged based on the ranks of the marginal
test statistics bootstrap distribution corresponding to each hypothesis (typically
within rows of X). This means that using quant. trans will set the RNG seed
ahead by B * the number of hypotheses (similarly, typically nrow(X)). Tie
breaks in the marginal non-null bootstrap distribution are implemented inside
the internal function marg.samp called by quant.trans. Default values of
marg.null and marg. par are available based on choice of test statistics, sample
size 'n’, and various other parameters. By the time boot . null is called in either
the MTP or EBMTP functions, the default marginal null distribution settings have
already been formatted and passed in their correct form to boot.null. These
default values correspond to:

t.onesamp: t-distribution with df=n-1;
t.twosamp.equalvar: t-distribution with df=n-2;

6 boot.null

t.twosamp.unequalvar: N(0,1);

t.pair: t-distribution with df=n-1, where n is the number of unique samples, i.e.,
the number of observed differences/paired samples;

f: F-distribution with df1=k-1, df2=n-k, for k groups;

f.block: NA. Only available with permutation distribution;

f.twoway: F-distribution with df1=k-1,df2=n-k*1, for k groups and 1 blocks;

Im.XvsZ: N(0,1);

Im.YvsXZ: N(0,1);

coxph.YvsXZ: N(O,1);

t.cor t-distribution with df=n-2;

z.cor N(O,1).

The above defaults, however, can be overridden by manually setting values of

marg.null and marg.par.

The rawboot and muboot objects are returned in the slots rawdist and nulldist

of an object of class MTP or EBMTP when the arguments keep . rawdist or keep.nulldist
to the MTP function are TRUE. For boot.resample a matrix of bootstrap sam-

ples prior to null transformation is returned.

Note

Thank you to Duncan Temple Lang and Peter Dimitrov for suggestions about the code.

Author(s)

Katherine S. Pollard, Houston N. Gilbert, and Sandra Taylor, with design contributions from San-
drine Dudoit and Mark J. van der Laan.

References

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the
Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Sta-
tistical Applications in Genetics and Molecular Biology, 3(1). http://www.bepress.com/sagmb/
vol3/iss1/art15/

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures
for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Bi-
ology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art14/

S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Proce-
dures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular
Biology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art13/

Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic
Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley
Division of Biostatistics Working Paper Series. Working Paper 121. http://www.bepress.com/
ucbbiostat/paperi21

M.J. van der Laan and A.E. Hubbard (2006), Quantile-function Based Null Distributions in Re-
sampling Based Multiple Testing, Statistical Applications in Genetics and Molecular Biology, 5(1).
http://www.bepress.com/sagmb/vol5/iss1/art14/

http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art14/
http://www.bepress.com/sagmb/vol3/iss1/art13/
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/sagmb/vol5/iss1/art14/

corr.null 7

S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer, New York, 2008.

See Also

corr.null, MTP,MTP-class, EBMTP, EBMTP-class, get.Tn, ss.maxT,mt.sample. teststat,get.Tn,
wapply, boot.resample

Examples

set.seed(99)
data<-matrix(rnorm(90),nr=9)

#closure
ttest<-meanX(psi®=0,na.rm=TRUE, standardize=TRUE,alternative="two.sided", robust=FALSE)

#test statistics
obs<-get.Tn(X=data,stat.closure=ttest,W=NULL)

#bootstrap null distribution (B=10@ for speed, default nulldist, "boot.cs")
nulldistn<-boot.null(X=data,W=NULL,stat.closure=ttest,B=100,test="t.onesamp",
nulldist="boot.cs”,theta0=0,taud=1,alternative="two.sided"”,
keep.nulldist=TRUE,keep.rawdist=FALSE)$muboot

#bootstrap null distribution with marginal quantile transformation showing

#default values that are passed to marg.null and marg.par arguments
nulldistn.qgt<-boot.null(X=data,W=NULL,stat.closure=ttest,B=100,test="t.onesamp",
nulldist="boot.qt",theta0=0,taud=1,alternative="two.sided",
keep.nulldist=TRUE,keep.rawdist=FALSE,marg.null="t",
marg.par=matrix(9,nr=10,nc=1))$muboot

#unadjusted p-values
rawp<-apply((obs[1,]1/0bs[2,])<=nulldistn,1,mean)
sum(rawp<=0.01)

rawp.qt<-apply((obs[1,]1/0bs[2,]1)<=nulldistn.qt,1,mean)
sum(rawp.qt<=0.01)

corr.null Function to estimate a test statistics joint null distribution for t-
statistics via the vector influence curve

Description

For a broad class of testing problems, such as the test of single-parameter null hypotheses using
t-statistics, a proper, asymptotically valid test statistics joint null distribution is the multivariate
Gaussian distribution with mean vector zero and covariance matrix equal to the correlation matrix
of the vector influence curve for the estimator of the parameter of interest. The function corr.null
estimates the correlation matrix of the vector influence curve for such parameters and returns sam-
ples from the corresponding normal distribution. Arguments to the function allow for refinements
in calculating the resulting null distribution estimate.

8 corr.null

Usage

corr.null(X, W = NULL, Y = NULL, Z = NULL, test = "t.twosamp.unequalvar",
alternative = "two-sided”, use = "pairwise”, B = 1000, MVN.method = "mvrnorm”,
penalty = 1e-06, ic.quant.trans = FALSE, marg.null = NULL,
marg.par = NULL, perm.mat = NULL)

Arguments

X A matrix, data.frame or ExpressionSet containing the raw data. In the case of
an ExpressionSet, exprs(X) is the data of interest and pData(X) may contain
outcomes and covariates of interest. For most currently implemented tests (ex-
ception: tests involving correlation parameters), one hypothesis is tested for
each row of the data.

W A matrix containing non-negative weights to be used in computing the test statis-
tics. Must be same dimension as X.

Y A vector, factor, or Surv object containing the outcome of interest.

z A vector, factor, or matrix containing covariate data to be used in linear regres-
sion models. Each variable should be in one column, so that nrow(Z)=ncol (X).
By the time the function is called, this argument contains a ’design matrix’ with
the variable to be tested in the first column, additional covariates in the remain-
ing columns, and no intercept column.

test Character string specifying the test statistics to use, by default "t.twosamp.unequalvar’.
See details (below) for a list of tests.

alternative Character string indicating the alternative hypotheses, by default ’two.sided’.
For one-sided tests, use ’less’ or "greater’ for null hypotheses of ’greater than or
equal’ (i.e. alternative is ’less’) and ’less than or equal’, respectively.

use Similar to the options in cor, a character string giving a method for comput-
ing covariances in the presence of missing values. Default is *pairwise’, which
allows for the covariance/correlation matrix to be calculated using the most in-
formation possible when NAs are present.

B The number of samples to be drawn from the normal distribution. Default is
1000.

MVN.method Character string of either of 'mvrnorm’ or *Cholesky’ designating how corre-
lated normal test statistics are to be generated. Selecting *'mvrnorm’ uses the
function of the same name found in the MASS library, whereas *Cholesky’ relies
on a Cholesky decomposition. Default is 'mvrnorm’.

penalty If MVN.method="Cholesky', the value in penalty is added to all diagonal ele-
ments of the estimated test statistics correlation matrix to ensure that the matrix
is positive definite and that internal calls to 'chol' do not return an error. De-
fault is 1e-6.

ic.quant.trans A logical indicating whether or not a marginal quantile transformation using a
t-distribution or user-supplied marginal distribution (stored in perm.mat) should
be applied to the multivariate normal null distribution. Defaults for marg.null
and marg. par exist, but can also be specified by the user (see below). Default is
"FALSE’.

corr.null 9

marg.null If ic.quant. trans=TRUE, a character string naming the marginal null distribu-
tion to use for quantile transformation. Can be one of, ’t’ or perm’. Default is
’NULL’, in which case the marginal null distribution is selected based on choice
of test statistics. Defaults explained below. If ’perm’, the user must supply a
vector or matrix of test statistics corresponding to another marginal null dis-
tribution, perhaps one created externally by the user, and possibly referring to
empirically derived marginal permutation distributions, although the statistics
could represent any suitable choice of marginal null distribution.

marg.par If ic.quant.trans=TRUE, the parameters defining the marginal null distribu-
tion in marg.null to be used for quantile transformation. Default is "'NULL’,
in which case the values are selected based on choice of test statistics and other
available parameters (e.g., sample size, number of groups, etc.). Defaults ex-
plained below. User can override defaults, in which case a matrix of marginal
null distribution parameters must be provided. Providing a matrix allows the
user to perform multiple testing using parameters which may vary with each
hypothesis, as may be desired in common-quantile minP procedures

perm.mat If ic.quant. trans=TRUE, a matrix of user-supplied test statistics from a partic-
ular distribution to be used during marginal quantile transformation. Supplying
a vector of test statistics will apply the same vector to each hypothesis. The
statistics may represent empirically derived marginal permutation values, may
be theoretical values, or may represent a sample from some other suitable choice
of marginal null distribution.

Details

This function is called internally when the argument nulldist="ic"' is evaluated in the main user-
level functions MTP or EBMTP. Formatting of the data objects X, W, Y, and especially Z occurs at
execution begin of the main user-level functions.

Based on the value of test, the appropriate correlation matrix of the vector influence curve is calcu-
lated. Once the correlation matrix is obtained, one may sample vectors of null test statistics directly
from a multivariate normal distribution rather than relying on permutation-based or bootstrap-based
resampling. Because the Gaussian distribution is continuous, we expect this choice of null dis-
tribution to suffer less from discreteness than either the permutation or the bootstrap distribution.
Additionally, in large-scale settings, use of null distributions derived from the vector influence func-
tion typically reduce computational bottlenecks associated with resampling methods.

Because the influence curve null distributions have been implemented for parametric, standardized
t-statistics, the options robust and standardize are not allowed. Influence curve null distribu-
tions are available for the following values of test: ’t.onesamp’, ’t.pair’, ’t.twosamp.equalvar’,
’t.twosamp.unequalvar’, 'Im.XvsZ’, ’Im.YvsXZ’, "t.cor’, and ’z.cor’.

In the simpler cases involving one-sample and two-sample tests of means, the correlation ma-
trices are obtained via calls to cor. For two-sample tests, the correlation matrix corresponds
to the following transformation of the group-specific covariance matrices: cov(X(groupl))/nl +
cov(X(group2))/n2, where nl and n2 are sample sizes of each group. When weights are present,
the internal function IC.CorXW.NA is called to calculate weighted estimates of the (group) covari-
ance matrices from each subject’s estimated vector influence curve. The calculations are similar in

10 corr.null

spirit to those in cov.wt, but they are done in a way which allows for handling NA elements in the
estimated vector influence curve IC_n. The correlation matrix corresponding to IC_n * (IC_n)t is
calculated.

For linear regression models, corr.null calculates the vector influence curve associated with each
subject/sample. The vector has length equal to the number of hypotheses. The internal function
IC.Cor.NA is used to calculate IC_n * (IC_n)"t in a manner which allows for NA-handling when
the influence curve may contain missing elements. For linear regression models of the form E[YIX],
IC_n takes the form (E[((X*")X)"(-1)] (X”t)_i Y_i) - Y_i-hat. Influence curves for correlation pa-
rameters are more complicated, and the user is referred to the references below.

Once the correlation matrix sigma’ corresponding to the variance covariance matrix of the vector
influence curve sigma =IC_n * (IC_n)"t is obtained, one may sample from N(0,sigma’) to obtain
null test statistics.

If ic.quant. trans=TRUE, the matrix of null test statistics can be quantile transformed to produce a
matrix which accounts for the joint dependencies between test statistics (down columns), but which
has marginal t-distributions (across rows). If marg.null and marg.par are not specified (=NULL),
the following default t-distributions are applied:

t.onesamp df=n-1;

t.pair df=n-1, where n is the number of unique samples, i.e., the number of observed differences
between paired samples;

t.twosamp.equalvar df=n-2;

t.twosamp.unequalvar df=n-1; N.B., this is not recommended, since the effective degrees of free-
dom are unknown. With sufficiently large n, a normal approximation should yield similar
results.

Im.XvsZ df=n-p, where p is the number of variables in the regression equation;
Im.YvsXZ df=n-p, where p is the number of variables in the regression equation;
t.cor df=n-2;

z.cor N.B., also not recommended. Fisher’s z-statistics are already normally distributed. Marginal
transformation to a t-distribution makes little sense.

Value

A matrix of null test statistics with dimension the number of hypotheses (typically nrow(X)) by the
number of desired samples (B).

Author(s)

Houston N. Gilbert

EBMTP 11

References

K.S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of
Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of
Biostatistics Working Paper Series. Working Paper 121. http://www.bepress.com/ucbbiostat/
paperi21

S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer, New York, 2008.

H.N. Gilbert, M.J. van der Laan, and S. Dudoit, "Joint Multiple Testing Procedures for Inferring
Genetic Networks from Lower-Order Conditional Independence Graphs" (2009). In preparation.

See Also

boot.null,MTP,MTP-class, EBMTP, EBMTP-class, get.Tn, ss.maxT, mt.sample. teststat,get.Tn,
wapply, boot.resample

Examples

set.seed(99)

data <- matrix(rnorm(10%*50),nr=10,nc=50)

nulldistn.mvrnorm <- corr.null(data,t="t.onesamp”,alternative="greater",6B=5000)
nulldistn.chol <- corr.null(data,t="t.onesamp”,MVN.method="Cholesky", penalty=1e-9)
nulldistn.t <- corr.null(data,t="t.onesamp”,ic.quant.trans=TRUE)
dim(nulldistn.mvrnorm)

EBMTP A function to perform empirical Bayes resampling-based multiple hy-
pothesis testing

Description

A user-level function to perform empirical Bayes multiple testing procedures (EBMTP). A vari-
ety of t- and F-tests, including robust versions of most tests, are implemented. A common-cutoff
method is used to control the chosen type I error rate (FWER, gFWER, TPPFP, or FDR). Bootstrap-
based null distributions are available. Additionally, for t-statistics, one may wish to sample from
an appropriate multivariate normal distribution with mean zero and correlation matrix derived from
the vector influence function. In EBMTP, realizations of local q-values, obtained via density esti-
mation, are used to partition null and observed test statistics into guessed sets of true and false null
hypotheses at each round of (re)sampling. In this manner, parameters of any type I error rate which
can be expressed as a function the number of false positives and true positives can be estimated.
Arguments are provided for user control of output. Gene selection in microarray experiments is one
application.

http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/ucbbiostat/paper121

12

Usage

EBMTP

EBMTP(X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "t.twosamp.unequalvar"”, robust = FALSE,

standardize

= TRUE, alternative = "two.sided”, typeone = "fwer"”,

method = "common.cutoff”, k = @, q = 0.1, alpha = 0.05, smooth.null = FALSE,
nulldist = "boot.cs”, B = 1000, psi@ = @, marg.null = NULL,
marg.par = NULL, ncp = NULL, perm.mat = NULL, ic.quant.trans = FALSE,

MVN.method = "mvrnorm”, penalty = 1e-06, prior = "conservative”,
bw = "nrd”, kernel = "gaussian”, seed = NULL, cluster =1,
type = NULL, dispatch = NULL, keep.nulldist = TRUE, keep.rawdist = FALSE,

keep.falsepos = FALSE, keep.truepos = FALSE, keep.errormat = FALSE,
keep.Hsets=FALSE, keep.margpar = TRUE, keep.index = FALSE, keep.label = FALSE)

Arguments

For brevity, the presentation of arguments below will highlight those which differ significantly from
arguments in the other main-level user function MTP. See MTP for further details.

typeone

method

nulldist

prior

Character string indicating which type I error rate to control, by default family-
wise error rate ("fwer’). Other options include generalized family-wise error rate
(gfwer’), with parameter k giving the allowed number of false positives, and tail
probability of the proportion of false positives ("tppfp’), with parameter q giving
the allowed proportion of false positives. The false discovery rate ('fdr’) can
also be controlled. In particular, for ’gfwer’, *tppfp’ and *fdr’, multiple testing
is not performed via augmentation of the results of a FWER-controlling MTP.
Rather, using guessed sets of true and false null hypotheses, these error rates are
controlled in a more direct manner.

Character string indicating the EBMTP method. Currently only ’common.cutoff’
is implemented. This method is most similar to ’ss.maxT’ in MTP.

Character string indicating which resampling method to use for estimating the
joint test statistics null distribution, by default the non-parametric bootstrap
with centering and scaling (’boot.cs’). The old default "boot” will still com-
pile and will correspond to ’boot.cs’. Other null distribution options include
“boot.ctr’, *boot.qt’, and ’ic’, corresponding to the centered-only bootstrap dis-
tribution, quantile-transformed bootstrap distribution, and influence curve multi-
variate normal joint null distribution, respectively. The permutation distribution
is not available.

Character string indicating which choice of prior probability to use for estimat-
ing local g-values (i.e., the posterior probabilities of a null hypothesis being
true given the value of its corresponding test statistic). Default is ’conserva-
tive’, in which case the prior is set to its most conservative value of 1, meaning
that all hypotheses are assumed to belong to the set of true null hypotheses.
Other options include *ABH’ for the adaptive Benjamini-Hochberg estimator of
the number/proportion of true null hypotheses, and "TEBLQV’ for the empirical
Bayes local g-value value estimator of the number/proportion of true null hy-
potheses. If 'EBLQV’, the estimator of the prior probability is taken to be the
sum of the estimated local g-values divided by the number of tests. Relaxing the

EBMTP

bw

kernel

keep.falsepos

keep.truepos

keep.errormat

keep.Hsets

13

prior may result in more rejections, albeit at a cost of type I error control under
certain conditions. See details and references.

A character string argument to density indicating the smoothing bandwidth to
be used during kernel density estimation. Default is *nrd’.

A character string argument to density specifying the smoothing kernel to be
used. Default is ’gaussian’.

A logical indicating whether or not to store the matrix of guessed false posi-
tives at each round of (re)sampling. The matrix has rows equal to the num-
ber of cut-offs (observed test statistics) and columns equal to the B number
of bootstrap samples or samples from the multivariate normal distribution (if
nulldist="'ic"). Default is "FALSE’.

A logical indicating whether or not to store the matrix of guessed true positives at
each round of (re)sampling. The matrix has rows equal to the number of cut-offs
(observed test statistics) and columns equal to the B number of bootstrap sam-

ples or samples from the multivariate normal distribution (if nulldist="ic").
Default is "FALSE’.

A logical indicating whether or not to store the matrix of type I error rate val-
ues at each round of (re)sampling. The matrix has rows equal to the num-
ber of cut-offs (observed test statistics) and columns equal to the B number
of bootstrap samples or samples from the multivariate normal distribution (if
nulldist="ic"). Defaultis "FALSE’. In the case of FDR-control, for example,
this matrix is falsepos/(falsepos + truepos). The row means of this matrix
are eventually used for assigning/ordering adjusted p-values to test statistics of
each hypothesis.

A logical indicating whether or not to return the matrix of indicators which
partition the hypotheses into guessed sets of true and false null hypotheses at
each round of (re)sampling. Default is "FALSE’.

X, W, Y, Z Z.incl, Z.test, na.rm, test, robust, standardize, alternative,
k, g, alpha, smooth.null, B, psi@, marg.null, marg.par, ncp, perm.mat,
ic.quant.trans, MVN.method, penalty, seed, cluster, type, dispatch,
keep.nulldist, keep.rawdist, keep.margpar, keep. index, keep.label

Details

These arguments are all similarly used by the MTP function, and their use has
been defined elsewhere. Please consult the 1ink{MTP} help file or the references
for further details. Note that the MTP-function arguments get.cr, get.cutoff,
get.adjp are now DEPRECATED in the EBMTP function. Only adjusted p-
values are calculated by EBMTP. These adjusted p-values are returned in the same
order as the original hypotheses and raw p-values (typically corresponding to
rows of X.)

The EBMTP begins with a marginal nonparametric mixture model for estimating local g-values.
By definition, g-values are ’the opposite’ of traditional p-values. That is, g-values represent the
probability of null hypothesis being true given the value of its corresponding test statistic. If the test
statistics Tn have marginal distribution f = pi*f_0 + (1-pi)f_1, where pi is the prior probability of
a true null hypothesis and f_0 and f_1 represent the marginal null and alternative densities, respec-
tively, then the local g-value function is given by pi*f_0(Tn)/f(Tn).

14 EBMTP

One can estimate both the null density f 0 and full density f by applying kernel density estima-
tion over the matrix of null test statistics and the vector of observed test statistics, respectively.
Practically, this step in EBMTP also ensures that sidedness is correctly accounted for among the test
statistics and their estimated null distribution. The prior probability pi can be set to its most conser-
vative value of 1 or estimated by some other means, e.g., using the adaptive Benjamini Hochberg
(CABH’) estimator or by summing up the estimated local g-values themselves CEBLQV’)and di-
viding by the number of tests. Bounding these estimated probabilities by one provides a vector of
estimated local g-values with length equal to the number of hypotheses. Bernoulli 0/1 realizations
of the posterior probabilities indicate which hypotheses are guessed as belonging to the true set of
null hypotheses given the value of their test statistics. Once this partitioning has been achieved,
one can count the numbers of guessed false positives and guessed true positives at each round of
(re)sampling that are obtained when using the value of an observed test statistic as a cut-off.

EBMTPs use function closures to represent type I error rates in terms of their defining features.
Restricting the choice of type I error rate to *fwer’, ’gfwer’, tppfp’, and ’fdr’, means that these
features include whether to control the number of false positives or the proportion of false positives
among the number of rejetions made (i.e., the false discovery proportion), whether we are control-
ling a tail probability or expected value error rate, and, in the case of tail probability error rates, what
bound we are placing on the random variable defining the type I error rate (e.g., k for *gfwer’ or ’q’
for ’tppfp’). Averaging the type I error results over B (bootstrap or multivariate normal) samples
provides an estimator of the evidence against the null hypothesis (adjusted p-values) with respect to
the choice of type I error rate. Finally, a monotonicity constraint is placed on the adjusted p-values
before being returned as output.

As detailed in the references, relaxing the prior may result in a more powerful multiple testing pro-
cedure, albeit sometimes at the cost of type I error control. Additionally, when the proportion of true
null hypotheses is close to one, type I error control may also become an issue, even when using the
most conservative prior probability of one. This feature is known to occur with some other proce-
dures which rely on the marginal nonparametric mixture model for estimating (local) g-values. The
slot EB. hoM returned by objects of class EBMTP is the sum of the local g-values estimated via kernel
density estimation (divided by the total number of tests). If this value is close to one (>0.9-0.95), the
user will probably not want relax the prior, as even the conservative EBMTP might be approaching
a performance bound with respect to type I error control. The user is advised to begin by using the
most ’conservative’ prior, assess the estimated proportion of true null hypotheses, and then decide
if relaxing the prior might be desired. Gains in power over other multiple testing procedures have
been observed even when using the most conservative prior of one.

Situations of moderate-high to high levels of correlation may also affect the results of multiple
testing methods which use the same mixture model for generating g-values. Microarray analysis
represents a scenario in which dependence structures are typically weak enough to mitigate this con-
cern. On the other hand, the analysis of densely sampled SNPs, for example, may present problems.

Value

An object of class EBMTP. Again, for brevity, the values below represent slots which distinguish
objects of class EBMTP from those of class MTP.

EBMTP 15

falsepos A matrix with rows equal to the number of hypotheses and columns the num-
ber of samples of null test statistics (B) indicating the number of guessed false
positives when using the corresponding value of the observed test statistic as a
cut-off. Not returned unless keep. falsepos=TRUE.

truepos A matrix with rows equal to the number of hypotheses and columns the num-
ber of samples of null test statistics (B) indicating the number of guessed true
positives when using the corresponding value of the observed test statistic as a
cut-off. Not returned unless keep. truepos=TRUE.

errormat The matrix obtained after applying to type I error rate function closure to the ma-
trices in falsepos, and, if applicable, truepos. Not returned unless keep. errormat=TRUE.

EB.hoM The sum of the local g-values obtained after density estimation. This number
serves as an estimate of the proportion of true null hypotheses. Values close to
one indicate situations in which type I error control may not be guaranteed by
the EBMTP. When prior="EBLQV', this value is used as the prior ’pi’ during
evaluation of the local g-value function.

prior The numeric value of the prior ’pi’ used when evaluating the local g-value func-
tion.

prior.type Character string returning the value of prior in the original call to EBMTP. One
of "conservative’, ’ABH’, or ’TEBLQV".

1gv A numeric vector of length the number of hypotheses with the estimated local

g-values used for generating guessed sets of true null hypotheses.

Hsets A numeric matrix with the same dimension as nulldist, containing the Bernoulli
realizations of the estimated local g-values stored in 1qv which were used to par-
tition the hypotheses into guessed sets of true and false null hypotheses at each
round of (re)sampling. Not returned unless keep.Hsets=TRUE.

Author(s)

Houston N. Gilbert, based on the original MTP code written by Katherine S. Pollard

References

H.N. Gilbert, K.S. Pollard, M.J. van der Laan, and S. Dudoit (2009). Resampling-based multi-
ple hypothesis testing with applications to genomics: New developments in R/Bioconductor pack-
age multtest. Journal of Statistical Software (submitted). Temporary URL: http://www.stat.
berkeley.edu/~houston/JSSNullDistEBMTP. pdf.

Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multi-
ple testing with independent statistics. J. Behav. Educ. Statist. Vol 25: 60-83.

Y. Benjamini, A. M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that con-
trol the false discovery rate. Biometrika. Vol. 93: 491-507.

M.J. van der Laan, M.D. Birkner, and A.E. Hubbard (2005). Empirical Bayes and Resampling
Based Multiple Testing Procedure Controlling the Tail Probability of the Proportion of False Pos-
itives. Statistical Applications in Genetics and Molecular Biology, 4(1). http://www.bepress.

http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf
http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf
http://www.bepress.com/sagmb/vol4/iss1/art29/

16 EBMTP-class
com/sagmb/vol4/iss1/art29/
S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer, New York, 2008.
S. Dudoit, H.N. Gilbert, and M J. van der Laan (2008). Resampling-based empirical Bayes mul-
tiple testing procedures for controlling generalized tail probability and expected value error rates:
Focus on the false discovery rate and simulation study. Biometrical Journal, 50(5):716-44. http:
//www.stat.berkeley.edu/~houston/BIMCPSupp/BIMCPSupp.html.
H.N. Gilbert, M.J. van der Laan, and S. Dudoit. Joint multiple testing procedures for graphical
model selection with applications to biological networks. Technical report, U.C. Berkeley Division
of Biostatistics Working Paper Series, April 2009. URL http://www.bepress.com/ucbbiostat/
paper245.

See Also
MTP, EBMTP-class, EBMTP-methods, Hsets

Examples
set.seed(99)
data<-matrix(rnorm(90),nr=9)
group<-c(rep(1,5),rep(9,5))
#EB fwer control with centered and scaled bootstrap null distribution
#(B=100 for speed)
eb.m1<-EBMTP(X=data, Y=group,alternative="less",B=100,method="common.cutoff")
print(eb.m1)
summary (eb.m1)
par(mfrow=c(2,2))
plot(eb.m1,top=9)

EBMTP-class Class "EBMTP", classes and methods for empirical Bayes multiple
testing procedure output
Description

An object of class EBMTP is the output of a particular multiple testing procedure, as generated by
the function EBMTP. The object has slots for the various data used to make multiple testing decisions,
in particular adjusted p-values.

http://www.bepress.com/sagmb/vol4/iss1/art29/
http://www.bepress.com/sagmb/vol4/iss1/art29/
http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html
http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html
http://www.bepress.com/ucbbiostat/paper245
http://www.bepress.com/ucbbiostat/paper245

EBMTP-class

Objects from the Class
Objects can be created by calls of the form
new(CMTP’,
statistic =, object of class numeric
estimate =, object of class numeric
sampsize =, object of class numeric
rawp =, object of class numeric
adjp =, object of class numeric
reject =, object of class matrix
rawdist =, object of class matrix
nulldist =, object of class matrix
nulldist.type =, object of class character
marg.null =, object of class character
marg.par =, object of class matrix
label =, object of class numeric
falsepos =, object of class matrix
truepos =, object of class matrix
errormat =, object of class matrix
EB.hOM =, object of class numeric
prior =, object of class numeric
prior.type=, object of class character
Iqv =, object of class numeric
Hsets =, object of class matrix
index =, object of class matrix
call = ..., object of class call
seed =, object of class integer
)

Slots

statistic Object of class numeric, observed test statistics for each hypothesis, specified by the
values of the MTP arguments test, robust, standardize, and psi®@.

17

estimate For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests),
the numeric vector of estimated parameters corresponding to each hypothesis, e.g. means,

differences in means, regression parameters.
sampsize Object of class numeric, number of columns (i.e. observations) in the input data set.

rawp Object of class numeric, unadjusted, marginal p-values for each hypothesis.

adjp Object of class numeric, adjusted (for multiple testing) p-values for each hypothesis (com-

puted only if the get.adjp argument is TRUE).

reject Object of class 'matrix’, rejection indicators (TRUE for a rejected null hypothesis), for
each value of the nominal Type I error rate alpha.

rawdist The numeric matrix for the estimated nonparametric non-null test statistics distribution
(returned only if keep.rawdist=TRUE and if nulldist is one of ’boot.ctr’, ’boot.cs’, or
"boot.qt’). This slot must not be empty if one wishes to call update to change choice of

bootstrap-based null distribution.

18

EBMTP-class

nulldist The numeric matrix for the estimated test statistics null distribution (returned only if
keep.nulldist=TRUE). By default (i.e., for nulldist="'boot.cs"), the entries of nulldist
are the null value shifted and scaled bootstrap test statistics, with one null test statistic value
for each hypothesis (rows) and bootstrap iteration (columns).

nulldist.type Character value describing which choice of null distribution was used to generate
the MTP results. Takes on one of the values of the original nulldist argument in the call to
MTP, i.e., "boot.cs’, *boot.ctr’, ’boot.qt’, or ’ic’.

marg.null If nulldist='boot.qt', a character value returning which choice of marginal null
distribution was used by the MTP. Can be used to check default values or to ensure manual
settings were correctly applied.

marg.par If nulldist='boot.qt', a numeric matrix returning the parameters of the marginal
null distribution(s) used by the MTP. Can be used to check default values or to ensure manual
settings were correctly applied.

falsepos A matrix with rows equal to the number of hypotheses and columns the number of
samples of null test statistics (B) indicating the number of guessed false positives when us-
ing the corresponding value of the observed test statistic as a cut-off. Not returned unless
keep.falsepos=TRUE.

truepos A matrix with rows equal to the number of hypotheses and columns the number of
samples of null test statistics (B) indicating the number of guessed true positives when us-
ing the corresponding value of the observed test statistic as a cut-off. Not returned unless
keep.truepos=TRUE.

errormat The matrix obtained after applying to type I error rate function closure to the matrices
in falsepos, and, if applicable, truepos. Not returned unless keep.errormat=TRUE.

EB.hoM The sum of the local g-values obtained after density estimation. This number serves as an
estimate of the proportion of true null hypotheses. Values close to one indicate situations in
which type I error control may not be guaranteed by the EBMTP. When prior="EBLQV', this
value is used as the prior 'pi’ during evaluation of the local g-value function.

prior The numeric value of the prior *pi’ used when evaluating the local g-value function.

prior.type Character string returning the value of prior in the original call to EBMTP. One of
’conservative’, ’ABH’, or ’TEBLQV’.

lgv A numeric vector of length the number of hypotheses with the estimated local g-values used
for generating guessed sets of true null hypotheses.

Hsets A numeric matrix with the same dimension as nulldist, containing the Bernoulli realiza-
tions of the estimated local g-values stored in 1qv which were used to partition the hypotheses
into guessed sets of true and false null hypotheses at each round of (re)sampling. Not returned
unless keep.Hsets=TRUE.

label If keep.label=TRUE, a vector storing the values used in the argument Y. Storing this object
is particularly important when one wishes to update EBMTP objects with F-statistics using
default marg.null and marg. par settings when nulldist="boot.qt".

index For tests of correlation parameters a matrix corresponding to t(combn(p,2)), where p is
the number of variables in X. This matrix gives the indices of the variables considered in each
pairwise correlation. For all other tests, this slot is empty, as the indices are in the same order
as the rows of X.

call Object of class call, the call to the MTP function.

EBMTP-class 19

seed An integer or vector for specifying the state of the random number generator used to create the

Methods

resampled datasets. The seed can be reused for reproducibility in a repeat call to MTP. This ar-
gument is currently used only for the bootstrap null distribution (i.e., for nulldist="boot . xx").
See ?set. seed for details.

signature(x = "EBMTP")

[: Subsetting method for EBMTP class, which operates selectively on each slot of an EBMTP instance

to retain only the data related to the specified hypotheses.

as.list : Converts an object of class EBMTP to an object of class 1ist, with an entry for each slot.

plot

: plot methods for EBMTP class, produces the following graphical summaries of the results of
a EBMTP. The type of display may be specified via the which argument.

1. Scatterplot of number of rejected hypotheses vs. nominal Type I error rate.

2. Plot of ordered adjusted p-values; can be viewed as a plot of Type I error rate vs. number
of rejected hypotheses.

3. Scatterplot of adjusted p-values vs. test statistics (also known as "volcano plot").
4. Plot of unordered adjusted p-values.

The plot method for objects of class EBMTP does not return the plots associated with which=5
(using confidence regions) or with which=6 (pertaining to cut-offs) as it does for objects of
class MTP. This is because the function EBMTP currently only returns adjusted p-values. The
argument logscale (by default equal to FALSE) allows one to use the negative decimal log-
arithms of the adjusted p-values in the second, third, and fourth graphical displays. The argu-
ments caption and sub.caption allow one to change the titles and subtitles for each of the
plots (default subtitle is the MTP function call). Note that some of these plots are implemented
in the older function mt.plot.

print : print method for EBMTP class, returns a description of an object of class EBMTP, including

sample size, number of tested hypotheses, type of test performed (value of argument test),
Type I error rate (value of argument typeone), nominal level of the test (value of argument
alpha), name of the EBMTP (value of argument method), call to the function EBMTP.

In addition, this method produces a table with the class, mode, length, and dimension of each
slot of the EBMTP instance.

summary : summary method for EBMTP class, provides numerical summaries of the results of an

EBMTP and returns a list with the following three components.

1. rejections: A data.frame with the number(s) of rejected hypotheses for the nominal Type I
error rate(s) specified by the alpha argument of the function MTP.

2. index: A numeric vector of indices for ordering the hypotheses according to first adjp, then
rawp, and finally the absolute value of statistic (not printed in the summary).

20 EBMTP-class

3. summaries: When applicable (i.e., when the corresponding quantities are returned by MTP),
a table with six number summaries of the distributions of the adjusted p-values, unadjusted
p-values, test statistics, and parameter estimates.

EBupdate : update method for EBMTP class, provides a mechanism to re-run the MTP with differ-
ent choices of the following arguments - nulldist, alternative, typeone, k, q, alpha, smooth.null,
bw, kernel, prior, keep.nulldist, keep.rawdist, keep.falsepos, keep.truepos, keep.errormat, keep.margpar.
When evaluate is "TRUE’, a new object of class EBMTP is returned. Else, the updated
call is returned. The EBMTP object passed to the update method must have either a non-
empty rawdist slot or a non-empty nulldist slot (i.e., must have been called with either
"keep.rawdist=TRUE’ or ’keep.nulldist=TRUE’).

Additionally, when calling EBupdate for any Type I error rate other than FWER, the typeone
argument must be specified (even if the original object did not control FWER). For example,
typeone="fdr", would always have to be specified, even if the original object also controlled
the FDR. In other words, for all function arguments, it is safest to always assume that you are
updating from the EBMTP default function settings, regardless of the original call to the EBMTP
function. Currently, the main advantage of the EBupdate method is that it prevents the need
for repeated estimation of the test statistics null distribution.

To save on memory, if one knows ahead of time that one will want to compare different
choices of bootstrap-based null distribution, then it is both necessary and sufficient to spec-
ify ’keep.rawdist=TRUE’, as there is no other means of moving between null distributions
other than through the non-transformed non-parametric bootstrap distribution. In this case,
"keep.nulldist=FALSE’ may be used. Specifically, if an object of class EBMTP contains a non-
empty rawdist slot and an empty nulldist slot, then a new null distribution will be generated
according to the values of the nulldist= argument in the original call to EBMTP or any addi-
tional specifications in the call to update. On the other hand, if one knows that one wishes
to only update an EBMTP object in ways which do not involve choice of null distribution, then
"keep.nulldist=TRUE’ will suffice and ’keep.rawdist’ can be set to FALSE (default settings).
The original null distribution object will then be used for all subsequent calls to update.

N.B.: Note that keep.rawdist=TRUE is only available for the bootstrap-based resampling
methods. The non-null distribution does not exist for the permutation or influence curve mul-
tivariate normal null distributions.

ebmtp2mtp : coersion method for converting objects of class EBMTP to objects of class MTP. Slots
common to both objects are taken from the object of class EBMTP and used to create a new
object of class MTP. Once an object of class MTP is created, one may use the method update
to perform resampling-based multiple testing (as would have been done with calls to MTP)
without the need for repeated resampling.

Author(s)

Houston N. Gilbert, based on the original MTP class and method definitions written by Katherine S.
Pollard

EBMTP-class 21

References

H.N. Gilbert, K.S. Pollard, M.J. van der Laan, and S. Dudoit (2009). Resampling-based multi-
ple hypothesis testing with applications to genomics: New developments in R/Bioconductor pack-
age multtest. Journal of Statistical Software (submitted). Temporary URL: http://www.stat.
berkeley.edu/~houston/JSSNullDistEBMTP. pdf.

Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multi-
ple testing with independent statistics. J. Behav. Educ. Statist. Vol 25: 60-83.

Y. Benjamini, A. M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that con-
trol the false discovery rate. Biometrika. Vol. 93: 491-507.

M.J. van der Laan, M.D. Birkner, and A.E. Hubbard (2005). Empirical Bayes and Resampling
Based Multiple Testing Procedure Controlling the Tail Probability of the Proportion of False Pos-
itives. Statistical Applications in Genetics and Molecular Biology, 4(1). http://www.bepress.
com/sagmb/vol4/iss1/art29/

S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer, New York, 2008.

S. Dudoit, H. N. Gilbert, and M. J. van der Laan (2008). Resampling-based empirical Bayes
multiple testing procedures for controlling generalized tail probability and expected value error
rates: Focus on the false discovery rate and simulation study. Biometrical Journal, 50(5):716-44.
http://www.stat.berkeley.edu/~houston/BIMCPSupp/BIMCPSupp.html.

H.N. Gilbert, M.J. van der Laan, and S. Dudoit. Joint multiple testing procedures for graphical
model selection with applications to biological networks. Technical report, U.C. Berkeley Division
of Biostatistics Working Paper Series, April 2009. URL http://www.bepress.com/ucbbiostat/
paper245.

See Also

EBMTP, EBMTP-methods, MTP, MTP-methods, [-methods, as.1list-methods, print-methods, plot-methods,
summary-methods, mtp2ebmtp, ebmtp2mtp

Examples

See EBMTP function: ? EBMTP

http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf
http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf
http://www.bepress.com/sagmb/vol4/iss1/art29/
http://www.bepress.com/sagmb/vol4/iss1/art29/
http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html
http://www.bepress.com/ucbbiostat/paper245
http://www.bepress.com/ucbbiostat/paper245

22 fwer2gfwer

fwer2gfwer Function to compute augmentation MTP adjusted p-values

Description

Augmentation multiple testing procedures (AMTPs) to control the generalized family-wise error
rate (gFWER), the tail probability of the proportion of false positives (TPPFP), and false discovery
rate (FDR) based on any initial procudeure controlling the family-wise error rate (FWER). AMTPs
are obtained by adding suitably chosen null hypotheses to the set of null hypotheses already rejected
by an initial FWER-controlling MTP. A function for control of FDR given any TPPFP controlling
procedure is also provided.

Usage
fwer2gfwer(adjp, k = 0)
fwer2tppfp(adjp, g = 0.05)

fwer2fdr(adjp, method = "both”, alpha = 0.05)

Arguments
adjp Numeric vector of adjusted p-values from any FWER-controlling procedure.
k Maximum number of false positives.
q Maximum proportion of false positives.
method Character string indicating which FDR controlling method should be used. The
options are "conservative" for a conservative, general method, "restricted" for a
less conservative, but restricted method, or "both" (default) for both.
alpha Nominal level for an FDR controlling procedure (can be a vector of levels).
Details

The gFWER and TPPFP functions control Type I error rates defined as tail probabilities for func-
tions g(Vn,Rn) of the numbers of Type I errors (Vn) and rejected hypotheses (Rn). The gFWER and
TPPFP correspond to the special cases g(Vn,Rn)=Vn (number of false positives) and g(Vn,Rn)=Vn/Rn
(proportion of false positives among the rejected hypotheses), respectively.

Adjusted p-values for an AMTP are simply shifted versions of the adjusted p-values of the original
FWER-controlling MTP. For control of gFWER (Pr(Vn>k)), for example, the first k adjusted p-
values are set to zero and the remaining p-values are the adjusted p-values of the FWER-controlling
MTP shifted by k. One can therefore build on the large pool of available FWER-controlling proce-
dures, such as the single-step and step-down maxT and minP procedures.

Given a FWER-controlling MTP, the FDR can be conservatively controlled at level alpha by con-
sidering the corresponding TPPFP AMTP with g=alpha/2 at level alpha/2, so that Pr(Vn/Rn>alpha/2)<=alpha/2.
A less conservative procedure (general=FALSE) is obtained by using an AMTP controlling the

fwer2gfwer 23

TPPFP with q=1-sqrt(1-alpha) atlevel 1-sqrt(1-alpha), so that Pr(Vn/Rn>1-sqrt(1-alpha))<=1-
sqrt(1-alpha). The first, more general method can be used with any procedure that asymptotically
controls FWER. The second, less conservative method requires the following additional assump-
tions: (i) the true alternatives are asymptotically always rejected by the FWER-controlling proce-
dure, (ii) the limit of the FWER exists, and (iii) the FWER-controlling procedure provides exact
asymptotic control. See http://www.bepress.com/sagmb/vol3/iss1/art15/ for more details.
The method implemented in fwer2fdr for computing rejections simply uses the TPPFP AMTP
fwer2tppfp with g=alpha/2 (or 1-sqrt(1-alpha)) and rejects each hypothesis for which the TPPFP
adjusted p-value is less than or equal to alpha/2 (or 1-sqrt(1-alpha)). The adjusted p-values are
based directly on the FWER adjusted p-values, so that very occasionally a hypothesis will have
the indicator that it is rejected in the matrix of rejections, but the adjusted p-value will be slightly
greater than the nominal level. The opposite might also occur occasionally.

Value

For fwer2gfwer and fwer2tppfp, a numeric vector of AMTP adjusted p-values. For fwer2fdr,

a list with two components: (i) a numeric vector (or a length(adjp) by 2 matrix if method="both")

of adjusted p-values for each hypothesis, (ii) a length(adjp) by length(alpha) matrix (or length(adjp)
by length(alpha) by 2 array if method="both") of indicators of whether each hypothesis is re-

jected at each value of the argument alpha.

Author(s)

Katherine S. Pollard with design contributions from Sandrine Dudoit and Mark J. van der Laan.

References

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the
Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Sta-
tistical Applications in Genetics and Molecular Biology, 3(1). http://www.bepress.com/sagmb/
vol3/iss1/art15/

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures
for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Bi-
ology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art14/

S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Proce-
dures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular
Biology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art13/

Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic
Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley
Division of Biostatistics Working Paper Series. Working Paper 121. http://www.bepress.com/
ucbbiostat/paperi21

See Also

MTP, MTP-class, MTP-methods, mt.minP, mt.maxT

http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art14/
http://www.bepress.com/sagmb/vol3/iss1/art13/
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/ucbbiostat/paper121

24 get.index

Examples

data<-matrix(rnorm(200),nr=20)

group<-c(rep(0,5),rep(1,5))

fwer.mtp<-MTP(X=data, Y=group)

fwer.adjp<-fwer.mtp@adjp

gfwer.adjp<-fwer2gfwer(adjp=fwer.adjp,k=c(1,5,10))

compare.gfwer<-cbind(fwer.adjp,gfwer.adjp)
mt.plot(adjp=compare.gfwer,teststat=fwer.mtp@statistic,proc=c("gFWER(@)","gFWER(1)","gFWER(5)","gFWER(10@)"),co
title("Comparison of Single-step MaxT gFWER Controlling Methods")

get.index Function to compute indices for ordering hypotheses in Package
‘multtest’

Description

The hypotheses tested in a multiple testing procedure (MTP), can be ordered based on the output
of that procedure. This function orders hypotheses based on adjusted p-values, then unadjusted
p-values (to break ties in adjusted p-values), and finally test statistics (to break remaining ties).

Usage

get.index(adjp, rawp, stat)

Arguments
adjp Numeric vector of adjusted p-values.
rawp Numeric vector of unadjusted ("raw") marginal p-values.
stat Numeric vector of test statistics.

Value

Numeric vector of indices so that the hypotheses can be ordered accroding to significance (smallest
p-values and largest test statistics first). This function is used in the plot method for objects of class
MTP to order adjusted p-values for graphical summaries. The summary method for objects of class
MTP will return these indices as its second component.

Author(s)
Katherine S. Pollard

See Also

MTP, plot ,MTP,ANY-method, summary,MTP-method

golub 25

Examples

data<-matrix(rnorm(200),nr=20)

mtp<-MTP(X=data, test="t.onesamp")
index<-get.index(adjp=mtp@adjp, rawp=mtp@rawp,stat=mtp@statistic)
mtp@statistic[index]

mtpQRestimate[index]

apply(datalindex,1,1,mean)

golub Gene expression dataset from Golub et al. (1999)

Description

Gene expression data (3051 genes and 38 tumor mRNA samples) from the leukemia microarray
study of Golub et al. (1999). Pre-processing was done as described in Dudoit et al. (2002). The R
code for pre-processing is available in the file . . /doc/golub.R.

Usage
data(golub)
Value
golub matrix of gene expression levels for the 38 tumor mRNA samples, rows corre-
spond to genes (3051 genes) and columns to mRNA samples.
golub.cl numeric vector indicating the tumor class, 27 acute lymphoblastic leukemia

(ALL) cases (code 0) and 11 acute myeloid leukemia (AML) cases (code 1).

golub.gnames a matrix containing the names of the 3051 genes for the expression matrix
golub. The three columns correspond to the gene index, ID, and Name, re-
spectively.

Source

Golub et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring, Science, Vol. 286:531-537.
http://www-genome.wi.mit.edu/MPR/ .

References

S. Dudoit, J. Fridlyand, and T. P. Speed (2002). Comparison of discrimination methods for the
classification of tumors using gene expression data. Journal of the American Statistical Association,
Vol. 97, No. 457, p. 77-87.

../doc/golub.R
http://www-genome.wi.mit.edu/MPR/

26

Hsets

Hsets

Functions for generating guessed sets of true null hypotheses in em-
pirical Bayes resampling-based multiple hypothesis testing

Description

These functions are called internally by the main user-level function EBMTP. They are used for
estimating local g-values, generating guessed sets of true null hypotheses, and applying these results
to function closures defining the choice of type I error rate (FWER, gFWER, TPPFP, and FDR).

Usage

Hsets(Tn, nullmat, bw, kernel, prior, B, rawp)

ABH.h@(rawp)

G.VS(V, S = NULL, tp = TRUE, bound)

Arguments

Tn

nullmat

bw
kernel

prior

rawp

The vector of observed test statistics.

The matrix of null test statistics obtained either through null transformation of
the bootstrap distribution or by sampling from an appropriate multivariate nor-
mal distribution (when nulldist="ic'.)

A character string argument to density indicating the smoothing bandwidth to
be used during kernel density estimation. Default is 'nrd’.

A character string argument to density specifying the smoothing kernel to be
used. Default is ’gaussian’.

Character string indicating which choice of prior probability to use for estimat-
ing local g-values (i.e., the posterior probabilities of a null hypothesis being
true given the value of its corresponding test statistic). Default is ’conserva-
tive’, in which case the prior is set to its most conservative value of 1, meaning
that all hypotheses are assumed to belong to the set of true null hypotheses.
Other options include *ABH’ for the adaptive Benjamini-Hochberg estimator of
the number/proportion of true null hypotheses, and ’TEBLQV’ for the empirical
Bayes local g-value value estimator of the number/proportion of true null hy-
potheses. If 'EBLQV’, the estimator of the prior probability is taken to be the
sum of the estimated local g-values divided by the number of tests. Relaxing the
prior may result in more rejections, albeit at a cost of type I error control under
certain conditions. See references.

The number of bootstrap iterations (i.e. how many resampled data sets) or the
number of samples from the multivariate normal distribution (if nulldist="ic").
Can be reduced to increase the speed of computation, at a cost to precision. De-
fault is 1000.

A vector of raw (unadjusted) p-values obtained bootstrap-based or influence
curve null distribution.

Hsets 27

\% A matrix of the numbers of guessed false positives for each cut-off, i.e., observed
value of a test statistic, within each sample in B.

S A matrix of the numbers of guessed true positives for each cut-off, i.e., observed
value of a test statistic, within each sample in B.

tp Logical indicator which is TRUE if type I error rate is a tail probability error
rate and FALSE is if it is an expected value error rate.

bound If a tail probability error rate, the bound to be placed on function of guessed
false positives and guessed true positives. For, *fwer’, equal to 0; *gfwer’, equal
to ’k’; and tppfp, equal to °q’.

Details

The most important object to be returned from the function Hsets is a matrix of indicators, i.e.,
Bernoulli realizations of the estimated local g-values, taking the value of 1 if the hypothesis is
guessed as belonging to the set of true null hypotheses and 0 otherwise (guessed true alternative).
Realizations of these probabilities are generated with a call to rbinom, meaning that this function
will set the RNG seed forward another B*(the number of hypotheses) places. This matrix, with rows
equal to the number of hypotheses and columns the number of (bootstrap or multivariate normal)
samples is used to subset the matrix of null test statistics and the vector of observed test statistics at
each round of (re)sampling into samples of statistics guessed as belonging to the sets of true null and
true alternative hypotheses, respectively. Using the values of the observed test statistics themselves
as cut-offs, the numbers of guessed false positives and (if applicable) guessed true positives can
be counted and eventually used to estimate the distribution of a type I error rate characterized by
the closure returned from G.VS. Counting of guessed false positives and guessed true positives is
performed in C through the function VScount.

Value
For the function Hsets, a list with the following elements:

Hsets.mat A matrix of numeric indicators with rows equal to the number of test (hypothe-
ses, typically nrow(X)) and columns the number of samples of null test statistics,
B. Values of one indicate hypotheses guessed as belonging to the set of true null
hypotheses based on the value of their corresponding test statistic. Values of
zero correspond to hypotheses guesses as belonging to the set of true alternative
hypotheses.

EB.hoM The estimated proportion of true null hypotheses as determined by nonparamet-
ric density estimation. This value is the sum of the estimated local g-values
divided by the total number of tests (hypotheses).

prior The value of the prior applied to the local g-value function. If ’conservative’, the
prior is set to one. Otherwise, the prior is the value obtained from the estimator
of the adaptive Benjamini-Hochberg procedure (if prior is ’ABH’) or from
density estimation (if prior is ’EBLQV’).

pn.out The vector of estimated local g-values. This vector is returned in the 1qv slot of
objects of class EBMTP.

For the function ABH. ho, the estimated number of true null hypotheses using the estimator from the
linear step-up adaptive Benjamini-Hochberg procedure.

28 Hsets

For the function G. VS, a closure which accepts as arguments the matrices of guessed false positive
and true positives (if applicable) and applies the appropriate function defining the desired type I
error rate.

Author(s)
Houston N. Gilbert

References

H.N. Gilbert, K.S. Pollard, M.J. van der Laan, and S. Dudoit (2009). Resampling-based multi-
ple hypothesis testing with applications to genomics: New developments in R/Bioconductor pack-
age multtest. Journal of Statistical Software (submitted). Temporary URL: http://www.stat.
berkeley.edu/~houston/JSSNullDistEBMTP. pdf.

Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multi-
ple testing with independent statistics. J. Behav. Educ. Statist. Vol 25: 60-83.

Y. Benjamini, A.M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that con-
trol the false discovery rate. Biometrika. Vol. 93: 491-507.

M.J. van der Laan, M.D. Birkner, and A.E. Hubbard (2005). Empirical Bayes and Resampling
Based Multiple Testing Procedure Controlling the Tail Probability of the Proportion of False Pos-
itives. Statistical Applications in Genetics and Molecular Biology, 4(1). http://www.bepress.
com/sagmb/vol4/iss1/art29/

S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer, New York, 2008.

S. Dudoit, H.N. Gilbert, and M.J. van der Laan (2008). Resampling-based empirical Bayes mul-
tiple testing procedures for controlling generalized tail probability and expected value error rates:
Focus on the false discovery rate and simulation study. Biometrical Journal, 50(5):716-44. http:
//www.stat.berkeley.edu/~houston/BIMCPSupp/BIMCPSupp.html.

H.N. Gilbert, M.J. van der Laan, and S. Dudoit. Joint multiple testing procedures for graphical
model selection with applications to biological networks. Technical report, U.C. Berkeley Division
of Biostatistics Working Paper Series, April 2009. URL http://www.bepress.com/ucbbiostat/
paper245.

See Also

EBMTP, EBMTP-class, EBMTP-methods

Examples

set.seed(99)
data<-matrix(rnorm(9@),nr=9)

http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf
http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf
http://www.bepress.com/sagmb/vol4/iss1/art29/
http://www.bepress.com/sagmb/vol4/iss1/art29/
http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html
http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html
http://www.bepress.com/ucbbiostat/paper245
http://www.bepress.com/ucbbiostat/paper245

meanX 29

group<-c(rep(1,5),rep(0,5))

#EB fwer control with centered and scaled bootstrap null distribution
#(B=100 for speed)

eb.m1<-EBMTP(X=data, Y=group,alternative="1less",B=100,method="common.cutoff")
print(eb.m1)

summary(eb.m1)

par(mfrow=c(2,2))

plot(eb.m1, top=9)

abh <- ABH.h@(eb.ml1@rawp)
abh

eb.m2 <- EBupdate(eb.m1,prior="ABH")
eb.m2@prior

meanX Functions to create test statistic closures and apply them to data

Description

The package multtest uses closures in the function MTP to compute test statistics. The closure used
depends on the value of the argument test. These functions create the closures for different tests,
given any additional variables, such as outcomes or covariates. The function get.Tn calls wapply
to apply one of these closures to observed data (and possibly weights).

One exception for how test statistics are calculated in multtest involve tests of correlation param-
eters, where the change of dimensionality between the p variables in X and the p-choose-2 hypothe-
ses corresponding to the number of pairwise correlations presents a challenge. In this case, the test
statistics are calculated directly in corr.Tn and returned in a manner similar to the test statistic
function closures. No resampling is done either, since the null distribution for tests of correlation
parameters are only implemented when nulldist="ic'. Details are given below.

Usage

meanX(psi@ = @, na.rm = TRUE, standardize = TRUE,
alternative = "two.sided", robust = FALSE)

diffmeanX(label, psi@ = @, var.equal = FALSE, na.rm = TRUE,
standardize = TRUE, alternative = "two.sided”, robust = FALSE)

FX(label, na.rm = TRUE, robust = FALSE)
blockFX(label, na.rm = TRUE, robust = FALSE)

twowayFX(label, na.rm = TRUE, robust = FALSE)

30 meanX

ImX(Z = NULL, n, psi@ = @, na.rm = TRUE, standardize = TRUE,
alternative = "two.sided”, robust = FALSE)

ImY(Y, Z = NULL, n, psi@ = @, na.rm = TRUE, standardize = TRUE,
alternative = "two.sided"”, robust = FALSE)

coxY(surv.obj, strata = NULL, psi@ = @, na.rm = TRUE, standardize = TRUE,
alternative = "two.sided”, init = NULL, method = "efron")

get.Tn(X, stat.closure, W = NULL)

corr.Tn(X, test, alternative, use = "pairwise")
Arguments
X A matrix, data.frame or ExpressionSet containing the raw data. In the case of

an ExpressionSet, exprs(X) is the data of interest and pData(X) may contain
outcomes and covariates of interest. For currently implemented tests, one hy-
pothesis is tested for each row of the data.

W A vector or matrix containing non-negative weights to be used in computing the
test statistics. If a matrix, W must be the same dimension as X with one weight
for each value in X. If a vector, W may contain one weight for each observation
(i.e. column) of X or one weight for each variable (i.e. row) of X. In either case,
the weights are duplicated apporpraiately. Weighted f-tests are not available.
Default is 'NULL".

label A vector containing the class labels for t- and f-tests. For the blockFX function,
observations are divided into 1 blocks of n/1 observations. Within each block
there may be k groups with k>2. For this test, there is only one observation
per block*group combination. The labels (and corresponding rows of Z and
columns of X and W) must be ordered by block and within each block ordered
by group. Groups must be labeled with integers 1, ...,k. For the twowayFX
function, observations are divided into 1 blocks. Within each block there may
be k groups with k>2. There must be more than one observation per group*block
combination for this test. The labels (and corresponding rows of Z and columns
of X and W) must be ordered by block and within each block ordered by group.

Groups must be labeled with integers 1, . . . , k.

Y A vector or factor containing the outcome of interest for linear models. This
may be a continuous or polycotomous dependent variable.

surv.object A survival object as returned by the Surv function, to be used as response in
coxy.

z A vector, factor, or matrix containing covariate data to be used in the linear

regression models. Each variable should be in one column.

strata A vector, factor, or matrix containing covariate data to be used in the Cox re-
gression models. Covariate data will be converted to a factor variable (via the
strata function) for use in the coxph function. Each variable should be in one
column.

n The sample size, e.g. length(Y) or nrow(Z).

meanX 31

psi@ Hypothesized null value for the parameter of interest (e.g. mean or difference in
means), typically zero (default).

var.equal Indicator of whether to use t-statistics that assume equal variance in the two
groups when computing the denominator of the test statistics.

na.rm Logical indicating whether to remove observations with an NA. Defaultis "TRUE’.

standardize Logical indicating whether to use the standardized version of the test statistics

(usual t-statistics are standardized). Default is "TRUE’.

alternative Character string indicating the alternative hypotheses, by default ’two.sided’.
For one-sided tests, use ’less’ or "greater’ for null hypotheses of ’greater than or
equal’ (i.e. alternative is ’less’) and ’less than or equal’, respectively.

robust Logical indicating whether to use robust versions of the test statistics.

init Vector of initial values of the iteration in coxY function, as used in coxph in the
survival package. Default initial value is zero for all variables (init=NULL).

method A character string specifying the method for tie handling in coxY function, as
used in coxph in the survival package. Default is "efron".

test For corr.Tn, a character string of either ’t.cor’ or ’z.cor’ indicating whether
t-statistics or Fisher’s z-statistics are to be calculated when probing hypotheses
involving correlation parameters.

use Similar to the options in cor, a character string giving a method for comput-
ing covariances in the presence of missing values. Default is ’pairwise’, which
allows for the covariance/correlation matrix to be calculated using the most in-
formation possible when NAs are present.

Details

The use of closures, in the style of the genefilter package, allows uniform data input for all
MTPs and facilitates the extension of the package’s functionality by adding, for example, new types
of test statistics. Specifically, for each value of the MTP argument test, a closure is defined which
consists of a function for computing the test statistic (with only two arguments, a data vector x
and a corresponding weight vector w, with default value of NULL) and its enclosing environment,
with bindings for relevant additional arguments. These arguments may include null values psi®o,
outcomes (Y, label, surv.object), and covariates Z. The vectors x and w are rows of the matrices
X and W.

In the MTP function, the closure is first used to compute the vector of observed test statistics, and
then, in each bootstrap iteration, to produce the estimated joint null distribution of the test statistics.
In both cases, the function get.Tn is used to apply the closure to rows of the matrices of data (X)
and weights (W). Thus, new test statistics can be added to multtest package by simply defining a
new closure and adding a corresponding value for the test argument to the MTP function.

As mentioned above, one exception made to the closure rule in multtest was done for the case of
tests involving correlation parameters (i.e., when test="t.cor' or test="z.cor"). In particular,
the change of dimension between the number of variables in X and the number of hypotheses cor-
responding to all pairwise correlation parameters presented a challenge. In this setting, a ’closure-
like’ function was written which returns choose(dim(X)[2],2) test statistics stored in a matrix
obs described below. No resampling methods are available for ’t.cor’ and ’z.cor’, as their only cur-
rent available null distribution is based on influence curves (nulldist="ic"'), meaning that the test

32 meanX

statistics null distribution is sampled directly from an appropriate multivariate normal distribution.
In this manner, the data are used to calculate test statistics and null distribution estimates of the
appropriate length and dimension, with sidedness correctly accounted for. With care, these objects
for tests of correlation can then be integrated into the rest of the (modular) multtest functionality
to perform multiple testing using other available argument options in the functions MTP or EBMTP.

Value

For meanX, diffmeanX, FX, blockFX, twowayFX, 1ImX, 1mY, and coxY, a closure consisting of a
function for computing test statistics and its enclosing environment. For get.Tn and corr.Tn, the
observed test statistics stored in a matrix obs with numerator (possibly absolute value or negative,
depending on the value of alternative) in the first row, denominator in the second row, and a 1 or
-1 in the third row (depending on the value of alternative). The vector of observed test statistics is
obs[1,]*obs[3,]/obs[2,].

Author(s)

Katherine S. Pollard, Houston N. Gilbert, and Sandra Taylor, with design contributions from Dun-
can Temple Lang, Sandrine Dudoit and Mark J. van der Laan

See Also

MTP, get.Tn, wapply, boot.resample

Examples

data<-matrix(rnorm(200),nr=20)

#one-sample t-statistics

ttest<-meanX(psi@=0,na.rm=TRUE, standardize=TRUE,alternative="two.sided", robust=FALSE)
obs<-wapply(data, 1, ttest,W=NULL)

statistics<-obs[1, J*obs[3,]/0bs[2,]

statistics

#for tests of correlation parameters,

#note change of dimension compared to dim(data),

#function calculate statistics directly in same form as above
obs <- corr.Tn(data,test="t.cor",alternative="greater")
dim(obs)

statistics<-obs[1,J]*obs[3,]/0bs[2,]

length(statistics)

#two-way F-statistics

FData <- matrix(rnorm(5x60),nr=5)
label<-rep(c(rep(1,10), rep(2,10), rep(3,10)),2)
twowayf<-twowayFX(label)
obs<-wapply(FData, 1, twowayf,W=NULL)
statistics<-obs[1,]*obs[3,]1/0bs[2,]

statistics

mt.maxT

33

mt.maxT

Step-down maxT and minP multiple testing procedures

Description

These functions compute permutation adjusted p-values for step-down multiple testing procedures
described in Westfall & Young (1993).

Usage

mt.maxT(X,classlabel,test="t",side="abs", fixed.seed.sampling="y" 6 B=10000,na=.mt
mt.minP(X,classlabel,test="t",side="abs", fixed.seed.sampling="y" 6 B=10000,na=.mt

Arguments

X

classlabel

test

side

A data frame or matrix, with m rows corresponding to variables (hypotheses)
and n columns to observations. In the case of gene expression data, rows cor-
respond to genes and columns to mRNA samples. The data can be read using
read. table.

A vector of integers corresponding to observation (column) class labels. For &
classes, the labels must be integers between 0 and k£ — 1. For the blockf test
option, observations may be divided into n/k blocks of k observations each.
The observations are ordered by block, and within each block, they are labeled
using the integers 0 to k — 1.

A character string specifying the statistic to be used to test the null hypothesis
of no association between the variables and the class labels.

If test="t", the tests are based on two-sample Welch t-statistics (unequal vari-
ances).

If test="t.equalvar", the tests are based on two-sample t-statistics with equal
variance for the two samples. The square of the t-statistic is equal to an F-
statistic for k = 2.

If test="wilcoxon", the tests are based on standardized rank sum Wilcoxon
statistics.

If test="f", the tests are based on F-statistics.

If test="pairt", the tests are based on paired t-statistics. The square of the
paired t-statistic is equal to a block F-statistic for k = 2.

If test="blockf", the tests are based on F-statistics which adjust for block dif-
ferences (cf. two-way analysis of variance).

A character string specifying the type of rejection region.

If side="abs", two-tailed tests, the null hypothesis is rejected for large absolute
values of the test statistic.

If side="upper"”, one-tailed tests, the null hypothesis is rejected for large values
of the test statistic.

If side="1lower", one-tailed tests, the null hypothesis is rejected for small val-
ues of the test statistic.

.naNUM, nonpara="n")
.naNUM, nonpara="n")

34 mt.maxT

fixed.seed.sampling
If fixed.seed.sampling="y", a fixed seed sampling procedure is used, which
may double the computing time, but will not use extra memory to store the
permutations. If fixed.seed.sampling="n", permutations will be stored in
memory. For the blockf test, the option n was not implemented as it requires
too much memory.

B The number of permutations. For a complete enumeration, B should be 0 (zero)
or any number not less than the total number of permutations.
na Code for missing values (the default is .mt.naNUM=--93074815.62). Entries

with missing values will be ignored in the computation, i.e., test statistics will
be based on a smaller sample size. This feature has not yet fully implemented.

nonpara If nonpara="y", nonparametric test statistics are computed based on ranked
data.
If nonpara="n", the original data are used.

Details

These functions compute permutation adjusted p-values for the step-down maxT and minP multiple
testing procedures, which provide strong control of the family-wise Type I error rate (FWER).
The adjusted p-values for the minP procedure are defined in equation (2.10) p. 66 of Westfall &
Young (1993), and the maxT procedure is discussed p. 50 and 114. The permutation algorithms
for estimating the adjusted p-values are given in Ge et al. (In preparation). The procedures are for
the simultaneous test of m null hypotheses, namely, the null hypotheses of no association between
the m variables corresponding to the rows of the data frame X and the class labels classlabel.
For gene expression data, the null hypotheses correspond to no differential gene expression across
mRNA samples.

Value

A data frame with components

index Vector of row indices, between 1 and nrow(X), where rows are sorted first ac-
cording to their adjusted p-values, next their unadjusted p-values, and finally
their test statistics.

teststat Vector of test statistics, ordered according to index. To get the test statistics in
the original data order, use teststat[order(index)].

rawp Vector of raw (unadjusted) p-values, ordered according to index.

adjp Vector of adjusted p-values, ordered according to index.

plower For mt . minP function only, vector of "adjusted p-values", where ties in the per-

mutation distribution of the successive minima of raw p-values with the ob-
served p-values are counted only once. Note that procedures based on plower
do not control the FWER. Comparison of plower and adjp gives an idea of
the discreteness of the permutation distribution. Values in plower are ordered
according to index.

Author(s)

Yongchao Ge, <yongchao.ge@mssm.edu>,
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.

http://www.stat.berkeley.edu/~sandrine

mt.maxT 35

References

S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray
experiments.

Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hypothe-
sis, Technical Report \#633 of UCB Stat. http://www.stat.berkeley.edu/~gyc

P. H. Westfall and S. S. Young (1993). Resampling-based multiple testing: Examples and methods
for p-value adjustment. John Wiley \& Sons.

See Also

mt.plot, mt.rawp2adjp, mt.reject, mt.sample.teststat, mt.teststat, golub.

Examples

Gene expression data from Golub et al. (1999)

To reduce computation time and for illustrative purposes, we condider only
the first 100 genes and use the default of B=10,000 permutations.

In general, one would need a much larger number of permutations

for microarray data.

data(golub)
smallgd<-golub[1:100,]
classlabel<-golub.cl

Permutation unadjusted p-values and adjusted p-values
for maxT and minP procedures with Welch t-statistics
resT<-mt.maxT(smallgd,classlabel)
resP<-mt.minP(smallgd,classlabel)
rawp<-resT$rawp[order(resT$index)]
teststat<-resT$teststat[order(resT$index)]

Plot results and compare to Bonferroni procedure
bonf<-mt.rawp2adjp(rawp, proc=c("Bonferroni”))
allp<-cbind(rawp, bonf$adjplorder(bonf$index), 2], resT$adjplorder(resT$index)], resP$adjplorder(resP$index)])

mt.plot(allp, teststat, plottype="rvsa”, proc=c("rawp”,"Bonferroni”, "maxT","minP"),leg=c(0.7,50),1ty=1,col=1:4,
mt.plot(allp, teststat, plottype="pvsr"”, proc=c("rawp"”, "Bonferroni”, "maxT","minP"),leg=c(60,0.2),1ty=1,col=1:4,
mt.plot(allp, teststat, plottype="pvst”, proc=c("rawp”,"Bonferroni”,"maxT","minP"),leg=c(-6,0.6),pch=16,col=1:4

Permutation adjusted p-values for minP procedure with F-statistics (like equal variance t-statistics)
mt.minP(smallgd,classlabel,test="f",6 fixed.seed.sampling="n")

Note that the test statistics used in the examples below are not appropriate
for the Golub et al. data. The sole purpose of these examples is to
demonstrate the use of the mt.maxT and mt.minP functions.

Permutation adjusted p-values for maxT procedure with paired t-statistics
classlabel<-rep(c(0,1),19)
mt.maxT(smallgd,classlabel, test="pairt")

http://www.stat.berkeley.edu/~gyc

36 mt.plot

Permutation adjusted p-values for maxT procedure with block F-statistics
classlabel<-rep(0:18,2)
mt.maxT(smallgd,classlabel,test="blockf"”, side="upper")

mt.plot Plotting results from multiple testing procedures

Description

This function produces a number of graphical summaries for the results of multiple testing proce-
dures and their corresponding adjusted p-values.

Usage
mt.plot(adjp, teststat, plottype="rvsa", logscale=FALSE, alpha=seq(@, 1, length = 100), proc, leg=c(Q,

Arguments

adjp A matrix of adjusted p-values, with rows corresponding to hypotheses (genes)
and columns to multiple testing procedures. This matrix could be obtained from
the functions mt.maxT, mt.minP, or mt.rawp2adjp.

teststat A vector of test statistics for each of the hypotheses. This vector could be ob-
tained from the functions mt. teststat, mt.maxT, or mt.minP.

plottype A character string specifying the type of graphical summary for the results of
the multiple testing procedures.
If plottype="rvsa"”, the number of rejected hypotheses is plotted against the
nominal Type I error rate for each of the procedures given in proc.
If plottype="pvsr", the ordered adjusted p-values are plotted for each of the
procedures given in proc. This can be viewed as a plot of the Type I error rate
against the number of rejected hypotheses.
If plottype="pvst”, the adjusted p-values are plotted against the test statistics
for each of the procedures given in proc.
If plottype="pvsi”, the adjusted p-values are plotted for each of the proce-
dures given in proc using the original data order.

logscale A logical variable for the pvst and pvsi plots. If logscale is TRUE, the negative
decimal logarithms of the adjusted p-values are plotted against the test statistics
or gene indices. If logscale is FALSE, the adjusted p-values are plotted against
the test statistics or gene indices.

alpha A vector of nominal Type I error rates for the rvsa plot.

proc A vector of character strings containing the names of the multiple testing proce-
dures, to be used in the legend.

Graphical parameters such as col, 1ty, pch, and 1wd may also be supplied as
arguments to the function (see par).

leg A vector of coordinates for the legend.

mt.plot 37

Author(s)

Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine,
Yongchao Ge, <yongchao.ge@mssm.edu>.

References

S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray
experiments.

Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hypothe-
sis, Technical Report \#633 of UCB Stat. http://www.stat.berkeley.edu/~gyc

See Also

mt.maxT, mt.minP, mt.rawp2adjp, mt.reject, mt.teststat, golub.

Examples

Gene expression data from Golub et al. (1999)

To reduce computation time and for illustrative purposes, we condider only
the first 100 genes and use the default of B=10,000 permutations.

In general, one would need a much larger number of permutations

for microarray data.

data(golub)
smallgd<-golub[1:100,]
classlabel<-golub.cl

Permutation unadjusted p-values and adjusted p-values for maxT procedure
res1<-mt.maxT(smallgd,classlabel)

rawp<-resi$rawp[order(resi$index)]
teststat<-resli$teststat[order(resi$index)]

Permutation adjusted p-values for simple multiple testing procedures
procs<-c("Bonferroni”, "Holm", "Hochberg", "SidakSS","SidakSD","BH", "BY")
res2<-mt.rawp2adjp(rawp,procs)

Plot results from all multiple testing procedures
allp<-cbind(res2$adjplorder(res2$index),],res1$adjplorder(resi$index)])
dimnames(allp)[[2]]1[9]<-"maxT"

procs<-dimnames(allp)[[2]]

procs[7:91<-c("maxT","BH","BY")

allp<-allp[,procs]

cols<-c(1:4,"orange", "brown”,"purple”,5:6)
ltypes<-c(3,rep(1,6),rep(2,2))

Ordered adjusted p-values
mt.plot(allp, teststat,plottype="pvsr",proc=procs,leg=c(80,0.4),1lty=1types,col=cols, lwd=2)

http://www.stat.berkeley.edu/~sandrine
http://www.stat.berkeley.edu/~gyc

38 mt.rawp2adjp

Adjusted p-values in original data order
mt.plot(allp, teststat,plottype="pvsi"”,proc=procs,leg=c(80,0.4),1lty=1types,col=cols,lwd=2)

Number of rejected hypotheses vs. level of the test
mt.plot(allp,teststat,plottype="rvsa",proc=procs,leg=c(0.05,100),1lty=1types,col=cols, lwd=2)

Adjusted p-values vs. test statistics
mt.plot(allp,teststat,plottype="pvst"”,logscale=TRUE, proc=procs,leg=c(@,4),pch=1types,col=cols)

mt.rawp2adjp Adjusted p-values for simple multiple testing procedures

Description

This function computes adjusted p-values for simple multiple testing procedures from a vector of
raw (unadjusted) p-values. The procedures include the Bonferroni, Holm (1979), Hochberg (1988),
and Sidak procedures for strong control of the family-wise Type I error rate (FWER), and the
Benjamini & Hochberg (1995) and Benjamini & Yekutieli (2001) procedures for (strong) control of
the false discovery rate (FDR). The less conservative adaptive Benjamini & Hochberg (2000) and
two-stage Benjamini & Hochberg (2006) FDR-controlling procedures are also included.

Usage

mt.rawp2adjp(rawp, proc=c("Bonferroni”, "Holm", "Hochberg"”, "SidakSS", "SidakSD",
"BH", "BY","”ABH","TSBH"), alpha = 0.05, na.rm = FALSE)

Arguments
rawp A vector of raw (unadjusted) p-values for each hypothesis under considera-
tion. These could be nominal p-values, for example, from ¢-tables, or permu-
tation p-values as given in mt.maxT and mt.minP. If the mt.maxT or mt.minP
functions are used, raw p-values should be given in the original data order,
rawp[order(index)].
proc A vector of character strings containing the names of the multiple testing pro-

cedures for which adjusted p-values are to be computed. This vector should in-
clude any of the following: "Bonferroni”, "Holm", "Hochberg", "SidakSS",
HsidakSDH’ IIBH”’ IIBYII, HABHH’ IITSBHII.

Adjusted p-values are computed for simple FWER- and FDR- controlling pro-
cedures based on a vector of raw (unadjusted) p-values by one or more of the
following methods:

Bonferroni Bonferroni single-step adjusted p-values for strong control of the
FWER.
Holm Holm (1979) step-down adjusted p-values for strong control of the FWER.

Hochberg Hochberg (1988) step-up adjusted p-values for strong control of the
FWER (for raw (unadjusted) p-values satisfying the Simes inequality).

mt.rawp2adjp 39

SidakSS Sidak single-step adjusted p-values for strong control of the FWER
(for positive orthant dependent test statistics).

SidakSD Sidak step-down adjusted p-values for strong control of the FWER
(for positive orthant dependent test statistics).

BH Adjusted p-values for the Benjamini & Hochberg (1995) step-up FDR-
controlling procedure (independent and positive regression dependent test
statistics).

BY Adjusted p-values for the Benjamini & Yekutieli (2001) step-up FDR-controlling
procedure (general dependency structures).

ABH Adjusted p-values for the adaptive Benjamini & Hochberg (2000) step-
up FDR-controlling procedure. This method ammends the original step-up
procedure using an estimate of the number of true null hypotheses obtained
from p-values.

TSBH Adjusted p-values for the two-stage Benjamini & Hochberg (2006) step-
up FDR-controlling procedure. This method ammends the original step-
up procedure using an estimate of the number of true null hypotheses ob-
tained from a first-pass application of "BH". The adjusted p-values are a-
dependent, therefore alpha must be set in the function arguments when
using this procedure.

alpha A nominal type I error rate, or a vector of error rates, used for estimating the
number of true null hypotheses in the two-stage Benjamini & Hochberg proce-
dure ("TSBH"). Default is 0.05.

na.rm An option for handling NA values in a list of raw p-values. If FALSE, the number
of hypotheses considered is the length of the vector of raw p-values. Otherwise,
if TRUE, the number of hypotheses is the number of raw p-values which were not
NAs.

Value
A list with components:

adjp A matrix of adjusted p-values, with rows corresponding to hypotheses and columns
to multiple testing procedures. Hypotheses are sorted in increasing order of their
raw (unadjusted) p-values.

index A vector of row indices, between 1 and length(rawp), where rows are sorted
according to their raw (unadjusted) p-values. To obtain the adjusted p-values in
the original data order, use adjpLorder(index),].

ho . ABH The estimate of the number of true null hypotheses as proposed by Benjamini &
Hochberg (2000) used when computing adjusted p-values for the "ABH" proce-
dure (see Dudoit et al., 2007).

he.TSBH The estimate (or vector of estimates) of the number of true null hypotheses as
proposed by Benjamini et al. (2006) when computing adjusted p-values for the
"TSBH" procedure. (see Dudoit et al., 2007).

Author(s)

Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine,
Yongchao Ge, <yongchao.ge@mssm.edu>,

http://www.stat.berkeley.edu/~sandrine

40 mt.rawp2adjp
Houston Gilbert, http://www.stat.berkeley.edu/~houston.

References

Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.

Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multi-
ple testing with independent statistics. J. Behav. Educ. Statist. Vol 25: 60-83.

Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypothesis
testing under dependency. Annals of Statistics. Vol. 29: 1165-88.

Y. Benjamini, A. M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that con-
trol the false discovery rate. Biometrika. Vol. 93: 491-507.

S. Dudoit, J. P. Shaffer, and J. C. Boldrick (2003). Multiple hypothesis testing in microarray exper-
iments. Statistical Science. Vol. 18: 71-103.

S. Dudoit, H. N. Gilbert, and M. J. van der Laan (2008). Resampling-based empirical Bayes
multiple testing procedures for controlling generalized tail probability and expected value error
rates: Focus on the false discovery rate and simulation study. Biometrical Journal, 50(5):716-44.
http://www.stat.berkeley.edu/~houston/BIMCPSupp/BIMCPSupp.html.

Y. Ge, S. Dudoit, and T. P. Speed (2003). Resampling-based multiple testing for microarray data
analysis. TEST. Vol. 12: 1-44 (plus discussion p. 44-77).

Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika.
Vol. 75: 800-802.

S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol. 6:
65-70.

See Also

mt.maxT, mt.minP, mt.plot, mt.reject, golub.

Examples

Gene expression data from Golub et al. (1999)

To reduce computation time and for illustrative purposes, we condider only
the first 100 genes and use the default of B=10,000 permutations.

In general, one would need a much larger number of permutations

for microarray data.

data(golub)
smallgd<-golub[1:100,]

http://www.stat.berkeley.edu/~houston
http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html

mt.reject 41

classlabel<-golub.cl

Permutation unadjusted p-values and adjusted p-values for maxT procedure
res1<-mt.maxT(smallgd,classlabel)
rawp<-resi$rawp[order(resl1$index)]

Permutation adjusted p-values for simple multiple testing procedures
procs<-c("Bonferroni”, "Holm", "Hochberg","SidakSS","SidakSD", "BH", "BY", "ABH", "TSBH")
res2<-mt.rawp2adjp(rawp,procs)

mt.reject Identity and number of rejected hypotheses

Description
This function returns the identity and number of rejected hypotheses for several multiple testing
procedures and different nominal Type I error rates.

Usage

mt.reject(adjp, alpha)

Arguments
adjp A matrix of adjusted p-values, with rows corresponding to hypotheses and columns
to multiple testing procedures. This matrix could be obtained from the function
mt.rawp2adjp .
alpha A vector of nominal Type I error rates.
Value

A list with components

r A matrix containing the number of rejected hypotheses for several multiple test-
ing procedures and different nominal Type I error rates. Rows correspond to
Type I error rates and columns to multiple testing procedures.

which A matrix of indicators for the rejection of individual hypotheses by different
multiple testing procedures for a nominal Type I error rate alphal[1]. Rows
correspond to hypotheses and columns to multiple testing procedures.

Author(s)

Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine,
Yongchao Ge, <yongchao.ge@mssm. edu>.

See Also

mt.maxT, mt.minP, mt.rawp2adjp, golub.

http://www.stat.berkeley.edu/~sandrine

42 mt.sample.teststat

Examples

Gene expression data from Golub et al. (1999)

To reduce computation time and for illustrative purposes, we condider only
the first 100 genes and use the default of B=10,000 permutations.

In general, one would need a much larger number of permutations

for microarray data.

data(golub)
smallgd<-golub[1:100,]
classlabel<-golub.cl

Permutation unadjusted p-values and adjusted p-values for maxT procedure
res<-mt.maxT(smallgd,classlabel)
mt.reject(cbind(res$rawp,res$adjp),seq(@,1,0.1))$r

mt.sample. teststat Permutation distribution of test statistics and raw (unadjusted) p-
values

Description

These functions provide tools to investigate the permutation distribution of test statistics, raw (un-
adjusted) p-values, and class labels.

Usage

no,n

mt.sample.teststat(V,classlabel,test="t",fixed.seed.sampling="y" ,B=10000,na=.mt.naNUM, nonpara="n")
mt.sample.rawp(V,classlabel,test="t",side="abs"”,fixed.seed.sampling="y",B=10000,na=.mt.naNUM, nonpar
mt.sample.label(classlabel,test="t", fixed.seed.sampling="y" 6 B=10000)

Arguments

\% A numeric vector containing the data for one of the variables (genes).

classlabel A vector of integers corresponding to observation (column) class labels. For &k
classes, the labels must be integers between 0 and k£ — 1. For the blockf test
option, observations may be divided into n/k blocks of k observations each.
The observations are ordered by block, and within each block, they are labeled
using the integers 0 to k — 1.

test A character string specifying the statistic to be used to test the null hypothesis

of no association between the variables and the class labels.

If test="t", the tests are based on two-sample Welch t-statistics (unequal vari-
ances).

If test="t.equalvar”, the tests are based on two-sample t-statistics with equal
variance for the two samples. The square of the t-statistic is equal to an F-
statistic for k = 2.

If test="wilcoxon", the tests are based on standardized rank sum Wilcoxon

mt.sample.teststat

side

43

statistics.

If test="f", the tests are based on F-statistics.

If test="pairt", the tests are based on paired t-statistics. The square of the
paired t-statistic is equal to a block F-statistic for k = 2.

If test="blockf", the tests are based on F-statistics which adjust for block dif-
ferences (cf. two-way analysis of variance).

A character string specifying the type of rejection region.

If side="abs", two-tailed tests, the null hypothesis is rejected for large absolute
values of the test statistic.

If side="upper", one-tailed tests, the null hypothesis is rejected for large values
of the test statistic.

If side="1lower", one-tailed tests, the null hypothesis is rejected for small val-
ues of the test statistic.

fixed.seed.sampling

na

nonpara

Value

If fixed.seed.sampling="y", a fixed seed sampling procedure is used, which
may double the computing time, but will not use extra memory to store the
permutations. If fixed.seed.sampling="n", permutations will be stored in
memory. For the blockf test, the option n was not implemented as it requires
too much memory.

The number of permutations. For a complete enumeration, B should be 0 (zero)
or any number not less than the total number of permutations.

Code for missing values (the default is .mt.naNUM=--93074815.62). Entries
with missing values will be ignored in the computation, i.e., test statistics will
be based on a smaller sample size. This feature has not yet fully implemented.

nen

If nonpara="y", nonparametric test statistics are computed based on ranked
data.
If nonpara="n", the original data are used.

For mt.sample. teststat, a vector containing B permutation test statistics.

For mt.sample. rawp, a vector containing B permutation unadjusted p-values.

For mt.sample.label, a matrix containing B sets of permuted class labels. Each row corresponds
to one permutation.

Author(s)

Yongchao Ge, <yongchao.ge@mssm.edu>,
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.

See Also

mt.maxT, mt.minP, golub.

http://www.stat.berkeley.edu/~sandrine

44

Examples

Gene expression data from Golub et al. (1999)
data(golub)

mt.sample.label(golub.cl,B=10)

permt<-mt.sample.teststat(golub[1,],golub.cl,B=1000)
qggnorm(permt)
qqline(permt)

permt<-mt.sample.teststat(golub[50,],golub.cl,B=1000)
ggnorm(permt)
ggline(permt)

mt.teststat

permp<-mt.sample.rawp(golub[1,],golub.cl,B=1000)

hist(permp)

mt.teststat

Computing test statistics for each row of a data frame

Description

These functions provide a convenient way to compute test statistics, e.g., two-sample Welch t-
statistics, Wilcoxon statistics, F-statistics, paired t-statistics, block F-statistics, for each row of a

data frame.

Usage

mt.teststat(X,classlabel,test="t",na=.mt.naNUM, nonpara="n")
mt.teststat.num.denum(X,classlabel,test="t",na=.mt.naNUM, nonpara="n")

Arguments

X

classlabel

test

A data frame or matrix, with m rows corresponding to variables (hypotheses)
andn columns to observations. In the case of gene expression data, rows cor-
respond to genes and columns to mRNA samples. The data can be read using
read. table.

A vector of integers corresponding to observation (column) class labels. For &
classes, the labels must be integers between 0 and k£ — 1. For the blockf test
option, observations may be divided into n/k blocks of k observations each.
The observations are ordered by block, and within each block, they are labeled
using the integers 0 to k — 1.

A character string specifying the statistic to be used to test the null hypothesis
of no association between the variables and the class labels.

If test="t", the tests are based on two-sample Welch t-statistics (unequal vari-
ances).

If test="t.equalvar", the tests are based on two-sample t-statistics with equal

mt.teststat

na

nonpara

Value

45

variance for the two samples. The square of the t-statistic is equal to an F-
statistic for k = 2.

If test="wilcoxon", the tests are based on standardized rank sum Wilcoxon
statistics.

If test="f", the tests are based on F-statistics.

If test="pairt", the tests are based on paired t-statistics. The square of the
paired t-statistic is equal to a block F-statistic for k = 2.

If test="blockf", the tests are based on F-statistics which adjust for block dif-
ferences (cf. two-way analysis of variance).

Code for missing values (the default is .mt.naNUM=--93074815.62). Entries
with missing values will be ignored in the computation, i.e., test statistics will
be based on a smaller sample size. This feature has not yet fully implemented.

nen

If nonpara="y", nonparametric test statistics are computed based on ranked
data.
If nonpara="n", the original data are used.

For mt. teststat, a vector of test statistics for each row (gene).

For mt.teststat.num.denum, a data frame with

teststat.num

teststat.denum

Author(s)

the numerator of the test statistics for each row, depending on the specific test
option.

the denominator of the test statistics for each row, depending on the specific
test option.

Yongchao Ge, <yongchao.ge@mssm. edu>,
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.

See Also

mt.maxT, mt.minP, golub.

Examples

Gene expression data from Golub et al. (1999)

data(golub)

teststat<-mt.teststat(golub,golub.cl)

qgnorm(teststat)
qqline(teststat)

tmp<-mt.teststat.num.denum(golub,golub.cl, test="t")
num<-tmp$teststat.num

denum<-tmp$teststat.denum

plot(sqrt(denum),num)

http://www.stat.berkeley.edu/~sandrine

46

MTP

tmp<-mt.teststat.num.denum(golub,golub.cl, test="f")

MTP

A function to perform resampling-based multiple hypothesis testing

Description

A user-level function to perform multiple testing procedures (MTP). A variety of t- and F-tests,
including robust versions of most tests, are implemented. Single-step and step-down minP and
maxT methods are used to control the chosen type I error rate (FWER, gFWER, TPPFP, or FDR).
Bootstrap and permutation null distributions are available. Additionally, for t-statistics, one may
wish to sample from an appropriate multivariate normal distribution with mean zero and correlation
matrix derived from the vector influence function. Arguments are provided for user control of
output. Gene selection in microarray experiments is one application.

Usage

MTP(X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL,

na.rm = TRUE, test = "t.twosamp.unequalvar”, robust = FALSE,

standardize = TRUE, alternative = "two.sided”, psi@ = 0,

typeone = "fwer"”, k = 0, q = 0.1, fdr.method = "conservative",

alpha = 0.05, smooth.null = FALSE, nulldist = "boot.cs",

B = 1000, ic.quant.trans = FALSE, MVN.method = "mvrnorm”,

penalty = 1e-06, method = "ss.maxT", get.cr = FALSE, get.cutoff = FALSE,
get.adjp = TRUE, keep.nulldist = TRUE, keep.rawdist = FALSE,

seed = NULL, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL,
marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL,
keep.index = FALSE, keep.label = FALSE)

Arguments

X

A matrix, data.frame or ExpressionSet containing the raw data. In the case of
an ExpressionSet, exprs(X) is the data of interest and pData(X) may contain
outcomes and covariates of interest. For most currently implemented tests (ex-
ception: tests involving correlation parameters), one hypothesis is tested for
each row of the data.

A vector or matrix containing non-negative weights to be used in computing the
test statistics. If a matrix, W must be the same dimension as X with one weight for
each value in X. If a vector, W may contain one weight for each observation (i.e.
column) of X or one weight for each variable (i.e. row) of X. In either case, the
weights are duplicated appropriately. Weighted F-tests are not available. Default
is ’NULL".

A vector, factor, or Surv object containing the outcome of interest. This may
be class labels (F-tests and two sample t-tests) or a continuous or polycotomous

MTP 47

dependent variable (linear regression based t-tests), or survival data (Cox pro-
portional hazards based t-tests). For block.f and f.twoway tests, class labels
must be ordered by block and within each block ordered by group. If X is an
ExpressionSet, Y can be a character string referring to the column of pData(X)
to use as outcome. Default is 'NULL'.

Z A vector, factor, or matrix containing covariate data to be used in the regres-
sion (linear and Cox) models. Each variable should be in one column, so that
nrow(Z)=ncol(X). If X is an ExpressionSet, Z can be a character string refer-
ring to the column of pData(X) to use as covariates. The variables Z. incl and
Z.adj allow one to specify which covariates to use in a particular test without
modifying the input Z. Default is "NULL’.

Z.incl The indices of the columns of Z (i.e. which variables) to include in the model.
These can be numbers or column names (if the columns are names). Default is
"NULL".

Z.test The index or names of the column of Z (i.e. which variable) to use to test for as-

sociation with each row of X in a linear model. Only used for test="1m.XvsZ",
where it is necessary to specify which covariate’s regression parameter is of
interest. Default is "NULL’.

na.rm Logical indicating whether to remove observations with an NA. Defaultis "TRUE’.

test Character string specifying the test statistics to use, by default "t.twosamp.unequalvar’.
See details (below) for a list of tests.

robust Logical indicating whether to use the robust version of the chosen test, e.g.
Wilcoxon singed rank test for robust one-sample t-test or rlm instead of 1m in
linear models. Default is "FALSE’.

standardize Logical indicating whether to use the standardized version of the test statistics
(usual t-statistics are standardized). Default is "TRUE’.

alternative Character string indicating the alternative hypotheses, by default ’two.sided’.
For one-sided tests, use ’less’ or "greater’ for null hypotheses of ’greater than or
equal’ (i.e. alternative is ’less’) and ’less than or equal’, respectively.

psi@ The hypothesized null value, typically zero (default). Currently, this should be
a single value, which is used for all hypotheses.

typeone Character string indicating which type I error rate to control, by default family-
wise error rate ("fwer’). Other options include generalized family-wise error
rate ("gfwer’), with parameter k giving the allowed number of false positives,
and tail probability of the proportion of false positives ("tppfp’), with parameter
g giving the allowed proportion of false positives. The false discovery rate ("fdr’)
can also be controlled.

k The allowed number of false positives for gFWER control. Defaultis 0 (FWER).
q The allowed proportion of false positives for TPPFP control. Default is 0.1.
fdr.method Character string indicating which FDR controlling method should be used when

typeone="fdr". The options are "conservative" (default) for the more conser-
vative, general FDR controlling procedure and "restricted" for the method which
requires more assumptions.

alpha The target nominal type I error rate, which may be a vector of error rates. Default
is 0.05.

48

smooth.null

nulldist

ic.quant.trans

MVN.method

penalty

method

get.cr
get.cutoff
get.adjp

keep.nulldist

keep.rawdist

MTP

Indicator of whether to use a kernel density estimate for the tail of the null
distributon for computing raw pvalues close to zero. Only used if ‘rawp’ would
be zero without smoothing. Default is "FALSE’.

Character string indicating which resampling method to use for estimating the
joint test statistics null distribution, by default the non-parametric bootstrap
with centering and scaling (’boot.cs’). The old default "boot” will still com-
pile and will correspond to ’boot.cs’. Other null distribution options include
perm’, “boot.ctr’, *boot.qt’, and ’ic’, corresponding to the permutation distribu-
tion, centered-only bootstrap distribution, quantile-transformed bootstrap distri-
bution, and influence curve multivariate normal joint null distribution, respec-
tively. More details below.

The number of bootstrap iterations (i.e. how many resampled data sets), the
number of permutations (if nulldist is ’perm’), or the number of samples from
the multivariate normal distribution (if nulldist is ’ic’) Can be reduced to in-
crease the speed of computation, at a cost to precision. Default is 1000.

Ifnulldist="ic"', alogical indicating whether or not a marginal quantile trans-
formation using a t-distribution or user-supplied marginal distribution (stored in
perm.mat) should be applied to the multivariate normal null distribution. De-
faults for marg.null and marg.par exist, but can also be specified by the user
(see below). Default is "FALSE’.

If nulldist="ic"', one of 'mvrnorm’ or ’Cholesky’ designating how correlated
normal test statistics are to be generated. Selecting *'mvrnorm’ uses the function
of the same name found in the MASS library, whereas *Cholesky’ relies on a
Cholesky decomposition. Default is *'mvrnorm’.

Ifnulldist="ic' and MVN.method="'Cholesky', the value in penalty is added
to all diagonal elements of the estimated test statistics correlation matrix to en-
sure that the matrix is positive definite and that internal calls to 'chol' do not
return an error. Default is 1e-6.

The multiple testing procedure to use. Options are single-step maxT (’ss.maxT’,
default), single-step minP (’ss.minP’), step-down maxT (’sd.maxT’), and step-
down minP (’sd.minP’).

Logical indicating whether to compute confidence intervals for the estimates.
Not available for F-tests. Default is "FALSE’.

Logical indicating whether to compute thresholds for the test statistics. Default
is "TFALSE’.
Logical indicating whether to compute adjusted p-values. Default is "TRUE’.

Logical indicating whether to return the computed bootstrap or influence curve
null distribution, by default "TRUE’. Not available for nulldist="perm’. Note
that this matrix can be quite large.

Logical indicating whether to return the computed non-null (raw) bootstrap dis-
tribution, by default "TFALSE’. Not available when using nulldist="perm’ or
’ic’. Note that this matrix can become quite large. If one wishes to use sub-
sequent calls to update or EBupdate in which one updates choice of bootstrap
null distribution, keep.rawdist must be TRUE. To save on memory, update

only requires that one of keep.nulldist or keep.rawdist be "TRUE’.

MTP

seed

cluster

type
dispatch

marg.null

marg.par

keep.margpar

ncp

perm.mat

49

Integer or vector of integers to be used as argument to set. seed to set the seed
for the random number generator for bootstrap resampling. This argument can
be used to repeat exactly a test performed with a given seed. If the seed is
specified via this argument, the same seed will be returned in the seed slot of
the MTP object created. Else a random seed(s) will be generated, used and
returned. Vector of integers used to specify seeds for each node in a cluster used
to to generate a bootstrap null distribution.

Integer for number of nodes to create or a cluster object created through the
package snow. With cluster=1, bootstrap is implemented on single node. Sup-
plying a cluster object results in the bootstrap being implemented in parallel on
the provided nodes. This option is only available for the bootstrap procedure.
With default value of 1, bootstrap is executed on single CPU.

Interface system to use for computer cluster. See snow package for details.

The number or percentage of bootstrap iterations to dispatch at a time to each
node of the cluster if a computer cluster is used. If dispatch is a percentage,
B*dispatch must be an integer. If dispatch is an integer, then B/dispatch must
be an integer. Default is 5 percent.

If nulldist="boot.qt"', the marginal null distribution to use for quantile trans-
formation. Can be one of 'normal’, ’t’, ’f” or ’perm’. Default is "NULL’, in
which case the marginal null distribution is selected based on choice of test
statistics. Defaults explained below. If ’perm’, the user must supply a vector
or matrix of test statistics corresponding to another marginal null distribution,
perhaps one created externally by the user, and possibly referring to empirically
derived marginal permutation distributions, although the statistics could repre-
sent any suitable choice of marginal null distribution.

If nulldist="boot.qt"', the parameters defining the marginal null distribution
in marg.null to be used for quantile transformation. Default is "NULL’, in
which case the values are selected based on choice of test statistics and other
available parameters (e.g., sample size, number of groups, etc.). Defaults ex-
plained below. User can override defaults, in which case a matrix of marginal
null distribution parameters can be accepted. Providing numeric (vector) values
will apply the same null distribution defined by the parameter to all hypotheses,
while providing a matrix of values allows the user to perform multiple testing
using parameters which may vary with each hypothesis, as may be desired in
common-quantile minP procedures. In this way, theoretical factors or factors
affecting sample size or missingness may be assessed.

If nulldist="boot.qt"', a logical indicating whether the (internally created)
matrix of marginal null distribution parameters should be returned. Default is
"TRUE’.

If nulldist="boot.qt', a value for a possible noncentrality parameter to be
used during marginal quantile transformation. Default is 'NULL’.

If nulldist="boot.qt"' and marg.null="perm', a matrix of user-supplied test
statistics from a particular distribution to be used during marginal quantile trans-
formation. The statistics may represent empirically derived marginal permuta-
tion values, may be theoretical values, or may represent a sample from some
other suitable choice of marginal null distribution.

50

MTP

keep.index If nulldist="ic' and test="t.cor' or test="z.cor"', the index returned is a
matrix with the indices of the first and second variables considered for pairwise
correlations. If there are p hypotheses, this arguments returns t(combn(p, 2)).
For all other choices of test statistic, the index is not returned, as they correspond
to the original order of the hypotheses in X.

keep.label Default is "FALSE’. A logical indicating whether or not the label in Y should be
returned as a slot in the resulting MTP object. Typically not necessary, although
useful if one is using update and wants to use marginal null distribution defaults
with nulldist="boot.qt' (e.g., with F-tests).

Details

A multiple testing procedure (MTP) is defined by choices of test statistics, type I error rate, null
distribution and method for error rate control. Each component is described here. For two-sample
t-tests, the group with the smaller-valued label is substracted from the group with the larger-valued
label. That is, differences in means are calculated as "mean of group 2 - mean of group 1" or "mean
of group B - mean of group A". For paired t-tests, the arrangement of group indices does not matter,
as long as the columns are arranged in the same corresponding order between groups. For example,
if group 1 is coded as 0, and group 2 is coded as 1, for 3 pairs of data, it does not matter if the label Y
is coded as "0,0,0,1,1,1", "1,1,1,0,0,0" "0,1,0,1,0,1" or "1,0,1,0,1,0", the paired differences between
groups will be calculated as "group 2 - group 1". See references for more detail.

Test statistics are determined by the values of test:

t.onesamp: one-sample t-statistic for tests of means;

t.twosamp.equalvar: equal variance two-sample t-statistic for tests of differences in means (two-
sample t-statistic);

t.twosamp.unequalvar: unequal variance two-sample t-statistic for tests of differences in means
(two-sample Welch t-statistic);

t.pair: two-sample paired t-statistic for tests of differences in means;

f: multi-sample F-statistic for tests of equality of population means (assumes constant variance
across groups, but not normality);

f.block: multi-sample F-statistic for tests of equality of population means in a block design (as-
sumes constant variance across groups, but not normality). This test is not available with the
bootstrap null distribution;

f.twoway: multi-sample F-statistic for tests of equality of population means in a block design (as-
sumes constant variance across groups, but not normality). Differs from f.block in requir-
ing multiple observations per group*block combintation. This test uses the means of each
group*block combination as response variable and test for group main effects assuming a
randomized block design;

Im.XvsZ: t-statistic for tests of regression coefficients for variable Z. test in linear models, each
with a row of X as outcome, possibly adjusted by covariates Z. incl from the matrix Z (in the
case of no covariates, one recovers the one-sample t-statistic, t.onesamp);

Im.YvsXZ: t-statistic for tests of regression coefficients in linear models, with outcome Y and each
row of X as covariate of interest, with possibly other covariates Z. incl from the matrix Z;
coxph.YvsXZ: t-statistic for tests of regression coefficients in Cox proportional hazards survival

models, with outcome Y and each row of X as covariate of interest, with possibly other co-
variates Z. incl from the matrix Z.

MTP 51

t.cor t-statistics for tests of pairwise correlation parameters for all variables in X. Note that the
number of hypotheses can become quite large very fast. This test is only available with the
influence curve null distribution.

z.cor Fisher’s z-statistics for tests of pairwise correlation parameters for all variables in X. Note
that the number of hypotheses can become quite large very fast. This test is only available
with the influence curve null distribution.

When robust=TRUE, non-parametric versions of each test are performed. For the linear models, this
means rlmis used instead of 1m. There is not currently a robust version of test=coxph.YvsXZ. For
the t- and F-tests, data values are simply replaced by their ranks. This is equivalent to performing the
following familiar named rank-based tests. The conversion after each test is the formula to convert
from the MTP test to the statistic reported by the listed R function (where num is the numerator of
the MTP test statistics, n is total sample size, nk is group k sample size, K is total number of groups
or treatments, and rk are the ranks in group k).

t.onesamp or t.pair: Wilcoxon signed rank, wilcox. test with y=NULL or paired=TRUE,
conversion: num/n

t.twosamp.equalvar: Wilcoxon rank sum or Mann-Whitney, wilcox. test,
conversion: n2*(num+mean(rl)) - n2*(n2+1)/2

f: Kruskal-Wallis rank sum, kruskal. test,
conversion: num*12/(n*(n-1))

f.block: Friedman rank sum, friedman.test,
conversion: num*12/(K*(K+1))

f.twoway: Friedman rank sum, friedman. test,
conversion: num*12/(K*(K+1))

The implemented MTPs are based on control of the family-wise error rate, defined as the probability
of any false positives. Let Vn denote the (unobserved) number of false positives. Then, control of
FWER at level alpha means that Pr(Vn>0)<=alpha. The set of rejected hypotheses under a FWER
controlling procedure can be augmented to increase the number of rejections, while controlling
other error rates. The generalized family-wise error rate is defined as Pr(Vn>k)<=alpha, and it is
clear that one can simply take an FWER controlling procedure, reject k more hypotheses and have
control of gFWER at level alpha. The tail probability of the proportion of false positives depends
on both the number of false postives (Vn) and the number of rejections (Rn). Control of TPPFP at
level alpha means Pr(Vn/Rn>q)<=alpha, for some proportion q. Control of the false discovery rate
refers to the expected proportion of false positives (rather than a tail probability). Control of FDR
at level alpha means E(Vn/Rn)<=alpha.

In practice, one must choose a method for estimating the test statistics null distribution. We have
implemented several versions of an ordinary non-parametric bootstrap estimator and a permutation
estimator (which makes sense in certain settings, see references). The non-parametric bootstrap
estimator (default) provides asymptotic control of the type I error rate for any data generating dis-
tribution, whereas the permutation estimator requires the subset pivotality assumption. One draw
back of both methods is the discreteness of the estimated null distribution when the sample size
is small. Furthermore, when the sample size is small enough, it is possible that ties will lead to
a very small variance estimate. Using standardize=FALSE allows one to avoid these unusually
small test statistic denominators. Parametric bootstrap estimators are another option (not yet imple-
mented). For asymptotically linear estimators, such as those commonly probed using t-statistics,

52

MTP

another choice of null distribution is provided when sampling from a multivariate normal distribu-
tion with mean zero and correlation matrix derived from the vector influence function. Sampling
from a multivariate normal may alleviate the discreteness of the bootstrap and permutation distribu-
tions, although accuracy in estimation of the test statistics correlation matrix will be of course also
affected by sample size.

For the nonparametric bootstrap distribution with marginal null quantile transformation, the follow-
ing defaults for marg.null and marg.par are available based on choice of test statistics, sample
size 'n’, and various other parameters:

t.onesamp: t-distribution with df=n-1;
t.twosamp.equalvar: t-distribution with df=n-2;
t.twosamp.unequalvar: N(0,1);

t.pair: t-distribution with df=n-1, where n is the number of unique samples, i.e., the number of
observed differences between paired samples;

f: F-distribution with df1=k-1, df2=n-k, for k groups;

f.block: NA. Only available with permutation distribution;

f.twoway: F-distribution with df1=k-1,df2=n-k*1, for k groups and 1 blocks;
Im.XvsZ: N(0,1);

Im.YvsXZ: N(0,1);

coxph.YvsXZ: N(0,1);

t.cor t-distribution with df=n-2;

z.cor N(0,1).

The above defaults, however, can be overridden by manually setting values of marg.null and
marg.par. In the case of nulldist="ic"', and ic.quant.trans=TRUE, the defaults are the same
as above except that ’Im.XvsZ’ and ’Im.YvsXZ’ are replaced with t-distributions with df=n-p.

Given observed test statistics, a type I error rate (with nominal level), and a test statistics null
distribution, MTPs provide adjusted p-values, cutoffs for test statistics, and possibly confidence
regions for estimates. Four methods are implemented, based on minima of p-values and maxima
of test statistics. Only the step down methods are currently available with the permutation null
distribution.

Computation times using a bootstrap null distribution are slower when weights are used for one and
two-sample tests. Computation times when using a bootstrap null distribution also are slower for
the tests ImXvsZ, ImYvsXZ, coxph.YvsXZ.

To execute the bootstrap on a computer cluster, a cluster object generated with makeCluster in the
package snow may be used as the argument for cluster. Alternatively, the number of nodes to use
in the computer cluster can be used as the argument to cluster. In this case, type must be specified
and a cluster will be created. In both cases, Biobase and multtest will be loaded onto each cluster
node if these libraries are located in a directory in the standard search path. If these libraries are
in a non-standard location, it is necessary to first create the cluster, load Biobase and multtest on
each node and then to use the cluster object as the argument to cluster. See documentation for snow
package for additional information on creating and using a cluster.

Finally, note that the old argument csnull is now DEPRECATED as of multtest v. 2.0.0 given the
expanded null distribution options described above. Previously, this argument was an indicator of

MTP

53

whether the bootstrap estimated test statistics distribution should be centered and scaled (to produce
a null distribution) or not. If csnull=FALSE, the (raw) non-null bootstrap estimated test statistics
distribution was returned. If the non-null bootstrap distribution should be returned, this object is
now stored in the 'rawdist’ slot when keep. rawdist=TRUE in the original MTP function call.

Value

An object of class MTP, with the following slots:

statistic

estimate

sampsize

rawp

adjp

conf.reg

cutoff

reject

rawdist

nulldist

nulldist. type

marg.null

Object of class numeric, observed test statistics for each hypothesis, specified
by the values of the MTP arguments test, robust, standardize, and psie.

For the test of single-parameter null hypotheses using t-statistics (i.e., not the
F-tests), the numeric vector of estimated parameters corresponding to each hy-
pothesis, e.g. means, differences in means, regression parameters.

Object of class numeric, number of columns (i.e. observations) in the input data
set.

Object of class numeric, unadjusted, marginal p-values for each hypothesis.

Object of class numeric, adjusted (for multiple testing) p-values for each hy-
pothesis (computed only if the get.adjp argument is TRUE).

For the test of single-parameter null hypotheses using t-statistics (i.e., not the
F-tests), the numeric array of lower and upper simultaneous confidence limits
for the parameter vector, for each value of the nominal Type I error rate alpha
(computed only if the get.cr argument is TRUE).

The numeric matrix of cut-offs for the vector of test statistics for each value of
the nominal Type I error rate alpha (computed only if the get . cutoff argument
is TRUE).

Object of class 'matrix', rejection indicators (TRUE for a rejected null hypoth-
esis), for each value of the nominal Type I error rate alpha.

The numeric matrix for the estimated nonparametric non-null test statistics dis-

tribution (returned only if keep. rawdist=TRUE and if nulldist is one of "boot.ctr’,

"boot.cs’, or “boot.qt’). This slot must not be empty if one wishes to call update
to change choice of bootstrap-based null distribution.

The numeric matrix for the estimated test statistics null distribution (returned
only if keep.nulldist=TRUE); option not currently available for permutation

null distribution, i.e., nulldist="perm"). By default (i.e., for nulldist="boot.cs"),

the entries of nulldist are the null value shifted and scaled bootstrap test statis-
tics, with one null test statistic value for each hypothesis (rows) and bootstrap
iteration (columns).

Character value describing which choice of null distribution was used to gen-
erate the MTP results. Takes on one of the values of the original nulldist
argument in the call to MTP, i.e., "boot.cs’, *boot.ctr’, *boot.qt’, ’ic’, or 'perm’.

If nulldist="boot.qt', a character value returning which choice of marginal
null distribution was used by the MTP. Can be used to check default values or to
ensure manual settings were correctly applied.

54 MTP

marg.par Ifnulldist="boot.qt"', a numeric matrix returning the parameters of the marginal
null distribution(s) used by the MTP. Can be used to check default values or to
ensure manual settings were correctly applied.

call Object of class call, the call to the MTP function.

seed An integer or vector for specifying the state of the random number generator
used to create the resampled datasets. The seed can be reused for reproducibility
in a repeat call to MTP. This argument is currently used only for the bootstrap null
distribution (i.e., for nulldist="boot.xx"). See ?set. seed for details.

Note

Thank you to Peter Dimitrov for suggestions about the code.

Author(s)

Katherine S. Pollard and Houston N. Gilbert with design contributions from Sandra Taylor, Sandrine
Dudoit and Mark J. van der Laan.

References

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the
Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Sta-
tistical Applications in Genetics and Molecular Biology, 3(1). http://www.bepress.com/sagmb/
vol3/iss1/art15/

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures
for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Bi-
ology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art14/

S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Proce-
dures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular
Biology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art13/

K.S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of
Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of
Biostatistics Working Paper Series. Working Paper 121. http://www.bepress.com/ucbbiostat/
paperi121

M.J. van der Laan and A.E. Hubbard (2006), Quantile-function Based Null Distributions in Re-
sampling Based Multiple Testing, Statistical Applications in Genetics and Molecular Biology, 5(1).
http://www.bepress.com/sagmb/vol5/iss1/art14/

S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer, New York, 2008.

See Also

EBMTP, MTP-class, MTP-methods, mt.minP, mt.maxT, ss.maxT, fwer2gfwer

http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art14/
http://www.bepress.com/sagmb/vol3/iss1/art13/
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/sagmb/vol5/iss1/art14/

MTP-class 55

Examples

#data

set.seed(99)
data<-matrix(rnorm(90),nr=9)
group<-c(rep(1,5),rep(0,5))

#fwer control with centered and scaled bootstrap null distribution
#(B=100 for speed)

m1<-MTP(X=data, Y=group,alternative="less",B=100,method="sd.minP")
print(m1)

summary(m1)

par(mfrow=c(2,2))

plot(m1,top=9)

#fwer control with quantile transformed bootstrap null distribution

#default settings = N(@,1) marginal null distribution

m2<-MTP(X=data, Y=group,alternative="less"” ,B=100,method="sd.minP",
nulldist="boot.qt", keep.rawdist=TRUE)

#fwer control with quantile transformed bootstrap null distribution
#marginal null distribution and df parameters manually set,

#first all equal, then varying with hypothesis
m3<-update(m2,marg.null="t" marg.par=10)
mps<-matrix(c(rep(9,5),rep(10,5)),nr=10,nc=1)
m4<-update(m2,marg.null="t" marg.par=mps)

mi@nulldist.type
m2@nulldist. type
m2@marg.null
m2@marg.par
m3@nulldist.type
m3@marg.null
m3@marg.par
m4@nulldist.type
m4@marg.null
m4@marg.par

MTP-class Class "MTP", classes and methods for multiple testing procedure out-
put

Description

An object of class MTP is the output of a particular multiple testing procedure, for example, gener-
ated by the MTP function. It has slots for the various data used to make multiple testing decisions,
such as adjusted p-values and confidence regions.

56 MTP-class

Objects from the Class
Objects can be created by calls of the form
new(MTP’,
statistic =, object of class numeric
estimate =, object of class numeric
sampsize =, object of class numeric
rawp =, object of class numeric
adjp =, object of class numeric
conf.reg =, object of class array
cutoff =, object of class matrix
reject =, object of class matrix
rawdist =, object of class matrix
nulldist =, object of class matrix
nulldist.type =, object of class character
marg.null =, object of class character
marg.par =, object of class matrix
label =, object of class numeric
index =, object of class matrix
call =, object of class call
seed =, object of class integer
)

Slots

statistic Object of class numeric, observed test statistics for each hypothesis, specified by the
values of the MTP arguments test, robust, standardize, and psi®@.

estimate For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests),
the numeric vector of estimated parameters corresponding to each hypothesis, e.g. means,
differences in means, regression parameters.

sampsize Object of class numeric, number of columns (i.e. observations) in the input data set.
rawp Object of class numeric, unadjusted, marginal p-values for each hypothesis.

adjp Object of class numeric, adjusted (for multiple testing) p-values for each hypothesis (com-
puted only if the get.adjp argument is TRUE).

conf.reg For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests),
the numeric array of lower and upper simultaneous confidence limits for the parameter vector,
for each value of the nominal Type I error rate alpha (computed only if the get. cr argument
is TRUE).

cutoff The numeric matrix of cut-offs for the vector of test statistics for each value of the nominal
Type I error rate alpha (computed only if the get. cutoff argument is TRUE).

reject Object of class 'matrix’, rejection indicators (TRUE for a rejected null hypothesis), for
each value of the nominal Type I error rate alpha.

rawdist The numeric matrix for the estimated nonparametric non-null test statistics distribution
(returned only if keep.rawdist=TRUE and if nulldist is one of ’boot.ctr’, ’boot.cs’, or
"boot.qt’). This slot must not be empty if one wishes to call update to change choice of
bootstrap-based null distribution.

MTP-class 57

nulldist The numeric matrix for the estimated test statistics null distribution (returned only if
keep.nulldist=TRUE); option not currently available for permutation null distribution, i.e.,
nulldist="perm'). By default (i.e., for nulldist="boot.cs"), the entries of nulldist are
the null value shifted and scaled bootstrap test statistics, with one null test statistic value for
each hypothesis (rows) and bootstrap iteration (columns).

nulldist.type Character value describing which choice of null distribution was used to generate
the MTP results. Takes on one of the values of the original nulldist argument in the call to
MTFP, i.e., "boot.cs’, ’boot.ctr’, ’boot.qt’, ’ic’, or 'perm’.

marg.null If nulldist="boot.qt', a character value returning which choice of marginal null
distribution was used by the MTP. Can be used to check default values or to ensure manual
settings were correctly applied.

marg.par If nulldist='boot.qt', a numeric matrix returning the parameters of the marginal
null distribution(s) used by the MTP. Can be used to check default values or to ensure manual
settings were correctly applied.

label If keep.label=TRUE, a vector storing the values used in the argument Y. Storing this ob-
ject is particularly important when one wishes to update MTP objects with F-statistics using
default marg.null and marg. par settings when nulldist="boot.qt".

index For tests of correlation parameters a matrix corresponding to t(combn(p,2)), where p is
the number of variables in X. This matrix gives the indices of the variables considered in each
pairwise correlation. For all other tests, this slot is empty, as the indices are in the same order
as the rows of X.

call Object of class call, the call to the MTP function.

seed An integer or vector for specifying the state of the random number generator used to create the
resampled datasets. The seed can be reused for reproducibility in a repeat call to MTP. This ar-
gument is currently used only for the bootstrap null distribution (i.e., for nulldist="boot . xx").
See ?set. seed for details.

Methods

signature(x = "MTP")

[: Subsetting method for MTP class, which operates selectively on each slot of an MTP instance to
retain only the data related to the specified hypotheses.

as.list : Converts an object of class MTP to an object of class 1ist, with an entry for each slot.

plot : plot methods for MTP class, produces the following graphical summaries of the results of a
MTP. The type of display may be specified via the which argument.

1. Scatterplot of number of rejected hypotheses vs. nominal Type I error rate.

2. Plot of ordered adjusted p-values; can be viewed as a plot of Type I error rate vs. number
of rejected hypotheses.

3. Scatterplot of adjusted p-values vs. test statistics (also known as "volcano plot").

58

MTP-class

4. Plot of unordered adjusted p-values.

5. Plot of confidence regions for user-specified parameters, by default the 10 parameters cor-
responding to the smallest adjusted p-values (argument top).

6. Plot of test statistics and corresponding cut-offs (for each value of alpha) for user-specified
hypotheses, by default the 10 hypotheses corresponding to the smallest adjusted p-values (ar-
gument top).

The argument logscale (by default equal to FALSE) allows one to use the negative decimal
logarithms of the adjusted p-values in the second, third, and fourth graphical displays. The
arguments caption and sub.caption allow one to change the titles and subtitles for each
of the plots (default subtitle is the MTP function call). Note that some of these plots are
implemented in the older function mt.plot.

print : print method for MTP class, returns a description of an object of class MTP, including sample
size, number of tested hypotheses, type of test performed (value of argument test), Type I
error rate (value of argument typeone), nominal level of the test (value of argument alpha),
name of the MTP (value of argument method), call to the function MTP.
In addition, this method produces a table with the class, mode, length, and dimension of each
slot of the MTP instance.

summary : summary method for MTP class, provides numerical summaries of the results of a MTP
and returns a list with the following three components.

1. rejections: A data.frame with the number(s) of rejected hypotheses for the nominal Type I
error rate(s) specified by the alpha argument of the function MTP. (NULL values are returned
if all three arguments get.cr, get.cutoff, and get.adjp are FALSE).

2. index: A numeric vector of indices for ordering the hypotheses according to first adjp, then
rawp, and finally the absolute value of statistic (not printed in the summary).

3. summaries: When applicable (i.e., when the corresponding quantities are returned by MTP),
a table with six number summaries of the distributions of the adjusted p-values, unadjusted
p-values, test statistics, and parameter estimates.

update : update method for MTP class, provides a mechanism to re-run the MTP with different
choices of the following arguments - nulldist, alternative, typeone, k, q, fdr.method, alpha,
smooth.null, method, get.cr, get.cutoff, get.adjp, keep.nulldist, keep.rawdist, keep.margpar.
When evaluate is "TRUE’, a new object of class MTP is returned. Else, the updated call is
returned. The MTP object passed to the update method must have either a non-empty rawdist
slot or a non-empty nulldist slot (i.e., must have been called with either ’keep.rawdist=TRUE’
or ’keep.nulldist=TRUE’).

To save on memory, if one knows ahead of time that one will want to compare different
choices of bootstrap-based null distribution, then it is both necessary and sufficient to spec-
ify ’keep.rawdist=TRUE’, as there is no other means of moving between null distributions
other than through the non-transformed non-parametric bootstrap distribution. In this case,
"keep.nulldist=FALSE’ may be used. Specifically, if an object of class MTP contains a non-
empty rawdist slot and an empty nulldist slot, then a new null distribution will be gen-

MTP-class 59

erated according to the values of the nulldist= argument in the original call to MTP or any
additional specifications in the call to update. On the other hand, if one knows that one wishes
to only update an MTP object in ways which do not involve choice of null distribution, then
"keep.nulldist=TRUE’ will suffice and "keep.rawdist’ can be set to FALSE (default settings).
The original null distribution object will then be used for all subsequent calls to update.

N.B.: Note that keep.rawdist=TRUE is only available for the bootstrap-based resampling
methods. The non-null distribution does not exist for the permutation or influence curve mul-
tivariate normal null distributions.

mtp2ebmtp : coersion method for converting objects of class MTP to objects of class EBMTP. Slots
common to both objects are taken from the object of class MTP and used to create a new object
of class EBMTP. Once an object of class EBMTP is created, one may use the method EBupdate
to perform resampling-based empirical Bayes multiple testing without the need for repeated
resampling.

Author(s)

Katherine S. Pollard and Houston N. Gilbert with design contributions from Sandrine Dudoit and
Mark J. van der Laan.

References

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the
Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Sta-
tistical Applications in Genetics and Molecular Biology, 3(1). http://www.bepress.com/sagmb/
vol3/iss1/art15/

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures
for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Bi-
ology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art14/

S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Proce-
dures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular
Biology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art13/

Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic
Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley
Division of Biostatistics Working Paper Series. Working Paper 121. http://www.bepress.com/
ucbbiostat/paperi21

M.J. van der Laan and A.E. Hubbard (2006), Quantile-function Based Null Distributions in Re-
sampling Based Multiple Testing, Statistical Applications in Genetics and Molecular Biology, 5(1).
http://www.bepress.com/sagmb/vol5/iss1/art14/

S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer, New York, 2008.
See Also

MTP, MTP-methods, EBMTP, EBMTP-methods, [-methods, as.list-methods, print-methods, plot-methods,
summary-methods, mtp2ebmtp, ebmtp2mtp

http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art14/
http://www.bepress.com/sagmb/vol3/iss1/art13/
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/sagmb/vol5/iss1/art14/

60 MTP-methods

Examples

See MTP function: ? MTP

MTP-methods Methods for MTP and EBMTP objects in Package ‘multtest’

Description

Summary, printing, plotting, subsetting, updating, as.list and class conversion methods were de-
fined for the MTP and EBMTP classes. These methods provide visual and numeric summaries of the
results of a multiple testing procedure (MTP) and allow one to perform some basic manipulations
of objects class MTP or EBMTP.

Several of the methods with the same name will work on objects of their respective class. One
exception to this rule is the difference between update and EBupdate (described below). Because of
the differences in the testing procedures, separately named methods were chosen to clearly delineate
which method was being applied to which type of object.

Methods

[: Subsetting method for MTP and EBMTP classes, which operates selectively on each slot of an MTP
or EBMTP instance to retain only the data related to the specified hypotheses.

as.list : Converts an object of class MTP or EBMTP to an object of class 1ist, with an entry for each
slot.

plot : plot methods for MTP and EBMTP classes, produces the following graphical summaries of the
results of a MTP. The type of display may be specified via the which argument.

1. Scatterplot of number of rejected hypotheses vs. nominal Type I error rate.

2. Plot of ordered adjusted p-values; can be viewed as a plot of Type I error rate vs. number
of rejected hypotheses.

3. Scatterplot of adjusted p-values vs. test statistics (also known as volcano plot).
4. Plot of unordered adjusted p-values.
Only for objects of class MTP:

5. Plot of confidence regions for user-specified parameters, by default the 10 parameters cor-
responding to the smallest adjusted p-values (argument top).

6. Plot of test statistics and corresponding cut-offs (for each value of alpha) for user-specified
hypotheses, by default the 10 hypotheses corresponding to the smallest adjusted p-values (ar-
gument top).

MTP-methods 61

Plots (5) and (6) are not available for objects of class EBMTP because the function EBMTP returns
only adjusted p-values and not confidence regions of cut-offs. The argument logscale (by
default equal to FALSE) allows one to use the negative decimal logarithms of the adjusted
p-values in the second, third, and fourth graphical displays. The arguments caption and
sub.caption allow one to change the titles and subtitles for each of the plots (default subtitle
is the MTP function call). Note that some of these plots are implemented in the older function
mt.plot.

print : print method for MTP and EBMTP classes, returns a description of an object of either class,
including sample size, number of tested hypotheses, type of test performed (value of argument
test), Type I error rate (value of argument typeone), nominal level of the test (value of
argument alpha), name of the MTP (value of argument method), call to the function MTP or
EBMTP.
In addition, this method produces a table with the class, mode, length, and dimension of each
slot of the MTP or EBMTP instance.

summary : summary method for MTP and EBMTP classes, provides numerical summaries of the
results of a MTP and returns a list with the following three components.

1. rejections: A data.frame with the number(s) of rejected hypotheses for the nominal Type
I error rate(s) specified by the alpha argument of the function MTP or EBMTP. (For objects
of class MTP, NULL values are returned if all three arguments get.cr, get.cutoff, and
get.adjp are FALSE).

2. index: A numeric vector of indices for ordering the hypotheses according to first adjp, then
rawp, and finally the absolute value of statistic (not printed in the summary).

3. summaries: When applicable (i.e., when the corresponding quantities are returned by MTP
or EBMTP), a table with six number summaries of the distributions of the adjusted p-values,
unadjusted p-values, test statistics, and parameter estimates.

update : update methods for MTP class, respectively, provides a mechanism to re-run the MTP with
different choices of the following arguments - nulldist, alternative, typeone, k, q, fdr.method,
alpha, smooth.null, method, get.cr, get.cutoff, get.adjp, keep.nulldist, keep.rawdist, keep.margpar.
When evaluate is "TRUE’, a new object of class MTP is returned. Else, the updated call is
returned. The MTP object passed to the update method must have either a non-empty rawdist
slot or a non-empty nulldist slot (i.e., must have been called with either ’keep.rawdist=TRUE’
or "keep.nulldist=TRUE’).

EBupdate : update method for EBMTP class, provides a mechanism to re-run the MTP with differ-
ent choices of the following arguments - nulldist, alternative, typeone, k, q, alpha, smooth.null,
bw, kernel, prior, keep.nulldist, keep.rawdist, keep.falsepos, keep.truepos, keep.errormat, keep.margpar.
When evaluate is "TRUE’, a new object of class EBMTP is returned. Else, the updated
call is returned. The EBMTP object passed to the update method must have either a non-
empty rawdist slot or a non-empty nulldist slot (i.e., must have been called with either
"keep.rawdist=TRUE’ or "keep.nulldist=TRUE’).

Additionally, when calling EBupdate for any Type I error rate other than FWER, the typeone
argument must be specified (even if the original object did not control FWER). For example,
typeone="fdr", would always have to be specified, even if the original object also controlled

62

multtest-internal

the FDR. In other words, for all function arguments, it is safest to always assume that you are
updating from the EBMTP default function settings, regardless of the original call to the EBMTP
function. Currently, the main advantage of the EBupdate method is that it prevents the need
for repeated estimation of the test statistics null distribution.

To save on memory, if one knows ahead of time that one will want to compare different
choices of bootstrap-based null distribution, then it is both necessary and sufficient to spec-
ify ’keep.rawdist=TRUE’, as there is no other means of moving between null distributions
other than through the non-transformed non-parametric bootstrap distribution. In this case,
"keep.nulldist=FALSE’ may be used. Specifically, if an object of class MTP or EBMTP contains
a non-empty rawdist slot and an empty nulldist slot, then a new null distribution will be
generated according to the values of the nulldist= argument in the original call to (EB)MTP
or any additional specifications in the call to (EB)update. On the other hand, if one knows
that one wishes to only update an (EB)MTP object in ways which do not involve choice of
bootstrap null distribution, then ’keep.nulldist=TRUE’ will suffice and ’keep.rawdist’ can be
set to FALSE (default settings). The original null distribution object will then be used for all
subsequent calls to update.

N.B.: Note that keep.rawdist=TRUE is only available for the bootstrap-based resampling
methods. The non-null distribution does not exist for the permutation or influence curve mul-
tivariate normal null distributions.

mtp2ebmtp : coersion method for converting objects of class MTP to objects of class EBMTP. Slots

common to both objects are taken from the object of class MTP and used to create a new object
of class EBMTP. Once an object of class EBMTP is created, one may use the method EBupdate
to perform resampling-based empirical Bayes multiple testing without the need for repeated
resampling.

ebmtp2mtp : coersion method for converting objects of class EBMTP to objects of class MTP. Slots

common to both objects are taken from the object of class EBMTP and used to create a new
object of class MTP. Once an object of class MTP is created, one may use the method update
to perform resampling-based multiple testing (as would have been done with calls to MTP)
without the need for repeated resampling.

Author(s)

Katherine S. Pollard and Houston N. Gilbert with design contributions from Sandrine Dudoit and
Mark J. van der Laan.

multtest-internal Internal multtest functions and variables

Description

Internal multtest functions and variables

ss.maxT 63

Usage

.mt.BLIM

.mt.RandSeed

.mt.naNUM

mt.number2na(x,na)

mt.na2number(x,na)

mt.getmaxB(classlabel, test,B, verbose)

mt.transformL(classlabel, test)

mt.transformV(V,classlabel, test,na,nonpara)

mt.transformX(X,classlabel, test,na,nonpara)

mt.checkothers(side="abs", fixed.seed.sampling="y", B=10000,

na=.mt.naNUM, nonpara="n")

mt.checkX(X,classlabel, test)

mt.checkV(V,classlabel, test)

mt.checkclasslabel (classlabel, test)

mt.niceres<-function(res, X, index)

mt.legend(x, y = NULL, legend, fill = NULL, col = "black"”, lty,
lwd, pch, angle = 45, density = NULL, bty = "o0", bg = par("bg"),
pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd, xjust = 0,
yjust = 1, x.intersp = 1, y.intersp = 1, adj = c(0, 0.5),
text.width = NULL, text.col = par(”col”), merge = do.lines &&

has.pch, trace = FALSE, plot = TRUE, ncol = 1, horiz = FALSE,...)

corr.Tn(X, test, alternative, use = "pairwise")

diffs.1.N(vecl, vec2, el, e2, e21, e22, el2)

IC.Cor.NA(IC, W, N, M, output)

IC.CorXW.NA(X, W, N, M, output)

insert.NA(orig.NA, res.vec)

marg.samp(marg.null, marg.par, m, B, ncp)

Details

These are not to be called directly by the user.

ss.maxT Procedures to perform multiple testing

Description

Given observed test statistics, a test statistics null distribution, and alternetive hyptheses, these
multiple testing procedures provide family-wise error rate (FWER) adjusted p-values, cutoffs for
test statistics, and possibly confidence regions for estimates. Four methods are implemented, based
on minima of p-values and maxima of test statistics.

Usage

ss.maxT(null, obs, alternative, get.cutoff, get.cr,
get.adjp, alpha = 0.05)

64 ss.maxT

ss.minP(null, obs, rawp, alternative, get.cutoff, get.cr,
get.adjp, alpha=0.05)

sd.maxT(null, obs, alternative, get.cutoff, get.cr,
get.adjp, alpha = 0.05)

sd.minP(null, obs, rawp, alternative, get.cutoff, get.cr,
get.adjp, alpha=0.05)

Arguments
null A matrix containing the test statistics null distribution, e.g. the output of boot . resample.
obs A vector of observed test statistics, e.g. the output of a test statistics closure such
as meanX. These are stored as a matrix with numerator (possibly absolute value
or negative, depending on the value of alternative) in the first row, denominator
in the second row, and a 1 or -1 in the third row (depending on the value of
alternative). The observed test statistics are obs[1,]*obs[3,]/obs[2,].
rawp Numeric vector of unadjusted ("raw") marginal p-values.
alternative Character string indicating the alternative hypotheses, by default "two.sided’.
For one-sided tests, use ’less’ or "greater’ for null hypotheses of ’greater than or
equal’ (i.e. alternative is ’less’) and ’less than or equal’, respectively.
get.cutoff Logical indicating whether to compute thresholds for the test statistics. Default
is "TFALSE’.
get.cr Logical indicating whether to compute confidence intervals for the estimates.
Not available for f-tests. Default is "FALSE’.
get.adjp Logical indicating whether to compute adjusted p-values. Default is "TRUE’.
alpha The target nominal type I error rate, which may be a vector of error rates. Default
is 0.05.
Details

Having selected a suitable test statistics null distribution, there remains the main task of speci-
fying rejection regions for each null hypothesis, i.e., cut-offs for each test statistic. One usually
distinguishes between two main classes of multiple testing procedures, single-step and stepwise
procedures. In single-step procedures, each null hypothesis is evaluated using a rejection region
that is independent of the results of the tests of other hypotheses. Improvement in power, while
preserving Type I error rate control, may be achieved by stepwise (step-down or step-up) proce-
dures, in which rejection of a particular null hypothesis depends on the outcome of the tests of
other hypotheses. That is, the (single-step) test procedure is applied to a sequence of successively
smaller nested random (i.e., data-dependent) subsets of null hypotheses, defined by the ordering of
the test statistics (common cut-offs or maxT procedures) or unadjusted p-values (common-quantiles
or minP procedures).

In step-down procedures, the hypotheses corresponding to the most significant test statistics (i.e.,
largest absolute test statistics or smallest unadjusted p-values) are considered successively, with
further tests depending on the outcome of earlier ones. As soon as one fails to reject a null hy-
pothesis, no further hypotheses are rejected. In contrast, for step-up procedures, the hypotheses

ss.maxT 65

corresponding to the least significant test statistics are considered successively, again with further
tests depending on the outcome of earlier ones. As soon as one hypothesis is rejected, all remaining
more significant hypotheses are rejected.

These functions perform the following procedures:

ss.maxT: single-step, common cut-off (maxima of test statistics)
ss.minP: single-step, common quantile (minima of p-values)
sd.maxT: step-down, common cut-off (maxima of test statistics)
sd.minP: step-down, common quantile (minima of p-values)

Value

A list with the following components:

c Object of class "matrix”, for each nominal (i.e. target) level for the test, a
vector of threshold values for the vector of test statistics.

cr Object of class "array”, for each nominal (i.e. target) level for the test, a matrix
of lower and upper confidence bounds for the parameter of interest for each
hypothesis. Not available for f-tests.

adjp Object of class "numeric”, adjusted p-values for each hypothesis.

Author(s)

Katherine S. Pollard with design contributions from Sandrine Dudoit and Mark J. van der Laan.

References

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the
Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Sta-
tistical Applications in Genetics and Molecular Biology, 3(1). http://www.bepress.com/sagmb/
vol3/iss1/art15/

M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures
for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Bi-
ology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art14/

S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Proce-
dures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular
Biology, 3(1). http://www.bepress.com/sagmb/vol3/iss1/art13/

Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic
Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley
Division of Biostatistics Working Paper Series. Working Paper 121. http://www.bepress.com/
ucbbiostat/paperi121

See Also

MTP

http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.bepress.com/sagmb/vol3/iss1/art14/
http://www.bepress.com/sagmb/vol3/iss1/art13/
http://www.bepress.com/ucbbiostat/paper121
http://www.bepress.com/ucbbiostat/paper121

66 wapply

Examples

These functions are used internally by the MTP function
See MTP function: ? MTP

wapply Weighted version of the apply function

Description

A function to perform ’apply’ on an matrix of data and corresponding matrix of weights.

Usage
wapply (X, MARGIN, FUN, W = NULL, ...)
Arguments
X A matrix of data.
MARGIN A vector giving the subscripts which the function will be applied over. 1 indi-
cates rows, 2 indicates columns.
FUN The function to be applied. In the case of functions like + the function name
must be quoted.
W An optional matrix of weights. When W=NULL, the usual apply function is called.
optional arguments to FUN.
Details

When weights are provided, these are passed to FUN along with the data X. For example, if FUN=meanX,
each data value is multiplied by the corresponding weight before the mean is applied.

Value

If each call to FUN returns a vector of length n, then wapply returns an array of dimension c(n,
dim(X)[MARGIN]) if n>1. If n =1, wapply returns a vector if MARGIN has length 1 and an array
of dimension dim(X) [MARGIN] otherwise. If n =@, the result has length O but not necessarily the
"correct" dimension.

If the calls to FUN return vectors of different lengths, wapply returns a list of length dim(X) [MARGIN].

This function is used in the package multtest to compute weighted versions of test statistics. It is
called by the function get.Tn inside the user-level function MTP.

Author(s)
Katherine S. Pollard

wapply

See Also

get.Tn, MTP

Examples

data<-matrix(rnorm(200),nr=20)
weights<-matrix(rexp(200,rate=0.1),nr=20)
wapply (X=data,MARGIN=1,FUN=mean,W=weights)

67

Index

* classes
EBMTP-class, 16
MTP-class, 55
+ datasets
golub, 25
* hplot
mt.plot, 36
* htest
corr.null, 7
fwer2gfwer, 22
get.index, 24
meanX, 29
mt.maxT, 33
mt.rawp2adjp, 38
mt.reject, 41
MTP, 46
ss.maxT, 63
* internal
boot.null, 2
corr.null, 7
fwer2gfwer, 22
get.index, 24
meanX, 29
multtest-internal, 62
ss.maxT, 63
wapply, 66
* manip
boot.null, 2
mt.sample. teststat, 42
+ methods
MTP-methods, 60
* univar
mt.teststat, 44
.mt.BLIM (multtest-internal), 62
.mt.RandSeed (multtest-internal), 62
.mt.naNUM (multtest-internal), 62
[,EBMTP-method (MTP-methods), 60
[,MTP-method (MTP-methods), 60
[-methods (MTP-methods), 60

68

ABH.ho (Hsets), 26

as.list (MTP-methods), 60
as.list,EBMTP-method (MTP-methods), 60
as.list,MTP-method (MTP-methods), 60
as.list-methods (MTP-methods), 60

blockFX (meanX), 29
boot.null, 2, 11
boot.resample, 7, 11, 32
boot.resample (boot.null), 2

center.only (boot.null), 2
center.scale (boot.null), 2
corr.null, 7,7

corr.Tn (multtest-internal), 62
coxY (meanX), 29

dens.est (Hsets), 26
diffmeanX (meanX), 29
diffs.1.N(multtest-internal), 62

EBMTP, 7, 11,11, 21, 28, 54, 59
EBMTP-class, 16

EBMTP-method (EBMTP-class), 16
EBMTP-methods (MTP-methods), 60
ebmtp2mtp, 21, 59

ebmtp2mtp (MTP-methods), 60

ebmtp2mtp, EBMTP-method (MTP-methods), 60
ebmtp2mtp-methods (MTP-methods), 60
EBupdate (MTP-methods), 60

EBupdate, EBMTP-method (MTP-methods), 60
EBupdate-methods (MTP-methods), 60

fwer2fdr (fwer2gfwer), 22
fwer2gfwer, 22, 54
fwer2tppfp (fwer2gfwer), 22
FX (meanX), 29

G.VS (Hsets), 26
get.index, 24
get.Tn, 7,11, 32,67

INDEX

get.Tn (meanX), 29
golub, 25, 35, 37,40, 41, 43,45

Hsets, 16, 26

IC.Cor.NA (multtest-internal), 62
IC.CorXW.NA (multtest-internal), 62
insert.NA (multtest-internal), 62

1ImX (meanX), 29
1mY (meanX), 29

marg.samp (multtest-internal), 62
meanX, 29
mt.checkclasslabel (multtest-internal),
62
mt.checkothers (multtest-internal), 62
mt.checkV (multtest-internal), 62
mt.checkX (multtest-internal), 62
mt.getmaxB (multtest-internal), 62
mt.legend (multtest-internal), 62
mt.maxT, 23, 33, 36, 37,40, 41, 43,45, 54
mt.minP, 23, 34, 36, 37, 40, 41, 43, 45, 54
mt.minP (mt.maxT), 33
mt.na2number (multtest-internal), 62
mt.niceres (multtest-internal), 62
mt.number2na (multtest-internal), 62
mt.plot, 35, 36, 40
mt.rawp2adjp, 35-37, 38, 41
mt.reject, 35, 37, 40, 41
mt.sample.label, 43
mt.sample.label (mt.sample.teststat), 42
mt.sample.rawp, 43
mt.sample.rawp (mt.sample.teststat), 42
mt.sample.teststat, 7, 11, 35,42, 43
mt.teststat, 35-37, 44, 45
mt.teststat.num.denum, 45
mt.transformL (multtest-internal), 62
mt.transformV (multtest-internal), 62
mt.transformX (multtest-internal), 62
MTP, 7,11, 12, 16,21, 23, 24, 32, 46, 59, 65, 67
MTP-class, 55
MTP-methods, 60
mtp2ebmtp, 21, 59
mtp2ebmtp (MTP-methods), 60
mtp2ebmtp,MTP-method (MTP-methods), 60
mtp2ebmtp-methods (MTP-methods), 60
multtest-internal, 62

par, 36

69

plot (MTP-methods), 60
plot,EBMTP,ANY-method (MTP-methods), 60
plot,MTP,ANY-method (MTP-methods), 60
plot-methods (MTP-methods), 60
print,EBMTP-method (MTP-methods), 60
print,MTP-method (MTP-methods), 60
print-methods (MTP-methods), 60
print.MTP (MTP-methods), 60

quant.trans (boot.null), 2
read. table, 33, 44

sd.maxT (ss.maxT), 63

sd.minP (ss.maxT), 63
ss.maxT, 7, 11,54, 63

ss.minP (ss.maxT), 63

summary (MTP-methods), 60

summary , EBMTP-method (MTP-methods), 60
summary ,MTP-method (MTP-methods), 60
summary-methods (MTP-methods), 60

tQuantTrans (corr.null), 7
twowayFX (meanX), 29

update (MTP-methods), 60
update,MTP-method (MTP-methods), 60
update-methods (MTP-methods), 60

VScount (Hsets), 26

wapply, 7, 11, 32, 66

	boot.null
	corr.null
	EBMTP
	EBMTP-class
	fwer2gfwer
	get.index
	golub
	Hsets
	meanX
	mt.maxT
	mt.plot
	mt.rawp2adjp
	mt.reject
	mt.sample.teststat
	mt.teststat
	MTP
	MTP-class
	MTP-methods
	multtest-internal
	ss.maxT
	wapply
	Index

