Package ‘motifTestR’

February 2, 2026

Title Perform key tests for binding motifs in sequence data
Version 1.7.0

Description Taking a set of sequence motifs as PWMs, test a set of sequences
for over-representation of these motifs, as well as any positional features
within the set of motifs. Enrichment analysis can be undertaken using multiple
statistical approaches. The package also contains core functions to prepare
data for analysis, and to visualise results.

License GPL-3
Encoding UTF-8

URL https://github.com/smped/motifTestR

BugReports https://github.com/smped/motifTestR/issues
Depends Biostrings, GenomicRanges, ggplot2 (>=4.0.0), R (>=4.5.0),

Imports Seqinfo, graphics, harmonicmeanp, IRanges, matrixStats,
methods, parallel, patchwork, rlang, S4Vectors, stats,
universalmotif,

Suggests AnnotationHub, BiocStyle, BSgenome.Hsapiens.UCSC.hg19,
extraChIPs (>= 1.13.3), ggdendro, knitr, MASS, MotifDb,
rmarkdown, rtracklayer, SimpleUpset, testthat (>= 3.0.0), VGAM

biocViews MotifAnnotation, ChIPSeq, ChipOnChip, SequenceMatching,
Software

LazyData false

RoxygenNote 7.3.3

Roxygen list(markdown = TRUE)
Config/testthat/edition 3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/motifTestR
git_branch devel

git_last_commit 26a47a7

git_last_commit_date 2025-10-29

https://github.com/smped/motifTestR
https://github.com/smped/motifTestR/issues

2 motifTestR-package

Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Stevie Pederson [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8197-3303>)

Maintainer Stevie Pederson <stephen.pederson.au@gmail.com>

Contents
motifTestR-package L 2
ar_er_peaks e e 3
AT ET_SEQ « v v v v v e 4
clusterMotifs e e e e e 5
countPwmMatches 6
eX_Ppfm . . . 8
getClusterMatches L 8
getPwmMatches oL 10
hgl9_mask e 12
makeRMRanges 13
plotMatchPos L 15
simMultiMotifs e 16
SIMSEQ . « « v v v e e e e e e e e e e e e e e 18
testClusterEnrich 19
testClusterPos 21
testMotifEnrich 23
testMotifPos 26
zr75_enh . ..o e 28

Index 29

motifTestR-package motiflestR: Perform Key Analyses on Transcription Factor Binding
Motifs
Description

The package motifTestR has been designed for two primary analyses of TFBMs, testing for posi-
tional bias and overall enrichment.
Details

The package motifTestR provides two primary functions for testing TFBMs within a set of se-
quences

* testMotifPos() for detecting positional bias within a set of test sequences

* testMotifEnrich() for testing overall enrichment of a TFBM within a set of test sequences

https://orcid.org/0000-0001-8197-3303

ar_er_peaks 3

Motifs are also able to be clustered for analysis as a cluster, or for grouping results. Clusters from
external approaches can also be incorporated.

testClusterPos() for detecting positional bias for matches to any motif annotated to a clus-
ter, within a set of test sequences

testClusterEnrich() for testing overall enrichment of any TFBM annotated to a cluster,
within a set of test sequences

The main functions rely on lower-level functions such as:

countPwmMatches () simply counts the number of matches within an XStringSet
getPwmMatches () returns the position of matches within an XStringSet

countClusterMatches() simply counts the number of matches to motifs annotated to a clus-
ter within an XStringSet

getClusterMatches() returns the position of matches to motifs annotated to a cluster within
an XStringSet

makeRMRanges () which produces a set of random, matching ranges based on key characteris-
tics of the set of test sequences/ranges

A simple utility function is provided to enable visualisation of results

plotMatchPos() enables visualisation of the matches within a set of sequences using multiple
strategies

Author(s)

Stevie Pederson

See Also

Useful links:

https://github.com/smped/motifTestR
Report bugs at https://github.com/smped/motifTestR/issues

ar_er_peaks A set of peaks with AR and ER detected

Description

A set of ChIP-Seq peaks where AR and ER were both detected

Usage

data("ar_er_peaks")

Format

An object of class GRanges of length 849.

https://github.com/smped/motifTestR
https://github.com/smped/motifTestR/issues

4 ar_er_seq

Details

The subset of peaks found on chrl which contained signal from at least two of AR, ER and
H3K27ac, taken from GSE123767. Peaks were resized to a uniform width of 400bp after down-
loading

Generation of these ranges is documented in system.file("scripts/ar_er_peaks.R", package
= "motifTestR")

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123767

Examples

data("ar_er_peaks")
ar_er_peaks

ar_er_seq Sequences from peaks with AR and ER detected

Description

The genomic sequences obtained from the ar_er_peaks

Usage

data("ar_er_seq")

Format

An object of class DNAStringSet of length 849.

Details

These sequences represent the sequences obtained from BSgenome.Hsapiens.UCSC.hg19 for thw
peaks supplied as ar_er_peaks

Generation of these sequences is documented in system.file("scripts/ar_er_peaks.R", package
="motifTestR")

Examples

data("ar_er_seq")
ar_er_seq

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123767

clusterMotifs 5

clusterMotifs Assign each motif to a cluster

Description

Cluster related motifs for testing as a group

Usage

clusterMotifs(
motifs,
type = c("PPM", "ICM"),
method = c("PCC", "EUCL", "SW", "KL", "ALLR", "BHAT", "HELL", "SEUCL", "MAN",
"ALLR_LL", "WEUCL", "WPCC"),

power = 1,
agglom = "complete”,
thresh = 0.2,
return_d = FALSE,
plot = FALSE,
labels = FALSE,
cex =1,
linecol = "red”,
)
Arguments
motifs A list of universalmotifs or a list of PWMs
type Can be ICM or PPM
method The method to be used for determining similarity/distances
power Raise correlation matrices to this power before converting to a distance matrix.
Only applied if method is either "PCC" or "WPCC"
agglom Method to be used for agglomeration by hclust
thresh Tree heights below which motifs are formed into a cluster
return_d logical(1) Return the distance matrices for each cluster
plot Show tree produced by hclust. If requested the value set by thresh will be shown
as a horizontal line
labels, cex Passed to plot.hclust
linecol Passed to abline as the argument col

passed to compare_motifs

6 countPwmMatches

Details

This builds on compare_motifs, enabling the assignment of each PWM to a cluster, and subsequent
testing of motifs as a cluster, rather than returning individual results.

Internally all matrices are converted to distance matrices and hclust is used to form clusters. By
default, options such as "EUCL", "MAN" produce distances, whilst similarity matrices are produced
when choosing "PCC" and other correlation based metrics. In these cases, the distance matrix is
obtained by taking 1 - similarity.

By default PWM labels are hidden (labels = FALSE), however these can be shown using labels =
NULL as explained in plot.hclust.

Raising the threshold will lead to fewer, larger clusters whilst leaving this value low will return a
more conservative approach, with more smaller clusters. The final decision as the best clustering
strategy is highly subjective and left to the user. Manual inspection of motifs within a cluster can
be performed using view_motifs, as shown in the vignette.

Value

Named vector with numeric values representing which cluster each motif has been assigned to.

If setting return_d = TRUE, a named list will be returned with the clusters as the element c1 and a
list with distance matrices for each cluster as the element d

Examples

Load the example motifs
data("ex_pfm")

Return a vector with each motif assigned a cluster
The default uses Pearson's Correlation Coefficient
clusterMotifs(ex_pfm)

Preview the settings noting that showing labels can clutter the plot
with large numbers of motifs. The defaults for Euclidean distance

show the threshold may need raising

clusterMotifs(ex_pfm, plot = TRUE, labels = NULL, method = "EUCL")

countPwmMatches Count the matches to a PWM within an XStringSet

Description

Count the matches to a PWM within an XStringSet

countPwmMatches 7

Usage
countPwmMatches(
pwm,
stringset,
rc = TRUE,
min_score = "80%",

mc.cores = 1,

)
Arguments
pwm A Position Weight Matrix
stringset An XStringSet
rc logical(1) Also find matches using the reverse complement of pwm
min_score The minimum score to return a match
mc.cores Passed to mclapply when analysing a list of PWMs
Passed to countPWM
Details

Will simply count the matches within an XStringSet and return an integer. All matches are included.

Value

An integer vector

Examples

Load the example PWM
data("ex_pfm")
esrl <- ex_pfm$ESR1

Load the example Peaks
data("ar_er_seq")
countPwmMatches(esrl, ar_er_seq)

Count all PWMs
countPwmMatches(ex_pfm, ar_er_seq)

8 getClusterMatches

ex_pfm Example Position Frequency Matrices

Description

Example Position Frequency Matrices

Usage

data("ex_pfm")

Format

An object of class 1ist of length 5.

Details
This object contains 5 PFMs taken from HOCOMOCOvV11-coreA for examples and testing

Generation of this motif list is documented in system.file("scripts/ex_pfm.R", package =
"motifTestR")

Examples

data("ex_pfm")
ex_pfm$ESR1

getClusterMatches Find matches from a PWM cluster within an XStringSet

Description

Find matches from a PWM cluster within a set of sequences

Usage
getClusterMatches(
cl,
stringset,
rc = TRUE,
min_score = "80%",
best_only = FALSE,
break_ties = c("all”, "random”, "first"”, "last”, "central”),

mc.cores = 1,

getClusterMatches 9

countClusterMatches(
cl,
stringset,
rc = TRUE,
min_score = "80%",

mc.cores = 1,

Arguments
cl A list of Position Weight Matrices, universalmotifs, with each element repre-
senting clusters of related matrices
stringset An XStringSet
rc logical(1) Also find matches using the reverse complement of PWMs in the
cluster
min_score The minimum score to return a match
best_only logical(1) Only return the best match
break_ties Method for breaking ties when only returning the best match Ignored when all
matches are returned (the default)
mc.cores Passed to mclapply
Passed to matchPWM
Details

This function extends getPwmMatches by returning a single set of results for set of clustered motifs.
This can help remove some of the redundancy in results returned for highly similar PWMs, such as
those in the GATA3 family.

Taking a set of sequences as an XStringSet, find all matches above the supplied score (i.e. threshold)
for a list of Position Weight Matrices (PWMs), which have been clustered together as highly-related
motifs. By default, matches are performed using the PWMs as provided and the reverse comple-
ment, however this can easily be disabled by setting rc = FALSE.

The function relies heavily on matchPWM and Views for speed.

Where overlapping matches are found for the PWMs within a cluster, only a single match is re-
turned. The motif with the highest relative score (score / maxScore(PWM)) is selected.

When choosing to return the best match (best_only = TRUE), only the match with the highest rela-
tive score is returned for each sequence. Should there be tied scores, the best match can be chosen
as either the first, last, most central, all tied matches, or choosing one at random (the default).

Value
Output from getClusterMatches will be a list of DataFrames with columns: seq, score, direction,
start, end, from_centre, seq_width, motif and match

The first three columns describe the sequence with matches, the score of the match and whether the
match was found using the forward or reverse PWM. The columns start, end and width describe

10 getPwmMatches

the where the match was found in the sequence, whilst from_centre defines the distance between
the centre of the match and the centre of the sequence being queried. The motif column denotes
which individual motif was found to match in this position, again noting that when matches overlap,
only the one with the highest relative score is returned. The final column contains the matching
fragment of the sequence as an XStringSet.

Output from countClusterMatches will be a simple integer vector the same length as the number of
clusters

Examples

Load example PFMs

data("ex_pfm")

Cluster using default settings

cl_ids <- clusterMotifs(ex_pfm)

ex_cl <- split(ex_pfm, cl_ids)

Add optional names

names(ex_cl) <- vapply(ex_cl, \(x) paste(names(x), collapse = "/"), character(1))

Load example sequences
data("ar_er_seq")

Get all matches for each cluster
getClusterMatches(ex_cl, ar_er_seq)
Or Just count them
countClusterMatches(ex_cl, ar_er_seq)
Compare this to individual counts
countPwmMatches(ex_pfm, ar_er_seq)

getPwmMatches Find all PWM matches within an XStringSet

Description

Find all PWM matches within a set of sequences

Usage

getPwmMatches(
pwm,
stringset,
rc = TRUE,
min_score = "80%",
best_only = FALSE,
break_ties = c("all”, "random”, "first"”, "last”, "central”),
mc.cores = 1,

getPwmMatches 11

Arguments
pwm A Position Weight Matrix, list of PWMs or universalmotif list
stringset An XStringSet
rc logical(1) Also find matches using the reverse complement of pwm
min_score The minimum score to return a match
best_only logical(1) Only return the best match
break_ties Method for breaking ties when only returning the best match Ignored when all
matches are returned (the default)
mc.cores Passed to mclapply if passing multiple PWMs
Passed to matchPWM
Details

Taking a set of sequences as an XStringSet, find all matches above the supplied score (i.e. threshold)
for a single Position Weight Matrix (PWM), generally representing a transcription factor binding
motif. By default, matches are performed using the PWM as provided and the reverse complement,
however this can easily be disabled by setting rc = FALSE.

The function relies heavily on matchPWM and Views for speed.

When choosing to return the best match (best_only = TRUE), only the match with the highest score
is returned for each sequence. Should there be tied scores, the best match can be chosen as either
the first, last, most central, all tied matches, or choosing one at random (the default).

Value

A DataFrame with columns: seq, score, direction, start, end, from_centre, seq_width, and
match

The first three columns describe the sequence with matches, the score of the match and whether the
match was found using the forward or reverse PWM. The columns start, end and width describe
the where the match was found in the sequence, whilst from_centre defines the distance between
the centre of the match and the centre of the sequence being queried. The final column contains the
matching fragment of the sequence as an XStringSet.

When passing a list of PWMs, a list of the above DataFrames will be returned.

Examples

Load the example PWM
data("ex_pfm")
esrl <- ex_pfm$ESR1

Load the example Peaks
data("ar_er_seq")

Return all matches
getPwmMatches(esr1, ar_er_seq)

Just the best match

12 hg19_mask

getPwmMatches(esr1, ar_er_seq, best_only = TRUE)

Apply multiple PWMs as a list
getPwmMatches(ex_pfm, ar_er_seq, best_only = TRUE)

hg19_mask Regions from hg19 with high N content

Description

A GRanges object with regions annotated as telomeres or centromeres

Usage

data("hg19_mask")

Format

An object of class GRanges of length 345.

Details

The regions defined as centromeres or telomeres in hg19, taken from AnnotationHub objects "TAH107360"
and "AH107361". These were combined with regions containing Ns from the UCSC 2bit file, and
regions with Ns in the BSgenome.Hsapiens.UCSC.hg19 were retained.

Generation of these ranges is documented in system.file("scripts/hg19_mask.R", package =
"motifTestR")

Source

The package AnnotationHub and https://hgdownload. cse.ucsc.edu/goldenpath/hg19/bigZips/
hg19.fa.masked.gz

Examples

data("hg19_mask")
hg19_mask

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/hg19.fa.masked.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/hg19.fa.masked.gz

makeRMRanges 13

makeRMRanges Form a set of random, matching ranges for bootstrapping or permut-
ing

Description

Form a set of ranges from y which (near) exactly match those in x for use as a background set
requiring matching

Usage
makeRMRanges(x, vy, ...)

S4 method for signature 'GRanges,GRanges'

makeRMRanges (
X,
Y,
exclude = GRanges(),
n_iter =1,

n_total = NULL,

replace = TRUE,

force_ol = TRUE
)

S4 method for signature 'GRangesList,GRangesList'
makeRMRanges (
X,
Y,
exclude = GRanges(),
n_iter =1,
n_total = NULL,
replace = TRUE,
mc.cores = 1,
force_ol = TRUE,
unlist = TRUE

)
Arguments
X GRanges/GRangesList with ranges to be matched
y GRanges/GRangesList with ranges to select random matching ranges from
Not used
exclude GRanges of ranges to omit from testing

n_iter The number of times to repeat the random selection process

14 makeRMRanges

n_total Setting this value will over-ride anything set using n_iter. Can be vector of any
length, corresponding to the length of x, when x is a GRangesList

replace logical(1) Sample with our without replacement when creating the set of random
ranges.

force_ol logical(1) Enforce an overlap between every site in x and y

mc.cores Passsed to mclapply

unlist logical(1) Return as a sorted GRanges object, or leave as a GRangesList

Details

This function uses the width distribution of the ’test’ ranges (i.e. x) to randomly sample a set of
ranges with matching width from the ranges provided in y. The width distribution will clearly be
exact when a set of fixed-width ranges is passed to x, whilst random sampling may yield some
variability when matching ranges of variable width.

When both x and y are GRanges objects, they are implicitly assumed to both represent similar
ranges, such as those overlapping a promoter or enhancer. When passing two GRangesList objects,
both objects are expected to contain ranges annotated as belonging to key features, such that the list
elements in y must encompass all elements in x. For example if x contains two elements named
’promoter’ and ’intron’, y should also contain elements named ’promoter’ and ’intron’ and these
will be sampled as matching ranges for the same element in x. If elements of x and y are not named,
they are assumed to be in matching order.

The default behaviour is to assume that randomly-generated ranges are for iteration, and as such,
ranges are randomly formed in multiples of the number of ’test’ ranges provided in x. The column
iteration will be added to the returned ranges. Placing any number into the n_total argument
will instead select a total number of ranges as specified here. In this case, no iteration column
will be included in the returned ranges.

Sampling is assumed to be with replacement as this is most suitable for bootstrapping and related
procedures, although this can be disabled by setting replace = FALSE

Value

A GRanges or GRangesList object

Examples

Load the example peaks

data("ar_er_peaks")

sq <- seqinfo(ar_er_peaks)

Now sample size-matched ranges for two iterations from chri
makeRMRanges (ar_er_peaks, GRanges(sq)[1], n_iter = 2)

Or simply sample 100 ranges if not planning any iterative analyses
makeRMRanges (ar_er_peaks, GRanges(sq)[1], n_total = 100)

plotMatchPos

15

plotMatchPos

Plot Motif Match Positions

Description

Plot the distribution of motif matches across sequences

Usage
plotMatchPos(
matches,
binwidth = 10,
abs = FALSE,
use_totals = FALSE,
type = c("density"”, "cdf"”, "heatmap"),
geom = c("smooth”, "line"”, "point", "col"),
cluster = FALSE,
w=20.1,
heat_fill = NULL,
)
Arguments
matches Output from getPwmMatches
binwidth Width of bins to use when plotting
abs logical(1) Plot absolute distances from centre
use_totals logical(1). If TRUE, plots will use total counts. The default (FALSE) plots
probabilities.
type Plot match density, the CDF or a binned heatmap
geom Type of geom to be used for line plots. Ignored for heatmaps
cluster logical(1) Cluster motifs when drawing a heatmap. If TRUE a dendrogram will
be added to the LHS of the plot
w Relative width of the dendrogram on (0, 1)
heat_fill scale_fill_continuous object for heatmaps. If not provided, scale_fill_viridis_c()
will be added to the heatmap.
Passed to individual geom* functions
Details

Multiple options are provided for showing the distribution of PWM matches within a set of se-
quences, using either the smoothed probability density, the probability CDF or as a heatmap. Dis-
tances can be shown as symmetrical around the centre or using absolute distances from the central
position within the sequences.

Heatmaps are only enabled for comparisons across multiple PWMs, with optional clustering en-
abled. If adding a dendrogram for clustering, the returned plot object will be a patchwork object.

16 simMultiMotifs

Value

A ggplot2 object

Examples

Load the example PWM
data("ex_pfm")
esrl <- ex_pfm$ESR1

Load the example sequences from the peaks
data("ar_er_seq")

Just the best match
bm <- getPwmMatches(esrl1, ar_er_seq, best_only = TRUE)
plotMatchPos(bm, se = FALSE)

Matches can also be shown by distance from centre
plotMatchPos(bm, abs = TRUE)

Cumulative Probability plots are also implemented
plotMatchPos(bm, type = "cdf"”, geom = "line”, colour = "red") +
geom_abline(intercept = 0.5, slope = 1/ 400)

simMultiMotifs Simulate sequences with multiple motifs

Description

Simulate a set of sequences incorporating multiple motifs

Usage

simMultiMotifs(
n’
width,
pfm = NULL,
bg = NULL,
nt = c("A", "C", "G", "T"),
prob = rep(0.25, 4),

shapel =1,

shape2 = shapel,

rate = NA,

theta = NA,

as = "DNAStringSet”,

ol = c("random”, "first"”, "last"),

simMultiMotifs

Arguments

n
width
pfm
bg

nt
prob
shape1l, shape?2

rate

theta

as

ol

Details

17

The number of sequences to simulate
Width of sequences to simulate
List of Probability Weight/Frequency Matrices

Optional, pre-defined set of background sequences. Can be passed as an XStringSet
or character vector. All sequences must be the same width

Nucleotides to include
Sampling probabilities for each nucleotide
Passed to rbetabinom.ab

The expected rate of motifs per sequence. Is equivalent to A in rpois. If set to
NULL or NA, all sequences will be simulated with a single motif, otherwise a
Poisson distribution will be used

Overdispersion parameter passed to rnegbin. If set to NULL or NA the rate
parameter will be passed to rpois. However if this value is set, the rate and theta
parameters are passed to rnegbin to simulate overdispersed counts

ObjectClass to return objects as. Defaults to DNAStringSet, but other viable
options may include ’character’, *CharacterList’ or any other class from which
a character vector may be coerced.

When randomly simulated positions overlap, choose one either at random, by
the first occurring PFM in the list of PFMs, or by the last.

Not used

Simulate a set of sequences with multiple motifs inserted using different rates and distributions, as
specified. All shape, rate and theta parameters are recycled to match the length of the supplied motif
list, and can be supplied as vectors to tailor these parameters to each provided element of the list of

matrices

Value

A DNAStringSet with mcols denoting the positions of all inserted motifs

Examples

data("ex_pfm")

Simulate sequences including both ESR1 and ANDR, but with
ESR1 being included at a higher rate
seq <- simMultiMotifs(10@, 100, ex_pfm[1:2], rate = c(2, 1))

seq

The positions of the motifs are included in the mcols

mcols(seq)

18

simSeq

simSeq

Simulate sequences using optional TFBMs

Description

Simulate a set of fixed-width sequences using optional TFBMs

Usage

simSeq(
n,
width,
pfm = NULL,

n.t = C(HAH’ HCH, IIGH, HT”),
prob = rep(0.25, 4),

shapel = 1,
shape2 = shapel,
rate = NULL,
theta = NULL,

as = "DNAStringSet”,

Arguments
n
width
pfm
nt
prob
shapel, shape2

rate

theta

as

The number of sequences to simulate
Width of sequences to simulate
Probability Weight/Frequency Matrix
Nucleotides to include

Sampling probabilities for each nucleotide
Passed to rbetabinom.ab

The expected rate of motifs per sequence. Is equivalent to A in rpois. If set to
NULL or NA, all sequences will be simulated with a single motif, otherwise a
Poisson distribution will be used

Overdispersion parameter passed to rnegbin. If set to NULL or NA, the rate
parameter will be passed to rpois. However if this value is set, the rate and theta
parameters are passed to rnegbin to simulate overdispersed counts

ObjectClass to return objects as. Defaults to DNAStringSet, but other viable
options may include ’character’, *CharacterList’ or any other class from which
a character vector may be coerced.

Not used

testClusterEnrich 19

Details

Using the nucleotide and probabilities provided as set of sequences can be simulated. By default,
this will effectively be a set of "background’ sequences, with letters effectively chosen at random.

If a PWM/PFM is supplied, the shape parameters are first passed to rbetabinom.ab to determine
the random positions the motif will be placed, with the default parameters representing a discrete
uniform distribution.

The sequences to have a motif inserted will be selected, along with the number of motifs, using the
rate and theta parameters. If both are NULL, every sequence will have a single motif inserted. If
the rate is > 0 and theta is NULL, sequences will be selected to have motifs inserted using a poisson
distribution. If theta is also provided, sequences will be selected to contain motifs using a negative
binomial distribution, noting that smaller values of theta lead to higher over-dispersion

Once positions and sequences for the TFBM have been selected, nucleotides will be randomly sam-
pled using the probabilities provided in the PWM and these motifs will be placed at the randomly
sampled positions

Value

By default a DNAStringSet will be returned. If possible, the position of any randomly sampled
motifs will be included in the mcols element of the returned object.

Examples

Randomly generate 10x50nt sequences without any TFBMs present
simSeq(10@, 50)

Now place a motif at random positions

data('ex_pfm')

sim_seq <- simSeq(10, width = 20, pfm = ex_pfm$ESR1)

sim_seq

The position of the motif within each sequence is included in the mcols
mcols(sim_seq)

Use this to extract the random motifs from the random sequences
library(IRanges)

i <- mcols(sim_seq)$pos + cumsum(width(sim_seq)) - width(sim_seq)
Views(unlist(sim_seq), start = i, width = 10)

testClusterEnrich Test enrichment across a cluster of motifs using a background set of
sequences

Description

Test for enrichment of any motif within a cluster across a set of sequences using a background set
to derive a NULL hypothesis

20 testClusterEnrich

Usage
testClusterEnrich(
cl,
stringset,
bg,
var = "iteration”,
model = c("poisson”, "hypergeometric”, "quasipoisson”, "glm_poisson”, "iteration"),
sort_by = c("p"”, "none"),

mc.cores = 1,
prior.count = 1,

seed = 100,
)
Arguments
cl A list of Position Weight Matrices, universalmotifs, with each element repre-
senting clusters of related matrices
stringset An XStringSet with equal sequence widths
bg An XStringSet with the same sequence widths as the test XStringset
var A column in the mcols element of bg, usually denoting an iteration number
model The model used for analysis
sort_by Column to sort results by
mc.cores Passed to mclapply
prior.count Added to all counts to better manage zero counts in background sequences. For
analysis under QuasiPoisson models prior counts are added as Poisson noise
using this value as expected counts
seed Used for reproducibility when adding Poisson noise
Passed to getPwmMatches or countPwmMatches
Details

This extends the analytic methods offered by testMotifEnrich using PWMs grouped into a set of
clusters. As with all cluster-level approaches, hits from multiple PWMs which overlap are counted
as a single hit ensuring that duplicated matches are not double-counted, and that only individual
positions within the sequences are.

Value

See testMotifEnrich

See Also

makeRMRanges (), getClusterMatches(), countClusterMatches(), testMotifEnrich()

testClusterPos

Examples

Load the example peaks & the sequences
data("ar_er_peaks")
data("ar_er_seq")
sq <- seqginfo(ar_er_peaks)
Now sample size-matched ranges 10 times larger. In real-world analyses,
this set should be sampled as at least 1000x larger, ensuring features
are matched to your requirements. This example masks regions with known N
content, including centromeres & telomeres
data("hg19_mask")
set.seed(305)
bg_ranges <- makeRMRanges(
ar_er_peaks, GRanges(sq)[1], exclude = hg19_mask, n_iter = 10
)

Convert ranges to DNAStringSets
library(BSgenome.Hsapiens.UCSC.hg19)
genome <- BSgenome.Hsapiens.UCSC.hg19
bg_seq <- getSeq(genome, bg_ranges)

Test for enrichment of clustered motifs
data("ex_pfm")
cl <~ list(A = ex_pfm[1], B = ex_pfm[2:3])

testClusterEnrich(cl, ar_er_seq, bg_seq, model = "poisson")
testClusterPos Test positional bias motifs within a cluster
Description

Test positional bias for all motifs within a given cluster

Usage

testClusterPos(
X,
stringset,
binwidth = 10,
abs = FALSE,
rc = TRUE,
min_score = "80%",
break_ties = "all",
alt = c("greater”, "less"”, "two.sided"),
sort_by = c("p"”, "none"),
mc.cores = 1,

22 testClusterPos

Arguments
X A Position Weight Matrix, universalmotif object or list thereof. Alternatively
can be a single DataFrame or list of DataFrames as returned by getCluster-
Matches with best_only = TRUE
stringset An XStringSet. Not required if matches are supplied as x
binwidth Width of bins across the range to group data into
abs Use absolute positions around zero to find symmetrical enrichment
rc logical(1) Also find matches using the reverse complement of each PWM
min_score The minimum score to return a match
break_ties Choose how to resolve matches with tied scores
alt Alternative hypothesis for the binomial test
sort_by Column to sort results by
mc.cores Passed to mclapply
Passed to matchPWM
Details

This is a reimplementation of testMotifPos for sets of motifs which have been clustered for similar-
ity. The positions test the bias of any motifs within the cluster given that overlapping matches are
only counted once, and with the match retained being the one with the highest relative score.

It should also be noted that some motif clusters will contain PWMs of varying length. When finding
positional bias, the widest motif is taken as the width for all, and any matches from narrower motifs
outside of the range allowed by wider motifs are discarded. This reduction in signal will make a
small difference in the outer bins, but is not considered to be problematic for the larger analysis.

Value

A data.frame with columns start, end, centre, width, total_matches, matches_in_region,
expected, enrichment, prop_total, p and consensus_motif The total matches represent the
total number of matches within the set of sequences, whilst the number observed in the final region
are also given, along with the proportion of the total this represents. Enrichment is simply the ratio
of observed to expected based on the expectation of the null hypothesis

The consensus motif across all matches is returned as a Position Frequency Matrix (PFM) using
consensusMatrix.

Examples

Load the example PWM
data("ex_pfm")

Load the example sequences
data("ar_er_seq")

Cluster the motifs
cl <- list(A = ex_pfm[1], B = ex_pfm[2:3])

Get the best match and use this data

testMotifEnrich 23

matches <- getClusterMatches(cl, ar_er_seq, best_only = TRUE)
Test for enrichment in any position
testClusterPos(matches)

Or just pass the clustered matrices
Here we've set abs = TRUE to test absolute distance from the centre
testClusterPos(cl, ar_er_seq, abs = TRUE, binwidth = 10)

testMotifEnrich Test motif enrichment using a background set of sequences

Description

Test for motif enrichment within a set of sequences using a background set to derive a NULL
hypothesis

Usage
testMotifEnrich(
pwm ’
stringset,
bg,
var = "iteration”,
model = c("poisson”, "hypergeometric”, "quasipoisson”, "glm_poisson”, "iteration"),
sort_by = c("p"”, "none"),

mc.cores = 1,
prior.count = 1,

seed = 100,
)
Arguments

pwm A Position Weight Matrix or list of PWMs

stringset An XStringSet with equal sequence widths

bg An XStringSet with the same sequence widths as the test XStringset

var A column in the mcols element of bg, usually denoting an iteration number

model The model used for analysis

sort_by Column to sort results by

mc.cores Passed to mclapply

prior.count Added to all counts to better manage zero counts in background sequences. For
analysis under QuasiPoisson models prior counts are added as Poisson noise
using this value as expected counts

seed Used for reproducibility when adding Poisson noise

Passed to getPwmMatches or countPwmMatches

24 testMotifEnrich

Details

This function offers four alternative models for assessing the enrichment of a motif within a set
of sequences, in comparison to a background set of sequences. Selection of the BG sequences
plays an important role and, in conjunction with the question being addressed, determines the most
appropriate model to use for testing, as described below.

It should also be noted that the larger the BG set of sequences, the larger the computational burden,
and results can take far longer to return. For many millions of background sequences, this may run
beyond an hour

Descriptions of Models and Use Cases:

Hypergeometric Tests:

Hypergeometric tests are best suited to the use case where the test set of sequences represents
a subset of a larger set, with a specific feature or behaviour, whilst the BG set may be the
remainder of the set without that feature. For example, the test set may represent ChIP-Seq
binding sites where signal changes in response to treatment, whilst the BG set represents the
sites where no changed signal was observed. Testing is one-sided, for enrichment of motifs
within the test set.

Due to these relatively smaller sized datasets, setting model = "hypergeometric", will generally
return results quickly

Poisson Tests:

This approach requires a set of background sequences which should be much larger than the test
set of sequences. The parameters for a Poisson model are estimated in a per-sequence manner
on the set of BG sequences, and the observed rate of motif-matches within the test set is then
tested using poisson.test. Testing is two-sided.

This approach assumes that all matches follow a Poisson distribution, which is often true, but
data can also be over-dispersed. Given that this model can also return results relatively quickly,
is it primarily suitable for data exploration, such as quickly checking for expected behaviours,
but not for final results.

Quasi-Poisson Test:

The quasipoisson model allows for over-dispersion and will return more conservative results
than using the standard Poisson model. Under the method currently implemented here, BG
sequences should be divided into blocks (i.e. iterations), identical in size to the test set of se-
quences. Model parameters are estimated per iteration across the BG set of sequences, with the
rate of matches in the test set being compared against these blocks. This ensures more conser-
vative results that if analysing test and bg sequences as collections of individual sequences.

It is expected that the BG set will matched for the features of interest and chosen using mak-
eRMRanges with a large number of iterations, e.g. n_iter = 1000. Due to this parameterisation,
quasipoisson approaches can be computationally time-consuming, as this is effectively an itera-
tive approach. Testing is two-sided.

GLM-Poisson Test:

This follows the same approach as the Quasi-Poisson model, relying on fitting iterations using
glm(). For this model however, no over-dispersions are estimated and the underlying family is
simply the poisson() family

Iteration:
Setting the model as "iteration" performs a non-parametric analysis, with the exception of re-
turning Z-scores under the Central Limit Theorem. Mean and SD of matches is found for each

testMotifEnrich 25

iteration, and used to return Z scores, with p-values returned from both a Z-test and from com-
paring observed values directly to sampled values obtained from the BG sequences. Sampled
values are calculated directly and as such, are limited in precision.

As for the QuasiPoisson model, a very large number of iterations is expected to be used, to
ensure the CLT holds, again making this a computationally demanding test. Each iteration/block
is expected to be identically-sized to the test set, and matched for any features as appropriate
using makeRMRanges ().

Value

A data.frame with columns: sequences, matches, expected, enrichment, and p, with addi-
tional columns Z, est_bg_rate (Poisson), odds_ratio (Hypergeometric) or Z, sd_bg, n_iter and
iter_p (Iterations). The numbers of sequences and matches refer to the test set of sequences, whilst
expected is the expected number of matches under the Poisson or iterative null distribution. The
ratio of matches to expected is given as enrichment, along with the Z score and p-value. Whilst the
Z score is only representative under the Poisson model, it is used to directly estimate p-values under
the iterative approach. Under this latter approach, the sd of the matches found in the background
sequences is also given, along with the number of iterations and the p-values from permutations
testing the one-sided hypothesis hypothesis for enrichment.

It may also be worth noting that if producing background sequences using makeRMRanges with
replace = TRUE and force_ol = TRUE, the iterative model corresponds to a bootstrap, given that
the test sequences will overlap the background sequences and background ranges are able to be
sampled with replacement.

See Also

makeRMRanges (), getPwmMatches(), countPwmMatches()

Examples

Load the example peaks & the sequences
data("ar_er_peaks")
data("ar_er_seq")
sq <- seqginfo(ar_er_peaks)
Now sample size-matched ranges 10 times larger. In real-world analyses,
this set should be sampled as at least 1000x larger, ensuring features
are matched to your requirements. This example masks regions with known N
content, including centromeres & telomeres
data("hg19_mask")
set.seed(305)
bg_ranges <- makeRMRanges(
ar_er_peaks, GRanges(sq)[1], exclude = hgl9_mask, n_iter = 10
)

Convert ranges to DNAStringSets
library(BSgenome.Hsapiens.UCSC.hg19)

genome <- BSgenome.Hsapiens.UCSC.hg19

bg_seq <- getSeq(genome, bg_ranges)
mcols(bg_seq)$iteraton <-bg_ranges$iteration

Test for enrichment of the ESR1 motif

26

data("ex_pfm")

testMotifPos

esrl <- ex_pfm$ESR1
testMotifEnrich(esr1, ar_er_seq, bg_seq, model = "poisson")

Test all motifs
testMotifEnrich(ex_pfm, ar_er_seq, bg_seq, model = "poisson”)

testMotifPos

Test for a Uniform Distribution across a set of best matches

Description

Test for a Uniform Distribution across a set of best matches

Usage

testMotifPos(

X’

stringset,

binwidth = 10,

abs = FALSE,

rc = TRUE,
min_score = "80%",
break_ties = "all",

alt = c("greater"”, "less”, "two.sided"),

sort_by = c("p"”, "none"),
mc.cores = 1,

Arguments

X

stringset
binwidth
abs

rc
min_score
break_ties
alt
sort_by

mc.cores

A Position Weight Matrix, universalmotif object or list thereof. Alternatively
can be a single DataFrame or list of DataFrames as returned by getPwmMatches
with best_only = TRUE

An XStringSet. Not required if matches are supplied as x

Width of bins across the range to group data into

Use absolute positions around zero to find symmetrical enrichment
logical(1) Also find matches using the reverse complement of each PWM
The minimum score to return a match

Choose how to resolve matches with tied scores

Alternative hypothesis for the binomial test

Column to sort results by

Passed to mclapply

Passed to matchPWM

testMotifPos 27

Details

This function tests for an even positional spread of motif matches across a set of sequences, using
the assumption (i.e. H~0~) that if there is no positional bias, matches will be evenly distributed
across all positions within a set of sequences. Conversely, if there is positional bias, typically but
not necessarily near the centre of a range, this function intends to detect this signal, as a rejection
of the null hypothesis.

Input can be provided as the output from getPwmMatches setting best_only = TRUE if these matches
have already been identified. If choosing to provide this object to the argument matches, nothing is
required for the arguments pwm, stringset, rc, min_score or break_ties Otherwise, a Position
Weight Matrix (PWM) and an XStringSet are required, along with the relevant arguments, with
best matches identified within the function.

The set of best matches are then grouped into bins along the range, with the central bin containing
zero, and tallied. Setting abs to TRUE will set all positions from the centre as absolute values,
returning counts purely as bins with distances from zero, marking this as an inclusive lower bound.
Motif alignments are assigned into bins based on the central position of the match, as provided in
the column from_centre when calling getPwmMatches.

The binom.test is performed on each bin using the alternative hypothesis, with the returned p-values
across all bins combined using the Harmonic Mean p-value (HMP) (See p.hmp). All bins with raw
p-values below the HMP are identified and the returned values for start, end, centre, width, matches
in region, expected and enrichment are across this set of bins. The expectation is that where a
positional bias is evident, this will be a narrow range containing a non-trivial proportion of the total
matches.

It should also be noted that binom. test () can return p-values of zero, as beyond machine precision.
In these instances, zero p-values are excluded from calculation of the HMP. This will give a very
slight conservative bias, and assumes that for these extreme cases, neighbouring bins are highly
likely to also return extremely low p-values and no significance will be lost.

Value

A data.frame with columns start, end, centre, width, total_matches, matches_in_region,
expected, enrichment, prop_total, p and consensus_motif The total matches represent the
total number of matches within the set of sequences, whilst the number observed in the final region
are also given, along with the proportion of the total this represents. Enrichment is simply the ratio
of observed to expected based on the expectation of the null hypothesis

The consensus motif across all matches is returned as a Position Frequency Matrix (PFM) using
consensusMatrix.

Examples

Load the example PWM
data("ex_pfm")
esrl <- ex_pfm$ESR1

Load the example sequences
data("ar_er_seq")

Get the best match and use this data

28 zr75 _enh

matches <- getPwmMatches(esr1, ar_er_seq, best_only = TRUE)
Test for enrichment in any position
testMotifPos(matches)

Provide a list of PWMs, testing for distance from zero
testMotifPos(ex_pfm, ar_er_seq, abs = TRUE, binwidth = 10)

zr75_enh Candidate Enhancer Regions from ZR-75-1 Cells

Description

The chrl subset of candidate enhancers for ZR-75-1 cells

Usage

data("zr75_enh")

Format

An object of class GRanges of length 5237.

Details

These enhancers are the chrl subset of enhancer regions for ZR-75-1 cells as identified by En-
hancerAtlas 2.0

Generation of these ranges is documented in system.file("scripts/zr75_enh.R", package
= "motifTestR")
Source

http://www.enhanceratlas.org/index.php

Examples

data("zr75_enh")
zr75_enh

http://www.enhanceratlas.org/index.php

Index

+ datasets
ar_er_peaks, 3
ar_er_seq, 4
ex_pfm, 8
hg19_mask, 12
zr75_enh, 28

* internal
motifTestR-package, 2

abline, 5
ar_er_peaks, 3
ar_er_seq, 4

binom.test, 27

clusterMotifs, 5
compare_motifs, 5, 6
consensusMatrix, 22, 27
countClusterMatches

(getClusterMatches), 8
countClusterMatches(), 3, 20

countPWM, 7
countPwmMatches, 6, 20, 23
countPwmMatches(), 3, 25

ex_pfm, 8

getClusterMatches, 8, 22
getClusterMatches(), 3, 20

getPwmMatches, 9, 10, 15, 20, 23, 26, 27

getPwmMatches(), 3, 25
glm(), 24

hclust, 5, 6
hg19_mask, 12

makeRMRanges, 13, 24, 25
makeRMRanges (), 3, 20, 25

makeRMRanges, GRanges, GRanges-method

(makeRMRanges), 13

makeRMRanges,GRangesList,GRangesList-method

(makeRMRanges), 13
matchPWM, 9, 11, 22, 26
mclapply, 7,9, 11, 14, 20, 22, 23, 26
motifTestR (motifTestR-package), 2
motifTestR-package, 2

p.hmp, 27
plot.hclust, 5, 6
plotMatchPos, 15
plotMatchPos(), 3
poisson.test, 24

rbetabinom.ab, /7-19
rnegbin, 17, 18
rpois, 17, 18

simMultiMotifs, 16
simSeq, 18

testClusterEnrich, 19
testClusterEnrich(), 3
testClusterPos, 21
testClusterPos(), 3
testMotifEnrich, 20, 23
testMotifEnrich(), 2, 20
testMotifPos, 22, 26
testMotifPos(), 2

view_motifs, 6
Views, 9, 11

zr75_enh, 28

	motifTestR-package
	ar_er_peaks
	ar_er_seq
	clusterMotifs
	countPwmMatches
	ex_pfm
	getClusterMatches
	getPwmMatches
	hg19_mask
	makeRMRanges
	plotMatchPos
	simMultiMotifs
	simSeq
	testClusterEnrich
	testClusterPos
	testMotifEnrich
	testMotifPos
	zr75_enh
	Index

