Package ‘moanin’

February 2, 2026
Title An R Package for Time Course RNASeq Data Analysis
Version 1.19.0

Description Simple and efficient workflow for time-course gene expression
data, built on publictly available open-source projects hosted on
CRAN and bioconductor. moanin provides helper functions for all
the steps required for analysing time-course data using
functional data analysis: (1) functional modeling of the
timecourse data; (2) differential expression analysis; (3)
clustering; (4) downstream analysis.

Depends R (>=4.0), SummarizedExperiment, topGO, stats

Imports S4Vectors, MASS (>= 1.0.0), limma, viridis, edgeR, graphics,
methods, grDevices, reshape2, NMI, zoo, ClusterR, splines,
matrixStats

Suggests testthat (>= 1.0.0), timecoursedata, knitr, rmarkdown,
markdown, covr, BiocStyle

VignetteBuilder knitr

License BSD 3-clause License + file LICENSE
Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

biocViews TimeCourse, GeneExpression, RNASeq, Microarray,
DifferentialExpression, Clustering

git_url https://git.bioconductor.org/packages/moanin
git_branch devel

git_last_commit 9becdba

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Elizabeth Purdom [aut] (ORCID: <https://orcid.org/0000-0001-9455-7990>),
Nelle Varoquaux [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8748-6546>)

Maintainer Nelle Varoquaux <nelle.varoquaux@gmail.com>

1

https://orcid.org/0000-0001-9455-7990
https://orcid.org/0000-0002-8748-6546

2 consensus_matrix

Contents
CONSENSUS_MALIIX v v v v v e e e e e e e e e e e e e 2
create_meta_prediction 3
DE timecourse e e 4
DE_timepoints e e e e e e e 5
discont_basis e 8
estimate_log_fold_change L oL 10
exampleData e e e 11
expand_CoNntrast e e 12
expression_filtering L. 12
find_enriched_go_terms 13
fit_predict_splines 15
fit_splines e 15
Moanin-class e e e e 16
Moanin-methods e 18
perWeek_barplot e 20
plot_cdf_consensus 21
plot_splines_data 23
pvalues_fisher_method 25
rescale_values L e 26
splines_kmeans L. e 27
splines_kmeans_predict,Moanin-methodo 0oL, 28

Index 31

consensus_matrix Compute consensus matrix from labels
Description
Compute consensus matrix from labels
Usage
consensus_matrix(labels, scale = TRUE)
Arguments

labels a matrix with each column corresponding to a the results of a single clustering

routine. Each column should give the cluster assignment FIXME: What is the
required format of entries??

scale boolean, optional, default: TRUE. Whether to rescale the resulting consensus

matrix so that entries correspond to proportions.

create_meta_prediction 3

Value

a symmetric matrix of size NxN, where N is the number of rows of the input matrix labels. Each
1,j entry of the matrix corresponds the number of times the two rows were in the same cluster across
the clusterings (scale=FALSE) or the proportion of clustering that the two rows are in the same
cluster (scale=TRUE).

Examples

data(exampleData)

moanin <- create_moanin_model (data=testData,meta=testMeta)

#small function to run splines_kmeans on subsample of 50 genes

subsampleCluster<-function(){
ind<-sample(1:nrow(moanin),size=50,replace=FALSE)
km<-splines_kmeans(moanin[ind,],n_clusters=3)
assign<-splines_kmeans_predict(moanin,km,

method="distance")

3

kmClusters=replicate(10, subsampleCluster())

cm<-consensus_matrix(kmClusters)

heatmap(cm)

create_meta_prediction
Create prediction meta data from splines model

Description

Create prediction meta data from splines model

Usage

create_meta_prediction(moanin_model, num_timepoints = 100)

Arguments

num_timepoints integer, optional, default: 100. Number of timepoints to use for the prediction
metadata

Value

moanin_model

4 DE_timecourse

DE_timecourse Run spline models and test for DE of contrasts.

Description

Run spline models and test for DE of contrasts.

Usage

S4 method for signature 'Moanin'
DE_timecourse(
object,
contrasts,
center = FALSE,
statistic = c("ftest”, "lIrt"),
use_voom_weights = TRUE

)
Arguments

object An object of class Moanin, an object containing all related information for time
course data and the splines model that will be used (if applicable). See create_moanin_model
for more details.

contrasts Contrasts, either provided as a vector of strings, or a matrix of contrasts coef-
ficients obtained using makeContrasts from the package limma. If given as a
character string, will be passed to makeContrasts to be converted into such a
matrix.

center boolean, whether to center the data matrix

statistic Which test statistic to use, a likelihood ratio statistic or a F-test.

use_voom_weights
boolean, optional, default: TRUE. Whether to use voom weights. See details.

Details

The implementation of the spline fit and the calculation of p-values was based on code from edge,
and expanded to enable handling of comparisons of groups via contrasts. The code assumes that the
Moanin object was created via either a formula or a basis where a different spline was fit for each
group_variable and thus the contrasts are comparisons of those spline fits. If the Moanin object
was created via user-provided basis matrix or formula, then the user should take a great deal of
caution in using this code, as the degrees of freedom for the tests of significance cannot be verified
to be correct.

If use_voom_weights=TRUE, then before fitting splines to each gene, voom weights are calculated
from assay(object):

DE_timepoints 5

y <- edgeR::DGEList(counts=assay(object))

y <- edgeR::calcNormFactors(y, method="upperquartile”)
v <- limma::voom(y, design, plot=FALSE)

weights <- v$weights

The design matrix for the voom weights is based on the formula ~Group + Timepoint +@ where
Group and Timepoint are replaced with the user-defined values where appropriate. These weights
are given to the 1m. fit which fits the spline coefficients. This workflow assumes that the input to
the Moanin object were counts.

If the user set log_transform=TRUE in the creation of the Moanin object, the splines will be fit to
the log of the input data, and not directly to the input data. This is independent of whether the user
chooses use_voom_weights.

Value

A data. frame with two columns for each of the contrasts given in contrasts, corresponding to the
raw p-value of the contrast for that gene (_pval) and the adjusted p-value (_qval). The adjusted p-
values are FDR-adjusted based on the Benjamini-Hochberg method, as implemented in p.adjust.
The adjustment is done across all p-values for all contrasts calculated.

See Also

makeContrasts, create_moanin_model, DE_timepoints, edge

Examples

data(exampleData)
moanin <- create_moanin_model(data=testData, meta=testMeta)
deTimecourse=DE_timecourse(moanin,

contrasts="K-C", use_voom_weights=FALSE)
head(deTimecourse)

DE_timepoints Fit weekly differential expression analysis

Description

Fit weekly differential expression analysis

Creates pairwise contrasts for all timepoints

Usage

S4 method for signature 'Moanin'’
DE_timepoints(object, contrasts, add_factors = NULL, use_voom_weights = TRUE)

S4 method for signature 'Moanin'
create_timepoints_contrasts(

6 DE_timepoints

object,

groupl,

group?2 = NULL,

type = c("per_timepoint_group_diff"”, "per_group_timepoint_diff",
"group_and_timepoint_diff"),

timepoints = sort(unique(time_variable(object))),

timepoints_before = head(sort(timepoints), -1),

timepoints_after = tail(sort(timepoints), -1),

format = c("vector”, "data.frame")
)
Arguments

object An object of class Moanin, an object containing all related information for time
course data and the splines model that will be used (if applicable). See create_moanin_model
for more details.

contrasts Contrasts, either provided as a vector of strings, or a matrix of contrasts coef-
ficients obtained using makeContrasts from the package limma. If given as a
character string, will be passed to makeContrasts to be converted into such a
matrix.

add_factors A character vector of additional variables to add to the design. See details.

use_voom_weights
boolean, optional, default: TRUE. Whether to use voom weights. See details.

group First group to consider in making contrasts, character value that must match a
value of the grouping variable contained in moanin_model.

group?2 Second group to consider in making contrasts, character value that must match a
value of the grouping variable contained in moanin_model, unless type=="per_group_timepoint_diff",
in which case should be NULL (only group1 is used in comparison)

type the type of contrasts that should be created. See details.

timepoints vector of timepoints to compare. Must be contained in the time_variable of
the moanin object.

timepoints_before
for type equal to "per_group_timepoint_diff" or, "group_and_timepoint_diff",
the set of timepoints to compare, see details. By default, taken from the timepoints
variable.

timepoints_after
for type equal to "per_group_timepoint_diff" or, "group_and_timepoint_diff",
the set of timepoints to compare, see details. By default, taken from the timepoints
variable.

format the choice of "vector" (the default) for create_timepoints_contrasts returns
just the character vector of contrasts. If instead format="data.frame" then a
data.frame is return that identifies the timepoint and group comparisons involved
in each contrast. If this is the desired output, then the input to DE_timepoints
should be the column corresponding to the contrast. See examples.

DE_timepoints 7

Details

By default the formula fitted for each gene is
~ GroupxTimepoint +0

If the user gives values to add_factors, then the vector of character values given in add_factors
will be added to the default formula. So that add_factors="Replicate"” will change the formula
to

~ Group*Timepoint +@ + Replicate

This allows for a small amount of additional complexity to control for other variables. Users should
work directly with limma for more complex models.

If use_voom_weights=TRUE, the data is given directly to limma via assay(object). The specific
series of calls is:

y <- edgeR::DGEList(counts=assay(object))

y <- edgeR::calcNormFactors(y, method="upperquartile”)
v <- limma::voom(y, design, plot=FALSE)

v <= limma::1lmFit(v)

If the user set log_transform=TRUE in the creation of the Moanin object, this will not have an
impact in the analysis if use_voom_weights=TRUE. Only if use_voom_weights=FALSE will this
matter, in which case the log of the input data will be given to a regular call to 1imma:

y<-get_log_data(object)
v <- limma::1lmFit(y, design)

create_timepoints_contrasts creates the needed contrasts for comparing groups or timepoints
in the format needed for DE_timepoints (i.e. makeContrasts), to which the contrasts are ulti-
mately passed. The time points and groups are determined by the levels of the grouping_variable
and the values of time_variable in the moanin_object provided by the user.

Three different types of contrasts are created:

* "per_timepoint_group_diff"Contrasts that compare the groups within a timepoint
» "per_group_timepoint_diff"Contrasts that compare two timepoints within a group
 "group_and_timepoint_diff"Contrasts that compare the difference between two timepoints be-
tween two levels of the group_variable of the Moanin object. These are contrasts in the form
(TP 1i- TP (i-1))[Groupl] - (TP i - TP (i-1))[Group2].
Value

create_timepoints_contrasts: acharacter vector with each element of the vector corresponding
to a contrast to be compared.

See Also

makeContrasts

8 discont_basis

Examples

data(exampleData)
moanin <- create_moanin_model (data=testData, meta=testMeta)
compare groups within each timepoint
contrasts <- create_timepoints_contrasts(moanin,”C", "K",
type="per_timepoint_group_diff")
head(contrasts)
deTimepoints=DE_timepoints(moanin,
contrasts=contrasts, use_voom_weights=FALSE)
head(deTimepoints)
Control for replicate variable:
deTimepoints=DE_timepoints(moanin,
contrasts=contrasts, add_factors="Replicate”,
use_voom_weights=FALSE)
head(deTimepoints)

compare adjacent timepoints within each group
contrastsDiff <- create_timepoints_contrasts(moanin,"C",
type="per_group_timepoint_diff")
deDiffTimepoints=DE_timepoints(moanin,
contrasts=contrastsDiff,
use_voom_weights=FALSE)
provide the sets of timepoints to compare:
contrastsDiff2<-create_timepoints_contrasts(moanin,"C",
timepoints_before=c(72,120),timepoints_after=c(168,168),
type="per_group_timepoint_diff")
deDiffTimepoints2=DE_timepoints(moanin,
contrasts=contrastsDiff2,
use_voom_weights=FALSE)

Compare selected timepoints across groups.
This time we also return format="data.frame” which helps us keep track of
the meaning of each contrast.
contrastsGroupDiff<-create_timepoints_contrasts(moanin,”C", "K",
timepoints_before=c(72,120),timepoints_after=c(168,168),
type="group_and_timepoint_diff",6 format="data.frame")
head(contrastsGroupDiff)
deGroupDiffTimepoints=DE_timepoints(moanin,
contrasts=contrastsGroupDiff$contrasts,
use_voom_weights=FALSE)

discont_basis Provides set of basis functions on either side of a time point, allowing
for a discontinuity in the fitted functions

Description

Provides set of basis functions on either side of a time point, allowing for a discontinuity in the
fitted functions

discont_basis

Usage

discont_basis(
timepoints,

discont_point,

knots = NULL,
dfPre = NULL,

dfPost = dfPre,

degree = 3

intercept = TRUE,

type = c("ns",

Arguments
timepoints
discont_point

knots

dfPre
dfPost
degree

intercept

type

Examples

Hbsll)

vector of numeric timepoints for which the splines basis will be evaluated
a single numeric value that represents where the discontinuity should be

passed to ns or bs. If not NULL, should give knots on either side of discon_point
as single vector — they will be separated in the call to discon_point

the df for the basis functions defined before the discontinuity point
the df for the basis functions defined after the discontinuity point
passed to bs (if applicable)

Whether to include an intercept (vector of all 1s) for each side of the discontinu-
ity. Note this is different than the argument intercept of either bs or ns, which
is set to FALSE.

either "ns" or "bs" indicating which splines basis function should be used.

x<-seq(0,10,length=100)
basis<-discont_basis(x,discont_point=3, dfPre=3, dfPost=4, intercept=TRUE)
Plot of the basis functions

par(mfrow=c(3,3))

for(i in 1:ncol(basis)){

plot(x,basis[,

i1, type="1")

abline(v=3,1ty=2)

3

Use it in a moanin_model object instead of ns/bs:

data(exampleData)
moanin <- create_

moanin_model (data=testData, meta=testMeta,

spline_formula=~Group:discont_basis(Timepoint,dfPre=3,

dfPost=3,

discont=20,intercept=TRUE)+Q,

degrees_of_freedom=6)

10 estimate_log_fold_change

estimate_log_fold_change
Estimates log fold change

Description

Estimates log fold change

Usage

S4 method for signature 'Moanin'’
estimate_log_fold_change(

object,
contrasts,
method = c("timecourse”, "sum”, "max"”, "timely", "abs_sum”, "abs_squared_sum”, "min")
)
Arguments
object An object of class Moanin, an object containing all related information for time
course data and the splines model that will be used (if applicable). See create_moanin_model
for more details.
contrasts The contrasts to consider
method method for calculating the log-fold change. See details.
Details

The following methods exist for calculating the log-fold change between conditions over time (de-
fault is "timecourse"):
* timelyThe log-fold change for each individual timepoint (I fc(t))

* timecourseThe average absolute per-week fold-change, multiplied by the sign of the average
per-week fold-change.

* sumSum of per-week log fold change, over all timepoints

* maxMax of per-week log fold change, over all timepoints

* abs_sumSum of the absolute value of the per-week log fold change, over all timepoints

* abs_squared_sumSum of the square value of the per-week log fold change, over all timepoint
* minMin of per-week log fold change, over all timepoints

If the user set log_transform=TRUE in the creation of the Moanin object, the data will be log
transformed before calculating the fold-change.

Value

A data.frame giving the estimated log-fold change for each gene (row). For all methods except for
"timely", the data frame will consist of one column for each value of the argument contrasts. For
"timely" there will be one column for each timepoint and contrast combination.

exampleData

Examples

data(exampleData)

moanin <- create_moanin_model (data=testData,meta=testMeta)

estsTimely <- estimate_log_fold_change(moanin,
contrasts=c("K-C"), method="timely")

head(estsTimely)

estsTimecourse <- estimate_log_fold_change(moanin,
contrasts=c("K-C"),method="timecourse")

head(estsTimecourse)

11

exampleData Small data set for running examples

Description

Small data set for running examples

Format

Three objects are loaded, a data frame of expression of 500 genes by 84 samples (testData), a data

frame with meta information on those 84 samples (testMeta), and a data frame giving the GOID

of the genes in testData.

Details

This data is a subset of the full time course data available as shoemaker2015 and is only provided
for the purpose of running examples, and not for biological meaning. Users should refer to the full

data set.

The rownames of testData are RefSeq.

Examples

#code used to create data:

Not run:

library(timecoursedata)
data(shoemaker2015)
testData<-shoemaker2015%$datal1:500,]

whSamples<-which(shoemaker2015$meta$Group %in% c("C","K","M"))

testData<-testData[,whSamples]
testMeta<-droplevels(shoemaker2015$metalwhSamples, 1)
library(biomaRt)

ensembl = useMart("ensembl”)

ensembl = useMart("ensembl")

ensembl = useDataset(”"mmusculus_gene_ensembl”, mart=ensembl)

testGenesGO = getBM(attributes=c("go_id", "refseq_mrna"),
values=rownames(testData),
filters="refseq_mrna”,
mart=ensembl)

save(list=c("testData”,"testMeta"”, "testGenesG0"),file="data/exampleData.rda")

12 expression_filtering

End(Not run)

expand_contrast Internal Validation Checks

Description
Will check that the contrasts provided are indeed contrasts. contrasts are expected to be either a
vector of string or a matrix containing the contrasts coefficients.

Usage

expand_contrast(moanin_model, contrast_vector)
check_data_meta(data, object)
check_is_2d(X)

is_contrasts(contrasts, moanin_model)

Details

If a vector of string is provided, the function will call limma::makeContrast in order to obtain the
contrasts coefficients.

If a contrasts matrix is provided, it will perform a number of checks on the contrasts matrix to make
sure it contains the number of rows expected, and that each contrast indeed sums to O.
Value

Does not return anything. Only hits errors if there are problems.

is_contrasts returns the contrasts, with any corrections.

expression_filtering Utility function to filter out low-expressed genes

Description

Utility function to filter out low-expressed genes

Usage

expression_filtering(counts, min_counts = 20, min_samples = 3)

find_enriched_go_terms 13

Arguments
counts n by p matrix containing the count data.
min_counts integer, corresponding to the minimum number of counts for the gene to be
considered expressed in a sample. Default is 20.
min_samples integer, corresponding to the minimum of samples for a gene to be expressed to
be included in downstream analyses.
Value

The filtered counts matrix

find_enriched_go_terms
Find enriched GO terms

Description

Find enriched GO terms
Create the Gene to GO Term mapping

Usage

find_enriched_go_terms(
assignments,
gene_id_to_go,
ontology = "BP",
weighted = FALSE,
node_size = 10

)
create_go_term_mapping(genes, gene_col = "refseq_mrna")
Arguments
assignments boolean named vector determining the gene subset to be tested for enrichment

of GO terms. The names of the vector should be the gene names. Elements with
TRUE will consist of the gene cluster.

gene_id_to_go List giving the Gene ID to GO object required for topGO (see topGOdata-class).
create_go_term_mapping can construct such a list from a data-frame.

ontology string, optional, default: BP. specficies which ontology to use (passed to ontology
argument in creating a new topGOdata object). Can be 'BP’, "CC’, or 'NF’. See
topGOdata-class.

weighted boolean, optional, default: FALSE. Whether to use the weighted algorithm or
not in runTest.

14 find_enriched_go_terms

node_size integer, optional, default: 10. Consider only GO terms with node_size number
of genes, passed to nodeSize argument of topGOdata-class

genes dataframe, with two required columns. The first gives the gene names, with
column name by the argument gene_col. The other column must be named
"go_id" and give the genes GO id. Genes will have multiple GO id that they
map to, and each go mapping of a gene is a separate row. Thus genes will be in
multiple rows of the input.

gene_col the name of the column of the genes data frame that contains the correct gene
reference. By default, is "refseq_mrna".

Details

find_enriched_go_terms is a wrapper for running a GO enrichment analysis via the package
topGO. This function creates a topGOdata-class object, runs the function runTest to test for
enrichment using the statistic="fisher"” option, and then runs GenTable. This function then
does some post-processing of the results, returning only GO terms that satisfy:

1. BH adjusted p-values less than 0.05 using p.adjust

2. GO terms are enriched, i.e. the number of genes from the GO term found in the subset is
greater than expected

Value

Returns results in the format of GenTable.

create_go_term_mapping returns a list giving the gene to GO id in the format required by topGOdata-class.

See Also

create_go_term_mapping, find_enriched_pathway, GenTable, runTest, topGOdata-class,
p.adjust

Examples

data(exampleData)

head(testGenesG0O) #gives the mapping of genes to GO

geneld2Go <- create_go_term_mapping(testGenesGO)

#create fake assignment of genes to group based on TRUE/FALSE values
inGroup=rep(FALSE,nrow(testData))

inGroup[1:10]=TRUE

names(inGroup) <- row.names(testData)
find_enriched_go_terms(inGroup, geneld2Go)

fit_predict_splines 15

fit_predict_splines Get fitted values for splines for each gene

Description

Get fitted values for splines for each gene

Usage

fit_predict_splines(data, moanin_model, meta_prediction = NULL)

Arguments

data a matrix with data (required doesn’t pull from moanin_model)
meta_prediction

Value

a matrix of the fitted y values, with dimensions the same as data

fit_splines Fit splines to each gene of data matrix, used by DE_timecourse

Description

Fit splines to each gene of data matrix, used by DE_timecourse

Usage

fit_splines(design_matrix, data, weights = NULL)

Arguments

design_matrix design matrix (containing evaluated basis matrix, but potentially other variables)

to fit
data a matrix of data to fix splines to
weights A matrix of weights, of the same dimension as data.

Details
Needed to allow for fitting weights, in which case for loop over every row/gene. Otherwise, just a
call to Im.fit.

Value

matrix of the coefficients for each basis function, each row of the matrix containing the coefficients
for the corresponding gene in data.

16 Moanin-class

Moanin-class Class Moanin

Description

Moanin is a class that extends SummarizedExperiment and is used to store the additional spline
basis and meta data for timecourse analysis.

In addition to the slots of the SummarizedExperiment class, the Moanin object has the additional
slots described in the Slots section.

There are several methods implemented for this class. The most important methods have their own
help page. Simple helper methods are described in the Methods section below. For a comprehensive
list of methods specific to this class see the Reference Manual.

The constructor create_moanin_model creates an object of the class Moanin.

Usage

S4 method for signature 'DataFrame’
create_moanin_model(data, meta, ...)

S4 method for signature 'data.frame'
create_moanin_model(data, ...)

S4 method for signature 'matrix'
create_moanin_model(data, meta, ...)
S4 method for signature 'SummarizedExperiment'
create_moanin_model(
data,
spline_formula = NULL,
basis_matrix = NULL,
group_variable_name = "Group”,
time_variable_name = "Timepoint”,
degrees_of_freedom = NULL,
log_transform = FALSE,
drop_levels = TRUE

)
Arguments
data The input data. Can be a SummarizedExperiment class, or matrix/data.frame. If
the input data is a matrix or data. frame, then the user must also provide input
to the meta argument, which will be transformed into colData of the resulting
Moanin object
meta Meta data on the samples (columns) of the data argument. Must be given f

input data is a matrix or data.frame. If input is SummarizedExperiment,
this argument is ignored.

Moanin-class 17

arguments passed from methods to the SummarizedExperiment method.

spline_formula formula object, optional, default: NUIL. Used to construct splines from the data
in meta. See details.

basis_matrix matrix, optional, default: NULL. A basis matrix, where each row corresponds
to the evaluation of a sample on the basis function (thus one column for each
basis function).

group_variable_name
A character value giving the column that corresponds to the grouping variable
to test for DE. By default "Group"

time_variable_name
A character value giving the column that corresponds to the time variable. By
default "Timepoint".

degrees_of_freedom
int, optional. Number of degrees of freedom to use if neither the basis_matrix
nor the spline_formula is provided. If not provided by the user, internally will
be set to 4

log_transform whether the data should be log-transformed by certain methods (see splines_kmeans)

drop_levels Logical, whether to perform droplevels on the grouping variable (i.e. remove
empty levels)

Details

If neither spline_formula nor basis_matrix is given, then by default, the function will create a
basis matrix based on the formula:

spline_formula = ~Group:ns(Timepoint, df=4) + Group +
Q

Note that the meta data will have levels dropped (via droplevels).

Input to data that is given as a class DataFrame or data.frame will be converted to class matrix.
The reason for this is that use of a data.frame creates errors in taking duplicate rows/columns
of SummarizedExperiment, as in bootstrapping. Users who absolutely want the object to hold a
object that is not a matrix can construct a SummarizedExperiment object (which will not convert
the input into a matrix), and use this as input to create_moanin_model.

Value

An object of class Moanin

Slots
time_variable_name character value giving the column in colData that defines the time variable
(must be of class numeric)

group_variable_name character value giving the column in colData that defines the grouping
variable (must be of class factor)

basis_matrix A basis matrix, where each row corresponds to the evaluation of a sample on the
basis function (thus one column for each basis function).

18 Moanin-methods

spline_formula a formula. The formula used in creating the basis matrix

degrees_of_freedom a numeric integer. Number of degrees of freedom used in creating basis
matrix. If NULL, degrees of freedom is not known (usually if user provided basis without
degrees of freedom)

log_transform logical, whether to log-transform the data for certain methods

Examples

Load some data
data(exampleData)

Use the default options
moanin = create_moanin_model (data=testData,meta=testMeta)
moanin

Change the number of degrees of freedom

moanin = create_moanin_model (data=testData,meta=testMeta,
degrees_of_freedom=6)

moanin

Moanin-methods Helper methods for the Moanin class

Description

This is a collection of helper methods for the Moanin class.

Usage

S4 method for signature 'Moanin'
group_variable_name(object)

S4 replacement method for signature 'Moanin'
group_variable_name(object) <- value

S4 method for signature 'Moanin'
time_by_group_variable(object)

S4 method for signature 'Moanin'
group_variable(object)

S4 replacement method for signature 'Moanin'
group_variable(object) <- value

S4 method for signature 'Moanin'
time_variable_name(object)

Moanin-methods 19

S4 replacement method for signature 'Moanin’
time_variable_name(object) <- value

S4 method for signature 'Moanin'
time_variable(object)

S4 replacement method for signature 'Moanin'
time_variable(object) <- value

S4 method for signature 'Moanin'
degrees_of_freedom(object)

S4 method for signature 'Moanin'
basis_matrix(object)

S4 method for signature 'Moanin'’
spline_formula(object)

S4 method for signature 'Moanin'
show(object)

S4 method for signature 'Moanin,ANY,character,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'Moanin,ANY,logical,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'Moanin,ANY,numeric,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'Moanin'
log_transform(object)

S4 method for signature 'Moanin'
get_log_data(object)

Arguments
object An object of class Moanin, an object containing all related information for time
course data and the splines model that will be used (if applicable). See create_moanin_model
for more details.
value replacement value
X Moanin object
i, j A vector of logical or integer subscripts, indicating the rows and columns to be

subsetted for i and j, respectively.
arguments passed to subsetting

drop A logical scalar that is ignored.

20 perWeek_barplot

Details

Note that when subsetting the data, the dendrogram information and the co-clustering matrix are
lost.

Value

group_variable_name and time_variable_name return the name of the column containing the
variable. group_variable and time_variable return the actual variable.

Examples

Load some data

data(exampleData)

moanin = create_moanin_model (data=testData,meta=testMeta)
group_variable_name(moanin)

time_variable_name(moanin)

perWeek_barplot Creates barplot of results of per-timepoint comparison

Description

Creates barplot of results of per-timepoint comparison

Usage

perWeek_barplot(
de_results,
type = c("qval”, "pval"),
labels = NULL,
threshold = 0.05,

xlab = "Timepoint”,

ylab = "Number of DE genes”,

main = "",
)

Arguments

de_results results from DE_timepoints
type type of p-value to count ("qval" or "pval")
labels labels to give each bar
threshold cutoff for counting gene as DE
xlab x-axis label
ylab y-axis label
main title of plot

arguments passed to barplot

plot_cdf_consensus 21

Details

create_timepoints_contrasts creates the needed contrasts for comparing two groups for every
timepoint in the format needed for DE_timepoints (i.e. makeContrasts, to which the contrasts
are ultimately passed). The time points are determined by the meta data in the moanin_object
provided by the user.

Value

This is a plotting function, and returns (invisibly) the results of barplot

Examples
data(exampleData)
moanin <- create_moanin_model (data=testData, meta=testMeta)
contrasts <- create_timepoints_contrasts(moanin, "C", "K")

deTimepoints <- DE_timepoints(moanin,
contrasts=contrasts, use_voom_weights=FALSE)
perWeek_barplot(deTimepoints)

plot_cdf_consensus Evaluate the consensus between sets of clusterings

Description

Methods for evaluating the consensus between sets of clusterings, usually in the context of subset-
ting of the data or different numbers of clusters.

Usage
plot_cdf_consensus(labels)
get_auc_similarity_scores(labels, method = c("consensus”, "nmi"))

plot_model_explorer(labels, colors = rainbow(length(labels)))

Arguments
labels a list. Each element of the list is a matrix that gives the results of a clustering
routine in each column (see consensus_matrix). Usually each column would
be the result of running the clustering on a subsample or bootstrap resample of
the data.
method method for calculation of similarity for the AUC measure, one of "consensus"

or "'nmi". See details.

colors a vector of colors, of length equal to the length of 1abels

22 plot_cdf_consensus

Details

For each element of the list labels, plot_cdf_consensus calculates the consensus between the
clusterings in the matrix, i.e. the number of times that pairs of rows are in the same cluster for
different clusterings (columns) of the matrix using the consensus_matrix function. Then the set
of values (the N(N-1) values in the upper triangle of the matrix), are converted into a cdf function
and plotted.

For each set of clusterings given by labels (i.e. for each matrix M which is an element of the list
labels) get_auc_similarity_scores calculates a pairwise measure of similarity between the
columns of M. These pairwise scores are plotted against their rank, and the final AUC measure is the
area under this curve.

For method "consensus", the pairwise measure is given by calculating the consensus matrix using
consensus_matrix with scale=FALSE. The consensus matrix is divided by the max of M.

For method "nmi", the pairwise value is the NMI value between each pair of columns of the matrix
of clusterings using the NMI function.

Value

plot_cdf_consensus invisibily returns list of the upper triangle values, with the list of same length
as that of labels.

get_auc_similarity_scores returns a vector, equal to length of the list 1labels, giving the AUC
value for each element of labels.

This function is a plotting function does not return anything

See Also

consensus_matrix, NMI, plot_cdf_consensus

Examples

data(exampleData)

moanin <- create_moanin_model (data=testData,meta=testMeta)

#small function to run splines_kmeans on subsample of 50 genes

subsampleCluster<-function(){
ind<-sample(1:nrow(moanin),size=50)
km<-splines_kmeans(moanin[ind,],n_clusters=3)
assign<-splines_kmeans_score_and_label (moanin, km,

proportion_genes_to_label=1.0)$label

}

kmClustersl=replicate(10,subsampleCluster())

kmClusters2=replicate(10,subsampleCluster())

Note, because of the small number of replicates (10),

these plots are not representative of what to expect.

out<-plot_cdf_consensus(labels=1ist(kmClusters1,kmClusters2))

get_auc_similarity_scores(list(kmClusters1,kmClusters2))

plot_model_explorer(list(kmClusters1,kmClusters2))

plot_splines_data

23

plot_splines_data

Plotting splines

Description

Plotting splines

Usage

S4 method for signature 'Moanin,matrix’
plot_splines_data(

object
data,

colors
smooth
legend

’

NULL

= TRUE

’

FALSE,

’

legendArgs = NULL,
subset_conditions = NULL,
subset_data =
simpleY = TRUE,

centroid = NULL,

scale_centroid = c("toData”, "toCentroid”, "none"),
c(2.5, 2.5, 3, 1),

NULL,

mar =
mfrow = NULL,
addToPlot = NULL,
ylab = "",

xaxis = TRUE,
yaxis = TRUE,
xlab = "Time",

)

S4 method for signature 'Moanin,numeric'’
plot_splines_data(object, data, ...)

S4 method for signature 'Moanin,data.frame’
plot_splines_data(object, data, ...)

S4 method for signature 'Moanin,DataFrame'’
plot_splines_data(object, data, ...)

S4 method for signature 'Moanin,missing'’

plot_splines_data(object, data, ...)
Arguments
object An object of class Moanin, an object containing all related information for time

course data and the splines model that will be used (if applicable). See create_moanin_model

24 plot_splines_data

for more details.

data matrix containing the data to be plotted, where each row of the data provided will
be plotted as a separate plot. If missing, will rely on data in assay (object)

colors vector, optional, default NULL. Vector of colors

smooth boolean, optional, default: FALSE. Whether to smooth the centroids or not.

legend boolean whether to include a legend (default: TRUE)

legendArgs list of arguments to be passed to legend command (if legend=TRUE)

subset_conditions
list if provided, only plots the subset of conditions provided. Else, plots all
conditions

subset_data list if provided, only plots the subset of data (ie, the rows) provided. Can be any
valid vector for subsetting a matrix. See details.

simpleY boolean, if true, will plot all genes on same y-axis and minimize the annotation
of the y axis to only label the axis in the exterior plots (the x-axis is always
assumed to be the same across all plots and will always be simplified)

centroid numeric vector (or matrix of 1 row) with data to use to fit the splines. If NULL,
the splines plotted will be from the data.

scale_centroid determines whether the centroid data given in centroid should be rescaled to
match that of the data ("toData"), or the data scaled to match that of centroid
("toCentroid"), or simply plotted as is ("none").

mar vector of margins to set the space around each plot (see par)

mfrow a vector of integers of length 2 defining the grid of plots to be created (see par).
If missing, the function will set a value.

addToPlot A function that will be called after the plotting, allowing the user to add more to
the plot.

ylab label for the y-axis

xaxis Logical, whether to add x-axis labels to plot (if FALSE can be manually created

by user with call to addToPlot)

yaxis Logical, whether to add y-axis labels to plot (if FALSE can be manually created
by user with call to addToPlot)

x1lab label for the x-axis

arguments to be passed to the individual plot commands (Will be sent to all plot
commands)

Details

If data is NULL, the data plotted will be from assay (object), after log-transformation if log_transform(object)=TRUE.

If centroid is missing, then splines will be estimated (per group) for the the data in data — sepa-
rately for each row of data. If centroid is provided, this data will be used to plot a spline function,
and this same spline will be plotted for each row of data. This is useful, for example, in plotting
cluster centroids over a series of genes.

If the user set log_transform=TRUE in the creation of the Moanin object, the data will be log
transformed before plotting and calculating the spline fits.

pvalues_fisher_method

Value

This function creates a plot and does not return anything to the user.

Examples

First, load some data and create a moanin model

data(exampleData)

moanin <- create_moanin_model (data=testData,meta=testMeta,
degrees_of_freedom=6)

The moanin model contains all the information for plotting purposes. The
plot_splines_data will automatically fit the splines from the
information contained in the moanin model
genes <- c("NM_001042489", "NM_008725")
plot_splines_data(moanin, subset_data=genes,
mfrow=c(2, 2))
By default, same axis for all genes. Can change with 'simpleY=FALSE'
plot_splines_data(moanin, subset_data=genes,
smooth=TRUE, mfrow=c(2,2), simpleY=FALSE)

The splines can also be smoothed

plot_splines_data(moanin, subset_data=genes,
smooth=TRUE, mfrow=c(2, 2))

You can provide different data (on same subjects),

instead of data in moanin object

(in which case moanin just provides grouping information)

plot_splines_data(moanin, data=1/assay(moanin), subset_data=genes,
smooth=TRUE, mfrow=c(2, 2))

You can also provide data to use for fitting splines to argument
"centroid”. This is helpful for overlaying centroids or predicted data
Here we do a silly example, just to demonstrate syntax,

where we use the data from the first gene as our centroid to fit a
spline estimate, but plot data from genes 3-4
plot_splines_data(moanin, centroid=assay(moanin[1,]), subset_data=3:4,
smooth=TRUE, mfrow=c(2,2))

*od ¥ o

25

pvalues_fisher_method Fisher’s method to combine pvalues

Description

Combines all p-values per rows.

Usage

pvalues_fisher_method(pvalues)

26 rescale_values

Arguments
pvalues a matrix of pvalues, with columns corresponding to different tests or sources of
p-values, and rows corresponding to the genes from which the p-values come.
Value

a vector of p-values, one for each row of pvalues, that is the result of Fisher’s combined probability
test applied to the p-values in that row.

Examples
data(exampleData)
moanin <- create_moanin_model (data=testData,meta=testMeta)
contrasts <- create_timepoints_contrasts(moanin,”C", "K")

deTimepoints=DE_timepoints(moanin,
contrasts=contrasts, use_voom_weights=FALSE)
fisherPval=pvalues_fisher_method(
deTimepoints[,grep("pval”,colnames(deTimepoints))])
head(fisherPval)

rescale_values Rescales rows of data to be between 0 and 1

Description

Rescales rows of data to be between 0 and 1

Usage

S4 method for signature 'Moanin'’
rescale_values(object, data = NULL, use_group = FALSE)

S4 method for signature '“NULL™'
rescale_values(object, data)

S4 method for signature 'missing'’

rescale_values(object, ...)
Arguments
object a object of class Moanin, only needed if choose to rescale by grouping variable
in the moanin object. If NULL, then data will be rescaled jointly across all
observations.
data The matrix to rescale by row. If NULL, and object is given, data will be taken

as assay(object) Each row should correspond to a gene or a centroid, and
columns to samples.

splines_kmeans 27

use_group If true, then the data will be rescaled such that, for each row, all values associated

to each group (defined by grouping variable of object) is between 0 and 1. For
example, if column

arguments passed to the matrix or Moanin method.

Details

If the user set log_transform=TRUE in the creation of the Moanin object, the data will be log
transformed before rescaling

Value

rescaled y, such that for each row, the values are comprised between 0 and 1. Note that if use_group=TRUE
and object is not NULL, the values associated to the columns of unique values of the grouping
variable of object will be rescaled separately.

Examples

data(exampleData)

moanin <- create_moanin_model (data=testData, meta=testMeta)

Can rescale data in Moanin object

allData <- rescale_values(moanin)

Or provide different data and/or rescale within grouping variable
smallData <- rescale_values(moanin, data=testDatal[1:10,], use_group=TRUE)

splines_kmeans Performs splines clustering using K-means

Description

Performs splines clustering using K-means

Usage

S4 method for signature 'Moanin'
splines_kmeans(

object,
n_clusters = 10,
init = "kmeans++",

n_init = 10,

max_iter = 300,

random_seed = .Random.seed[1],
fit_splines = TRUE,

rescale = TRUE

28 splines_kmeans_predict, Moanin-method

Arguments

object An object of class Moanin, an object containing all related information for time
course data and the splines model that will be used (if applicable). See create_moanin_model
for more details.

n_clusters int optional, default: 10

init ["kmeans++", "random", "optimal_init"]

n_init int, optional, default: 10 Number of initialization to perform.

max_iter int, optional, default: 300 Maximum number of iteration to perform

random_seed int, optional, default: NULL. Passed to argument seed in KMeans_rcpp. If

NULL (default), set to .Random. seed[1].
fit_splines boolean, optional, default: TRUE Whether to fit splines or not.

rescale boolean, optional, default: TRUE Whether to rescale the data or not.

Details

If Moanin object’s slot has log_transform=TRUE, then the data will be transformed by the function
log(x+1) before applying splines and clustering.

Value

A list in the format returned by KMeans_rcpp, with the following elements added or changed:

* centroids The centroids are rescaled so that they range from 0-1
e fit_splines Logical, the value of fit_splines given to the function

* rescale The value of rescale given to the function

Examples

data(exampleData)

Use the default options

moanin <- create_moanin_model (data=testData, meta=testMeta)
out <- splines_kmeans(moanin,n_clusters=5)
table(out$clusters)

splines_kmeans_predict,Moanin-method
Assign score and labels from raw data

Description

Assign score and labels from raw data

splines_kmeans_predict, Moanin-method 29

Usage

S4 method for signature 'Moanin'
splines_kmeans_predict(

object,

kmeans_clusters,

data = NULL,

method = c("distance”, "goodnessOfFit"),

)

S4 method for signature 'Moanin'
splines_kmeans_score_and_label(
object,
kmeans_clusters,
data = NULL,
proportion_genes_to_label = 0.5,
max_score = NULL,
previous_scores = NULL,
rescale_separately = FALSE

Arguments

object the Moanin object that contains the basis functions used in creating the clusters

kmeans_clusters
List returned by splines_kmeans

data the data to predict. If not given, will use assay(object). If given, the number
of columns of data must match that of object

method If "distance", predicts based on distance of data to kmeans centroids. If "good-
nessOfFit", is a wrapper to splines_kmeans_score_and_label, assigning la-
bels based on goodness of fit, including any filtering.

arguments passed to splines_kmeans_score_and_label

proportion_genes_to_label
float, optional, default: 0.5 Percentage of genes to label. If max_score is pro-
vided, will label genes that are either in the top ‘proportion_genes_to_label‘ or
with a score below ‘max_score‘.

max_score optional, default: Null When provided, will only label genes below that score.
If NULL, ignore this option.

previous_scores
matrix of scores, optional. Allows user to give the matrix scores results from a
previous run of splines_kmeans_score_and_label, and only redo the filtering
(i.e. if want to change proportion_genes_to_label without rerunning the
calculation of scores)

rescale_separately
logical, whether to score separately within grouping variable

30 splines_kmeans_predict, Moanin-method

Value

splines_kmeans_predict returns a vector giving the labels for the given data.

A list consisting of

* labelsthe label or cluster assigned to each gene based on the cluster with the best (i.e. lowest)
score, with no label given to genes that do not have a score lower than a specified quantity

* scoresthe matrix of size n_cluster X n_genes, containing for each gene and each cluster, the
goodness of fit score

» score_cutoffThe required cutoff for a gene receiving an assignment

Examples

data(exampleData)

moanin <- create_moanin_model (data=testData, meta=testMeta)

Cluster on a subset of genes

kmClusters=splines_kmeans(moanin[1:50,],n_clusters=3)

get scores on all genes

scores_and_labels <- splines_kmeans_score_and_label(object=moanin, kmClusters)

head(scores_and_labels$scores)

head(scores_and_labels$labels)

should be same as above, only just the assignments

predictLabels1 <- splines_kmeans_predict(object=moanin, kmClusters,
method="goodnessOfFit")

Instead use distance to centroid:

predictLabels2 <- splines_kmeans_predict(object=moanin, kmClusters,
method="distance")

Index

+ data
exampleData, 11
* internal
create_meta_prediction, 3
expand_contrast, 12
expression_filtering, 12
fit_predict_splines, 15
fit_splines, 15
[,Moanin, ANY,ANY, ANY-method
(Moanin-methods), 18
[,Moanin, ANY, character, ANY-method
(Moanin-methods), 18
[,Moanin,ANY, logical,ANY-method
(Moanin-methods), 18
[,Moanin, ANY,numeric, ANY-method
(Moanin-methods), 18

barplot, 20, 21

basis_matrix (Moanin-methods), 18

basis_matrix,Moanin-method
(Moanin-methods), 18

check_data_meta (expand_contrast), 12
check_is_2d (expand_contrast), 12
consensus_matrix, 2, 21, 22
create_go_term_mapping, 14
create_go_term_mapping
(find_enriched_go_terms), 13
create_meta_prediction, 3
create_moanin_model, 4-6, 10, 19, 23, 28
create_moanin_model (Moanin-class), 16

create_moanin_model,data.frame-method

(Moanin-class), 16
create_moanin_model,DataFrame-method

(Moanin-class), 16
create_moanin_model ,matrix-method

(Moanin-class), 16

create_moanin_model, SummarizedExperiment-method

(Moanin-class), 16

create_timepoints_contrasts
(DE_timepoints), 5

create_timepoints_contrasts,Moanin-method
(DE_timepoints), 5

DE_timecourse, 4
DE_timecourse,Moanin-method
(DE_timecourse), 4
DE_timepoints, 5, 5, 20
DE_timepoints,Moanin-method
(DE_timepoints), 5
degrees_of_freedom (Moanin-methods), 18
degrees_of_freedom,Moanin-method
(Moanin-methods), 18
discont_basis, 8
droplevels, 17

edge, 4, 5

estimate_log_fold_change, 10

estimate_log_fold_change,Moanin-method
(estimate_log_fold_change), 10

exampleData, 11

expand_contrast, 12

expression_filtering, 12

find_enriched_go_terms, 13
find_enriched_pathway, 14
fit_predict_splines, 15
fit_splines, 15

GenTable, 14
get_auc_similarity_scores
(plot_cdf_consensus), 21
get_log_data (Moanin-methods), 18
get_log_data,Moanin-method
(Moanin-methods), 18
group_variable (Moanin-methods), 18
group_variable,Moanin-method
(Moanin-methods), 18
group_variable<- (Moanin-methods), 18

32

group_variable<-,Moanin-method
(Moanin-methods), 18
group_variable_name (Moanin-methods), 18
group_variable_name,Moanin-method
(Moanin-methods), 18
group_variable_name<- (Moanin-methods),
18
group_variable_name<-,Moanin-method
(Moanin-methods), 18

internal (expand_contrast), 12
is_contrasts (expand_contrast), 12

KMeans_rcpp, 28

log_transform (Moanin-methods), 18
log_transform,Moanin-method
(Moanin-methods), 18

makeContrasts, 4-7, 21
Moanin, 4, 6, 10, 19, 23, 28
Moanin (Moanin-class), 16
Moanin-class, 16
Moanin-methods, 18

NMI, 22
NULL-method (rescale_values), 26

p.adjust, 5, 14
par, 24
perWeek_barplot, 20
plot_cdf_consensus, 21, 22
plot_model_explorer
(plot_cdf_consensus), 21
plot_splines_data, 23
plot_splines_data,Moanin,data.frame-method
(plot_splines_data), 23
plot_splines_data,Moanin,DataFrame-method
(plot_splines_data), 23
plot_splines_data,Moanin,matrix-method
(plot_splines_data), 23
plot_splines_data,Moanin,missing-method
(plot_splines_data), 23
plot_splines_data,Moanin, numeric-method
(plot_splines_data), 23
pvalues_fisher_method, 25

rescale_values, 26
rescale_values, (rescale_values), 26

INDEX

rescale_values,missing-method
(rescale_values), 26
rescale_values,Moanin-method
(rescale_values), 26
rescale_values,NULL-method
(rescale_values), 26
runTest, 13, 14

shoemaker2015, 71

show (Moanin-methods), 18

show,Moanin-method (Moanin-methods), 18

spline_formula (Moanin-methods), 18

spline_formula,Moanin-method
(Moanin-methods), 18

splines_kmeans, 17,27, 29

splines_kmeans,Moanin-method
(splines_kmeans), 27

splines_kmeans_predict
(splines_kmeans_predict,Moanin-method),
28

splines_kmeans_predict,Moanin-method,
28

splines_kmeans_score_and_label
(splines_kmeans_predict,Moanin-method),
28

splines_kmeans_score_and_label,Moanin-method
(splines_kmeans_predict,Moanin-method),
28

SummarizedExperiment, 16

testData (exampleData), 11
testGenesGO (exampleData), 11
testMeta (exampleData), 11
time_by_group_variable
(Moanin-methods), 18
time_by_group_variable,Moanin-method
(Moanin-methods), 18
time_variable (Moanin-methods), 18
time_variable,Moanin-method
(Moanin-methods), 18
time_variable<- (Moanin-methods), 18
time_variable<-,Moanin-method
(Moanin-methods), 18
time_variable_name (Moanin-methods), 18
time_variable_name,Moanin-method
(Moanin-methods), 18
time_variable_name<- (Moanin-methods),
18

INDEX

time_variable_name<-,Moanin-method
(Moanin-methods), 18

33

	consensus_matrix
	create_meta_prediction
	DE_timecourse
	DE_timepoints
	discont_basis
	estimate_log_fold_change
	exampleData
	expand_contrast
	expression_filtering
	find_enriched_go_terms
	fit_predict_splines
	fit_splines
	Moanin-class
	Moanin-methods
	perWeek_barplot
	plot_cdf_consensus
	plot_splines_data
	pvalues_fisher_method
	rescale_values
	splines_kmeans
	splines_kmeans_predict,Moanin-method
	Index

