
Package ‘mixOmics’
February 2, 2026

Type Package

Title Omics Data Integration Project

Version 6.35.0

Depends R (>= 4.4.0), MASS, lattice, ggplot2

Imports igraph, ellipse, corpcor, RColorBrewer, parallel, dplyr,
tidyr, reshape2, methods, matrixStats, rARPACK, gridExtra,
grDevices, graphics, stats, ggrepel, BiocParallel, utils,
gsignal, rgl

Suggests BiocStyle, knitr, rmarkdown, mime, testthat, microbenchmark,
magick, vdiffr, kableExtra, devtools

Description Multivariate methods are well suited to large omics data sets where the number of vari-
ables (e.g. genes, proteins, metabolites) is much larger than the number of samples (pa-
tients, cells, mice). They have the appealing properties of reducing the dimen-
sion of the data by using instrumental variables (components), which are defined as combina-
tions of all variables. Those components are then used to produce useful graphical out-
puts that enable better understanding of the relationships and correlation structures be-
tween the different data sets that are integrated. mixOmics offers a wide range of multivari-
ate methods for the exploration and integration of biological datasets with a particular fo-
cus on variable selection. The package proposes several sparse multivariate models we have de-
veloped to identify the key variables that are highly correlated, and/or explain the biological out-
come of interest. The data that can be analysed with mixOmics may come from high through-
put sequencing technologies, such as omics data (transcriptomics, metabolomics, pro-
teomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imag-
ing). The methods implemented in mixOmics can also handle missing values without hav-
ing to delete entire rows with missing data. A non exhaustive list of methods include vari-
ants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Dis-
criminant Analysis. Recently we implemented integrative methods to combine multi-
ple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-
integration with variants of multi-group Partial Least Squares.

License GPL (>= 2)

URL http://www.mixOmics.org

BugReports https://github.com/mixOmicsTeam/mixOmics/issues/

VignetteBuilder knitr

1

http://www.mixOmics.org
https://github.com/mixOmicsTeam/mixOmics/issues/

2 Contents

Date 2021-07-15

NeedsCompilation no

biocViews ImmunoOncology, Microarray, Sequencing, Metabolomics,
Metagenomics, Proteomics, GenePrediction, MultipleComparison,
Classification, Regression

RoxygenNote 7.3.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/mixOmics

git_branch devel

git_last_commit 6f91947

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Kim-Anh Le Cao [aut],
Florian Rohart [aut],
Ignacio Gonzalez [aut],
Sebastien Dejean [aut],
Al J Abadi [ctb],
Max Bladen [ctb],
Benoit Gautier [ctb],
Francois Bartolo [ctb],
Pierre Monget [ctb],
Jeff Coquery [ctb],
FangZou Yao [ctb],
Benoit Liquet [ctb],
Eva Hamrud [ctb, cre]

Maintainer Eva Hamrud <mixomicsdeveloper@gmail.com>

Contents
mixOmics-package . 4
auroc . 5
background.predict . 10
biplot . 12
block.pls . 17
block.plsda . 20
block.spls . 23
block.splsda . 26
breast.TCGA . 31
breast.tumors . 32
cim . 33
cimDiablo . 41
circosPlot . 43
colors . 47

Contents 3

diverse.16S . 49
estim.regul . 51
explained_variance . 51
get.confusion_matrix . 52
image.tune.rcc . 54
imgCor . 55
impute.nipals . 57
ipca . 58
Koren.16S . 61
linnerud . 62
liver.toxicity . 63
logratio-transformations . 64
map . 65
mat.rank . 66
mint.block.pls . 67
mint.block.plsda . 70
mint.block.spls . 73
mint.block.splsda . 76
mint.pca . 79
mint.pls . 81
mint.plsda . 84
mint.spls . 87
mint.splsda . 90
mixOmics . 93
multidrug . 98
nearZeroVar . 99
network . 100
nipals . 106
nutrimouse . 107
pca . 108
perf . 112
perf.assess . 122
plot.pca . 130
plot.perf . 131
plot.perf.pls . 133
plot.rcc . 135
plot.tune . 136
plotArrow . 140
plotDiablo . 144
plotIndiv . 145
plotLoadings . 157
plotMarkers . 172
plotVar . 173
pls . 178
plsda . 182
predict . 185
print . 190
rcc . 194

4 mixOmics-package

selectVar . 197
sipca . 199
spca . 201
spls . 204
splsda . 209
srbct . 213
stemcells . 214
study_split . 215
summary . 216
tune . 218
tune.block.plsda . 223
tune.block.splsda . 227
tune.mint.plsda . 233
tune.mint.splsda . 235
tune.pca . 239
tune.pls . 241
tune.plsda . 245
tune.rcc . 249
tune.spca . 251
tune.spls . 253
tune.splsda . 258
tune.splslevel . 263
unmap . 264
vac18 . 265
vac18.simulated . 266
vip . 267
withinVariation . 268
wrapper.rgcca . 270
wrapper.sgcca . 272
yeast . 275

Index 276

mixOmics-package ’Omics Data Integration Project

Description

Multivariate methods are well suited to large omics data sets where the number of variables (e.g.
genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice).
They have the appealing properties of reducing the dimension of the data by using instrumental
variables (components), which are defined as combinations of all variables. Those components are
then used to produce useful graphical outputs that enable better understanding of the relationships
and correlation structures between the different data sets that are integrated.

auroc 5

Details

mixOmics offers a wide range of multivariate methods for the exploration and integration of biolog-
ical datasets with a particular focus on variable selection. The package proposes several sparse mul-
tivariate models we have developed to identify the key variables that are highly correlated, and/or
explain the biological outcome of interest. The data that can be analysed with mixOmics may come
from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics,
proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging).

The methods implemented in mixOmics can also handle missing values without having to delete
entire rows with missing data. A non exhaustive list of methods include variants of generalised
Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis.
Recently we implemented integrative methods to combine multiple data sets: N-integration with
variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-
group Partial Least Squares.

See Also

Useful links:

• http://www.mixOmics.org

• Report bugs at https://github.com/mixOmicsTeam/mixOmics/issues/

auroc Area Under the Curve (AUC) and Receiver Operating Characteristic
(ROC) curves for supervised classification

Description

Calculates the AUC and plots ROC for supervised models from s/plsda, mint.s/plsda and block.plsda,
block.splsda or wrapper.sgccda functions.

Usage

auroc(object, ...)

S3 method for class 'mixo_plsda'
auroc(
object,
newdata = object$input.X,
outcome.test = as.factor(object$Y),
multilevel = NULL,
plot = TRUE,
roc.comp = NULL,
title = NULL,
print = TRUE,
...

)

http://www.mixOmics.org
https://github.com/mixOmicsTeam/mixOmics/issues/

6 auroc

S3 method for class 'mixo_splsda'
auroc(
object,
newdata = object$input.X,
outcome.test = as.factor(object$Y),
multilevel = NULL,
plot = TRUE,
roc.comp = NULL,
title = NULL,
print = TRUE,
...

)

S3 method for class 'list'
auroc(object, plot = TRUE, roc.comp = NULL, title = NULL, print = TRUE, ...)

S3 method for class 'mint.plsda'
auroc(
object,
newdata = object$X,
outcome.test = as.factor(object$Y),
study.test = object$study,
multilevel = NULL,
plot = TRUE,
roc.comp = NULL,
roc.study = "global",
title = NULL,
print = TRUE,
...

)

S3 method for class 'mint.splsda'
auroc(
object,
newdata = object$X,
outcome.test = as.factor(object$Y),
study.test = object$study,
multilevel = NULL,
plot = TRUE,
roc.comp = NULL,
roc.study = "global",
title = NULL,
print = TRUE,
...

)

S3 method for class 'sgccda'

auroc 7

auroc(
object,
newdata = object$X,
outcome.test = as.factor(object$Y),
multilevel = NULL,
plot = TRUE,
roc.block = 1L,
roc.comp = NULL,
title = NULL,
print = TRUE,
...

)

S3 method for class 'mint.block.plsda'
auroc(
object,
newdata = object$X,
study.test = object$study,
outcome.test = as.factor(object$Y),
multilevel = NULL,
plot = TRUE,
roc.block = 1,
roc.comp = NULL,
title = NULL,
print = TRUE,
...

)

S3 method for class 'mint.block.splsda'
auroc(
object,
newdata = object$X,
study.test = object$study,
outcome.test = as.factor(object$Y),
multilevel = NULL,
plot = TRUE,
roc.block = 1,
roc.comp = NULL,
title = NULL,
print = TRUE,
...

)

Arguments

object Object of class inherited from one of the following supervised analysis func-
tion: "plsda", "splsda", "mint.plsda", "mint.splsda", "block.splsda" or "wrap-
per.sgccda". Alternatively, this can be a named list of plsda and splsda objects
if multiple models are to be compared. Note that these multiple models need to

8 auroc

have used the same levels in the response variable.

... external optional arguments for plotting - line.col for custom colors and legend.title
for custom legend title

newdata numeric matrix of predictors, by default set to the training data set (see details).

outcome.test Either a factor or a class vector for the discrete outcome, by default set to the
outcome vector from the training set (see details).

multilevel Sample information when a newdata matrix is input and when multilevel de-
composition for repeated measurements is required. A numeric matrix or data
frame indicating the repeated measures on each individual, i.e. the individuals
ID. See examples in splsda.

plot Whether the ROC curves should be plotted, by default set to TRUE (see details).

roc.comp Specify the component (integer) up to which the ROC will be calculated and
plotted from the multivariate model, default to 1.

title Character, specifies the title of the plot.

print Logical, specifies whether the output should be printed.

study.test For MINT objects, grouping factor indicating which samples of newdata are
from the same study. Overlap with object$study are allowed.

roc.study Specify the study for which the ROC will be plotted for a mint.plsda or mint.splsda
object, default to "global".

roc.block Specify the block number (integer) or the name of the block (set of characters)
for which the ROC will be plotted for a block.plsda or block.splsda object, de-
fault to 1.

Details

For more than two classes in the categorical outcome Y, the AUC is calculated as one class vs. the
other and the ROC curves one class vs. the others are output.

The ROC and AUC are calculated based on the predicted scores obtained from the predict func-
tion applied to the multivariate methods (predict(object)$predict). Our multivariate supervised
methods already use a prediction threshold based on distances (see predict) that optimally deter-
mine class membership of the samples tested. As such AUC and ROC are not needed to estimate
the performance of the model (see perf, tune that report classification error rates). We provide
those outputs as complementary performance measures.

The pvalue is from a Wilcoxon test between the predicted scores between one class vs the others.

External independent data set (newdata) and outcome (outcome.test) can be input to calculate
AUROC. The external data set must have the same variables as the training data set (object$X).

If object is a named list of multiple plsda and splsda objects, ensure that these models each
have a response variable with the same levels. Additionally, newdata and outcome.test cannot be
passed to this form of auroc.

If newdata is not provided, AUROC is calculated from the training data set, and may result in
overfitting (too optimistic results).

Note that for mint.plsda and mint.splsda objects, if roc.study is different from "global", then
newdata), outcome.test and sstudy.test are not used.

auroc 9

Value

Depending on the type of object used, a list that contains: The AUC and Wilcoxon test pvalue for
each ’one vs other’ classes comparison performed, either per component (splsda, plsda, mint.plsda,
mint.splsda), or per block and per component (wrapper.sgccda, block.plsda, blocksplsda).

Author(s)

Benoit Gautier, Francois Bartolo, Florian Rohart, Al J Abadi

See Also

tune, perf, and http://www.mixOmics.org for more details.

Examples

example with PLSDA, 2 classes

data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- breast.tumors$sample$treatment

plsda.breast <- plsda(X, Y, ncomp = 2)
auc.plsda.breast = auroc(plsda.breast, roc.comp = 1)
auc.plsda.breast = auroc(plsda.breast, roc.comp = 2)

Not run:
example with sPLSDA

splsda.breast <- splsda(X, Y, ncomp = 2, keepX = c(25, 25))
auroc(plsda.breast, plot = FALSE)

example with sPLSDA with 4 classes

data(liver.toxicity)
X <- as.matrix(liver.toxicity$gene)
Y will be transformed as a factor in the function,
but we set it as a factor to set up the colors.
Y <- as.factor(liver.toxicity$treatment[, 4])

splsda.liver <- splsda(X, Y, ncomp = 2, keepX = c(20, 20))
auc.splsda.liver = auroc(splsda.liver, roc.comp = 2)

example with mint.plsda

data(stemcells)

res = mint.plsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3,
study = stemcells$study)
auc.mint.pslda = auroc(res, plot = FALSE)

10 background.predict

example with mint.splsda

res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3, keepX = c(10, 5, 15),
study = stemcells$study)
auc.mint.spslda = auroc(res, plot = TRUE, roc.comp = 3)

example with block.plsda

data(nutrimouse)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
with this design, all blocks are connected
design = matrix(c(0,1,1,0), ncol = 2, nrow = 2,
byrow = TRUE, dimnames = list(names(data), names(data)))

block.plsda.nutri = block.plsda(X = data, Y = nutrimouse$diet)
auc.block.plsda.nutri = auroc(block.plsda.nutri, roc.block = 'lipid')

example with block.splsda

list.keepX = list(gene = rep(10, 2), lipid = rep(5,2))
block.splsda.nutri = block.splsda(X = data, Y = nutrimouse$diet, keepX = list.keepX)
auc.block.splsda.nutri = auroc(block.splsda.nutri, roc.block = 1)

End(Not run)

background.predict Calculate prediction areas

Description

Calculate prediction areas that can be used in plotIndiv to shade the background.

Usage

background.predict(
object,
comp.predicted = 1,
dist = "max.dist",
xlim = NULL,
ylim = NULL,
resolution = 100

)

Arguments

object A list of data sets (called ’blocks’) measured on the same samples. Data in
the list should be arranged in matrices, samples x variables, with samples order
matching in all data sets.

background.predict 11

comp.predicted Matrix response for a multivariate regression framework. Data should be contin-
uous variables (see block.splsda for supervised classification and factor reponse)

dist distance to use to predict the class of new data, should be a subset of "centroids.dist",
"mahalanobis.dist" or "max.dist" (see predict).

xlim, ylim numeric list of vectors of length 2, giving the x and y coordinates ranges for the
simulated data. By default will be 1.2∗ the range of object$variates$X[,i]

resolution A total of resolution*resolution data are simulated between xlim[1], xlim[2],
ylim[1] and ylim[2].

Details

background.predict simulates resolution*resolution points within the rectangle defined by
xlim on the x-axis and ylim on the y-axis, and then predicts the class of each point (defined by two
coordinates). The algorithm estimates the predicted area for each class, defined as the 2D surface
where all points are predicted to be of the same class. A polygon is returned and should be passed
to plotIndiv for plotting the actual background.

Note that by default xlim and ylim will create a rectangle of simulated data that will cover the
plotted area of plotIndiv. However, if you use plotIndiv with ellipse=TRUE or if you set xlim
and ylim, then you will need to adapt xlim and ylim in background.predict.

Also note that the white frontier that defines the predicted areas when plotting with plotIndiv can
be reduced by increasing resolution.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017).

Value

background.predict returns a list of coordinates to be used with polygon to draw the predicted
area for each class.

Author(s)

Florian Rohart, Al J Abadi

References

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

plotIndiv, predict, polygon.

Examples

Example 1

data(breast.tumors)
X <- breast.tumors$gene.exp

12 biplot

Y <- breast.tumors$sample$treatment

splsda.breast <- splsda(X, Y,keepX=c(10,10),ncomp=2)

calculating background for the two first components, and the centroids distance

background = background.predict(splsda.breast, comp.predicted = 2, dist = "centroids.dist")

Not run:
default option: note that the outcome color is included by default!
plotIndiv(splsda.breast, background = background, legend=TRUE)

Example 2

data(liver.toxicity)
X = liver.toxicity$gene
Y = as.factor(liver.toxicity$treatment[, 4])

plsda.liver <- plsda(X, Y, ncomp = 2)

calculating background for the two first components, and the mahalanobis distance
background = background.predict(plsda.liver, comp.predicted = 2, dist = "mahalanobis.dist")

plotIndiv(plsda.liver, background = background, legend = TRUE)

End(Not run)

biplot biplot methods for pca family

Description

biplot methods for pca family

Usage

S3 method for class 'pca'
biplot(
x,
comp = c(1, 2),
block = NULL,
ind.names = TRUE,
group = NULL,
cutoff = 0,
col = NULL,
ind.names.size = 3,

biplot 13

ind.names.col = color.mixo(4),
ind.names.repel = TRUE,
pch = 19,
pch.size = 2,
var.names = TRUE,
var.names.col = "grey40",
var.names.size = 4,
var.names.angle = FALSE,
var.arrow.col = "grey40",
var.arrow.size = 0.5,
var.arrow.length = 0.2,
ind.legend.title = NULL,
vline = FALSE,
hline = FALSE,
legend = if (is.null(group)) FALSE else TRUE,
legend.title = NULL,
pch.legend.title = NULL,
cex = 1.05,
...

)

S3 method for class 'mixo_pls'
biplot(
x,
comp = c(1, 2),
block = NULL,
ind.names = TRUE,
group = NULL,
cutoff = 0,
col = NULL,
ind.names.size = 3,
ind.names.col = color.mixo(4),
ind.names.repel = TRUE,
pch = 19,
pch.size = 2,
var.names = TRUE,
var.names.col = "grey40",
var.names.size = 4,
var.names.angle = FALSE,
var.arrow.col = "grey40",
var.arrow.size = 0.5,
var.arrow.length = 0.2,
ind.legend.title = NULL,
vline = FALSE,
hline = FALSE,
legend = if (is.null(group)) FALSE else TRUE,
legend.title = NULL,
pch.legend.title = NULL,

14 biplot

cex = 1.05,
...

)

Arguments

x An object of class ’pca’or mixOmics ’(s)pls’.

comp integer vector of length two (or three to 3d). The components that will be used
on the horizontal and the vertical axis respectively to project the individuals.

block Character, name of the block to show for pls object. Default to 'X'.

ind.names either a character vector of names for the individuals to be plotted, or FALSE for
no names. If TRUE, the row names of the first (or second) data matrix is used
as names (see Details). If ‘pch‘ is set this will overwrite the names as shapes.
Default is TRUE. Not avaliable for MINT objects.

group Factor indicating the group membership for each sample.

cutoff numeric between 0 and 1. Variables with correlations below this cutoff in abso-
lute value are not plotted (see Details).

col character (or symbol) color to be used. If group provided, should be a vector of
the same length as groups, order of colours will be respected to correspond to
order of group levels.

ind.names.size Numeric, sample name size.

ind.names.col Character, sample name colour.
ind.names.repel

Logical, whether to repel away label names.

pch A single character or numeric value, or a factor. If a factor, the levels of the
factor are used to define the point types. If a character or numeric value, the
same point type is used for all points. If NULL, the default point type is used. See
examples.

pch.size Numeric, sample point character size.

var.names Logical indicating whether to show variable names. Alternatively, a character.

var.names.col Character, variable name colour.

var.names.size Numeric, variable name size.
var.names.angle

Logical, whether to align variable names to arrow directions.

var.arrow.col Character, variable arrow colour. If ’NULL’, no arrows are shown.

var.arrow.size Numeric, variable arrow head size.
var.arrow.length

Numeric, length of the arrow head in ’cm’.
ind.legend.title

Character, title of the legend.

vline Logical, whether to draw the vertical neutral line.

hline Logical, whether to draw the horizontal neutral line.

biplot 15

legend Logical, whether to show the legend if group != NULL.

legend.title Character, the legend title if group != NULL.
pch.legend.title

Character, the legend title if pch is a factor.

cex Numeric scalar indicating the desired magnification of plot texts. theme function
may be used with the output object if further customisation is required.

... Not currently used.

pch.legend Character, the legend title if pch is a factor.

Details

biplot unifies the reduced representation of both the observations/samples and variables of a matrix
of multivariate data on the same plot. Essentially, in the reduced space the samples are shown as
points/names and the contributions of features to each dimension are shown as directed arrows or
vectors. For pls objects it is possible to use either 'X' or 'Y' latent space using block argument.

Value

A ggplot object.

Author(s)

Al J Abadi

Examples

'pca' class - examples demonstrate how to control sample colours and customise plots

set.seed(42)
data("nutrimouse")
pca.lipid <- pca(nutrimouse$lipid, ncomp = 3, scale = TRUE)

colors indicate diet
biplot(pca.lipid, group = nutrimouse$diet)

colors indicate genotype
biplot(pca.lipid, group = nutrimouse$genotype)

customise colours
biplot(pca.lipid, group = nutrimouse$genotype,

col = c("red", "blue"))

correlation cutoff to filter features
biplot(pca.lipid, cutoff = c(0.8))

tailor threshold for each component
biplot(pca.lipid, cutoff = c(0.8, 0.7))

customise components
biplot(pca.lipid, cutoff = c(0.8), comp = c(1,3))

16 biplot

customise ggplot in an arbitrary way
biplot(pca.lipid) + theme_linedraw() +

add vline
geom_vline(xintercept = 0, col = 'green') +
add hline
geom_hline(yintercept = 0, col = 'green') +
customise labs
labs(x = 'Principal Component 1', y = 'Principal Component 2')

customise variable labels
biplot(pca.lipid,

var.names.col = color.mixo(2),
var.names.size = 4,
var.names.angle = TRUE

)

no arrows
biplot(pca.lipid, group = nutrimouse$diet, legend.title = 'Diet',

var.arrow.col = NULL, var.names.col = 'black')

add x=0 and y=0 lines in function
biplot(pca.lipid, group = nutrimouse$diet, legend.title = 'Diet',

var.arrow.col = NULL, var.names.col = 'black',
vline = TRUE, hline = TRUE)

'pls' class - examples demonstrate how to control cutoffs

data("nutrimouse")
pls.nutrimouse <- pls(X = nutrimouse$gene, Y = nutrimouse$lipid, ncomp = 2)

biplot(pls.nutrimouse, group = nutrimouse$genotype, block = 'X',
legend.title = 'Genotype', cutoff = 0.878)

biplot(pls.nutrimouse, group = nutrimouse$genotype, block = 'Y',
legend.title = 'Genotype', cutoff = 0.8)

'plsda' class - examples demonstrate how to control point shapes

data(breast.tumors)
X <- breast.tumors$gene.exp
colnames(X) <- paste0('GENE_', colnames(X))
rownames(X) <- paste0('SAMPLE_', rownames(X))
Y <- breast.tumors$sample$treatment
nrow(X)
grouping <- factor(c(rep("A", 20), rep("B", 20), rep("C", 7)))

plsda.breast <- plsda(X, Y, ncomp = 2)

biplot(plsda.breast, cutoff = 0.72, ind.names = FALSE)

block.pls 17

biplot(plsda.breast, cutoff = 0.72, ind.names = FALSE, pch = 2, pch.size = 5)

biplot(plsda.breast, cutoff = 0.72, pch = grouping, pch.size = 5)

block.pls N-integration with Projection to Latent Structures models (PLS)

Description

Integration of multiple data sets measured on the same samples or observations, ie. N-integration.
The method is partly based on Generalised Canonical Correlation Analysis.

Usage

block.pls(
X,
Y,
indY,
ncomp = 2,
design,
mode,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in matrices, samples x variables, with samples
order matching in all data sets.

Y Matrix response for a multivariate regression framework. Data should be con-
tinuous variables (see ?block.plsda for supervised classification and factor re-
sponse).

indY To supply if Y is missing, indicates the position of the matrix response in the list
X.

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the

18 block.pls

maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

block.spls function fits a horizontal integration PLS model with a specified number of compo-
nents per block). An outcome needs to be provided, either by Y or by its position indY in the list of
blocks X. Multi (continuous)response are supported. X and Y can contain missing values. Missing
values are handled by being disregarded during the cross product computations in the algorithm
block.pls without having to delete rows with missing data. Alternatively, missing data can be
imputed prior using the impute.nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are avail-
able: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy anal-
ysis ("invariant") and the classical PLS algorithm ("classic") (see References and ?pls for
more details). Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to
’svd.single’.

Note that our method is partly based on Generalised Canonical Correlation Analysis and differs
from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1) and Westerhuis
et al., 1998, J Chemom, 12(5).

Value

block.pls returns an object of class 'block.pls', a list that contains the following components:

X the centered and standardized original predictor matrix.

indY the position of the outcome Y in the output list X.

ncomp the number of components included in the model for each block.

mode the algorithm used to fit the model.

block.pls 19

variates list containing the variates of each block of X.
loadings list containing the estimated loadings for the variates.
names list containing the names to be used for individuals and variables.
nzv list containing the zero- or near-zero predictors information.
iter Number of iterations of the algorithm for each component
prop_expl_var Percentage of explained variance for each component and each block
call if verbose.call = FALSE, then just the function call is returned. If verbose.call

= TRUE then all the inputted values are accessable via this component

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Wold H. (1966). Estimation of principal components and related models by iterative least squares.
In: Krishnaiah, P. R. (editors), Multivariate Analysis. Academic Press, N.Y., 391-420.

Tenenhaus A. and Tenenhaus M., (2011), Regularized Generalized Canonical Correlation Analysis,
Psychometrika, Vol. 76, Nr 2, pp 257-284.

See Also

plotIndiv, plotArrow, plotLoadings, plotVar, predict, perf, selectVar, block.spls, block.plsda
and http://www.mixOmics.org for more details.

Examples

Example with TCGA multi omics study

data("breast.TCGA")
this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna)
set up a full design where every block is connected
design = matrix(1, ncol = length(data), nrow = length(data),
dimnames = list(names(data), names(data)))
diag(design) = 0
design
set number of component per data set
ncomp = c(2)

TCGA.block.pls = block.pls(X = data, Y = breast.TCGA$data.train$protein,
ncomp = ncomp, design = design)

TCGA.block.pls
use design = 'full'
TCGA.block.pls = block.pls(X = data, Y = breast.TCGA$data.train$protein,

ncomp = ncomp, design = 'full')
in plotindiv we color the samples per breast subtype group but the method is unsupervised!
here Y is the protein data set
plotIndiv(TCGA.block.pls, group = breast.TCGA$data.train$subtype, ind.names = FALSE)

20 block.plsda

block.plsda N-integration with Projection to Latent Structures models (PLS) with
Discriminant Analysis

Description

Integration of multiple data sets measured on the same samples or observations to classify a discrete
outcome, ie. N-integration with Discriminant Analysis. The method is partly based on Generalised
Canonical Correlation Analysis.

Usage

block.plsda(
X,
Y,
indY,
ncomp = 2,
design,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in matrices, samples x variables, with samples
order matching in all data sets.

Y a factor or a class vector for the discrete outcome.

indY To supply if Y is missing, indicates the position of the matrix response in the list
X.

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

block.plsda 21

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.
near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-

ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

block.plsda function fits a horizontal integration PLS-DA model with a specified number of com-
ponents per block). A factor indicating the discrete outcome needs to be provided, either by Y or by
its position indY in the list of blocks X.
X can contain missing values. Missing values are handled by being disregarded during the cross
product computations in the algorithm block.pls without having to delete rows with missing data.
Alternatively, missing data can be imputed prior using the impute.nipals function.
The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and ?pls for more
details).
Note that our method is partly based on Generalised Canonical Correlation Analysis and differs
from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1) and Westerhuis
et al., 1998, J Chemom, 12(5).

Value

block.plsda returns an object of class "block.plsda","block.pls", a list that contains the fol-
lowing components:

X the centered and standardized original predictor matrix.
indY the position of the outcome Y in the output list X.
ncomp the number of components included in the model for each block.
mode the algorithm used to fit the model.
variates list containing the variates of each block of X.
loadings list containing the estimated loadings for the variates.
names list containing the names to be used for individuals and variables.
nzv list containing the zero- or near-zero predictors information.
iter Number of iterations of the algorithm for each component
prop_expl_var Percentage of explained variance for each component and each block
call if verbose.call = FALSE, then just the function call is returned. If verbose.call

= TRUE then all the inputted values are accessable via this component

Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

22 block.plsda

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

On PLSDA:

Barker M and Rayens W (2003). Partial least squares for discrimination. Journal of Chemometrics
17(3), 166-173. Perez-Enciso, M. and Tenenhaus, M. (2003). Prediction of clinical outcome with
microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Human Genetics
112, 581-592. Nguyen, D. V. and Rocke, D. M. (2002). Tumor classification by partial least squares
using microarray gene expression data. Bioinformatics 18, 39-50.

On multiple integration with PLS-DA: Gunther O., Shin H., Ng R. T. , McMaster W. R., McManus
B. M. , Keown P. A. , Tebbutt S.J. , Lê Cao K-A. , (2014) Novel multivariate methods for integration
of genomics and proteomics data: Applications in a kidney transplant rejection study, OMICS: A
journal of integrative biology, 18(11), 682-95.

On multiple integration with sPLS-DA and 4 data blocks:

Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê Cao K.A. (2016). DIA-
BLO: multi omics integration for biomarker discovery. BioRxiv available here: http://biorxiv.
org/content/early/2016/08/03/067611

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

plotIndiv, plotArrow, plotLoadings, plotVar, predict, perf, selectVar, block.pls, block.splsda
and http://www.mixOmics.org for more details.

Examples

data(nutrimouse)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = nutrimouse$diet)
with this design, all blocks are connected
design = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3,
byrow = TRUE, dimnames = list(names(data), names(data)))

res = block.plsda(X = data, indY = 3) # indY indicates where the outcome Y is in the list X
plotIndiv(res, ind.names = FALSE, legend = TRUE)
plotVar(res)

Not run:
when Y is provided
res2 = block.plsda(list(gene = nutrimouse$gene, lipid = nutrimouse$lipid),
Y = nutrimouse$diet, ncomp = 2)
plotIndiv(res2)
plotVar(res2)

End(Not run)

http://biorxiv.org/content/early/2016/08/03/067611
http://biorxiv.org/content/early/2016/08/03/067611

block.spls 23

block.spls N-integration and feature selection with sparse Projection to Latent
Structures models (sPLS)

Description

Integration of multiple data sets measured on the same samples or observations, with variable se-
lection in each data set, ie. N-integration. The method is partly based on Generalised Canonical
Correlation Analysis.

Usage

block.spls(
X,
Y,
indY,
ncomp = 2,
keepX,
keepY,
design,
mode,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in matrices, samples x variables, with samples
order matching in all data sets.

Y Matrix response for a multivariate regression framework. Data should be con-
tinuous variables (see ?block.splsda for supervised classification and factor
response).

indY To supply if Y is missing, indicates the position of the matrix response in the list
X.

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

keepX A named list of same length as X. Each entry is the number of variables to select
in each of the blocks of X for each component. By default all variables are kept
in the model.

keepY Only if Y is provided (and not indY). Each entry is the number of variables to
select in each of the blocks of Y for each component.

24 block.spls

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

block.spls function fits a horizontal sPLS model with a specified number of components per
block). An outcome needs to be provided, either by Y or by its position indY in the list of blocks X.
Multi (continuous)response are supported. X and Y can contain missing values. Missing values are
handled by being disregarded during the cross product computations in the algorithm block.pls
without having to delete rows with missing data. Alternatively, missing data can be imputed prior
using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and ?pls for more
details).

Note that our method is partly based on sparse Generalised Canonical Correlation Analysis and dif-
fers from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1), Westerhuis
et al., 1998, J Chemom, 12(5) and sparse variants Li et al., 2012, Bioinformatics 28(19); Karaman
et al (2014), Metabolomics, 11(2); Kawaguchi et al., 2017, Biostatistics.

Variable selection is performed on each component for each block of X, and for Y if specified, via
input parameter keepX and keepY.

Note that if Y is missing and indY is provided, then variable selection on Y is performed by specify-
ing the input parameter directly in keepX (no keepY is needed).

block.spls 25

Value

block.spls returns an object of class "block.spls", a list that contains the following components:

X the centered and standardized original predictor matrix.

indY the position of the outcome Y in the output list X.

ncomp the number of components included in the model for each block.

mode the algorithm used to fit the model.

keepX Number of variables used to build each component of each block

keepY Number of variables used to build each component of Y

variates list containing the variates of each block of X.

loadings list containing the estimated loadings for the variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

iter Number of iterations of the algorithm for each component

prop_expl_var Percentage of explained variance for each component and each block after set-
ting possible missing values in the centered data to zero

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Wold H. (1966). Estimation of principal components and related models by iterative least squares.
In: Krishnaiah, P. R. (editors), Multivariate Analysis. Academic Press, N.Y., 391-420.

Tenenhaus A. and Tenenhaus M., (2011), Regularized Generalized Canonical Correlation Analysis,
Psychometrika, Vol. 76, Nr 2, pp 257-284.

Tenenhaus A., Philippe C., Guillemot V, Lê Cao K.A., Grill J, Frouin V. Variable selection for
generalized canonical correlation analysis. Biostatistics. kxu001

See Also

plotIndiv, plotArrow, plotLoadings, plotVar, predict, perf, selectVar, block.pls, block.splsda
and http://www.mixOmics.org for more details.

26 block.splsda

Examples

Example with multi omics TCGA study

data("breast.TCGA")
this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna)
set up a full design where every block is connected
design = matrix(1, ncol = length(data), nrow = length(data),
dimnames = list(names(data), names(data)))
diag(design) = 0
design
set number of component per data set
ncomp = c(2)
set number of variables to select, per component and per data set (this is set arbitrarily)
list.keepX = list(mrna = rep(10, 2), mirna = rep(10,2))
list.keepY = c(rep(10, 2))

TCGA.block.spls = block.spls(X = data, Y = breast.TCGA$data.train$protein,
ncomp = ncomp, keepX = list.keepX, keepY = list.keepY, design = design)
TCGA.block.spls
in plotindiv we color the samples per breast subtype group but the method is unsupervised!
plotIndiv(TCGA.block.spls, group = breast.TCGA$data.train$subtype, ind.names = FALSE, legend=TRUE)
illustrates coefficient weights in each block
plotLoadings(TCGA.block.spls, ncomp = 1)
plotVar(TCGA.block.spls, style = 'graphics', legend = TRUE)

plot markers (selected markers) for mrna and mirna
group <- breast.TCGA$data.train$subtype
mrna: show each selected feature separately and group by subtype
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'mrna', group = group)
mrna: aggregate all selected features, separate by loadings signs and group by subtype
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'mrna', group = group, global = TRUE)
proteins
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'Y', group = group)
only show boxplots
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'Y', group = group, violin = FALSE)

Not run:
network(TCGA.block.spls)

End(Not run)

block.splsda N-integration and feature selection with Projection to Latent Struc-
tures models (PLS) with sparse Discriminant Analysis

Description

Integration of multiple data sets measured on the same samples or observations to classify a discrete
outcome to classify a discrete outcome and select features from each data set, ie. N-integration with

block.splsda 27

sparse Discriminant Analysis. The method is partly based on Generalised Canonical Correlation
Analysis.

Usage

block.splsda(
X,
Y,
indY,
ncomp = 2,
keepX,
design,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

wrapper.sgccda(
X,
Y,
indY,
ncomp = 2,
keepX,
design,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in matrices, samples x variables, with samples
order matching in all data sets.

Y a factor or a class vector for the discrete outcome.

indY To supply if Y is missing, indicates the position of the matrix response in the list
X.

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

keepX A named list of same length as X. Each entry is the number of variables to select
in each of the blocks of X for each component. By default all variables are kept
in the model.

28 block.splsda

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

block.splsda function fits a horizontal integration PLS-DA model with a specified number of
components per block). A factor indicating the discrete outcome needs to be provided, either by Y
or by its position indY in the list of blocks X.

X can contain missing values. Missing values are handled by being disregarded during the cross
product computations in the algorithm block.pls without having to delete rows with missing data.
Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and ?pls for more
details).

Note that our method is partly based on sparse Generalised Canonical Correlation Analysis and dif-
fers from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1), Westerhuis
et al., 1998, J Chemom, 12(5) and sparse variants Li et al., 2012, Bioinformatics 28(19); Karaman
et al (2014), Metabolomics, 11(2); Kawaguchi et al., 2017, Biostatistics.

Variable selection is performed on each component for each block of X if specified, via input pa-
rameter keepX.

Value

block.splsda returns an object of class "block.splsda","block.spls", a list that contains the
following components:

block.splsda 29

X the centered and standardized original predictor matrix.

indY the position of the outcome Y in the output list X.

ncomp the number of components included in the model for each block.

mode the algorithm used to fit the model.

keepX Number of variables used to build each component of each block

variates list containing the variates of each block of X.

loadings list containing the estimated loadings for the variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

iter Number of iterations of the algorithm for each component

weights Correlation between the variate of each block and the variate of the outcome.
Used to weight predictions.

prop_expl_var Percentage of explained variance for each component and each block

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

On multiple integration with sPLS-DA and 4 data blocks:

Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê Cao K.A. (2016). DIA-
BLO: multi omics integration for biomarker discovery. BioRxiv available here: http://biorxiv.
org/content/early/2016/08/03/067611

On data integration:

Tenenhaus A., Philippe C., Guillemot V, Lê Cao K.A., Grill J, Frouin V. Variable selection for
generalized canonical correlation analysis. Biostatistics. kxu001

Gunther O., Shin H., Ng R. T. , McMaster W. R., McManus B. M. , Keown P. A. , Tebbutt S.J.
, Lê Cao K-A. , (2014) Novel multivariate methods for integration of genomics and proteomics
data: Applications in a kidney transplant rejection study, OMICS: A journal of integrative biology,
18(11), 682-95.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

plotIndiv, plotArrow, plotLoadings, plotVar, predict, perf, selectVar, block.plsda, block.spls
and http://www.mixOmics.org/mixDIABLO for more details and examples.

http://biorxiv.org/content/early/2016/08/03/067611
http://biorxiv.org/content/early/2016/08/03/067611

30 block.splsda

Examples

block.splsda

data("breast.TCGA")
this is the X data as a list of mRNA, miRNA and proteins
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna,
protein = breast.TCGA$data.train$protein)
set up a full design where every block is connected
design = matrix(1, ncol = length(data), nrow = length(data),
dimnames = list(names(data), names(data)))
diag(design) = 0
design
set number of component per data set
ncomp = c(2)
set number of variables to select, per component and per data set (this is set arbitrarily)
list.keepX = list(mrna = rep(8,2), mirna = rep(8,2), protein = rep(8,2))

TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype,
ncomp = ncomp, keepX = list.keepX, design = design)

use design = 'full'
TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype,

ncomp = ncomp, keepX = list.keepX, design = 'full')
TCGA.block.splsda$design

plotIndiv(TCGA.block.splsda, ind.names = FALSE)
use design = 'null'
TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype,

ncomp = ncomp, keepX = list.keepX, design = 'null')
TCGA.block.splsda$design
set all off-diagonal elements to 0.5
TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype,

ncomp = ncomp, keepX = list.keepX, design = 0.5)
TCGA.block.splsda$design
illustrates coefficient weights in each block
plotLoadings(TCGA.block.splsda, ncomp = 1, contrib = 'max')
plotVar(TCGA.block.splsda, style = 'graphics', legend = TRUE)

plot markers (selected variables) for mrna and mirna
mrna: show each selected feature separately
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'mrna')
mrna: aggregate all selected features and separate by loadings signs
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'mrna', global = TRUE)
proteins
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein')
do not show violin plots
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein', violin = FALSE)
show top 5 markers
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein', markers = 1:5)
show specific markers
my.markers <- selectVar(TCGA.block.splsda, comp = 1)[['protein']]$name[c(1,3,5)]
my.markers

breast.TCGA 31

plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein', markers = my.markers)

breast.TCGA Breast Cancer multi omics data from TCGA

Description

This data set is a small subset of the full data set from The Cancer Genome Atlas that can be analysed
with the DIABLO framework. It contains the expression or abundance of three matching omics data
sets: mRNA, miRNA and proteomics for 150 breast cancer samples (Basal, Her2, Luminal A) in
the training set, and 70 samples in the test set. The test set is missing the proteomics data set.

Usage

data(breast.TCGA)

Format

A list containing two data sets, data.train and data.test which both include:

list("miRNA") data frame with 150 (70) rows and 184 columns in the training (test) data set. The
expression levels of 184 miRNA.

list("mRNA") data frame with 150 (70) rows and 520 columns in the training (test) data set. The
expression levels of 200 mRNA.

list("protein") data frame with 150 (70) rows and 142 columns in the training data set only. The
abundance of 142 proteins.

list("subtype") a factor indicating the brerast cancer subtypes in the training (length of 150) and
test (length of 70) sets.

Details

The data come from The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/). We divided
the data into a training (discovery) and test (validation) set. The protein dataset which had a limited
number of subjects available was used to allocate subjects into the training set only, while the tes
set included all remaining subject. Each data set was normalised and pre-processed. For illustrative
purposes we drastically filtered the data here.

Value

none

Source

The raw data were downloaded from http://cancergenome.nih.gov/. The normalised and fil-
tered data we analysed with DIABLO are available on www.mixOmics.org/mixDIABLO

http://cancergenome.nih.gov/
www.mixOmics.org/mixDIABLO

32 breast.tumors

References

Singh A., Shannon C., Gautier B., Rohart F., Vacher M., Tebbutt S. and Lê Cao K.A. (2019),
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays,
Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062.

breast.tumors Human Breast Tumors Data

Description

This data set contains the expression of 1,000 genes in 47 surgical specimens of human breast
tumours from 17 different individuals before and after chemotherapy treatment.

Usage

data(breast.tumors)

Format

A list containing the following components:

list("gene.exp") data matrix with 47 rows and 1000 columns. Each row represents an experimental
sample, and each column a single gene.

list("sample") a list containing two character vector components: name the name of the samples,
and treatment the treatment status.

list("genes") a list containing two character vector components: name the name of the genes, and
description the description of each gene.

Details

This data consists of 47 breast cancer samples and 1753 cDNA clones pre-selected by Perez-Enciso
et al. (2003) to draw their Fig. 1. The authors selected 47 samples for which there was informa-
tion at least before or before and after chemotherapy treatment. There were 20 tumours that were
microarrayed both before and after treatment. For illustrative purposes we then randomly selected
1000 cDNA clones for this data set.

Value

none

Source

The Human Breast Tumors dataset is a companion resource for the paper of Perou et al. (2000), and
was downloaded from the Stanford Genomics Breast Cancer Consortium Portal http://genome-www.
stanford.edu/breast_cancer/molecularportraits/download.shtml

http://genome-www.stanford.edu/breast_cancer/molecularportraits/download.shtml
http://genome-www.stanford.edu/breast_cancer/molecularportraits/download.shtml

cim 33

References

Perez-Enciso, M. and Tenenhaus, M. (2003). Prediction of clinical outcome with microarray data:
a partial least squares discriminant analysis (PLS-DA) approach. Human Genetics 112, 581-592.

Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R.,
Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X.,
Lonning, P. E., Borresen-Dale, A. L., Brown, P. O. and Botstein, D. (2000). Molecular portraits of
human breast tumours. Nature 406, 747-752.

cim Clustered Image Maps (CIMs) ("heat maps")

Description

This function generates color-coded Clustered Image Maps (CIMs) ("heat maps") to represent
"high-dimensional" data sets.

Usage

cim(
mat = NULL,
color = NULL,
row.names = TRUE,
col.names = TRUE,
row.sideColors = NULL,
col.sideColors = NULL,
row.cex = NULL,
col.cex = NULL,
cutoff = 0,
cluster = "both",
dist.method = c("euclidean", "euclidean"),
clust.method = c("complete", "complete"),
cut.tree = c(0, 0),
transpose = FALSE,
symkey = TRUE,
keysize = c(1, 1),
keysize.label = 1,
zoom = FALSE,
title = NULL,
xlab = NULL,
ylab = NULL,
margins = c(5, 5),
lhei = NULL,
lwid = NULL,
comp = NULL,
center = TRUE,
scale = FALSE,

34 cim

mapping = "XY",
legend = NULL,
save = NULL,
name.save = NULL,
blocks = NULL

)

Arguments

mat numeric matrix of values to be plotted. Alternatively, an object of class inher-
iting from "pca", "spca", "ipca", "sipca", "rcc", "pls", "spls", "plsda",
"splsda", "mlspls", "mlsplsda", "block.pls" or "block.spls" (where "ml"
stands for multilevel).

color a character vector of colors such as that generated by terrain.colors, topo.colors,
rainbow, color.jet or similar functions.

row.names, col.names
logical, should the name of rows and/or columns of mat be shown? If TRUE
(defaults) rownames(mat) and/or colnames(mat) are used. Possible character
vectors with row and/or column labels can be used.

row.sideColors (optional) character vector of length nrow(mat) containing the color names for
a vertical side bar that may be used to annotate the rows of mat.

col.sideColors (optional) character vector of length ncol(mat) containing the color names for
a horizontal side bar that may be used to annotate the columns of mat.

row.cex, col.cex
positive numbers, used as cex.axis in for the row or column axis labeling. The
defaults currently only use number of rows or columns, respectively.

cutoff numeric between 0 and 1. Variables with correlations below this threshold in
absolute value are not plotted. To use only when mapping is "XY".

cluster character string indicating whether to cluster "none", "row", "column" or "both".
Defaults to "both".

dist.method character vector of length two. The distance measure used in clustering rows
and columns. Possible values are "correlation" for Pearson correlation and
all the distances supported by dist, such as "euclidean", etc.

clust.method character vector of length two. The agglomeration method to be used for rows
and columns. Accepts the same values as in hclust such as "ward", "complete",
etc.

cut.tree numeric vector of length two with components in [0,1]. The height proportions
where the trees should be cut for rows and columns, if these are clustered.

transpose logical indicating if the matrix should be transposed for plotting. Defaults to
FALSE.

symkey Logical indicating whether the color key should be made symmetric about 0.
Defaults to TRUE.

keysize vector of length two, indicating the size of the color key.

keysize.label vector of length 1, indicating the size of the labels and title of the color key.

cim 35

zoom logical. Whether to use zoom for interactive zoom. See Details.
title, xlab, ylab

title, x- and y-axis titles; default to none.

margins numeric vector of length two containing the margins (see par(mar)) for column
and row names respectively.

lhei, lwid arguments passed to layout to divide the device up into two (or three if a
side color is drawn) rows and two columns, with the row-heights lhei and the
column-widths lwid.

comp atomic or vector of positive integers. The components to adequately account
for the data association. For a non sparse method, the similarity matrix is com-
puted based on the variates and loading vectors of those specified components.
For a sparse approach, the similarity matric is computed based on the vari-
ables selected on those specified components. See example. Defaults to comp =
1:object$ncomp.

center either a logical value or a numeric vector of length equal to the number of
columns of mat. See scale function.

scale either a logical value or a numeric vector of length equal to the number of
columns of mat. See scale function.

mapping character string indicating whether to map "X", "Y" or "XY"-association matrix.
Can also be "multiblock" when class(mat) == "block.pls" OR "block.spls".
See Details.

legend A list indicating the legend for each group, the color vector, title of the legend
and cex.

save should the plot be saved? If so, argument to be set to either 'jpeg', 'tiff',
'png' or 'pdf'.

name.save character string for the name of the file to be saved.

blocks integer or character vector. Used when class(mat) == "block.pls" OR "block.spls".
Dictates which blocks will be visualised. See Details.

Details

One matrix Clustered Image Map (default method) is a 2-dimensional visualization of a real-valued
matrix (basically image(t(mat))) with rows and/or columns reordered according to some hierar-
chical clustering method to identify interesting patterns. Generated dendrograms from clustering
are added to the left side and to the top of the image. By default the used clustering method for
rows and columns is the complete linkage method and the used distance measure is the distance
euclidean.

In "pca", "spca", "ipca", "sipca", "plsda", "splsda" and multilevel variants methods the mat
matrix is object$X.

For the remaining methods, if mapping = "X" or mapping = "Y" the mat matrix is object$X or
object$Y respectively. If mapping = "XY":

• in rcc method, the matrix mat is created where element (j, k) is the scalar product value
between every pairs of vectors in dimension length(comp) representing the variables Xj and
Yk on the axis defined by Zi with i in comp, where Zi is the equiangular vector between the
i-th X and Y canonical variate.

36 cim

• in pls, spls and multilevel spls methods, if object$mode is "regression", the element
(j, k) of the matrix mat is given by the scalar product value between every pairs of vectors
in dimension length(comp) representing the variables Xj and Yk on the axis defined by Ui

with i in comp, where Ui is the i-th X variate. If object$mode is "canonical" then Xj and
Yk are represented on the axis defined by Ui and Vi respectively.

The blocks parameter controls which blocks are to be included when class(mat) == "block.pls"
OR "block.spls". This can be a character or a integer vector.

If using a multiblock object then mapping can be set to "multiblock". When done so, this will
emulate the function of cimDiablo(), such that rows will denote each sample and all features
included in blocks will be shown as columns, coloured by which block they inherit from. In this
case, blocks can include any number of input blocks. If mapping = "X", "Y" OR "XY", then it
functions similarly to if a mixo_pls object was being used. blocks has to be of length 2 in this
scenario.

By default four components will be displayed in the plot. At the top left is the color key, top right
is the column dendogram, bottom left is the row dendogram, bottom right is the image plot. When
sideColors are provided, an additional row or column is inserted in the appropriate location. This
layout can be overriden by specifiying appropriate values for lwid and lhei. lwid controls the
column width, and lhei controls the row height. See the help page for layout for details on how
to use these arguments.

For visualization of "high-dimensional" data sets, a nice zooming tool was created. zoom = TRUE
open a new device, one for CIM, one for zoom-out region and define an interactive ’zoom’ process:
click two points at imagen map region by pressing the first mouse button. It then draws a rectangle
around the selected region and zoom-out this at new device. The process can be repeated to zoom-
out other regions of interest.

The zoom process is terminated by clicking the second button and selecting ’Stop’ from the menu,
or from the ’Stop’ menu on the graphics window.

Value

A list containing the following components:

M the mapped matrix used by cim.

rowInd, colInd row and column index permutation vectors as returned by order.dendrogram.

ddr, ddc object of class "dendrogram" which describes the row and column trees pro-
duced by cim.

mat.cor the correlation matrix used for the heatmap. Available only when mapping =
"XY".

row.names, col.names
character vectors with row and column labels used.

row.sideColors, col.sideColors
character vector containing the color names for vertical and horizontal side bars
used to annotate the rows and columns.

Author(s)

Ignacio González, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi

cim 37

References

Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proceeding of the National Academy of Sciences of the USA 95,
14863-14868.

Weinstein, J. N., Myers, T. G., O’Connor, P. M., Friend, S. H., Fornace Jr., A. J., Kohn, K. W.,
Fojo, T., Bates, S. E., Rubinstein, L. V., Anderson, N. L., Buolamwini, J. K., van Osdol, W. W.,
Monks, A. P., Scudiero, D. A., Sausville, E. A., Zaharevitz, D. W., Bunow, B., Viswanadhan, V.
N., Johnson, G. S., Wittes, R. E. and Paull, K. D. (1997). An information-intensive approach to the
molecular pharmacology of cancer. Science 275, 343-349.

González I., Lê Cao K.A., Davis M.J., Déjean S. (2012). Visualising associations between paired
’omics’ data sets. BioData Mining; 5(1).

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

heatmap, hclust, plotVar, network and

http://mixomics.org/graphics/ for more details on all options available.

Examples

default method: shows cross correlation between 2 data sets
#--
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene

cim(cor(X, Y), cluster = "none")

Not run:
CIM representation for objects of class 'rcc'
#--

nutri.rcc <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

cim(nutri.rcc, xlab = "genes", ylab = "lipids", margins = c(5, 6))

#-- interactive 'zoom' available as below

cim(nutri.rcc, xlab = "genes", ylab = "lipids", margins = c(5, 6),
zoom = TRUE)
#-- select the region and "see" the zoom-out region

#-- cim from X matrix with a side bar to indicate the diet
diet.col <- palette()[as.numeric(nutrimouse$diet)]
cim(nutri.rcc, mapping = "X", row.names = nutrimouse$diet,

http://mixomics.org/graphics/

38 cim

row.sideColors = diet.col, xlab = "lipids",
clust.method = c("ward", "ward"), margins = c(6, 4))

#-- cim from Y matrix with a side bar to indicate the genotype
geno.col = color.mixo(as.numeric(nutrimouse$genotype))
cim(nutri.rcc, mapping = "Y", row.names = nutrimouse$genotype,
row.sideColors = geno.col, xlab = "genes",
clust.method = c("ward", "ward"))

#-- save the result as a jpeg file
jpeg(filename = "test.jpeg", res = 600, width = 4000, height = 4000)
cim(nutri.rcc, xlab = "genes", ylab = "lipids", margins = c(5, 6))
dev.off()

CIM representation for objects of class 'spca' (also works for sipca)
#--

data(liver.toxicity)
X <- liver.toxicity$gene

liver.spca <- spca(X, ncomp = 2, keepX = c(30, 30), scale = FALSE)

dose.col <- color.mixo(as.numeric(as.factor(liver.toxicity$treatment[, 3])))

side bar, no variable names shown
cim(liver.spca, row.sideColors = dose.col, col.names = FALSE,
row.names = liver.toxicity$treatment[, 3],
clust.method = c("ward", "ward"))

CIM representation for objects of class '(s)pls'
#--

data(liver.toxicity)

X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
liver.spls <- spls(X, Y, ncomp = 3,
keepX = c(20, 50, 50), keepY = c(10, 10, 10))

default
cim(liver.spls)

transpose matrix, choose clustering method
cim(liver.spls, transpose = TRUE,
clust.method = c("ward", "ward"), margins = c(5, 7))

Here we visualise only the X variables selected
cim(liver.spls, mapping="X")

Here we should visualise only the Y variables selected

cim 39

cim(liver.spls, mapping="Y")

Here we only visualise the similarity matrix between the variables by spls
cim(liver.spls, cluster="none")

plotting two data sets with the similarity matrix as input in the funciton
(see our BioData Mining paper for more details)
Only the variables selected by the sPLS model in X and Y are represented
cim(liver.spls, mapping="XY")

on the X matrix only, side col var to indicate dose
dose.col <- color.mixo(as.numeric(as.factor(liver.toxicity$treatment[, 3])))
cim(liver.spls, mapping = "X", row.sideColors = dose.col,
row.names = liver.toxicity$treatment[, 3])

CIM default representation includes the total of 120 genes selected, with the dose color
with a sparse method, show only the variables selected on specific components
cim(liver.spls, comp = 1)
cim(liver.spls, comp = 2)
cim(liver.spls, comp = c(1,2))
cim(liver.spls, comp = c(1,3))

CIM representation for objects of class '(s)plsda'
#--
data(liver.toxicity)

X <- liver.toxicity$gene
Setting up the Y outcome first
Y <- liver.toxicity$treatment[, 3]
#set up colors for cim
dose.col <- color.mixo(as.numeric(as.factor(liver.toxicity$treatment[, 3])))

liver.splsda <- splsda(X, Y, ncomp = 2, keepX = c(40, 30))

cim(liver.splsda, row.sideColors = dose.col, row.names = Y)

CIM representation for objects of class splsda 'multilevel'
with a two level factor (repeated sample and time)
#--
data(vac18.simulated)
X <- vac18.simulated$genes
design <- data.frame(samp = vac18.simulated$sample)
Y = data.frame(time = vac18.simulated$time,
stim = vac18.simulated$stimulation)

res.2level <- splsda(X, Y = Y, ncomp = 2, multilevel = design,
keepX = c(120, 10))

#define colors for the levels: stimulation and time
stim.col <- c("darkblue", "purple", "green4","red3")

40 cim

stim.col <- stim.col[as.numeric(Y$stim)]
time.col <- c("orange", "cyan")[as.numeric(Y$time)]

The row side bar indicates the two levels of the facteor, stimulation and time.
the sample names have been motified on the plot.
cim(res.2level, row.sideColors = cbind(stim.col, time.col),
row.names = paste(Y$time, Y$stim, sep = "_"),
col.names = FALSE,
#setting up legend:
legend=list(legend = c(levels(Y$time), levels(Y$stim)),
col = c("orange", "cyan", "darkblue", "purple", "green4","red3"),
title = "Condition", cex = 0.7)
)

CIM representation for objects of class spls 'multilevel'
#--

data(liver.toxicity)
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,
6, 5, 6, 7, 7, 8, 6, 7, 8, 7, 8, 8, 9, 10, 9, 10, 11, 9, 9,
10, 11, 12, 12, 10, 11, 12, 11, 12, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 15, 16)

sPLS is a non supervised technique, and so we only indicate the sample repetitions
in the design (1 factor only here, sample)
sPLS takes as an input 2 data sets, and the variables selected
design <- data.frame(sample = repeat.indiv)
res.spls.1level <- spls(X = liver.toxicity$gene,
Y=liver.toxicity$clinic,
multilevel = design,
ncomp = 2,
keepX = c(50, 50), keepY = c(5, 5),
mode = 'canonical')

stim.col <- c("darkblue", "purple", "green4","red3")

showing only the Y variables, and only those selected in comp 1
cim(res.spls.1level, mapping="Y",
row.sideColors = stim.col[factor(liver.toxicity$treatment[,3])], comp = 1,
#setting up legend:
legend=list(legend = unique(liver.toxicity$treatment[,3]), col=stim.col,
title = "Dose", cex=0.9))

showing only the X variables, for all selected on comp 1 and 2
cim(res.spls.1level, mapping="X",
row.sideColors = stim.col[factor(liver.toxicity$treatment[,3])],
#setting up legend:
legend=list(legend = unique(liver.toxicity$treatment[,3]), col=stim.col,
title = "Dose", cex=0.9))

cimDiablo 41

These are the cross correlations between the variables selected in X and Y.
The similarity matrix is obtained as in our paper in Data Mining
cim(res.spls.1level, mapping="XY")

End(Not run)

cimDiablo Clustered Image Maps (CIMs) ("heat maps") for DIABLO

Description

This function generates color-coded Clustered Image Maps (CIMs) ("heat maps") to represent
"high-dimensional" data sets analysed with DIABLO.

Usage

cimDiablo(
object,
color = NULL,
color.Y,
color.blocks,
comp = NULL,
margins = c(2, 15),
legend.position = "topright",
transpose = FALSE,
row.names = TRUE,
col.names = TRUE,
size.legend = 1.5,
trim = TRUE,
...

)

Arguments

object An object of class inheriting from "block.splsda".

color a character vector of colors such as that generated by terrain.colors, topo.colors,
rainbow, color.jet or similar functions.

color.Y a character vector of colors to be used for the levels of the outcome

color.blocks a character vector of colors to be used for the blocks

comp positive integer. The similarity matrix is computed based on the variables se-
lected on those specified components. See example. Defaults to comp = 1.

margins numeric vector of length two containing the margins (see par(mar)) for column
and row names respectively.

legend.position

position of the legend, one of "bottomright", "bottom", "bottomleft", "left",
"topleft", "top", "topright", "right" and "center".

42 cimDiablo

transpose logical indicating if the matrix should be transposed for plotting. Defaults to
FALSE.

row.names, col.names
logical, should the name of rows and/or columns of mat be shown? If TRUE
(defaults) rownames(mat) and/or colnames(mat) are used. Possible character
vectors with row and/or column labels can be used.

size.legend size of the legend

trim (Logical or numeric) If FALSE, values are not changed. If TRUE, the values are
trimmed to 3 standard deviation range. If a numeric, values with absolute values
greater than the provided values are trimmed.

... Other valid arguments passed to cim.

Details

This function is a small wrapper of cim specific to the DIABLO framework.

Value

A list containing the following components:

M the mapped matrix used by cim.

rowInd, colInd row and column index permutation vectors as returned by order.dendrogram.

ddr, ddc object of class "dendrogram" which describes the row and column trees pro-
duced by cim.

mat.cor the correlation matrix used for the heatmap. Available only when mapping =
"XY".

row.names, col.names
character vectors with row and column labels used.

row.sideColors, col.sideColors
character vector containing the color names for vertical and horizontal side bars
used to annotate the rows and columns.

Author(s)

Amrit Singh, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

Singh A., Shannon C., Gautier B., Rohart F., Vacher M., Tebbutt S. and Lê Cao K.A. (2019),
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays,
Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062.

Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proceeding of the National Academy of Sciences of the USA 95,
14863-14868.

Weinstein, J. N., Myers, T. G., O’Connor, P. M., Friend, S. H., Fornace Jr., A. J., Kohn, K. W.,
Fojo, T., Bates, S. E., Rubinstein, L. V., Anderson, N. L., Buolamwini, J. K., van Osdol, W. W.,
Monks, A. P., Scudiero, D. A., Sausville, E. A., Zaharevitz, D. W., Bunow, B., Viswanadhan, V.

circosPlot 43

N., Johnson, G. S., Wittes, R. E. and Paull, K. D. (1997). An information-intensive approach to the
molecular pharmacology of cancer. Science 275, 343-349.

González I., Lê Cao K.A., Davis M.J., Déjean S. (2012). Visualising associations between paired
’omics’ data sets. BioData Mining; 5(1).

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

cim, heatmap, hclust, plotVar, network and

http://mixomics.org/mixDIABLO/ for more details on all options available.

Examples

default method: shows cross correlation between 2 data sets
#--
data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)

nutrimouse.sgccda <- block.splsda(X = data,
Y = Y,
design = "full",
keepX = list(gene = c(10,10), lipid = c(15,15)),
ncomp = 2)

cimDiablo(nutrimouse.sgccda, comp = c(1,2))
change trim range
cimDiablo(nutrimouse.sgccda, comp = c(1,2), trim = 4)
do not trim values
cimDiablo(nutrimouse.sgccda, comp = c(1,2), trim = FALSE)

circosPlot circosPlot for DIABLO

Description

Displays variable correlation among different blocks

Usage

S3 method for class 'block.splsda'
circosPlot(
object,
comp = 1:min(object$ncomp),
cutoff,

http://mixomics.org/mixDIABLO/

44 circosPlot

color.Y,
blocks = NULL,
color.blocks,
color.cor,
var.names = NULL,
showIntraLinks = FALSE,
line = FALSE,
size.legend = 0.8,
ncol.legend = 1,
size.variables = 0.25,
size.labels = 1,
legend = TRUE,
legend.title = "Expression",
linkWidth = 1,
...

)

S3 method for class 'block.plsda'
circosPlot(
object,
comp = 1:min(object$ncomp),
cutoff,
color.Y,
blocks = NULL,
color.blocks,
color.cor,
var.names = NULL,
showIntraLinks = FALSE,
line = FALSE,
size.legend = 0.8,
ncol.legend = 1,
size.variables = 0.25,
size.labels = 1,
legend = TRUE,
legend.title = "Expression",
linkWidth = 1,
...

)

S3 method for class 'block.spls'
circosPlot(object, ..., group = NULL, Y.name = "Y")

S3 method for class 'block.pls'
circosPlot(object, ..., group = NULL, Y.name = "Y")

Arguments

object An object of class inheriting from "block.plsda", "block.splsda", "block.pls"
or "blocks.spls".

circosPlot 45

comp Numeric vector indicating which component to plot. Default to all

cutoff Only shows links with a correlation higher than cutoff

color.Y a character vector of colors to be used for the levels of the outcome

blocks Character or integer vector indicating which blocks to show. Default to all

color.blocks a character vector of colors to be used for the blocks

color.cor a character vector of two colors. First one is for the negative correlation, second
one is for the positive correlation

var.names Optional parameter. A list of length the number of blocks in object$X, contain-
ing the names of the variables of each block. If NULL, the colnames of the data
matrix are used.

showIntraLinks if TRUE, shows the correlation higher than the threshold inside each block.

line if TRUE, shows the overall expression of the selected variables. see examples.

size.legend size of the legend

ncol.legend number of columns for the legend

size.variables size of the variable labels

size.labels size of the block labels

legend Logical. Whether the legend should be added. Default is TRUE.

legend.title String. Name of the legend. Defaults to "Expression".

linkWidth Numeric. Specifies the range of sizes used for lines linking the correlated vari-
ables (see details). Must be of length 2 or 1. Default to c(1). See details.

... For object of class block.splsda, advanced plot parameters:

• var.adj Numeric. Adjusts the radial location of variable names in units of
the arc band width. Positive values push feature names radially outward.
Default to -0.33. See examples.

• block.labels.adj Numeric between -1 and 1. Adjusts the radial location of
block names radially inward or outward. Default to 0. See examples.

• blocks.link Character vector of blocks. If provided, only correlations from
features of these blocks are shown using links. See examples.

For object of class block.spls, all listed and advanced arguments passed to the
block.splsda method.

group The grouping factor used when line = TRUE

Y.name Character, the name of the Y block

Details

circosPlot function depicts correlations of variables selected with block.splsda or block.spls
among different blocks, using a generalisation of the method presented in González et al 2012. If
ncomp is specified, then only the variables selected on that component are displayed.

The linkWidth argument specifies the width of the links drawn. If a vector of length 2 is provided,
the smaller value will correspond to a similarity values designated by cutoff argument, while the
larger value will be used for a link with perfect similarity (1), if any.

46 circosPlot

Value

If saved in an object, the circos plot will output the similarity matrix and the names of the variables
displayed on the plot (see attributes(object)).

Author(s)

Michael Vacher, Amrit Singh, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê Cao K.A. (2016). DIA-
BLO: multi omics integration for biomarker discovery. BioRxiv available here: http://biorxiv.
org/content/early/2016/08/03/067611

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

González I., Lê Cao K.A., Davis M.J., Déjean S. (2012). Visualising associations between paired
’omics’ data sets. BioData Mining; 5(1).

See Also

block.splsda, references and http://www.mixOmics.org/mixDIABLO for more details.

Examples

data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

nutrimouse.sgccda <- wrapper.sgccda(X=data,
Y = Y,
design = design,
keepX = list(gene=c(10,10), lipid=c(15,15)),
ncomp = 2)

circosPlot(nutrimouse.sgccda, cutoff = 0.7)
links widths based on strength of their similarity
circosPlot(nutrimouse.sgccda, cutoff = 0.7, linkWidth = c(1, 10))
custom legend
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1)

more customisation
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1, color.Y = 1:5,

color.blocks = c("green","brown"), color.cor = c("magenta", "purple"))

par(mfrow=c(2,2))

circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1)

http://biorxiv.org/content/early/2016/08/03/067611
http://biorxiv.org/content/early/2016/08/03/067611

colors 47

also show intra-block correlations
circosPlot(nutrimouse.sgccda, cutoff = 0.7,

size.legend = 1.1, showIntraLinks = TRUE)
show lines
circosPlot(nutrimouse.sgccda, cutoff = 0.7, line = TRUE, ncol.legend = 1,

size.legend = 1.1, showIntraLinks = TRUE)
custom line legends
circosPlot(nutrimouse.sgccda, cutoff = 0.7, line = TRUE, ncol.legend = 2,

size.legend = 1.1, showIntraLinks = TRUE)
par(mfrow=c(1,1))

adjust feature and block names radially
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1)
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1,

var.adj = 0.8, block.labels.adj = -0.5)
--- example using breast.TCGA data
data("breast.TCGA")
data = list(mrna = breast.TCGA$data.train$mrna,

mirna = breast.TCGA$data.train$mirna,
protein = breast.TCGA$data.train$protein)

list.keepX = list(mrna = rep(20, 2), mirna = rep(10,2), protein = c(10, 2))

TCGA.block.splsda = block.splsda(X = data,
Y =breast.TCGA$data.train$subtype,
ncomp = 2, keepX = list.keepX,
design = 'full')

circosPlot(TCGA.block.splsda, cutoff = 0.7, line=TRUE)
show only first 2 blocks
circosPlot(TCGA.block.splsda, cutoff = 0.7, line=TRUE, blocks = c(1,2))
show only correlations including the mrna block features
circosPlot(TCGA.block.splsda, cutoff = 0.7, blocks.link = 'mrna')

data("breast.TCGA")
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna)
list.keepX = list(mrna = rep(20, 2), mirna = rep(10,2))
list.keepY = c(rep(10, 2))

TCGA.block.spls = block.spls(X = data,
Y = breast.TCGA$data.train$protein,
ncomp = 2, keepX = list.keepX,
keepY = list.keepY, design = 'full')

circosPlot(TCGA.block.spls, group = breast.TCGA$data.train$subtype, cutoff = 0.7,
Y.name = 'protein')

only show links including mrna
circosPlot(TCGA.block.spls, group = breast.TCGA$data.train$subtype, cutoff = 0.7,

Y.name = 'protein', blocks.link = 'mrna')

colors Color Palette for mixOmics

48 colors

Description

The functions create a vector of n "contiguous" colors (except the color.mixo which are colors
used internally to fit our logo colors).

Usage

color.mixo(num.vector)

color.GreenRed(n, alpha = 1)

color.jet(n, alpha = 1)

color.spectral(n, alpha = 1)

Arguments

num.vector for color.mixo an integer vector specifying which colors to use in the mixOmics
palette (there are only 10 colors available.

n an integer, the number of colors (≥ 1) to be in the palette.

alpha a numeric value between 0 and 1 for alpha channel (opacity).

Details

The function color.jet(n) create color scheme, beginning with dark blue, ranging through shades
of blue, cyan, green, yellow and red, and ending with dark red. This colors palette is suitable for
displaying ordered (symmetric) data, with n giving the number of colors desired.

Value

For color.jet(n), color.spectral(n), color.GreenRed(n) a character vector, cv, of color
names. This can be used either to create a user-defined color palette for subsequent graphics by
palette(cv), a col= specification in graphics functions or in par.

For color.mixo, a vector of colors matching the mixOmics logo (10 colors max.)

Author(s)

Ignacio Gonzalez, Kim-Anh Lê Cao, Benoit Gautier, Al J Abadi

See Also

colorRamp, palette, colors for the vector of built-in "named" colors; hsv, gray, rainbow,
terrain.colors, ... to construct colors; and heat.colors, topo.colors for images.

Examples

jet colors

par(mfrow = c(3, 1))

diverse.16S 49

z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
image(matrix(z, ncol = 1), col = color.jet(n),
xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
box()
par(usr = c(-1, 1, -1, 1))
axis(1, at = c(-1, 0, 1))
}

Not run:

spectral colors

par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
image(matrix(z, ncol = 1), col = color.spectral(n),
xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
box()
par(usr = c(-1, 1, -1, 1))
axis(1, at = c(-1, 0, 1))
}

GreenRed colors

par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
image(matrix(z, ncol = 1), col = color.GreenRed(n),
xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
box()
par(usr = c(-1, 1, -1, 1))
axis(1, at = c(-1, 0, 1))
}

mixOmics colors

data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

my.colors = color.mixo(1:5)
my.pch = ifelse(nutrimouse$genotype == 'wt', 16, 17)
#plotIndiv(nutri.res, ind.names = FALSE, group = my.colors, pch = my.pch, cex = 1.5)

End(Not run)

diverse.16S 16S microbiome data: most diverse bodysites from HMP

50 diverse.16S

Description

The 16S data from the Human Microbiome Project includes only the most diverse bodysites: An-
tecubital fossa (skin), Stool and Subgingival plaque (oral) and can be analysed using a multilevel
approach to account for repeated measurements using our module mixMC. The data include 162
samples (54 unique healthy individuals) measured on 1,674 OTUs.

Usage

data(diverse.16S)

Format

A list containing two data sets, data.TSS and data.raw and some meta data information:

list("data.TSS") data frame with 162 rows (samples) and 1674 columns (OTUs). The prefiltered
normalised data using Total Sum Scaling normalisation.

list("data.raw") data frame with 162 rows (samples) and 1674 columns (OTUs). The prefiltered
raw count OTU data which include a 1 offset (i.e. no 0 values).

list("taxonomy") data frame with 1674 rows (OTUs) and 6 columns indicating the taxonomy of
each OTU.

list("indiv") data frame with 162 rows indicating sample meta data.

list("bodysite") factor of length 162 indicating the bodysite with levels "Antecubital_fossa", "Stool"
and "Subgingival_plaque".

list("sample") vector of length 162 indicating the unique individual ID, useful for a multilevel
approach to taken into account the repeated measured on each individual.

Details

The data were downloaded from the Human Microbiome Project (HMP, http://hmpdacc.org/HMQCP/all/
for the V1-3 variable region). The original data contained 43,146 OTU counts for 2,911 samples
measured from 18 different body sites. We focused on the first visit of each healthy individual and
focused on the three most diverse habitats. The prefiltered dataset included 1,674 OTU counts. We
strongly recommend to use log ratio transformations on the data.TSS normalised data, as imple-
mented in the PLS and PCA methods, see details on www.mixOmics.org/mixMC.

The data.raw include a 1 offset in order to be log ratios transformed after TSS normalisation.
Consequently, the data.TSS are TSS normalisation of data.raw. The CSS normalisation was
performed on the orignal data (including zero values)

Value

none

Source

The raw data were downloaded from http://hmpdacc.org/HMQCP/all/. Filtering and normalisa-
tion described in our website www.mixOmics.org/mixMC

www.mixOmics.org/mixMC
http://hmpdacc.org/HMQCP/all/
www.mixOmics.org/mixMC

estim.regul 51

References

Lê Cao K.-A., Costello ME, Lakis VA, Bartolo, F,Chua XY, Brazeilles R, Rondeau P. MixMC:
Multivariate insights into Microbial Communities. PLoS ONE, 11(8): e0160169 (2016).

estim.regul Estimate the parameters of regularization for Regularized CCA

Description

This function has been renamed tune.rcc, see tune.rcc.

This function has been renamed ’image.tune.rcc’, see image.tune.rcc.

This function has been renamed tune.pca.

Value

none

none

none

explained_variance Calculates the proportion of explained variance of multivariate com-
ponents

Description

explained_variance calculates the proportion of variance explained by a set of *orthogonal*
variates / components and divides by the total variance in data using the definition of ’redundancy’.
This applies to any component-based approaches where components are orthogonal. It is worth
noting that any missing values are set to zero (which is the column mean for the centered input
data) prior to calculation of total variance in the data. Therefore, this function would underestimate
the total variance in presence of abundant missing values. One can use impute.nipals function to
impute the missing values to avoid such behaviour.

Usage

explained_variance(data, variates, ncomp)

Arguments

data numeric matrix of predictors

variates variates as obtained from a pls object for instance

ncomp number of components. Should be lower than the number of columns of variates

52 get.confusion_matrix

Details

Variance explained by component th in X for dimension h:

Rd(X, th) =
1

p

p∑
j=1

cor2(Xj , th)

where Xj is the variable centered and scaled, p is the total number of variables.

Value

explained_variance returns a named numeric vector containing the proportion of explained vari-
ance for each variate after setting all missing values in the data to zero (see details).

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

Tenenhaus, M., La Régression PLS théorie et pratique (1998). Technip, Paris, chap2.

See Also

spls, splsda, plotIndiv, plotVar, cim, network.

Examples

data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic

toxicity.spls <- spls(X, Y, ncomp = 2, keepX = c(50, 50), keepY = c(10, 10))

ex = explained_variance(toxicity.spls$X, toxicity.spls$variates$X, ncomp =2)

ex should be the same as
toxicity.spls$prop_expl_var$X

get.confusion_matrix Create confusion table and calculate the Balanced Error Rate

Description

Create confusion table between a vector of true classes and a vector of predicted classes, calculate
the Balanced Error rate

get.confusion_matrix 53

Usage

get.confusion_matrix(truth, all.levels, predicted)

get.BER(confusion)

Arguments

truth A factor vector indicating the true classes of the samples (typically Y from the
training set).

all.levels Levels of the ’truth’ factor. Optional parameter if there are some missing levels
in truth compared to the fitted predicted model

predicted Vector of predicted classes (typically the prediction from the test set). Can con-
tain NA.

confusion result from a get.confusion_matrix to calculate the Balanced Error Rate

Details

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

Value

get.confusion_matrix returns a confusion matrix. get.BER returns the BER from a confusion
matrix

Author(s)

Florian Rohart, Al J Abadi

References

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

predict.

Examples

data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])

if training is perfomed on 4/5th of the original data
samp <- sample(1:5, nrow(X), replace = TRUE)
test <- which(samp == 1) # testing on the first fold

54 image.tune.rcc

train <- setdiff(1:nrow(X), test)

plsda.train <- plsda(X[train,], Y[train], ncomp = 2)
test.predict <- predict(plsda.train, X[test,], dist = "max.dist")
Prediction <- test.predict$class$max.dist[, 2]

the confusion table compares the real subtypes with the predicted subtypes for a 2 component model
confusion.mat = get.confusion_matrix(truth = Y[test],
predicted = Prediction)

get.BER(confusion.mat)

image.tune.rcc Plot the cross-validation score.

Description

This function provide a image map (checkerboard plot) of the cross-validation score obtained by
the tune.rcc function.

Usage

S3 method for class 'tune.rcc'
image(x, col = heat.colors, ...)

S3 method for class 'tune.rcc'
plot(x, col = heat.colors, ...)

Arguments

x object returned by tune.rcc.

col a character string specifying the colors function to use: terrain.colors, topo.colors,
rainbow or similar functions. Defaults to heat.colors.

... not used currently.

Details

plot.tune.rcc creates an image map of the matrix object$mat containing the cross-validation
score obtained by the tune.rcc function. Also a color scales strip is plotted.

Value

none

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Le Cao, Al J Abadi

imgCor 55

See Also

tune.rcc, image.

Examples

data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene

this can take some seconds
cv.score <- tune.rcc(X, Y, validation = "Mfold")
plot(cv.score)

image(cv.score) # same result as plot()

imgCor Image Maps of Correlation Matrices between two Data Sets

Description

Display two-dimensional visualizations (image maps) of the correlation matrices within and be-
tween two data sets.

Usage

imgCor(
X,
Y,
type = "combine",
X.var.names = TRUE,
Y.var.names = TRUE,
sideColors = TRUE,
interactive.dev = TRUE,
title = TRUE,
color,
row.cex,
col.cex,
symkey,
keysize,
xlab,
ylab,
margins,
lhei,
lwid

)

56 imgCor

Arguments

X numeric matrix or data frame (n x p), the observations on the X variables. NAs
are allowed.

Y numeric matrix or data frame (n x q), the observations on the Y variables. NAs
are allowed.

type character string, (partially) maching one of "combine" or "separated", deter-
mining the kind of plots to be produced. See Details.

X.var.names, Y.var.names
logical, should the name of X- and/or Y -variables be shown? If TRUE (defaults)
object$names$X and/or object$names$Y are used. Possible character vector
with X- and/or Y -variable labels to use.

sideColors character vector of length two. The color name for horizontal and vertical side
bars that may be used to annotate the X and Y correlation matrices.

interactive.dev

Logical. The current graphics device that will be opened is interactive?

title logical, should the main titles be shown?
color, xlab, ylab

arguments passed to cim.
row.cex, col.cex

positive numbers, used as cex.axis in for the row or column axis labeling. The
defaults currently only use number of rows or columns, respectively.

symkey Logical indicating whether the color key should be made symmetric about 0.
Defaults to TRUE.

keysize positive numeric value indicating the size of the color key.

margins numeric vector of length two containing the margins (see par(mar)) for column
and row names respectively.

lhei, lwid arguments passed to layout to divide the device up into two rows and two
columns, with the row-heights lhei and the column-widths lwid.

Details

If type="combine", the correlation matrix is computed of the combined matrices cbind(X, Y) and
then plotted. If type="separate", three correlation matrices are computed, cor(X), cor(Y) and
cor(X,Y) and plotted separately on a device. In both cases, a color correlation scales strip is plotted.

The correlation matrices are pre-processed before calling the image function in order to get, as in
the numerical representation, the diagonal from upper-left corner to bottom-right one.

Missing values are handled by casewise deletion in the imgCor function.

If X.names = FALSE, the name of each X-variable is hidden. Default value is TRUE.

If Y.names = FALSE, the name of each Y-variable is hidden. Default value is TRUE.

Value

NULL (invisibly)

impute.nipals 57

Author(s)

Ignacio González, Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

See Also

cor, image, color.jet.

Examples

data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene

'combine' type plot (default)
imgCor(X, Y)

Not run:
'separate' type plot

imgCor(X, Y, type = "separate")

'separate' type plot without the name of datas
imgCor(X, Y, X.var.names = FALSE, Y.var.names = FALSE, type = "separate")

End(Not run)

impute.nipals Impute missing values using NIPALS algorithm

Description

This function uses nipals function to decompose X into a set of components (t), (pseudo-) singular-
values (eig), and feature loadings (p). The original matrix is then approximated/reconstituted using
the following equation:

X̂ = t ∗ diag(eig) ∗ t(p)

The missing values from X are then approximated from this matrix. It is best to ensure enough
number of components are used in order to best impute the missing values.

Usage

impute.nipals(X, ncomp, ...)

Arguments

X A numeric matrix containing missing values

ncomp Positive integer, the number of components to derive from X using the nipals
function and reconstitute the original matrix

... Optional arguments passed to nipals

58 ipca

Value

A numeric matrix with missing values imputed.

Author(s)

Al J Abadi

See Also

impute.nipals, pca

Examples

data("nutrimouse")
X <- data.matrix(nutrimouse$lipid)
add missing values to X to impute and compare to actual values
set.seed(42)
na.ind <- sample(seq_along(X), size = 10)
true.values <- X[na.ind]
X[na.ind] <- NA
X.impute <- impute.nipals(X = X, ncomp = 5)
compare
round(X.impute[na.ind], 2)
true.values

ipca Independent Principal Component Analysis

Description

Performs independent principal component analysis on the given data matrix, a combination of
Principal Component Analysis and Independent Component Analysis.

Usage

ipca(
X,
ncomp = 2,
mode = "deflation",
fun = "logcosh",
scale = FALSE,
w.init = NULL,
max.iter = 200,
tol = 1e-04

)

ipca 59

Arguments

X a numeric matrix (or data frame).

ncomp integer, number of independent component to choose. Set by default to 3.

mode character string. What type of algorithm to use when estimating the unmixing
matrix, choose one of "deflation", "parallel". Default set to deflation.

fun the function used in approximation to neg-entropy in the FastICA algorithm.
Default set to logcosh, see details of FastICA.

scale (Default=FALSE) Logical indicating whether the variables should be scaled to
have unit variance before the analysis takes place. The default is FALSE for con-
sistency with prcomp function, but in general scaling is advisable. Alternatively,
a vector of length equal the number of columns of X can be supplied. The value
is passed to scale.

w.init initial un-mixing matrix (unlike fastICA, this matrix is fixed here).

max.iter integer, the maximum number of iterations.

tol a positive scalar giving the tolerance at which the un-mixing matrix is considered
to have converged, see fastICA package.

Details

In PCA, the loading vectors indicate the importance of the variables in the principal components. In
large biological data sets, the loading vectors should only assign large weights to important variables
(genes, metabolites ...). That means the distribution of any loading vector should be super-Gaussian:
most of the weights are very close to zero while only a few have large (absolute) values.

However, due to the existence of noise, the distribution of any loading vector is distorted and tends
toward a Gaussian distribtion according to the Central Limit Theroem. By maximizing the non-
Gaussianity of the loading vectors using FastICA, we obtain more noiseless loading vectors. We
then project the original data matrix on these noiseless loading vectors, to obtain independent prin-
cipal components, which should be also more noiseless and be able to better cluster the samples
according to the biological treatment (note, IPCA is an unsupervised approach).

Algorithm 1. The original data matrix is centered.

2. PCA is used to reduce dimension and generate the loading vectors.

3. ICA (FastICA) is implemented on the loading vectors to generate independent loading vectors.

4. The centered data matrix is projected on the independent loading vectors to obtain the indepen-
dent principal components.

Value

ipca returns a list with class "ipca" containing the following components:

ncomp the number of independent principal components used.

unmixing the unmixing matrix of size (ncomp x ncomp)

mixing the mixing matrix of size (ncomp x ncomp)

X the centered data matrix

x the independent principal components

60 ipca

loadings the independent loading vectors

kurtosis the kurtosis measure of the independent loading vectors

prop_expl_var Proportion of the explained variance of derived components, after setting possi-
ble missing values to zero.

Author(s)

Fangzhou Yao, Jeff Coquery, Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

References

Yao, F., Coquery, J. and Lê Cao, K.-A. (2011) Principal component analysis with independent
loadings: a combination of PCA and ICA. (in preparation)

A. Hyvarinen and E. Oja (2000) Independent Component Analysis: Algorithms and Applications,
Neural Networks, 13(4-5):411-430

J L Marchini, C Heaton and B D Ripley (2010). fastICA: FastICA Algorithms to perform ICA and
Projection Pursuit. R package version 1.1-13.

See Also

sipca, pca, plotIndiv, plotVar, and http://www.mixOmics.org for more details.

Examples

data(liver.toxicity)

implement IPCA on a microarray dataset
ipca.res <- ipca(liver.toxicity$gene, ncomp = 3, mode="deflation")
ipca.res

samples representation
plotIndiv(

ipca.res,
ind.names = as.character(liver.toxicity$treatment[, 4]),
group = as.numeric(as.factor(liver.toxicity$treatment[, 4]))

)

Not run:
plotIndiv(ipca.res,

cex = 0.01,
col = as.numeric(as.factor(liver.toxicity$treatment[, 4])),
style = "3d")

End(Not run)
variables representation
plotVar(ipca.res, cex = 0.5)

Not run:
plotVar(ipca.res, rad.in = 0.5, cex = 0.5, style="3d")

End(Not run)

Koren.16S 61

Koren.16S 16S microbiome atherosclerosis study

Description

The 16S data come from Koren et al. (2011) and compared the bodysites oral, gut and plaque
microbial communities in patients with atherosclerosis. The data can be analysed with our mixMC
module. The data include 43 samples measured on 980 OTUs.

Usage

data(Koren.16S)

Format

A list containing two data sets, data.TSS and data.raw and some meta data information:

list("data.TSS") data frame with 43 rows (samples) and 980 columns (OTUs). The prefiltered
normalised data using Total Sum Scaling normalisation.

list("data.raw") data frame with 43 rows (samples) and 980 columns (OTUs). The prefiltered raw
count OTU data which include a 1 offset (i.e. no 0 values).

list("taxonomy") data frame with 980 rows (OTUs) and 7 columns indicating the taxonomy of
each OTU.

list("indiv") data frame with 43 rows indicating sample meta data.

list("bodysite") factor of length 43 indicating the bodysite with levels arterial plaque, saliva and
stool.

Details

The data are from Koren et al. (2011) who examined the link between oral, gut and plaque microbial
communities in patients with atherosclerosis and controls. Only healthy individuals were retained
in the analysis. This study contained partially repeated measures from multiple sites including 15
unique patients samples from saliva and stool, and 13 unique patients only sampled from arterial
plaque samples and we therefore considered a non multilevel analysis for that experimental design.
After prefiltering, the data included 973 OTU for 43 samples. We strongly recommend to use
log ratio transformations on the data.TSS normalisd data, as implemented in the PLS and PCA
methods, see details on www.mixOmics.org/mixMC.

The data.raw include a 1 offset in order to be log ratios transformed after TSS normalisation.
Consequently, the data.TSS are TSS normalisation of data.raw. The CSS normalisation was
performed on the orignal data (including zero values)

Value

none

www.mixOmics.org/mixMC

62 linnerud

Source

The raw data were downloaded from the QIITA database. Filtering and normalisation described in
our website www.mixOmics.org/mixMC

References

Lê Cao K.-A., Costello ME, Lakis VA, Bartolo, F,Chua XY, Brazeilles R, Rondeau P. MixMC:
Multivariate insights into Microbial Communities. PLoS ONE, 11(8): e0160169 (2016).

Koren, O., Spor, A., Felin, J., Fak, F., Stombaugh, J., Tremaroli, V., et al.: Human oral, gut, and
plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sci-
ences 108(Supplement 1), 4592-4598 (2011)

linnerud Linnerud Dataset

Description

Three physiological and three exercise variables are measured on twenty middle-aged men in a
fitness club.

Usage

data(linnerud)

Format

A list containing the following components:

list("exercise") data frame with 20 observations on 3 exercise variables.

list("physiological") data frame with 20 observations on 3 physiological variables.

Value

none

Source

Tenenhaus, M. (1998), Table 1, page 15.

References

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

www.mixOmics.org/mixMC

liver.toxicity 63

liver.toxicity Liver Toxicity Data

Description

This data set contains the expression measure of 3116 genes and 10 clinical measurements for
64 subjects (rats) that were exposed to non-toxic, moderately toxic or severely toxic doses of ac-
etaminophen in a controlled experiment.

Usage

data(liver.toxicity)

Format

A list containing the following components:

list("gene") data frame with 64 rows and 3116 columns. The expression measure of 3116 genes
for the 64 subjects (rats).

list("clinic") data frame with 64 rows and 10 columns, containing 10 clinical variables for the
same 64 subjects.

list("treatment") data frame with 64 rows and 4 columns, containing the treatment information
on the 64 subjects, such as doses of acetaminophen and times of necropsies.

list("gene.ID") data frame with 3116 rows and 2 columns, containing geneBank IDs and gene
titles of the annotated genes

Details

The data come from a liver toxicity study (Bushel et al., 2007) in which 64 male rats of the inbred
strain Fisher 344 were exposed to non-toxic (50 or 150 mg/kg), moderately toxic (1500 mg/kg)
or severely toxic (2000 mg/kg) doses of acetaminophen (paracetamol) in a controlled experiment.
Necropsies were performed at 6, 18, 24 and 48 hours after exposure and the mRNA from the liver
was extracted. Ten clinical chemistry measurements of variables containing markers for liver injury
are available for each subject and the serum enzymes levels are measured numerically. The data
were further normalized and pre-processed by Bushel et al. (2007).

Value

none

Source

The two liver toxicity data sets are a companion resource for the paper of Bushel et al. (2007), and
was downloaded from:

http://www.biomedcentral.com/1752-0509/1/15/additional/

http://www.biomedcentral.com/1752-0509/1/15/additional/

64 logratio-transformations

References

Bushel, P., Wolfinger, R. D. and Gibson, G. (2007). Simultaneous clustering of gene expression data
with clinical chemistry and pathological evaluations reveals phenotypic prototypes. BMC Systems
Biology 1, Number 15.

Lê Cao, K.-A., Rossouw, D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

logratio-transformations

Log-ratio transformation

Description

This function applies a log transformation to the data, either CLR or ILR

Usage

logratio.transfo(X, logratio = c("none", "CLR", "ILR"), offset = 0)

Arguments

X numeric matrix of predictors

logratio log-ratio transform to apply, one of "none", "CLR" or "ILR"

offset Value that is added to X for CLR and ILR log transformation. Default to 0.

Details

logratio.transfo applies a log transformation to the data, either CLR (centered log ratio trans-
formation) or ILR (Isometric Log Ratio transformation). In the case of CLR log-transformation, X
needs to be a matrix of non-negative values and offset is used to shift the values away from 0, as
commonly done with counts data.

Value

logratio.transfo simply returns the log-ratio transformed data.

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

map 65

References

Kim-Anh Lê Cao, Mary-Ellen Costello, Vanessa Anne Lakis, Francois Bartolo, Xin-Yi Chua, Remi
Brazeilles, Pascale Rondeau mixMC: a multivariate statistical framework to gain insight into Mi-
crobial Communities bioRxiv 044206; doi: http://dx.doi.org/10.1101/044206

John Aitchison. The statistical analysis of compositional data. Journal of the Royal Statistical
Society. Series B (Methodological), pages 139-177, 1982.

Peter Filzmoser, Karel Hron, and Clemens Reimann. Principal component analysis for composi-
tional data with outliers. Environmetrics, 20(6):621-632, 2009.

See Also

pca, pls, spls, plsda, splsda.

Examples

data(diverse.16S)
CLR = logratio.transfo(X = diverse.16S$data.TSS, logratio = 'CLR')
no offset needed here as we have put it prior to the TSS, see www.mixOmics.org/mixMC

map Classification given Probabilities

Description

Converts a matrix in which each row sums to 1 into the nearest matrix of (0,1) indicator variables.

Usage

map(Y)

Arguments

Y A matrix (for example a matrix of conditional probabilities in which each row
sums to 1).

Value

A integer vector with one entry for each row of Y, in which the i-th value is the column index at
which the i-th row of Y attains a maximum.

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association 97:611-631.

C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal
Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical
Report No. 597, Department of Statistics, University of Washington.

66 mat.rank

See Also

unmap

Examples

data(nutrimouse)
Y = unmap(nutrimouse$diet)

map(Y)

mat.rank Matrix Rank

Description

This function estimate the rank of a matrix.

Usage

mat.rank(mat, tol)

Arguments

mat a numeric matrix or data frame that can contain missing values.

tol positive real, the tolerance for singular values, only those with values larger than
tol are considered non-zero.

Details

mat.rank estimate the rank of a matrix by computing its singular values d[i] (using nipals). The
rank of the matrix can be defined as the number of singular values d[i] > 0.

If tol is missing, it is given by tol=max(dim(mat))*max(d)*.Machine$double.eps.

Value

The returned value is a list with components:

rank a integer value, the matrix rank.

tol the tolerance used for singular values.

Author(s)

Sébastien Déjean, Ignacio González, Al J Abadi

See Also

nipals

mint.block.pls 67

Examples

Hilbert matrix
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
mat <- hilbert(16)
mat.rank(mat)

Not run:
Hilbert matrix with missing data
idx.na <- matrix(sample(c(0, 1, 1, 1, 1), 36, replace = TRUE), ncol = 6)
m.na <- m <- hilbert(9)[, 1:6]
m.na[idx.na == 0] <- NA
mat.rank(m)
mat.rank(m.na)

End(Not run)

mint.block.pls NP-integration

Description

Function to integrate data sets measured on the same samples (N-integration) and to combine multi-
ple independent studies measured on the same variables or predictors (P-integration) using variants
of multi-group and generalised PLS (unsupervised analysis).

Usage

mint.block.pls(
X,
Y,
indY,
study,
ncomp = 2,
design,
mode,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in samples x variables, with samples order match-
ing in all data sets.

68 mint.block.pls

Y Matrix or vector response for a multivariate regression framework. Data should
be continuous variables (see ?mint.block.splsda for supervised classification
and factor response).

indY To be supplied if Y is missing, indicates the position of the matrix / vector
response in the list X

study Factor, indicating the membership of each sample to each of the studies being
combined

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

The function fits multi-group generalised PLS models with a specified number of ncomp compo-
nents. An outcome needs to be provided, either by Y or by its position indY in the list of blocks
X.

Multi (continuous)response are supported. X and Y can contain missing values. Missing values are
handled by being disregarded during the cross product computations in the algorithm block.pls
without having to delete rows with missing data. Alternatively, missing data can be imputed prior
using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and more details in
?pls).

mint.block.pls 69

Value

mint.block.pls returns an object of class "mint.pls","block.pls", a list that contains the fol-
lowing components:

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

ncomp the number of components included in the model for each block.

mode the algorithm used to fit the model.

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

variates list containing the X and Y variates.

loadings list containing the estimated loadings for the variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter the maximum number of iterations, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.block.spls, mint.block.plsda,
mint.block.splsda and http://www.mixOmics.org/mixMINT for more details.

Examples

data(breast.TCGA)

for the purpose of this example, we create data that fit in the context of
this function.
We consider the training set as study1 and the test set as another
independent study2.

70 mint.block.plsda

study = c(rep("study1",150), rep("study2",70))

to put the data in the MINT format, we rbind the two studies
mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)

For the purpose of this example, we create a continuous response by
taking the first mrna variable, and removing it from the data
Y = mrna[,1]
mrna = mrna[,-1]

data = list(mrna = mrna, mirna = mirna)

we can now apply the function
res = mint.block.plsda(data, Y, study=study, ncomp=2)

res

mint.block.plsda NP-integration with Discriminant Analysis

Description

Function to integrate data sets measured on the same samples (N-integration) and to combine multi-
ple independent studies measured on the same variables or predictors (P-integration) using variants
of multi-group and generalised PLS-DA for supervised classification.

Usage

mint.block.plsda(
X,
Y,
indY,
study,
ncomp = 2,
design,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in samples x variables, with samples order match-
ing in all data sets.

mint.block.plsda 71

Y A factor or a class vector indicating the discrete outcome of each sample.

indY To be supplied if Y is missing, indicates the position of the matrix / vector
response in the list X

study Factor, indicating the membership of each sample to each of the studies being
combined

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

The function fits multi-group generalised PLS models with a specified number of ncomp compo-
nents. A factor indicating the discrete outcome needs to be provided, either by Y or by its position
indY in the list of blocks X.

X can contain missing values. Missing values are handled by being disregarded during the cross
product computations in the algorithm block.pls without having to delete rows with missing data.
Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and more details in
?pls).

Value

mint.block.plsda returns an object of class "mint.plsda", "block.plsda", a list that contains
the following components:

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

72 mint.block.plsda

ncomp the number of components included in the model for each block.

mode the algorithm used to fit the model.

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

variates list containing the X and Y variates.

loadings list containing the estimated loadings for the variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter the maximum number of iterations, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

On multi-group PLS:

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

On multiple integration with PLSDA:

Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê Cao K.A. (2016). DIA-
BLO: multi omics integration for biomarker discovery. BioRxiv available here: http://biorxiv.
org/content/early/2016/08/03/067611 Tenenhaus A., Philippe C., Guillemot V, Lê Cao K.A.,
Grill J, Frouin V. Variable selection for generalized canonical correlation analysis. Biostatistics.
kxu001

Gunther O., Shin H., Ng R. T. , McMaster W. R., McManus B. M. , Keown P. A. , Tebbutt S.J.
, Lê Cao K-A. , (2014) Novel multivariate methods for integration of genomics and proteomics
data: Applications in a kidney transplant rejection study, OMICS: A journal of integrative biology,
18(11), 682-95.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.block.spls, mint.block.plsda,
mint.block.splsda and http://www.mixOmics.org/mixMINT for more details.

http://biorxiv.org/content/early/2016/08/03/067611
http://biorxiv.org/content/early/2016/08/03/067611

mint.block.spls 73

Examples

data(breast.TCGA)

for the purpose of this example, we consider the training set as study1 and
the test set as another independent study2.
study = c(rep("study1",150), rep("study2",70))

mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)
data = list(mrna = mrna, mirna = mirna)

Y = c(breast.TCGA$data.train$subtype, breast.TCGA$data.test$subtype)

res = mint.block.plsda(data,Y,study=study, ncomp=2)

res

mint.block.spls NP-integration for integration with variable selection

Description

Function to integrate data sets measured on the same samples (N-integration) and to combine mul-
tiple independent studies (P-integration) using variants of sparse multi-group and generalised PLS
with variable selection (unsupervised analysis).

Usage

mint.block.spls(
X,
Y,
indY,
study,
ncomp = 2,
keepX,
keepY,
design,
mode,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE

)

74 mint.block.spls

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in samples x variables, with samples order match-
ing in all data sets.

Y Matrix or vector response for a multivariate regression framework. Data should
be continuous variables (see ?mint.block.splsda for supervised classification
and factor response).

indY To be supplied if Y is missing, indicates the position of the matrix / vector
response in the list X

study Factor, indicating the membership of each sample to each of the studies being
combined

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

keepX A named list of same length as X. Each entry is the number of variables to select
in each of the blocks of X for each component. By default all variables are kept
in the model.

keepY Only if Y is provided (and not indY). Each entry is the number of variables to
select in each of the blocks of Y for each component.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

The function fits sparse multi-group generalised PLS models with a specified number of ncomp
components. An outcome needs to be provided, either by Y or by its position indY in the list of
blocks X.

mint.block.spls 75

Multi (continuous)response are supported. X and Y can contain missing values. Missing values are
handled by being disregarded during the cross product computations in the algorithm block.pls
without having to delete rows with missing data. Alternatively, missing data can be imputed prior
using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and more details in
?pls).

Value

mint.block.spls returns an object of class "mint.spls","block.spls", a list that contains the
following components:

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

ncomp the number of components included in the model for each block.

mode the algorithm used to fit the model.

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

variates list containing the X and Y variates.

loadings list containing the estimated loadings for the variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter the maximum number of iterations, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.block.pls, mint.block.plsda, mint.block.splsda
and http://www.mixOmics.org/mixMINT for more details.

76 mint.block.splsda

Examples

data(breast.TCGA)

for the purpose of this example, we create data that fit in the context of
this function.
We consider the training set as study1 and the test set as another
independent study2.

study = c(rep("study1",150), rep("study2",70))

to put the data in the MINT format, we rbind the two studies
mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)

For the purpose of this example, we create a continuous response by
taking the first mrna variable, and removing it from the data
Y = mrna[,1]
mrna = mrna[,-1]

data = list(mrna = mrna, mirna = mirna)

we can now apply the function
res = mint.block.splsda(data, Y, study=study, ncomp=2,
keepX = list(mrna=c(10,10), mirna=c(20,20)))

res

mint.block.splsda NP-integration with Discriminant Analysis and variable selection

Description

Function to integrate data sets measured on the same samples (N-integration) and to combine multi-
ple independent studies measured on the same variables or predictors (P-integration) using variants
of sparse multi-group and generalised PLS-DA for supervised classification and variable selection.

Usage

mint.block.splsda(
X,
Y,
indY,
study,
ncomp = 2,
keepX,
design,
scale = TRUE,
tol = 1e-06,

mint.block.splsda 77

max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in samples x variables, with samples order match-
ing in all data sets.

Y A factor or a class vector indicating the discrete outcome of each sample.

indY To be supplied if Y is missing, indicates the position of the matrix / vector
response in the list X

study Factor, indicating the membership of each sample to each of the studies being
combined

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

keepX A named list of same length as X. Each entry is the number of variables to select
in each of the blocks of X for each component. By default all variables are kept
in the model.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

The function fits sparse multi-group generalised PLS Discriminant Analysis models with a specified
number of ncomp components. A factor indicating the discrete outcome needs to be provided, either
by Y or by its position indY in the list of blocks X.

78 mint.block.splsda

X can contain missing values. Missing values are handled by being disregarded during the cross
product computations in the algorithm block.pls without having to delete rows with missing data.
Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and more details in
?pls).

Value

mint.block.splsda returns an object of class "mint.splsda", "block.splsda", a list that con-
tains the following components:

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

ncomp the number of components included in the model for each block.

mode the algorithm used to fit the model.

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

variates list containing the X and Y variates.

loadings list containing the estimated loadings for the variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter the maximum number of iterations, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

Note that the argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

On multi-group PLS: Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT:
A multivariate integrative approach to identify a reproducible biomarker signature across multiple
experiments and platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

On multiple integration with sparse PLSDA: Singh A., Gautier B., Shannon C., Vacher M., Rohart
F., Tebbutt S. and Lê Cao K.A. (2016). DIABLO: multi omics integration for biomarker discovery.
BioRxiv available here: http://biorxiv.org/content/early/2016/08/03/067611

Tenenhaus A., Philippe C., Guillemot V, Lê Cao K.A., Grill J, Frouin V. Variable selection for
generalized canonical correlation analysis. Biostatistics. kxu001

http://biorxiv.org/content/early/2016/08/03/067611

mint.pca 79

Gunther O., Shin H., Ng R. T. , McMaster W. R., McManus B. M. , Keown P. A. , Tebbutt S.J.
, Lê Cao K-A. , (2014) Novel multivariate methods for integration of genomics and proteomics
data: Applications in a kidney transplant rejection study, OMICS: A journal of integrative biology,
18(11), 682-95.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.block.spls, mint.block.plsda,
mint.block.pls and http://www.mixOmics.org/mixMINT for more details.

Examples

data(breast.TCGA)

for the purpose of this example, we consider the training set as study1 and
the test set as another independent study2.
study = c(rep("study1",150), rep("study2",70))

mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)
data = list(mrna = mrna, mirna = mirna)

Y = c(breast.TCGA$data.train$subtype, breast.TCGA$data.test$subtype)

res = mint.block.splsda(data,Y,study=study,
keepX = list(mrna=c(10,10), mirna=c(20,20)),ncomp=2)

res

mint.pca P-integration with Principal Component Analysis

Description

Function to integrate and combine multiple independent studies measured on the same variables or
predictors (P-integration) using a multigroup Principal Component Analysis.

Usage

mint.pca(
X,
ncomp = 2,
study,

80 mint.pca

scale = TRUE,
tol = 1e-06,
max.iter = 100,
verbose.call = FALSE

)

Arguments

X numeric matrix of predictors combining multiple independent studies on the
same set of predictors. NAs are allowed.

ncomp Number of components to include in the model (see Details). Default to 2

study factor indicating the membership of each sample to each of the studies being
combined

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances. Default = TRUE.

tol Convergence stopping value.

max.iter integer, the maximum number of iterations.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

mint.pca fits a vertical PCA model with ncomp components in which several independent studies
measured on the same variables are integrated. The study factor indicates the membership of each
sample in each study. We advise to only combine studies with more than 3 samples as the function
performs internal scaling per study.

Missing values are handled by being disregarded during the cross product computations in the
algorithm without having to delete rows with missing data. Alternatively, missing data can be
imputed prior using the nipals function.

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

Value

mint.pca returns an object of class "mint.pca", "pca", a list that contains the following compo-
nents:

X the centered and standardized original predictor matrix.

ncomp the number of components included in the model.

study The study grouping factor

sdev the eigenvalues of the covariance/correlation matrix, though the calculation is
actually done with the singular values of the data matrix or by using NIPALS.

center, scale the centering and scaling used, or FALSE.

rotation the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors).

mint.pls 81

loadings same as ’rotation’ to keep the mixOmics spirit

x the value of the rotated data (the centred (and scaled if requested) data multiplied
by the rotation/loadings matrix), also called the principal components.

variates same as ’x’ to keep the mixOmics spirit

prop_expl_var Proportion of the explained variance from the multivariate model after setting
possible missing values to zero in the data.

names list containing the names to be used for individuals and variables.

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.spls, mint.plsda, mint.splsda and
http://www.mixOmics.org/mixMINT for more details.

Examples

data(stemcells)

res = mint.pca(X = stemcells$gene, ncomp = 3,
study = stemcells$study)

plotIndiv(res, group = stemcells$celltype, legend=TRUE)

mint.pls P-integration

Description

Function to integrate and combine multiple independent studies measured on the same variables or
predictors (P-integration) using variants of multi-group PLS (unsupervised analysis).

82 mint.pls

Usage

mint.pls(
X,
Y,
ncomp = 2,
mode = c("regression", "canonical", "invariant", "classic"),
study,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X numeric matrix of predictors combining multiple independent studies on the
same set of predictors. NAs are allowed.

Y Matrix or vector response for a multivariate regression framework. Data should
be continuous variables (see mint.plsda for supervised classification and factor
response)

ncomp Positive Integer. The number of components to include in the model. Default to
2.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

study Factor, indicating the membership of each sample to each of the studies being
combined

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

mint.pls fits a vertical PLS-DA models with ncomp components in which several independent
studies measured on the same variables are integrated. The aim is to explain the continuous outcome

mint.pls 83

Y. The study factor indicates the membership of each sample in each study. We advise to only
combine studies with more than 3 samples as the function performs internal scaling per study.

Multi (continuous)response are supported. X and Y can contain missing values. Missing values are
handled by being disregarded during the cross product computations in the algorithm mint.pls
without having to delete rows with missing data. Alternatively, missing data can be imputed prior
using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References and more details in
?pls).

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

Value

mint.pls returns an object of class "mint.pls", "pls", a list that contains the following compo-
nents:

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

ncomp the number of components included in the model.

study The study grouping factor

mode the algorithm used to fit the model.

variates list containing the variates of X - global variates.

loadings list containing the estimated loadings for the variates - global loadings.

variates.partial

list containing the variates of X relative to each study - partial variates.

loadings.partial

list containing the estimated loadings for the partial variates - partial loadings.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

iter Number of iterations of the algorithm for each component

prop_expl_var Percentage of explained variance for each component and each study (note that
contrary to PCA, this amount may not decrease as the aim of the method is not
to maximise the variance, but the covariance between data sets).

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

84 mint.plsda

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.spls, mint.plsda, mint.splsda and
http://www.mixOmics.org/mixMINT for more details.

Examples

data(stemcells)

for the purpose of this example, we artificially
create a continuous response Y by taking gene 1.

res = mint.pls(X = stemcells$gene[,-1], Y = stemcells$gene[,1], ncomp = 3,
study = stemcells$study)

plotIndiv(res)

#plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

Not run:
#plot study-specific outputs for study "2"
plotIndiv(res, study = "2", col = 1:3, legend = TRUE)

End(Not run)

mint.plsda P-integration with Projection to Latent Structures models (PLS) with
Discriminant Analysis

Description

Function to combine multiple independent studies measured on the same variables or predictors
(P-integration) using variants of multi-group PLS-DA for supervised classification.

Usage

mint.plsda(
X,
Y,
ncomp = 2,

mint.plsda 85

study,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X numeric matrix of predictors combining multiple independent studies on the
same set of predictors. NAs are allowed.

Y A factor or a class vector indicating the discrete outcome of each sample.

ncomp Positive Integer. The number of components to include in the model. Default to
2.

study Factor, indicating the membership of each sample to each of the studies being
combined

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

mint.plsda function fits a vertical PLS-DA models with ncomp components in which several inde-
pendent studies measured on the same variables are integrated. The aim is to classify the discrete
outcome Y. The study factor indicates the membership of each sample in each study. We advise to
only combine studies with more than 3 samples as the function performs internal scaling per study,
and where all outcome categories are represented.

X can contain missing values. Missing values are handled by being disregarded during the cross
product computations in the algorithm mint.plsda without having to delete rows with missing
data. Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of deflation used is 'regression' for discriminant algorithms. i.e. no deflation is per-
formed on Y.

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

86 mint.plsda

Value

mint.plsda returns an object of class "mint.plsda","plsda", a list that contains the following
components:

X the centered and standardized original predictor matrix.

Y original factor

ind.mat the centered and standardized original response vector or matrix.

ncomp the number of components included in the model.

study The study grouping factor

mode the algorithm used to fit the model.

variates list containing the variates of X - global variates.

loadings list containing the estimated loadings for the variates - global loadings.
variates.partial

list containing the variates of X relative to each study - partial variates.
loadings.partial

list containing the estimated loadings for the partial variates - partial loadings.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

iter Number of iterations of the algorithm for each component

prop_expl_var Percentage of explained variance for each component and each study after set-
ting possible missing values to zero (note that contrary to PCA, this amount may
not decrease as the aim of the method is not to maximise the variance, but the
covariance between X and the dummy matrix Y).

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.pls, mint.spls, mint.splsda and
http://www.mixOmics.org/mixMINT for more details.

mint.spls 87

Examples

data(stemcells)

res = mint.plsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3,
study = stemcells$study)

plotIndiv(res)

#plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

Not run:
#plot study-specific outputs for study "2"
plotIndiv(res, study = "2", col = 1:3, legend = TRUE)

End(Not run)

mint.spls P-integration with variable selection

Description

Function to integrate and combine multiple independent studies measured on the same variables or
predictors (P-integration) using variants of multi-group sparse PLS for variable selection (unsuper-
vised analysis).

Usage

mint.spls(
X,
Y,
ncomp = 2,
mode = c("regression", "canonical", "invariant", "classic"),
study,
keepX = rep(ncol(X), ncomp),
keepY = rep(ncol(Y), ncomp),
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

88 mint.spls

Arguments

X numeric matrix of predictors combining multiple independent studies on the
same set of predictors. NAs are allowed.

Y Matrix or vector response for a multivariate regression framework. Data should
be continuous variables (see mint.splsda for supervised classification and fac-
tor response)

ncomp Positive Integer. The number of components to include in the model. Default to
2.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

study Factor, indicating the membership of each sample to each of the studies being
combined

keepX numeric vector indicating the number of variables to select in X on each compo-
nent. By default all variables are kept in the model.

keepY numeric vector indicating the number of variables to select in Y on each compo-
nent. By default all variables are kept in the model.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

mint.spls fits a vertical sparse PLS-DA models with ncomp components in which several indepen-
dent studies measured on the same variables are integrated. The aim is to explain the continuous
outcome Y and selecting correlated features between both data sets X and Y. The study factor indi-
cates the membership of each sample in each study. We advise to only combine studies with more
than 3 samples as the function performs internal scaling per study.

Multi (continuous)response are supported. X and Y can contain missing values. Missing values are
handled by being disregarded during the cross product computations in the algorithm mint.spls
without having to delete rows with missing data. Alternatively, missing data can be imputed prior
using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis

mint.spls 89

("invariant") and the classical PLS algorithm ("classic") (see References and more details in
?pls).

Variable selection is performed on each component for each block of X, and for Y if specified, via
input parameter keepX and keepY.

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

Value

mint.spls returns an object of class "mint.spls","spls", a list that contains the following com-
ponents:

X numeric matrix of predictors combining multiple independent studies on the
same set of predictors. NAs are allowed.

Y the centered and standardized original response vector or matrix.

ncomp the number of components included in the model.

study The study grouping factor

mode the algorithm used to fit the model.

keepX Number of variables used to build each component of X

keepY Number of variables used to build each component of Y

variates list containing the variates of X - global variates.

loadings list containing the estimated loadings for the variates - global loadings.

variates.partial

list containing the variates of X relative to each study - partial variates.

loadings.partial

list containing the estimated loadings for the partial variates - partial loadings.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

iter Number of iterations of the algorithm for each component

prop_expl_var The amount of the variance explained by each variate / component divided by
the total variance in the data for each study (after removing the possible miss-
ing values) using the definition of ’redundancy’. Note that contrary to PCA, this
amount may not decrease in the following components as the aim of the method
is not to maximise the variance, but the covariance between data sets (including
the dummy matrix representation of the outcome variable in case of the super-
vised approaches).

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

90 mint.splsda

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.pls, mint.plsda, mint.splsda and
http://www.mixOmics.org/mixMINT for more details.

Examples

data(stemcells)

for the purpose of this example, we artificially
create a continuous response Y by taking gene 1.

res = mint.spls(X = stemcells$gene[,-1], Y = stemcells$gene[,1], ncomp = 3,
keepX = c(10, 5, 15), study = stemcells$study)

plotIndiv(res)

#plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

Not run:
#plot study-specific outputs for study "2"
plotIndiv(res, study = "2", col = 1:3, legend = TRUE)

End(Not run)

mint.splsda P-integration with Discriminant Analysis and variable selection

Description

Function to combine multiple independent studies measured on the same variables or predictors (P-
integration) using variants of multi-group sparse PLS-DA for supervised classification with variable
selection.

Usage

mint.splsda(
X,
Y,
ncomp = 2,

mint.splsda 91

study,
keepX = rep(ncol(X), ncomp),
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X numeric matrix of predictors combining multiple independent studies on the
same set of predictors. NAs are allowed.

Y A factor or a class vector indicating the discrete outcome of each sample.

ncomp Positive Integer. The number of components to include in the model. Default to
2.

study Factor, indicating the membership of each sample to each of the studies being
combined

keepX numeric vector indicating the number of variables to select in X on each compo-
nent. By default all variables are kept in the model.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

mint.splsda function fits a vertical sparse PLS-DA models with ncomp components in which sev-
eral independent studies measured on the same variables are integrated. The aim is to classify the
discrete outcome Y and select variables that explain the outcome. The study factor indicates the
membership of each sample in each study. We advise to only combine studies with more than 3
samples as the function performs internal scaling per study, and where all outcome categories are
represented.

X can contain missing values. Missing values are handled by being disregarded during the cross
product computations in the algorithm mint.splsda without having to delete rows with missing
data. Alternatively, missing data can be imputed prior using the impute.nipals function.

92 mint.splsda

The type of deflation used is 'regression' for discriminant algorithms. i.e. no deflation is per-
formed on Y.

Variable selection is performed on each component for X via input parameter keepX.

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

Value

mint.splsda returns an object of class "mint.splsda","splsda", a list that contains the follow-
ing components:

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

ind.mat the centered and standardized original response vector or matrix.

ncomp the number of components included in the model.

study The study grouping factor

mode the algorithm used to fit the model.

keepX Number of variables used to build each component of X

variates list containing the variates of X - global variates.

loadings list containing the estimated loadings for the variates - global loadings.
variates.partial

list containing the variates of X relative to each study - partial variates.
loadings.partial

list containing the estimated loadings for the partial variates - partial loadings.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

iter Number of iterations of the algorithm for each component

prop_expl_var Percentage of explained variance for each component and each study (note that
contrary to PCA, this amount may not decrease as the aim of the method is not
to maximise the variance, but the covariance between X and the dummy matrix
Y).

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS.
J. Chemometrics, 28(3), 192-201.

mixOmics 93

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.pls, mint.plsda, mint.plsda and
http://www.mixOmics.org/mixMINT for more details.

Examples

data(stemcells)

-- feature selection
res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3, keepX = c(10, 5, 15),
study = stemcells$study)

plotIndiv(res)
#plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

Not run:
#plot study-specific outputs for study "2"
plotIndiv(res, study = "2")

#plot study-specific outputs for study "2", "3" and "4"
plotIndiv(res, study = c(2, 3, 4))

End(Not run)

mixOmics PLS-derived methods: one function to rule them all!

Description

This is the documentation for mixOmics function from mixOmics package. For package documen-
tation refer to help(package=’mixOmics’)

Usage

mixOmics(
X,
Y,
indY,
study,
ncomp,
keepX,
keepY,

94 mixOmics

design,
tau = NULL,
mode = c("regression", "canonical", "invariant", "classic"),
scale,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE

)

Arguments

X Input data. Either a matrix or a list of data sets (called ’blocks’) matching on the
same samples. Data should be arranged in samples x variables, with samples
order matching in all data sets.

Y Outcome. Either a numeric matrix of responses or a factor or a class vector for
the discrete outcome.

indY To supply if Y is missing, indicates the position of the outcome in the list X

study grouping factor indicating which samples are from the same study

ncomp If X is a data matrix, ncomp is a single value. If X is a list of data sets, ncomp is a
numeric vector of length the number of blocks in X. The number of components
to include in the model for each block (does not necessarily need to take the
same value for each block).

keepX Number of variables to keep in the X-loadings

keepY Number of variables to keep in the Y -loadings

design numeric matrix of size (number of blocks) x (number of blocks) with only 0 or
1 values. A value of 1 (0) indicates a relationship (no relationship) between the
blocks to be modelled. If Y is provided instead of indY, the design matrix is
changed to include relationships to Y.

tau numeric vector of length the number of blocks in X. Each regularization param-
eter will be applied on each block and takes the value between 0 (no regularisa-
tion) and 1. If tau = "optimal" the shrinkage paramaters are estimated for each
block and each dimension using the Schafer and Strimmer (2005) analytical for-
mula.

mode character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE).

tol Convergence stopping value.

max.iter integer, the maximum number of iterations.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE

mixOmics 95

Details

This function performs one of the PLS derived methods included in the mixOmics package that is
the most appropriate for your input data, one of (mint).(block).(s)pls(da) depending on your input
data (single data, list of data, discrete outcome, . . .)

This function performs one of the PLS derived methods included in the mixOmics package that is
the most appropriate for your input data, one of (mint).(block).(s)pls(da).

If your input data X is a matrix, then the algorithm is directed towards one of (mint).(s)pls(da)
depending on your input data Y (factor for the discrete outcome directs the algorithm to DA analysis)
and whether you input a study parameter (MINT analysis) or a keepX parameter (sparse analysis).

If your input data X is a list of matrices, then the algorithm is directed towards one of (mint).block.(s)pls(da)
depending on your input data Y (factor for the discrete outcome directs the algorithm to DA analysis)
and whether you input a study parameter (MINT analysis) or a keepX parameter (sparse analysis).

More details about the PLS modes in ?pls.

Value

none

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

MINT models:

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2013). Multi-group PLS Regression:
Application to Epidemiology. In New Perspectives in Partial Least Squares and Related Methods,
pages 243-255. Springer.

Integration of omics data sets:

Singh A, Gautier B, Shannon C, Vacher M, Rohart F, Tebbutt S, Lê Cao K-A. DIABLO: an in-
tegrative, multi-omics, multivariate method for multi-group classification. http://biorxiv.org/
content/early/2016/08/03/067611

Lê Cao, K.-A., Martin, P.G.P., Robert-Granie, C. and Besse, P. (2009). Sparse canonical methods
for biological data integration: application to a cross-platform study. BMC Bioinformatics 10:34.

Lê Cao, K.-A., Rossouw, D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

http://biorxiv.org/content/early/2016/08/03/067611
http://biorxiv.org/content/early/2016/08/03/067611

96 mixOmics

Tenenhaus A., Phillipe C., Guillemot V., Lê Cao K-A. , Grill J. , Frouin V. (2014), Variable selec-
tion for generalized canonical correlation analysis, Biostatistics, doi: 10.1093/biostatistics. PMID:
24550197.

Sparse SVD:

Shen, H. and Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank
matrix approximation. Journal of Multivariate Analysis 99, 1015-1034.

PLS-DA:

Lê Cao K-A, Boitard S and Besse P (2011). Sparse PLS Discriminant Analysis: biologically rele-
vant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 12:253.

PLS:

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Wold H. (1966). Estimation of principal components and related models by iterative least squares.
In: Krishnaiah, P. R. (editors), Multivariate Analysis. Academic Press, N.Y., 391-420.

Abdi H (2010). Partial least squares regression and projection on latent structure regression (PLS
Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97-106.

On multilevel analysis:

Liquet, B., Lê Cao, K.-A., Hocini, H. and Thiebaut, R. (2012) A novel approach for biomarker
selection and the integration of repeated measures experiments from two platforms. BMC Bioinfor-
matics 13:325.

Westerhuis, J. A., van Velzen, E. J., Hoefsloot, H. C., and Smilde, A. K. (2010). Multivariate paired
data analysis: multilevel PLSDA versus OPLSDA. Metabolomics, 6(1), 119-128.

Visualisations:

González I., Lê Cao K.-A., Davis, M.D. and Déjean S. (2013) Insightful graphical outputs to explore
relationships between two omics data sets. BioData Mining 5:19.

See Also

pls, spls, plsda, splsda, mint.pls, mint.spls, mint.plsda, mint.splsda, block.pls, block.spls,
block.plsda, block.splsda, mint.block.pls, mint.block.spls, mint.block.plsda, mint.block.splsda

Examples

-- directed towards PLS framework because X is a matrix and the study argument is missing
--
data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$clinic
Y.factor = as.factor(liver.toxicity$treatment[, 4])

directed towards PLS
out = mixOmics(X, Y, ncomp = 2)

directed towards sPLS because of keepX and/or keepY
out = mixOmics(X, Y, ncomp = 2, keepX = c(50, 50), keepY = c(10, 10))

directed towards PLS-DA because Y is a factor

mixOmics 97

out = mixOmics(X, Y.factor, ncomp = 2)

directed towards sPLS-DA because Y is a factor and there is a keepX
out = mixOmics(X, Y.factor, ncomp = 2, keepX = c(20, 20))

Not run:
-- directed towards block.pls framework because X is a list
--
data(nutrimouse)
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)

directed towards block PLS
out = mixOmics(X = data, Y = Y,ncomp = 3)

directed towards block sPLS because of keepX and/or keepY
out = mixOmics(X = data, Y = Y,ncomp = 3,
keepX = list(gene = c(10,10), lipid = c(15,15)))

directed towards block PLS-DA because Y is a factor
out = mixOmics(X = data, Y = nutrimouse$diet, ncomp = 3)

directed towards block sPLS-DA because Y is a factor and there is a keepX
out = mixOmics(X = data, Y = nutrimouse$diet, ncomp = 3,
keepX = list(gene = c(10,10), lipid = c(15,15)))

-- directed towards mint.pls framework because of the study factor
--
data(stemcells)
directed towards PLS
out = mixOmics(X = stemcells$gene, Y = unmap(stemcells$celltype), ncomp = 2)

directed towards mint.PLS
out = mixOmics(X = stemcells$gene, Y = unmap(stemcells$celltype),
ncomp = 2, study = stemcells$study)

directed towards mint.sPLS because of keepX and/or keepY
out = mixOmics(X = stemcells$gene, Y = unmap(stemcells$celltype),
ncomp = 2, study = stemcells$study, keepX = c(10, 5, 15))

directed towards mint.PLS-DA because Y is a factor
out = mixOmics(X = stemcells$gene, Y = stemcells$celltype, ncomp = 2,
study = stemcells$study)

directed towards mint.sPLS-DA because Y is a factor and there is a keepX
out = mixOmics(X = stemcells$gene, Y = stemcells$celltype, ncomp = 2,
study = stemcells$study, keepX = c(10, 5, 15))

End(Not run)

98 multidrug

multidrug Multidrug Resistence Data

Description

This data set contains the expression of 48 known human ABC transporters with patterns of drug
activity in 60 diverse cancer cell lines (the NCI-60) used by the National Cancer Institute to screen
for anticancer activity.

Usage

data(multidrug)

Format

A list containing the following components:

list("ABC.trans") data matrix with 60 rows and 48 columns. The expression of the 48 human
ABC transporters.

list("compound") data matrix with 60 rows and 1429 columns. The activity of 1429 drugs for the
60 cell lines.

list("comp.name") character vector. The names or the NSC No. of the 1429 compounds.

list("cell.line") a list containing two character vector components: Sample the names of the 60
cell line which were analysed, and Class the phenotypes of the 60 cell lines.

Details

The data come from a pharmacogenomic study (Szakacs et al., 2004) in which two kinds of mea-
surements acquired on the NCI-60 cancer cell lines are considered:

• the expression of the 48 human ABC transporters measured by real-time quantitative RT-PCR
for each cell line;

• the activity of 1429 drugs expressed as GI50 which corresponds to the concentration at which
the drug induces 50% inhibition of cellular growth for the cell line tested.

The NCI- 60 panel includes cell lines derived from cancers of colorectal (7 cell lines), renal(8), ovar-
ian(6), breast(8), prostate(2), lung(9) and central nervous system origin(6), as well as leukemias(6)
and melanomas(8). It was set up by the Developmental Therapeutics Program of the National Can-
cer Institute (NCI, one of the U.S. National Institutes of Health) to screen the toxicity of chemical
compound repositories. The expressions of the 48 human ABC transporters is available as a sup-
plement to the paper of Szak?cs et al. (2004).

The drug dataset consiste of 118 compounds whose mechanisms of action are putatively classifiable
(Weinstein et al., 1992) and a larger set of 1400 compounds that have been tested multiple times
and whose screening data met quality control criteria described elsewhere (Scherf et al., 2000). The
two were combined to form a joint dataset that included 1429 compounds.

nearZeroVar 99

Value

none

Source

The NCI dataset was downloaded from The Genomics and Bioinformatics Group Supplemen-
tal Table S1 to the paper of Szakacs et al. (2004), http://discover.nci.nih.gov/abc/2004_
cancercell_abstract.jsp#supplement

The two drug data sets are a companion resource for the paper of Scherf et al. (2000), and was
downloaded from http://discover.nci.nih.gov/datasetsNature2000.jsp.

References

Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., Kohn, K. W., Reinhold,
W. C., Myers, T. G., Andrews, D. T., Scudiero, D. A., Eisen, M. B., Sausville, E. A., Pommier,
Y., Botstein, D., Brown, P. O. and Weinstein, J. N. (2000). A Gene Expression Database for the
Molecular Pharmacology of Cancer. Nature Genetics, 24, 236-244.

Szakacs, G., Annereau, J.-P., Lababidi, S., Shankavaram, U., Arciello, A., Bussey, K. J., Reinhold,
W., Guo, Y., Kruh, G. D., Reimers, M., Weinstein, J. N. and Gottesman, M. M. (2004). Predicting
drug sensivity and resistance: Profiling ABC transporter genes in cancer cells. Cancer Cell 4,
147-166.

Weinstein, J.N., Kohn, K.W., Grever, M.R., Viswanadhan, V.N., Rubinstein, L.V., Monks, A.P.,
Scudiero, D.A., Welch, L., Koutsoukos, A.D., Chiausa, A.J. et al. 1992. Neural computing in
cancer drug development: Predicting mechanism of action. Science 258, 447-451.

nearZeroVar Identification of zero- or near-zero variance predictors

Description

Borrowed from the caret package. It is used as an internal function in the PLS methods, but can
also be used as an external function, in particular when the data contain a lot of zeroes values and
need to be pre-filtered beforehand.

Usage

nearZeroVar(x, freqCut = 95/5, uniqueCut = 10)

Arguments

x a numeric vector or matrix, or a data frame with all numeric data.

freqCut the cutoff for the ratio of the most common value to the second most common
value.

uniqueCut the cutoff for the percentage of distinct values out of the number of total samples.

http://discover.nci.nih.gov/abc/2004_cancercell_abstract.jsp#supplement
http://discover.nci.nih.gov/abc/2004_cancercell_abstract.jsp#supplement
http://discover.nci.nih.gov/datasetsNature2000.jsp

100 network

Details

This function diagnoses predictors that have one unique value (i.e. are zero variance predictors)
or predictors that are have both of the following characteristics: they have very few unique values
relative to the number of samples and the ratio of the frequency of the most common value to the
frequency of the second most common value is large.

For example, an example of near zero variance predictor is one that, for 1000 samples, has two
distinct values and 999 of them are a single value.

To be flagged, first the frequency of the most prevalent value over the second most frequent value
(called the “frequency ratio”) must be above freqCut. Secondly, the “percent of unique values,” the
number of unique values divided by the total number of samples (times 100), must also be below
uniqueCut.

In the above example, the frequency ratio is 999 and the unique value percentage is 0.0001.

Value

nearZeroVar returns a list that contains the following components:

Position a vector of integers corresponding to the column positions of the problematic
predictors that will need to be removed.

Metrics a data frame containing the zero- or near-zero predictors information with columns:
freqRatio, the ratio of frequencies for the most common value over the second
most common value and, percentUnique, the percentage of unique data points
out of the total number of data points.

Author(s)

Max Kuhn, Allan Engelhardt, Florian Rohart, Benoit Gautier, AL J Abadi for mixOmics

See Also

pls, spls, plsda, splsda

Examples

data(diverse.16S)
nzv = nearZeroVar(diverse.16S$data.raw)
length(nzv$Position) # those would be removed for the default frequency cut

network Relevance Network for (r)CCA and (s)PLS regression

network 101

Description

Display relevance associations network for (regularized) canonical correlation analysis and (sparse)
PLS regression. The function avoids the intensive computation of Pearson correlation matrices
on large data set by calculating instead a pair-wise similarity matrix directly obtained from the
latent components of our integrative approaches (CCA, PLS, block.pls methods). The similarity
value between a pair of variables is obtained by calculating the sum of the correlations between
the original variables and each of the latent components of the model. The values in the similarity
matrix can be seen as a robust approximation of the Pearson correlation (see González et al. 2012
for a mathematical demonstration and exact formula). The advantage of relevance networks is their
ability to simultaneously represent positive and negative correlations, which are missed by methods
based on Euclidean distances or mutual information. Those networks are bipartite and thus only a
link between two variables of different types can be represented. The network can be saved in a .glm
format using the igraph package, the function write.graph and extracting the output object$gR,
see details.

Usage

network(
mat,
comp = NULL,
blocks = c(1, 2),
cutoff = 0,
row.names = TRUE,
col.names = TRUE,
block.var.names = TRUE,
graph.scale = 0.5,
size.node = 0.5,
color.node = NULL,
shape.node = NULL,
alpha.node = 0.85,
cex.node.name = NULL,
color.edge = color.GreenRed(100),
lty.edge = "solid",
lwd.edge = 1,
show.edge.labels = FALSE,
cex.edge.label = 1,
show.color.key = TRUE,
symkey = TRUE,
keysize = c(1, 1),
keysize.label = 1,
breaks,
interactive = FALSE,
layout.fun = NULL,
save = NULL,
name.save = NULL,
plot.graph = TRUE

)

102 network

Arguments

mat numeric matrix of values to be represented. Alternatively, an object from one
of the following models: mix_pls, plsda, mixo_spls, splsda, rcc, sgcca,
rgcca, sgccda.

comp atomic or vector of positive integers. The components to adequately account for
the data association. Defaults to comp = 1.

blocks a vector indicating the block variables to display.

cutoff numeric value between 0 and 1. The tuning threshold for the relevant associa-
tions network (see Details).

row.names, col.names
character vector containing the names of X- and Y -variables.

block.var.names

either a list of vector components for variable names in each block or FALSE
for no names. If TRUE, the columns names of the blocks are used as names.

graph.scale Numeric between 0 and 1 which alters the scale of the entire plot. Increasing the
value decreases the size of nodes and increases their distance from one another.
Defaults to 0.5.

size.node Numeric between 0 and 1 which determines the relative size of nodes. Defaults
to 0.5.

color.node vector of length two, the colors of the X and Y nodes (see Details).

shape.node character vector of length two, the shape of the X and Y nodes (see Details).

alpha.node Numeric between 0 and 1 which determines the opacity of nodes. Only used in
block objects.

cex.node.name the font size for the node labels.

color.edge vector of colors or character string specifying the colors function to using to
color the edges, set to default to color.GreenRed(100) but other palettes can
be chosen (see Details and Examples).

lty.edge character vector of length two, the line type for the edges (see Details).

lwd.edge vector of length two, the line width of the edges (see Details).
show.edge.labels

logical. If TRUE, plot association values as edge labels (defaults to FALSE).

cex.edge.label the font size for the edge labels.

show.color.key Logical. If TRUE a color key should be plotted.

symkey Logical indicating whether the color key should be made symmetric about 0.
Defaults to TRUE.

keysize numeric value indicating the size of the color key.

keysize.label vector of length 1, indicating the size of the labels and title of the color key.

breaks (optional) either a numeric vector indicating the splitting points for binning mat
into colors, or a integer number of break points to be used, in which case the
break points will be spaced equally between min(mat) and max(mat).

interactive logical. If TRUE, a scrollbar is created to change the cutoff value interactively
(defaults to FALSE). See Details.

network 103

layout.fun a function. It specifies how the vertices will be placed on the graph. See
help(layout) in the igraph package. Defaults to layout.fruchterman.reingold.

save should the plot be saved ? If so, argument to be set either to 'jpeg', 'tiff',
'png' or 'pdf'.

name.save character string giving the name of the saved file.

plot.graph logical. If TRUE (default), plotting window will be filled with network. If FALSE,
then no graph will be plotted, though the return value of the function is the exact
same.

Details

network allows to infer large-scale association networks between the X and Y datasets in rcc or
spls. The output is a graph where each X- and Y -variable corresponds to a node and the edges
included in the graph portray associations between them.

In rcc, to identify X-Y pairs showing relevant associations, network calculate a similarity measure
between X and Y variables in a pair-wise manner: the scalar product value between every pairs of
vectors in dimension length(comp) representing the variables X and Y on the axis defined by Zi

with i in comp, where Zi is the equiangular vector between the i-th X and Y canonical variate.

In spls, if object$mode is regression, the similarity measure between X and Y variables is given
by the scalar product value between every pairs of vectors in dimension length(comp) representing
the variables X and Y on the axis defined by Ui with i in comp, where Ui is the i-th X variate.
If object$mode is canonical then X and Y are represented on the axis defined by Ui and Vi

respectively.

Variable pairs with a high similarity measure (in absolute value) are considered as relevant. By
changing the cut-off, one can tune the relevance of the associations to include or exclude relation-
ships in the network.

interactive=TRUE open two device, one for association network, one for scrollbar, and define an
interactive process: by clicking either at each end (− or +) of the scrollbar or at middle portion of
this. The position of the slider indicate which is the ‘cutoff’ value associated to the display network.

The network can be saved in a .glm format using the igraph package, the function write.graph
and extracting the output obkect$gR.

The interactive process is terminated by clicking the second button and selecting Stop from the
menu, or from the Stop menu on the graphics window.

The color.node is a vector of length two, of any of the three kind of R colors, i.e., either a color
name (an element of colors()), a hexadecimal string of the form "#rrggbb", or an integer i
meaning palette()[i]. color.node[1] and color.node[2] give the color for filled nodes of the
X- and Y -variables respectively. Defaults to c("white", "white").

color.edge give the color to edges with colors corresponding to the values in mat. Defaults to
color.GreenRed(100) for negative (green) and positive (red) correlations. We also propose other
palettes of colors, such as color.jet and color.spectral, see help on those functions, and ex-
amples below. Other palette of colors from the stats package can be used too.

shape.node[1] and shape.node[2] provide the shape of the nodes associate to X- and Y -variables
respectively. Current acceptable values are "circle" and "rectangle". Defaults to c("circle",
"rectangle").

104 network

lty.edge[1] and lty.egde[2] give the line type to edges with positive and negative weight re-
spectively. Can be one of "solid", "dashed", "dotted", "dotdash", "longdash" and "twodash".
Defaults to c("solid", "solid").

lwd.edge[1] and lwd.edge[2] provide the line width to edges with positive and negative weight
respectively. This attribute is of type double with a default of c(1, 1).

Value

network return a list containing the following components:

M the correlation matrix used by network.

gR a graph object to save the graph for cytoscape use (requires to load the igraph
package).

Warning

If the number of variables is high, the generation of the network generation can take some time.

Author(s)

Ignacio González, Kim-Anh Lê Cao, AL J Abadi

References

Mathematical definition: González I., Lê Cao K-A., Davis, M.J. and Déjean, S. (2012). Visualising
associations between paired omics data sets. J. Data Mining 5:19. http://www.biodatamining.
org/content/5/1/19/abstract

Examples and illustrations:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

Relevance networks:

Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R. and Kohane, I. S. (2000). Discovering func-
tional relationships between RNA expression and chemotherapeutic susceptibility using relevance
networks. Proceedings of the National Academy of Sciences of the USA 97, 12182-12186.

Moriyama, M., Hoshida, Y., Otsuka, M., Nishimura, S., Kato, N., Goto, T., Taniguchi, H., Shiratori,
Y., Seki, N. and Omata, M. (2003). Relevance Network between Chemosensitivity and Transcrip-
tome in Human Hepatoma Cells. Molecular Cancer Therapeutics 2, 199-205.

See Also

plotVar, cim, color.GreenRed, color.jet, color.spectral and http: //www.mixOmics.org for
more details.

http://www.biodatamining.org/content/5/1/19/abstract
http://www.biodatamining.org/content/5/1/19/abstract

network 105

Examples

network representation for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

Not run:
may not work on the Linux version, use Windows instead
sometimes with Rstudio might not work because of margin issues,
in that case save it as an image
jpeg('example1-network.jpeg', res = 600, width = 4000, height = 4000)
network(nutri.res, comp = 1:3, cutoff = 0.6)
dev.off()

Changing the attributes of the network

sometimes with Rstudio might not work because of margin issues,
in that case save it as an image
jpeg('example2-network.jpeg')
network(nutri.res, comp = 1:3, cutoff = 0.45,
color.node = c("mistyrose", "lightcyan"),
shape.node = c("circle", "rectangle"),
color.edge = color.jet(100),
lty.edge = "solid", lwd.edge = 2,
show.edge.labels = FALSE)
dev.off()

interactive 'cutoff' - select the 'cutoff' and "see" the new network
only run this during an interactive session
if (interactive()) {

network(nutri.res, comp = 1:3, cutoff = 0.55, interactive = TRUE)
}
dev.off()

network representation for objects of class 'spls'
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))

sometimes with Rstudio might not work because of margin issues,
in that case save it as an image
jpeg('example3-network.jpeg')
network(toxicity.spls, comp = 1:3, cutoff = 0.8,
color.node = c("mistyrose", "lightcyan"),
shape.node = c("rectangle", "circle"),
color.edge = color.spectral(100),
lty.edge = "solid", lwd.edge = 1,
show.edge.labels = FALSE, interactive = FALSE)

106 nipals

dev.off()

End(Not run)

nipals Non-linear Iterative Partial Least Squares (NIPALS) algorithm

Description

This function performs NIPALS algorithm, i.e. the singular-value decomposition (SVD) of a data
table that can contain missing values.

Usage

nipals(X, ncomp = 2, max.iter = 500, tol = 1e-06)

Arguments

X a numeric matrix (or data frame) which provides the data for the principal com-
ponents analysis. It can contain missing values in which case center = TRUE is
used as required by the nipals function.

ncomp Integer, if data is complete ncomp decides the number of components and as-
sociated eigenvalues to display from the pcasvd algorithm and if the data has
missing values, ncomp gives the number of components to keep to perform the
reconstitution of the data using the NIPALS algorithm. If NULL, function sets
ncomp = min(nrow(X),ncol(X))

max.iter Integer, the maximum number of iterations in the NIPALS algorithm.

tol Positive real, the tolerance used in the NIPALS algorithm.

Details

The NIPALS algorithm (Non-linear Iterative Partial Least Squares) has been developed by H. Wold
at first for PCA and later-on for PLS. It is the most commonly used method for calculating the
principal components of a data set. It gives more numerically accurate results when compared with
the SVD of the covariance matrix, but is slower to calculate.

This algorithm allows to realize SVD with missing data, without having to delete the rows with
missing data or to estimate the missing data.

Value

An object of class ’mixo_nipals’ containing slots:

eig Vector containing the pseudo-singular values of X, of length ncomp.

t Matrix whose columns contain the left singular vectors of X. Note that for a com-
plete data matrix X, the return values eig, t and p such that X = t * diag(eig)
* t(p).

nutrimouse 107

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Le Cao, Al J Abadi

References

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Wold H. (1966). Estimation of principal components and related models by iterative least squares.
In: Krishnaiah, P. R. (editors), Multivariate Analysis. Academic Press, N.Y., 391-420.

Wold H. (1975). Path models with latent variables: The NIPALS approach. In: Blalock H. M. et al.
(editors). Quantitative Sociology: International perspectives on mathematical and statistical model
building. Academic Press, N.Y., 307-357.

See Also

impute.nipals, svd, princomp, prcomp, eigen and http://www.mixOmics.org for more details.

nutrimouse Nutrimouse Dataset

Description

The nutrimouse dataset contains the expression measure of 120 genes potentially involved in nu-
tritional problems and the concentrations of 21 hepatic fatty acids for forty mice.

Usage

data(nutrimouse)

Format

A list containing the following components:

list("gene") data frame with 40 observations on 120 numerical variables.

list("lipid") data frame with 40 observations on 21 numerical variables.

list("diet") factor of 5 levels containing 40 labels for the diet factor.

list("genotype") factor of 2 levels containing 40 labels for the diet factor.

Details

The data sets come from a nutrigenomic study in the mouse (Martin et al., 2007) in which the effects
of five regimens with contrasted fatty acid compositions on liver lipids and hepatic gene expression
in mice were considered. Two sets of variables were acquired on forty mice:

• gene: expressions of 120 genes measured in liver cells, selected (among about 30,000) as
potentially relevant in the context of the nutrition study. These expressions come from a nylon
macroarray with radioactive labelling;

108 pca

• lipid: concentrations (in percentages) of 21 hepatic fatty acids measured by gas chromatogra-
phy.

Biological units (mice) were cross-classified according to two factors experimental design (4 repli-
cates):

• Genotype: 2-levels factor, wild-type (WT) and PPARα -/- (PPAR).

• Diet: 5-levels factor. Oils used for experimental diets preparation were corn and colza oils
(50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated fatty acid diet
(COC), sunflower oil for an Omega6 fatty acid-rich diet (SUN), linseed oil for an Omega3-
rich diet (LIN) and corn/colza/enriched fish oils for the FISH diet (43/43/14).

Value

none

Source

The nutrimouse dataset was provided by Pascal Martin from the Toxicology and Pharmacology
Laboratory, National Institute for Agronomic Research, French.

References

Martin, P. G. P., Guillou, H., Lasserre, F., Déjean, S., Lan, A., Pascussi, J.-M., San Cristobal, M.,
Legrand, P., Besse, P. and Pineau, T. (2007). Novel aspects of PPARα-mediated regulation of lipid
and xenobiotic metabolism revealed through a multrigenomic study. Hepatology 54, 767-777.

pca Principal Components Analysis

Description

Performs a principal components analysis on the given data matrix that can contain missing values.
If data are complete ’pca’ uses Singular Value Decomposition, if there are some missing values, it
uses the NIPALS algorithm.

Usage

pca(
X,
ncomp = 2,
center = TRUE,
scale = FALSE,
max.iter = 500,
tol = 1e-09,
logratio = c("none", "CLR", "ILR"),
ilr.offset = 0.001,
V = NULL,

pca 109

multilevel = NULL,
verbose.call = FALSE

)

Arguments

X a numeric matrix (or data frame) which provides the data for the principal com-
ponents analysis. It can contain missing values in which case center = TRUE is
used as required by the nipals function.

ncomp Integer, if data is complete ncomp decides the number of components and as-
sociated eigenvalues to display from the pcasvd algorithm and if the data has
missing values, ncomp gives the number of components to keep to perform the
reconstitution of the data using the NIPALS algorithm. If NULL, function sets
ncomp = min(nrow(X),ncol(X))

center (Default=TRUE) Logical, whether the variables should be shifted to be zero
centered. Only set to FALSE if data have already been centered. Alternatively, a
vector of length equal the number of columns of X can be supplied. The value is
passed to scale. If the data contain missing values, columns should be centered
for reliable results.

scale (Default=FALSE) Logical indicating whether the variables should be scaled to
have unit variance before the analysis takes place. The default is FALSE for con-
sistency with prcomp function, but in general scaling is advisable. Alternatively,
a vector of length equal the number of columns of X can be supplied. The value
is passed to scale.

max.iter Integer, the maximum number of iterations in the NIPALS algorithm.

tol Positive real, the tolerance used in the NIPALS algorithm.

logratio (Default=’none’) one of (’none’,’CLR’,’ILR’). Specifies the log ratio transfor-
mation to deal with compositional values that may arise from specific normali-
sation in sequencing data. Default to ’none’

ilr.offset (Default=0.001) When logratio is set to ’ILR’, an offset must be input to avoid
infinite value after the logratio transform.

V Matrix used in the logratio transformation if provided.

multilevel sample information for multilevel decomposition for repeated measurements.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

The calculation is done either by a singular value decomposition of the (possibly centered and
scaled) data matrix, if the data is complete or by using the NIPALS algorithm if there is data missing.
Unlike princomp, the print method for these objects prints the results in a nice format and the plot
method produces a bar plot of the percentage of variance explained by the principal components
(PCs).

When using NIPALS (missing values), we make the assumption that the first (min(ncol(X),
nrow(X)) principal components will account for 100 % of the explained variance.

110 pca

Note that scale = TRUE will throw an error if there are constant variables in the data, in which case
it’s best to filter these variables in advance.

According to Filzmoser et al., a ILR log ratio transformation is more appropriate for PCA with
compositional data. Both CLR and ILR are valid.

Logratio transform and multilevel analysis are performed sequentially as internal pre-processing
step, through logratio.transfo and withinVariation respectively.

Logratio can only be applied if the data do not contain any 0 value (for count data, we thus advise
the normalise raw data with a 1 offset). For ILR transformation and additional offset might be
needed.

Value

pca returns a list with class "pca" and "prcomp" containing the following components:

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

X The input data matrix, possibly scaled and centered.

ncomp The number of principal components used.

center The centering used.

scale The scaling used.

names List of row and column names of data.

sdev The eigenvalues of the covariance/correlation matrix, though the calculation is
actually done with the singular values of the data matrix or by using NIPALS.

loadings A length one list of matrix of variable loadings for X (i.e., a matrix whose
columns contain the eigenvectors).

variates Matrix containing the coordinate values corresponding to the projection of the
samples in the space spanned by the principal components. These are the dimension-
reduced representation of observations/samples.

var.tot Total variance in the data.

prop_expl_var Proportion of variance explained per component after setting possible missing
values in the data to zero (note that contrary to PCA, this amount may not de-
crease as the aim of the method is not to maximise the variance, but the covari-
ance between X and the dummy matrix Y).

cum.var The cumulative explained variance for components.

Xw If multilevel, the data matrix with within-group-variation removed.

design If multilevel, the provided design.

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Ignacio González, Al J Abadi

pca 111

References

On log ratio transformations: Filzmoser, P., Hron, K., Reimann, C.: Principal component analysis
for compositional data with outliers. Environmetrics 20(6), 621-632 (2009) Lê Cao K.-A., Costello
ME, Lakis VA, Bartolo, F,Chua XY, Brazeilles R, Rondeau P. MixMC: Multivariate insights into
Microbial Communities. PLoS ONE, 11(8): e0160169 (2016). On multilevel decomposition: West-
erhuis, J.A., van Velzen, E.J., Hoefsloot, H.C., Smilde, A.K.: Multivariate paired data analysis:
multilevel plsda versus oplsda. Metabolomics 6(1), 119-128 (2010) Liquet, B., Lê Cao, K.-A.,
Hocini, H., Thiebaut, R.: A novel approach for biomarker selection and the integration of repeated
measures experiments from two assays. BMC bioinformatics 13(1), 325 (2012)

See Also

nipals, prcomp, biplot, plotIndiv, plotVar and http://www.mixOmics.org for more details.

Examples

example with missing values where NIPALS is applied

data(multidrug)
X <- multidrug$ABC.trans
pca.res <- pca(X, ncomp = 4, scale = TRUE)
plot(pca.res)
print(pca.res)
biplot(pca.res, group = multidrug$cell.line$Class, legend.title = 'Class')

samples representation
plotIndiv(pca.res, ind.names = multidrug$cell.line$Class,

group = as.numeric(as.factor(multidrug$cell.line$Class)))

variable representation
plotVar(pca.res, var.names = TRUE, cutoff = 0.4, pch = 16)

Not run:
plotIndiv(pca.res, cex = 0.2,

col = as.numeric(as.factor(multidrug$cell.line$Class)),style="3d")

plotVar(pca.res, rad.in = 0.5, cex = 0.5, style="3d")

End(Not run)

example with imputing the missing values using impute.nipals()

data("nutrimouse")
X <- data.matrix(nutrimouse$lipid)
X <- scale(X, center = TRUE, scale = TRUE)
add missing values to X to impute and compare to actual values
set.seed(42)
na.ind <- sample(seq_along(X), size = 20)
true.values <- X[na.ind]
X[na.ind] <- NA

112 perf

pca.no.impute <- pca(X, ncomp = 2)
plotIndiv(pca.no.impute, group = nutrimouse$diet, pch = 16)
X.impute <- impute.nipals(X, ncomp = 10)
compare
cbind('imputed' = round(X.impute[na.ind], 2),

'actual' = round(true.values, 2))
run pca using imputed matrix
pca.impute <- pca(X.impute, ncomp = 2)
plotIndiv(pca.impute, group = nutrimouse$diet, pch = 16)
example with multilevel decomposition and CLR log ratio transformation
(ILR takes longer to run)

data("diverse.16S")
pca.res = pca(X = diverse.16S$data.TSS, ncomp = 3,

logratio = 'CLR', multilevel = diverse.16S$sample)
plot(pca.res)
plotIndiv(pca.res, ind.names = FALSE,

group = diverse.16S$bodysite,
title = '16S diverse data',
legend = TRUE,
legend.title = 'Bodysite')

perf Compute evaluation criteria for PLS, sPLS, PLS-DA, sPLS-DA, MINT
and DIABLO

Description

Function to evaluate the performance of the fitted PLS, sparse PLS, PLS-DA, sparse PLS-DA,
MINT (mint.splsda) and DIABLO (block.splsda) models using various criteria.

Usage

perf(object, ...)

S3 method for class 'mixo_pls'
perf(
object,
validation = c("Mfold", "loo"),
folds,
progressBar = FALSE,
nrepeat = 1,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mixo_spls'
perf(

perf 113

object,
validation = c("Mfold", "loo"),
folds,
progressBar = FALSE,
nrepeat = 1,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mixo_plsda'
perf(
object,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
validation = c("Mfold", "loo"),
folds = 10,
nrepeat = 1,
auc = FALSE,
progressBar = FALSE,
signif.threshold = 0.01,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mixo_splsda'
perf(
object,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
validation = c("Mfold", "loo"),
folds = 10,
nrepeat = 1,
auc = FALSE,
progressBar = FALSE,
signif.threshold = 0.01,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'sgccda'
perf(
object,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
validation = c("Mfold", "loo"),
folds = 10,
nrepeat = 1,
auc = FALSE,

114 perf

progressBar = FALSE,
signif.threshold = 0.01,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mint.pls'
perf(
object,
validation = c("Mfold", "loo"),
folds = 10,
progressBar = FALSE,
...

)

S3 method for class 'mint.spls'
perf(
object,
validation = c("Mfold", "loo"),
folds = 10,
progressBar = FALSE,
...

)

S3 method for class 'mint.plsda'
perf(
object,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,
signif.threshold = 0.01,
...

)

S3 method for class 'mint.splsda'
perf(
object,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,
signif.threshold = 0.01,
...

)

Arguments

object object of class inherited from "pls", "plsda", "spls", "splsda" or "mint.splsda".
The function will retrieve some key parameters stored in that object.

perf 115

... not used

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (see below). Default is "Mfold".

folds the folds in the Mfold cross-validation. See Details.

progressBar by default set to FALSE to output the progress bar of the computation.

nrepeat Number of times the Cross-Validation process is repeated. This is an impor-
tant argument to ensure the estimation of the performance to be as accurate as
possible.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples
in ?tune.spca.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’. Note ’seed’ is not required or used in
perf.mint.plsda as this method uses loo cross-validation

dist only applies to an object inheriting from "plsda", "splsda" or "mint.splsda"
to evaluate the classification performance of the model. Should be a subset
of "max.dist", "centroids.dist", "mahalanobis.dist". Default is "all".
See predict.

auc if TRUE calculate the Area Under the Curve (AUC) performance of the model.
signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

Details

Procedure. The process of evaluating the performance of a fitted model object is similar for all
PLS-derived methods; a cross-validation approach is used to fit the method of object on folds-1
subsets of the data and then to predict on the subset left out. Different measures of performance are
available depending on the model. Parameters such as logratio, multilevel, keepX or keepY are
retrieved from object.

Parameters. If validation = "Mfold", M-fold cross-validation is performed. folds specifies the
number of folds to generate. The folds also can be supplied as a list of vectors containing the
indexes defining each fold as produced by split. When using validation = "Mfold", make sure
that you repeat the process several times (as the results will be highly dependent on the random
splits and the sample size).

If validation = "loo", leave-one-out cross-validation is performed (in that case, there is no need
to repeat the process).

Measures of performance. For fitted PLS and sPLS regression models, perf estimates the mean
squared error of prediction (MSEP), R2, and Q2 to assess the predictive perfity of the model using
M-fold or leave-one-out cross-validation. Note that only the classic, regression and invariant
modes can be applied. For sPLS, the MSEP, R2, and Q2 criteria are averaged across all folds. Note
that for PLS and sPLS objects, perf is performed on the pre-processed data after log ratio transform
and multilevel analysis, if any.

Sparse methods. The sPLS, sPLS-DA and sgccda functions are run on several and different subsets
of data (the cross-folds) and will certainly lead to different subset of selected features. Those are

116 perf

summarised in the output features$stable (see output Value below) to assess how often the vari-
ables are selected across all folds. Note that for PLS-DA and sPLS-DA objects, perf is performed
on the original data, i.e. before the pre-processing step of the log ratio transform and multilevel
analysis, if any. In addition for these methods, the classification error rate is averaged across all
folds.

The mint.sPLS-DA function estimates errors based on Leave-one-group-out cross validation (where
each levels of object$study is left out (and predicted) once) and provides study-specific outputs
(study.specific.error) as well as global outputs (global.error). Note the mint perf methods
do not use seed or BPPARAM arguments.

AUROC. For PLS-DA, sPLS-DA, mint.PLS-DA, mint.sPLS-DA, and block.splsda methods: if
auc=TRUE, Area Under the Curve (AUC) values are calculated from the predicted scores obtained
from the predict function applied to the internal test sets in the cross-validation process, either
for all samples or for study-specific samples (for mint models). Therefore we minimise the risk
of overfitting. For block.splsda model, the calculated AUC is simply the blocks-combined AUC
for each component calculated using auroc.sgccda. See auroc for more details. Our multivariate
supervised methods already use a prediction threshold based on distances (see predict) that opti-
mally determine class membership of the samples tested. As such AUC and ROC are not needed to
estimate the performance of the model. We provide those outputs as complementary performance
measures. See more details in our mixOmics article.

Prediction distances. See details from ?predict, and also our supplemental material in the mixOmics
article.

Repeats of the CV-folds. Repeated cross-validation implies that the whole CV process is repeated
a number of times (nrepeat) to reduce variability across the different subset partitions. In the
case of Leave-One-Out CV (validation = 'loo'), each sample is left out once (folds = N is set
internally) and therefore nrepeat is by default 1.

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

For sgccda objects, we provide weighted measures (e.g. error rate) in which the weights are simply
the correlation of the derived components of a given block with the outcome variable Y.

More details about the PLS modes in ?pls.

Value

For PLS and sPLS models, perf produces a list with the following components for every repeat:

MSEP Mean Square Error Prediction for each Y variable, only applies to object inher-
ited from "pls", and "spls". Only available when in regression (s)PLS.

RMSEP Root Mean Square Error Prediction for each Y variable, only applies to object
inherited from "pls", and "spls". Only available when in regression (s)PLS.

R2 a matrix of R2 values of the Y -variables for models with 1, . . . ,ncomp compo-
nents, only applies to object inherited from "pls", and "spls". Only available
when in regression (s)PLS.

Q2 if Y contains one variable, a vector of Q2 values else a list with a matrix of Q2

values for each Y -variable. Note that in the specific case of an sPLS model, it
is better to have a look at the Q2.total criterion, only applies to object inherited
from "pls", and "spls". Only available when in regression (s)PLS.

perf 117

Q2.total a vector of Q2-total values for models with 1, . . . ,ncomp components, only ap-
plies to object inherited from "pls", and "spls". Available in both (s)PLS
modes.

RSS Residual Sum of Squares across all selected features and the components.

PRESS Predicted Residual Error Sum of Squares across all selected features and the
components.

features a list of features selected across the folds ($stable.X and $stable.Y) for the
keepX and keepY parameters from the input object. Note, this will be NULL if
using standard (non-sparse) PLS.

cor.tpred, cor.upred
Correlation between the predicted and actual components for X (t) and Y (u)

RSS.tpred, RSS.upred
Residual Sum of Squares between the predicted and actual components for X (t)
and Y (u)

For PLS-DA and sPLS-DA models, perf produces a matrix of classification error rate estimation.
The dimensions correspond to the components in the model and to the prediction method used,
respectively. Note that error rates reported in any component include the performance of the model
in earlier components for the specified keepX parameters (e.g. error rate reported for component 3
for keepX = 20 already includes the fitted model on components 1 and 2 for keepX = 20).

error.rate Prediction error rate for each dist and measure

auc AUC values per component averaged over the nrepeat

auc.all AUC values per component per repeat

predict A list of length ncomp that os predicted values of each sample for each class

features a list of features selected across the folds ($stable.X) for the keepX parameters
from the input object.

choice.ncomp Otimal number of components for the model for each prediction distance using
one-sided t-tests that test for a significant difference in the mean error rate (gain
in prediction) when components are added to the model.

class A list which gives the predicted class of each sample for each dist and each of
the ncomp components

For mint.splsda models, perf produces the following outputs:

study.specific.error

A list that gives BER, overall error rate and error rate per class, for each study

global.error A list that gives BER, overall error rate and error rate per class for all samples

predict A list of length ncomp that produces the predicted values of each sample for each
class

class A list which gives the predicted class of each sample for each dist and each of
the ncomp components. Directly obtained from the predict output.

auc AUC values

auc.study AUC values for each study in mint models

For sgccda models (i.e. block (s)PLS-DA models), perf produces the following outputs:

118 perf

error.rate Prediction error rate for each block of object$X and each dist

error.rate.per.class

Prediction error rate for each block of object$X, each dist and each class

predict Predicted values of each sample for each class, each block and each component

class Predicted class of each sample for each block, each dist, each component and
each nrepeat

features a list of features selected across the folds ($stable.X and $stable.Y) for the
keepX and keepY parameters from the input object.

AveragedPredict.class

if more than one block, returns the average predicted class over the blocks (av-
eraged of the Predict output and prediction using the max.dist distance)

AveragedPredict.error.rate

if more than one block, returns the average predicted error rate over the blocks
(using the AveragedPredict.class output)

WeightedPredict.class

if more than one block, returns the weighted predicted class over the blocks
(weighted average of the Predict output and prediction using the max.dist
distance). See details for more info on weights.

WeightedPredict.error.rate

if more than one block, returns the weighted average predicted error rate over
the blocks (using the WeightedPredict.class output.)

MajorityVote if more than one block, returns the majority class over the blocks. NA for a
sample means that there is no consensus on the predicted class for this particular
sample over the blocks.

MajorityVote.error.rate

if more than one block, returns the error rate of the MajorityVote output

WeightedVote if more than one block, returns the weighted majority class over the blocks. NA
for a sample means that there is no consensus on the predicted class for this
particular sample over the blocks.

WeightedVote.error.rate

if more than one block, returns the error rate of the WeightedVote output

weights Returns the weights of each block used for the weighted predictions, for each
nrepeat and each fold

choice.ncomp For supervised models; returns the optimal number of components for the model
for each prediction distance using one-sided t-tests that test for a significant
difference in the mean error rate (gain in prediction) when components are added
to the model. See more details in Rohart et al 2017 Suppl. For more than one
block, an optimal ncomp is returned for each prediction framework.

Author(s)

Ignacio González, Amrit Singh, Kim-Anh Lê Cao, Benoit Gautier, Florian Rohart, Al J Abadi

perf 119

References

Singh A., Shannon C., Gautier B., Rohart F., Vacher M., Tebbutt S. and Lê Cao K.A. (2019),
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays,
Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

MINT:

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

PLS and PLS citeria for PLS regression: Tenenhaus, M. (1998). La regression PLS: theorie et
pratique. Paris: Editions Technic.

Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS
en regression PLS1. Modulad n, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls
and perf.spls)

Mevik, B.-H., Cederkvist, H. R. (2004). Mean Squared Error of Prediction (MSEP) Estimates for
Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR). Journal of
Chemometrics 18(9), 422-429.

sparse PLS regression mode:

Lê Cao, K. A., Rossouw D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

One-sided t-tests (suppl material):

Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson
K, Khosrotehrani K, Fisk NM, Lê Cao K-A&, Wells CA& (2016). A Molecular Classification of
Human Mesenchymal Stromal Cells. PeerJ 4:e1845.

See Also

predict, nipals, plot.perf, auroc and www.mixOmics.org for more details.

Examples

validation for objects of class 'pls' (regression)
--
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic

try tune the number of component to choose

first learn the full model
liver.pls <- pls(X, Y, ncomp = 5)

with 5-fold cross validation: we use the same parameters as in model above

www.mixOmics.org

120 perf

but we perform cross validation to compute the MSEP, Q2 and R2 criteria

liver.val <- perf(liver.pls, validation = "Mfold", folds = 5)

see available criteria
names(liver.val$measures)
see values for all repeats
liver.val$measures$Q2.total$values
see summary over repeats
liver.val$measures$Q2.total$summary
Q2 total should decrease until it reaches a threshold
liver.val$measures$Q2.total

ncomp = 2 is enough
plot(liver.val, criterion = 'Q2.total')

Not run:

have a look at the other criteria

R2
plot(liver.val, criterion = 'R2')
correlation of components (see docs)
plot(liver.val, criterion = 'cor.tpred')

MSEP
plot(liver.val, criterion = 'MSEP')
validation for objects of class 'spls' (regression)
--
ncomp = 7
first, learn the model on the whole data set
model.spls = spls(X, Y, ncomp = ncomp, mode = 'regression',

keepX = c(rep(10, ncomp)), keepY = c(rep(4,ncomp)))

with leave-one-out cross validation
model.spls.val <- perf(model.spls, validation = "Mfold", folds = 5, seed = 45)

#Q2 total
model.spls.val$measures$Q2$summary

R2: we can see how the performance degrades when ncomp increases
plot(model.spls.val, criterion="R2")

validation for objects of class 'splsda' (classification)
--
data(srbct)
X <- srbct$gene
Y <- srbct$class

ncomp = 2

srbct.splsda <- splsda(X, Y, ncomp = ncomp, keepX = rep(10, ncomp))

perf 121

with Mfold

error <- perf(srbct.splsda, validation = "Mfold", folds = 8,
dist = "all", auc = TRUE, seed = 45)
error
error$auc

plot(error)

parallel code
library(BiocParallel)
error <- perf(srbct.splsda, validation = "Mfold", folds = 8,
dist = "all", auc = TRUE, BPPARAM = SnowParam(workers = 2), seed = 45)

with 5 components and nrepeat=5, to get a $choice.ncomp
ncomp = 5
srbct.splsda <- splsda(X, Y, ncomp = ncomp, keepX = rep(10, ncomp))

error <- perf(srbct.splsda, validation = "Mfold", folds = 8,
dist = "all", nrepeat = 5, seed = 45)
error$choice.ncomp

plot(error)

validation for objects of class 'mint.splsda' (classification)
--

data(stemcells)
res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype,

ncomp = 3, keepX = c(10, 5, 15),
study = stemcells$study)

out = perf(res, auc = TRUE)
out
plot(out)
out$auc
out$auc.study

validation for objects of class 'sgccda' (classification)
--

data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)

nutrimouse.sgccda <- block.splsda(X=data,
Y = Y,
design = 'full',
keepX = list(gene=c(10,10), lipid=c(15,15)),
ncomp = 2)

122 perf.assess

perf = perf(nutrimouse.sgccda)
perf
plot(perf)

with 5 components and nrepeat=5 to get $choice.ncomp
nutrimouse.sgccda <- block.splsda(X=data,
Y = Y,
design = 'full',
keepX = list(gene=c(10,10), lipid=c(15,15)),
ncomp = 5)

perf = perf(nutrimouse.sgccda, folds = 5, nrepeat = 5)
perf
plot(perf)
perf$choice.ncomp

End(Not run)

perf.assess Compute evaluation criteria for PLS, sPLS, PLS-DA, sPLS-DA, MINT
and DIABLO

Description

Function to evaluate the performance of the fitted PLS, sparse PLS, PLS-DA, sparse PLS-DA,
MINT (mint.splsda) and DIABLO (block.splsda) models using various criteria.

Usage

perf.assess(object, ...)

S3 method for class 'sgccda'
perf.assess(
object,
validation = c("Mfold", "loo"),
folds = 3,
nrepeat = 1,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mint.plsda'
perf.assess(
object,

perf.assess 123

dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,
...

)

S3 method for class 'mint.splsda'
perf.assess(
object,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,
...

)

S3 method for class 'mixo_pls'
perf.assess(
object,
validation = c("Mfold", "loo"),
folds,
nrepeat = 1,
progressBar = FALSE,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mixo_spls'
perf.assess(
object,
validation = c("Mfold", "loo"),
folds,
nrepeat = 1,
progressBar = FALSE,
BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mixo_plsda'
perf.assess(
object,
validation = c("Mfold", "loo"),
folds,
nrepeat = 1,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,

124 perf.assess

BPPARAM = SerialParam(),
seed = NULL,
...

)

S3 method for class 'mixo_splsda'
perf.assess(
object,
validation = c("Mfold", "loo"),
folds,
nrepeat = 1,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,
BPPARAM = SerialParam(),
seed = NULL,
...

)

Arguments

object object of class inherited from "pls", "plsda", "spls", "splsda". "sgccda" or
"mint.splsda". The function will retrieve some key parameters stored in that
object.

... not used

validation a character string. What kind of (internal) validation to use, matching one of
"Mfold" or "loo" (see below). Default is "Mfold". For MINT methods only
"loo" will be used.

folds numeric. Number of folds in the Mfold cross-validation. See Details.

nrepeat numierc. Number of times the Cross-Validation process is repeated. This is an
important argument to ensure the estimation of the performance to be as accurate
as possible. Default it 1.

dist only applies to an object inheriting from "plsda", "splsda" or "mint.splsda"
to evaluate the classification performance of the model. Should be a subset
of "max.dist", "centroids.dist", "mahalanobis.dist". Default is "all".
See predict.

auc if TRUE calculate the Area Under the Curve (AUC) performance of the model.

progressBar by default set to FALSE to output the progress bar of the computation.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples
in ?tune.spca.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’. Note ’seed’ is not required or used in
perf.mint.plsda as this method uses loo cross-validation

perf.assess 125

Details

This function is built upon ’perf()’ but instead of assessing model performance across components
1:ncomp only assesses performance of the given model

Procedure. The process of evaluating the performance of a fitted model object is similar for all
PLS-derived methods; a cross-validation approach is used to fit the method of object on folds-1
subsets of the data and then to predict on the subset left out. Different measures of performance are
available depending on the model. Parameters such as logratio, multilevel, keepX or keepY are
retrieved from object.

Parameters. If validation = "Mfold", M-fold cross-validation is performed. folds specifies the
number of folds to generate. The folds also can be supplied as a list of vectors containing the
indexes defining each fold as produced by split. When using validation = "Mfold", make sure
that you repeat the process several times (as the results will be highly dependent on the random
splits and the sample size).

If validation = "loo", leave-one-out cross-validation is performed (in that case, there is no need
to repeat the process).

Measures of performance. For fitted PLS and sPLS regression models, perf estimates the mean
squared error of prediction (MSEP), R2, and Q2 to assess the predictive perfity of the model using
M-fold or leave-one-out cross-validation. Note that only the classic, regression and invariant
modes can be applied. For sPLS, the MSEP, R2, and Q2 criteria are averaged across all folds. Note
that for PLS and sPLS objects, perf is performed on the pre-processed data after log ratio transform
and multilevel analysis, if any.

The mint.sPLS-DA function estimates errors based on Leave-one-group-out cross validation (where
each levels of object$study is left out (and predicted) once) and provides study-specific outputs
(study.specific.error) as well as global outputs (global.error). Note the mint perf methods
do not use seed or BPPARAM arguments.

AUROC. For PLS-DA, sPLS-DA, mint.PLS-DA, mint.sPLS-DA, and block.splsda methods: if
auc=TRUE, Area Under the Curve (AUC) values are calculated from the predicted scores obtained
from the predict function applied to the internal test sets in the cross-validation process, either for
all samples or for study-specific samples (for mint models). Therefore we minimise the risk of over-
fitting. For block.splsda model, the calculated AUC is simply the blocks-combined AUC calculated
using auroc.sgccda. See auroc for more details. Our multivariate supervised methods already use
a prediction threshold based on distances (see predict) that optimally determine class membership
of the samples tested. As such AUC and ROC are not needed to estimate the performance of the
model. We provide those outputs as complementary performance measures.

Prediction distances. See details from ?predict, and also our supplemental material in the mixOmics
article.

Repeats of the CV-folds. Repeated cross-validation implies that the whole CV process is repeated
a number of times (nrepeat) to reduce variability across the different subset partitions. In the
case of Leave-One-Out CV (validation = 'loo'), each sample is left out once (folds = N is set
internally) and therefore nrepeat is by default 1.

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

For sgccda objects, we provide weighted measures (e.g. error rate) in which the weights are simply
the correlation of the derived components of a given block with the outcome variable Y.

126 perf.assess

More details about the PLS modes in ?pls.

Value

For PLS and sPLS models:

MSEP Mean Square Error Prediction for each Y variable, only applies to object inher-
ited from "pls", and "spls". Only available when in regression (s)PLS.

RMSEP Root Mean Square Error Prediction for each Y variable, only applies to object
inherited from "pls", and "spls". Only available when in regression (s)PLS.

R2 a matrix of R2 values of the Y -variables for models with 1, . . . ,ncomp compo-
nents, only applies to object inherited from "pls", and "spls". Only available
when in regression (s)PLS.

Q2 if Y contains one variable, a vector of Q2 values else a list with a matrix of Q2

values for each Y -variable. Note that in the specific case of an sPLS model, it
is better to have a look at the Q2.total criterion, only applies to object inherited
from "pls", and "spls". Only available when in regression (s)PLS.

Q2.total a vector of Q2-total values for models with 1, . . . ,ncomp components, only ap-
plies to object inherited from "pls", and "spls". Available in both (s)PLS
modes.

RSS Residual Sum of Squares across all selected features

PRESS Predicted Residual Error Sum of Squares across all selected features
cor.tpred, cor.upred

Correlation between the predicted and actual components for X (t) and Y (u)
RSS.tpred, RSS.upred

Residual Sum of Squares between the predicted and actual components for X (t)
and Y (u)

For PLS-DA and sPLS-DA models:

error.rate Prediction error rate for each dist and measure

auc AUC value averaged over the nrepeat

auc.all AUC values per repeat

predict Predicted values of each sample for each class

class A list which gives the predicted class of each sample for each dist and each of
the ncomp components

For mint.splsda models:

study.specific.error

A list that gives BER, overall error rate and error rate per class, for each study

global.error A list that gives BER, overall error rate and error rate per class for all samples

predict A list of length ncomp that produces the predicted values of each sample for each
class

class A list which gives the predicted class of each sample for each dist.

auc AUC values

perf.assess 127

auc.study AUC values for each study in mint models

For sgccda models (i.e. block (s)PLS-DA models):

error.rate Prediction error rate for each block of object$X and each dist

error.rate.per.class

Prediction error rate for each block of object$X, each dist and each class

predict Predicted values of each sample for each class and each block

class Predicted class of each sample for each block, each dist, and each nrepeat
AveragedPredict.class

if more than one block, returns the average predicted class over the blocks (av-
eraged of the Predict output and prediction using the max.dist distance)

AveragedPredict.error.rate

if more than one block, returns the average predicted error rate over the blocks
(using the AveragedPredict.class output)

WeightedPredict.class

if more than one block, returns the weighted predicted class over the blocks
(weighted average of the Predict output and prediction using the max.dist
distance). See details for more info on weights.

WeightedPredict.error.rate

if more than one block, returns the weighted average predicted error rate over
the blocks (using the WeightedPredict.class output.)

MajorityVote if more than one block, returns the majority class over the blocks. NA for a
sample means that there is no consensus on the predicted class for this particular
sample over the blocks.

MajorityVote.error.rate

if more than one block, returns the error rate of the MajorityVote output

WeightedVote if more than one block, returns the weighted majority class over the blocks. NA
for a sample means that there is no consensus on the predicted class for this
particular sample over the blocks.

WeightedVote.error.rate

if more than one block, returns the error rate of the WeightedVote output

weights Returns the weights of each block used for the weighted predictions, for each
nrepeat and each fold

Author(s)

Ignacio González, Amrit Singh, Kim-Anh Lê Cao, Benoit Gautier, Florian Rohart, Al J Abadi

References

Singh A., Shannon C., Gautier B., Rohart F., Vacher M., Tebbutt S. and Lê Cao K.A. (2019),
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays,
Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062.

mixOmics article:

128 perf.assess

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

MINT:

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

PLS and PLS citeria for PLS regression: Tenenhaus, M. (1998). La regression PLS: theorie et
pratique. Paris: Editions Technic.

Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS
en regression PLS1. Modulad n, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls
and perf.spls)

Mevik, B.-H., Cederkvist, H. R. (2004). Mean Squared Error of Prediction (MSEP) Estimates for
Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR). Journal of
Chemometrics 18(9), 422-429.

sparse PLS regression mode:

Lê Cao, K. A., Rossouw D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

One-sided t-tests (suppl material):

Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson
K, Khosrotehrani K, Fisk NM, Lê Cao K-A&, Wells CA& (2016). A Molecular Classification of
Human Mesenchymal Stromal Cells. PeerJ 4:e1845.

See Also

predict, nipals, plot.perf, auroc and www.mixOmics.org for more details.

Examples

PLS-DA example

data(liver.toxicity) # rats gex and clinical measurements/treatments
unique(liver.toxicity$treatment$Treatment.Group) # 16 groups
length(liver.toxicity$treatment$Treatment.Group) # 64 samples

plsda.res <- plsda(liver.toxicity$gene, liver.toxicity$treatment$Treatment.Group, ncomp = 2)

performance <- perf.assess(plsda.res,
to make sure each fold has all classes represented

validation = "Mfold", folds = 3, nrepeat = 10,
seed = 12) # for reproducibility, remove for analysis

performance$error.rate$BER

sPLS-DA example

splsda.res <- splsda(liver.toxicity$gene, liver.toxicity$treatment$Treatment.Group,
keepX = c(25, 25), ncomp = 2)

www.mixOmics.org

perf.assess 129

performance <- perf.assess(splsda.res,
validation = "Mfold", folds = 3, nrepeat = 10,
seed = 12)

performance$error.rate$BER # can see slight improvement in error rate over PLS-DA example

PLS example

ncol(liver.toxicity$clinic) # 10 Y variables as output of PLS model

pls.res <- pls(liver.toxicity$gene, liver.toxicity$clinic, ncomp = 2)

performance <- perf.assess(pls.res,
validation = "Mfold", folds = 3, nrepeat = 10,
seed = 12)

see Q2 which gives indication of predictive ability for each of the 10 Y outputs
performance$measures$Q2$summary

sPLS example

spls.res <- spls(liver.toxicity$gene, liver.toxicity$clinic, ncomp = 2, keepX = c(50, 50))

performance <- perf.assess(spls.res,
validation = "Mfold", folds = 3, nrepeat = 10,
seed = 12)

see Q2 which gives indication of predictive ability for each of the 10 Y outputs
performance$measures$Q2$summary

block PLS-DA example

data("breast.TCGA")
mrna <- breast.TCGA$data.train$mrna
mirna <- breast.TCGA$data.train$mirna
data <- list(mrna = mrna, mirna = mirna)
design <- matrix(1,

ncol = length(data),
nrow = length(data),
dimnames = list(names(data), names(data)))

diag(design) <- 0

block.plsda.res <- block.plsda(X = data, Y = breast.TCGA$data.train$subtype,
ncomp = 2, design = design)

performance <- perf.assess(block.plsda.res)

performance$error.rate.per.class # error rate per class per distance metric

block sPLS-DA example

130 plot.pca

block.splsda.res <- block.splsda(X = data, Y = breast.TCGA$data.train$subtype,
ncomp = 2, design = design,
keepX = list(mrna = c(8,8), mirna = c(8,8)))

performance <- perf.assess(block.splsda.res)

performance$error.rate.per.class

MINT PLS-DA example

data("stemcells")

mint.plsda.res <- mint.plsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3,
study = stemcells$study)

performance <- perf.assess(mint.plsda.res)

performance$global.error$BER # global error per distance metric

MINT sPLS-DA example

mint.splsda.res <- mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3,
keepX = c(10, 5, 15), study = stemcells$study)

performance <- perf.assess(mint.splsda.res)

performance$global.error$BER # error slightly higher in this sparse model verses non-sparse

plot.pca Show (s)pca explained variance plots

Description

Show (s)pca explained variance plots

Usage

S3 method for class 'pca'
plot(x, ncomp = NULL, type = "barplot", ...)

Arguments

x A (s)pca object
ncomp Integer, the number of components
type Character, default "barplot" or any other type available in plot, as "l","b","p",..
... Not used

Author(s)

Kim-Anh Lê Cao, Florian Rohart, Leigh Coonan, Al J Abadi

plot.perf 131

plot.perf Plot for model performance for PSLDA analyses

Description

Function to plot classification performance for supervised methods, as a function of the number of
components.

Usage

S3 method for class 'perf.plsda.mthd'
plot(
x,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
measure = c("all", "overall", "BER"),
col,
xlab = NULL,
ylab = NULL,
overlay = c("all", "measure", "dist"),
legend.position = c("vertical", "horizontal"),
sd = TRUE,
...

)

S3 method for class 'perf.splsda.mthd'
plot(
x,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
measure = c("all", "overall", "BER"),
col,
xlab = NULL,
ylab = NULL,
overlay = c("all", "measure", "dist"),
legend.position = c("vertical", "horizontal"),
sd = TRUE,
...

)

S3 method for class 'perf.mint.plsda.mthd'
plot(
x,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
measure = c("all", "overall", "BER"),
col,
xlab = NULL,
ylab = NULL,
study = "global",

132 plot.perf

overlay = c("all", "measure", "dist"),
legend.position = c("vertical", "horizontal"),
...

)

S3 method for class 'perf.mint.splsda.mthd'
plot(
x,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
measure = c("all", "overall", "BER"),
col,
xlab = NULL,
ylab = NULL,
study = "global",
overlay = c("all", "measure", "dist"),
legend.position = c("vertical", "horizontal"),
...

)

S3 method for class 'perf.sgccda.mthd'
plot(
x,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
measure = c("all", "overall", "BER"),
col,
weighted = TRUE,
xlab = NULL,
ylab = NULL,
overlay = c("all", "measure", "dist"),
legend.position = c("vertical", "horizontal"),
sd = TRUE,
...

)

Arguments

x an perf.plsda object.

dist prediction method applied in perf for plsda or splsda. See perf.

measure Two misclassification measure are available: overall misclassification error overall
or the Balanced Error Rate BER

col character (or symbol) colour to be used, possibly vector. One color per distance
dist.

xlab, ylab titles for x and y axes. Typically character strings, but can be expressions (e.g.,
expression(R^2)).

overlay parameter to overlay graphs; if ’all’, only one graph is shown with all outputs; if
’measure’, a graph is shown per distance; if ’dist’, a graph is shown per measure.

plot.perf.pls 133

legend.position

position of the legend, one of "vertical" (only one column) or "horizontal" (two
columns).

sd If ’nrepeat’ was used in the call to ’perf’, error bar shows the standard deviation
if sd=TRUE. For mint objects sd is set to FALSE as the number of repeats is 1.

... Not used.

study Indicates which study-specific outputs to plot. A character vector containing
some levels of object$study, "all.partial" to plot all studies or "global" is ex-
pected. Default to "global".

weighted plot either the performance of the Majority vote or the Weighted vote.

Details

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017). See ?perf for examples.

Value

none

Author(s)

Ignacio González, Florian Rohart, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi

References

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

pls, spls, plsda, splsda, perf.

plot.perf.pls Plot for model performance for PLS analyses

Description

Function to plot performance criteria, such as MSEP, RMSEP, R2, Q2 for s/PLS methods as a
function of the number of components.

134 plot.perf.pls

Usage

S3 method for class 'perf.pls.mthd'
plot(
x,
criterion = "MSEP",
xlab = "Number of components",
ylab = NULL,
LimQ2 = 0.0975,
LimQ2.col = "grey30",
sd = NULL,
pch = 1,
pch.size = 3,
cex = 1.2,
col = color.mixo(1),
title = NULL,
...

)

S3 method for class 'perf.spls.mthd'
plot(
x,
criterion = "MSEP",
xlab = "Number of components",
ylab = NULL,
LimQ2 = 0.0975,
LimQ2.col = "grey30",
sd = NULL,
pch = 1,
pch.size = 3,
cex = 1.2,
col = color.mixo(1),
title = NULL,
...

)

Arguments

x an perf.pls object.

criterion character string. What type of validation criterion to plot for pls or spls. One
of "MSEP", "RMSEP", "R2" or "Q2". More measures available for pls2 methods.
See perf.

xlab, ylab titles for x and y axes. Typically character strings, but can be expressions (e.g.,
expression(R^2)).

LimQ2 numeric value. Signification limit for the components in the model. Default is
LimQ2 = 0.0975.

LimQ2.col character string specifying the color for the LimQ2 line to be plotted. If "none"
the line will not be plotted.

plot.rcc 135

sd If ’nrepeat’ was used in the call to ’perf’, error bar shows the standard deviation
if sd=TRUE. For mint objects sd is set to FALSE as the number of repeats is 1.

pch Plot character to use.

pch.size Plot character size to use.

cex A numeric which adjusts the font size in the plot.

col Character. Colour to be used for data points.

title Character, Plot title. Not used by PLS2 feature-wise measure plots.

... Not used.

Details

plot.perf creates one plot for each response variable in the model, laid out in a multi-panel display.
See ?perf for examples.

Value

none

Author(s)

Al J Abadi

References

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

pls, spls, plsda, splsda, perf.

plot.rcc Canonical Correlations Plot

Description

This function provides scree plot of the canonical correlations.

Usage

S3 method for class 'rcc'
plot(x, type = "barplot", ...)

136 plot.tune

Arguments

x object of class inheriting from "rcc".

type Character, default "barplot" or any other type available in plot, as "l","b","p",..

... Not used

Value

none

Author(s)

Sébastien Déjean, Ignacio González, Al J Abadi

See Also

points, barplot, par.

Examples

data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, lambda1 = 0.064, lambda2 = 0.008)

'pointplot' type scree
plot(nutri.res, type = "point") #(default)

Not run:
plot(nutri.res, type = "point", pch = 19, cex = 1.2,
col = c(rep("red", 3), rep("darkblue", 18)))

'barplot' type scree
plot(nutri.res, type = "barplot")

plot(nutri.res, type = "barplot", density = 20, col = "black")

End(Not run)

plot.tune Plot model performance

Description

Function to plot performance criteria, such as classification error rate or correlation of cross-validated
components for different models.

Function to plot performance criteria, such as classification error rate or balanced error rate on a
tune.splsda result.

plot.tune 137

Usage

S3 method for class 'tune.spls'
plot(
x,
measure = NULL,
comp = c(1, 2),
pch = 16,
cex = 1.2,
title = NULL,
size.range = c(3, 10),
sd = NULL,
...

)

S3 method for class 'tune.block.splsda'
plot(x, sd = NULL, col, ...)

S3 method for class 'tune.spca'
plot(x, optimal = TRUE, sd = NULL, col = NULL, ...)

S3 method for class 'tune.spls1'
plot(x, optimal = TRUE, sd = NULL, col, ...)

S3 method for class 'tune.splsda'
plot(x, optimal = TRUE, sd = NULL, col, ...)

Arguments

x an tune.splsda object.

measure Character. Measure used for plotting a tune.spls object. One of c(’cor’,
’RSS’).

comp Integer of length 2 denoting the components to plot.

pch value or vector, controls shape of points to be plotted. Can be used to control the
shape of the points directly or to create a second group membership and legend.
See details.

cex numeric character (or symbol) expansion, possibly vector.

title Plot title.

size.range Numeric vector of length 2. Range of sizes used in plot.

sd If ’nrepeat’ was used in the call to ’tune.splsda’, error bar shows the standard
deviation if sd=TRUE

... Not currently used.

col character (or symbol) color to be used, possibly vector. One colour per compo-
nent.

optimal If TRUE, highlights the optimal keepX per component

138 plot.tune

Details

plot.tune.splsda plots the classification error rate or the balanced error rate from x$error.rate,
for each component of the model. A lozenge highlights the optimal number of variables on each
component.

plot.tune.block.splsda plots the classification error rate or the balanced error rate from x$error.rate,
for each component of the model. The error rate is ordered by increasing value, the yaxis shows the
optimal combination of keepX at the top (e.g. ‘keepX on block 1’_‘keepX on block 2’_‘keepX on
block 3’)

plot.tune.spls plots either the correlation of cross-validated components or the Residual Sum of
Square (RSS) values for these components against those from the full model for both t (X compo-
nents) and u (Y components). The optimal number of features chosen are indicated by squares.

If neither of the object$test.keepX or object$test.keepY are fixed, a dot plot is produced
where a larger size indicates the strength of the measure (higher correlation or lower RSS). Oth-
erwise, the measures are plotted against the number of features selected. In both cases, the colour
shows the dispersion of the values across repeated cross validations.

plot.tune.spca plots the correlation of cross-validated components from the tune.spca function
with respect to the full model.

plot.tune.splsda plots the classification error rate or the balanced error rate from x$error.rate,
for each component of the model. A lozenge highlights the optimal number of variables on each
component.

plot.tune.block.splsda plots the classification error rate or the balanced error rate from x$error.rate,
for each component of the model. The error rate is ordered by increasing value, the yaxis shows the
optimal combination of keepX at the top (e.g. ‘keepX on block 1’_‘keepX on block 2’_‘keepX on
block 3’)

Value

none

none

plot arguments for pls2 tuning

For tune.spls objects where tuning is performed on both X and Y, arguments ’col.low.sd’ and
’col.high.sd’ can be used to indicate a low and high sd, respectively. Default to ’blue’ & ’red’.

Author(s)

Kim-Anh Lê Cao, Florian Rohart, Francois Bartolo, Al J Abadi

Kim-Anh Lê Cao, Florian Rohart, Francois Bartolo, AL J Abadi

See Also

tune.mint.splsda, tune.splsda, tune.block.splsda, tune.spca and http://www.mixOmics.org
for more details.

tune.mint.splsda, tune.splsda tune.block.splsda and http://www.mixOmics.org for more
details.

plot.tune 139

Examples

Not run:
validation for objects of class 'splsda'

data(breast.tumors)
X = breast.tumors$gene.exp
Y = as.factor(breast.tumors$sample$treatment)
out = tune.splsda(X, Y, ncomp = 3, nrepeat = 5, logratio = "none",
test.keepX = c(5, 10, 15), folds = 10, dist = "max.dist",
progressBar = TRUE)

plot(out, sd=TRUE)

End(Not run)
Not run:
validation for objects of class 'mint.splsda'

data(stemcells)
data = stemcells$gene
type.id = stemcells$celltype
exp = stemcells$study

out = tune(method="mint.splsda", X=data,Y=type.id, ncomp=2, study=exp, test.keepX=seq(1,10,1))
out$choice.keepX

plot(out)

validation for objects of class 'mint.splsda'

data("breast.TCGA")
this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
data = with(breast.TCGA$data.train, list(mrna = mrna,

mirna = mirna,
protein = protein,
Y = subtype))

set number of component per data set
ncomp = 5

Tuning the first two components

definition of the keepX value to be tested for each block mRNA miRNA and protein
names of test.keepX must match the names of 'data'
test.keepX = list(mrna = seq(10,40,20), mirna = seq(10,30,10), protein = seq(1,10,5))

the following may take some time to run, note that for through tuning
nrepeat should be > 1
tune = tune.block.splsda(X = data, indY = 4,
ncomp = ncomp, test.keepX = test.keepX, design = 'full', nrepeat = 3)

tune$choice.ncomp

140 plotArrow

tune$choice.keepX

plot(tune)
--- spls model
data(nutrimouse)
X <- nutrimouse$gene
Y <- nutrimouse$lipid
list.keepX <- c(2:10, 15, 20)
tuning based on correlations
set.seed(30)
tune X only
tune.spls.cor.X <- tune.spls(X, Y, ncomp = 3,

test.keepX = list.keepX,
validation = "Mfold", folds = 5,
nrepeat = 3, progressBar = FALSE,
measure = 'cor')

plot(tune.spls.cor.X)
plot(tune.spls.cor.X, measure = 'RSS')

tune Y only
tune.spls.cor.Y <- tune.spls(X, Y, ncomp = 3,

test.keepY = list.keepX,
validation = "Mfold", folds = 5,
nrepeat = 3, progressBar = FALSE,
measure = 'cor')

plot(tune.spls.cor.Y)
plot(tune.spls.cor.Y, sd = FALSE)
plot(tune.spls.cor.Y, measure = 'RSS')

tune Y and X
tune.spls.cor.XY <- tune.spls(X, Y, ncomp = 3,

test.keepY = c(8, 15, 20),
test.keepX = c(8, 15, 20),
validation = "Mfold", folds = 5,
nrepeat = 3, progressBar = FALSE,
measure = 'cor')

plot(tune.spls.cor.XY)
show RSS
plot(tune.spls.cor.XY, measure = 'RSS')
customise point sizes
plot(tune.spls.cor.XY, size.range = c(6,12))

End(Not run)

plotArrow Arrow sample plot

plotArrow 141

Description

Represents samples from multiple coordinates to assess the alignment in the latent space.

Usage

plotArrow(
object,
comp = c(1, 2),
ind.names = TRUE,
group = NULL,
col = NULL,
ind.names.position = c("start", "end"),
ind.names.size = 2,
pch = NULL,
pch.size = 2,
arrow.alpha = 0.6,
arrow.size = 0.5,
arrow.length = 0.2,
legend = if (is.null(group)) FALSE else TRUE,
legend.title = NULL,
...

)

Arguments

object object of class inheriting from mixOmics: PLS,sPLS, rCC, rGCCA, sGCCA,
sGCCDA

comp integer vector of length two (or three to 3d). The components that will be used
on the horizontal and the vertical axis respectively to project the individuals.

ind.names either a character vector of names for the individuals to be plotted, or FALSE for
no names. If TRUE, the row names of the first (or second) data matrix is used
as names (see Details). If ‘pch‘ is set this will overwrite the names as shapes.
Default is TRUE. Not avaliable for MINT objects.

group Factor indicating the group membership for each sample.

col character (or symbol) color to be used. If group provided, should be a vector of
the same length as groups, order of colours will be respected to correspond to
order of group levels.

ind.names.position

One of c(’start’, ’end’) indicating where to show the ind.names . Not used in
block analyses, where centroids are used.

ind.names.size Numeric, sample name size.

pch plot character. A character string or a named vector of single characters or inte-
gers whose names match those of object$variates.

pch.size Numeric, sample point character size.

arrow.alpha Numeric between 0 and 1 determining the opacity of arrows.

arrow.size Numeric, variable arrow head size.

142 plotArrow

arrow.length Numeric, length of the arrow head in ’cm’.

legend Logical, whether to show the legend if group != NULL.

legend.title Character, the legend title if group != NULL.

... Not currently used. sample size to display sample names.

Details

Graphical of the samples (individuals) is displayed in a superimposed manner where each sample
will be indicated using an arrow. The start of the arrow indicates the location of the sample in X in
one plot, and the tip the location of the sample in Y in the other plot. Short arrows indicate a strong
agreement between the matching data sets, long arrows a disagreement between the matching data
sets. The representation space is scaled using the range of coordinates so minimum and maximum
values are equal for all blocks. Since the algorithm maximises the covariance of these components,
the absolute values do not affect the alignment.

For objects of class "GCCA" and if there are more than 2 blocks, the start of the arrow indicates the
centroid between all data sets for a given individual and the tips of the arrows the location of that
individual in each block.

Value

A ggplot object

Author(s)

Al J Abadi

References

Lê Cao, K.-A., Martin, P.G.P., Robert-Granie, C. and Besse, P. (2009). Sparse canonical methods
for biological data integration: application to a cross-platform study. BMC Bioinformatics 10:34.

See Also

arrows, text, points and http://mixOmics.org/graphics for more details.

Examples

'spls' class - examples demonstrate how to control sample colours with sample names shown
--
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
spls.obj <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),

keepY = c(10, 10, 10))

colors indicate time of necropsy, text is the dose, label at start of arrow
plotArrow(spls.obj, group = as.factor(liver.toxicity$treatment[, 'Time.Group']),

col = c("red", "blue", "purple", "darkgreen"),
ind.names = liver.toxicity$treatment[, 'Dose.Group'],
legend = TRUE, position.names = 'start', legend.title = 'Time.Group')

plotArrow 143

'rcc' class - examples demonstrate how to control shape of all samples

create model
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
rcc.obj <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

primary_groups <- nutrimouse$diet

plot samples coloured by primary groups, by default shapes are all circles
plotArrow(rcc.obj, ind.names = FALSE,

group = primary_groups, legend = TRUE)

plot samples coloured by primary groups, force all samples to have
a different shape (2 = triangle)
plotArrow(rcc.obj, ind.names = FALSE,

group = primary_groups, legend = TRUE,
pch = 2)

'sgccda' class - examples demonstrate how to control shape of different blocks
--

data(breast.TCGA)
idx = seq(1, length(breast.TCGA$data.train$subtype), 10)
X <- list(mRNA = breast.TCGA$data.train$mrna[idx,],

miRNA = breast.TCGA$data.train$mirna[idx,],
protein = breast.TCGA$data.train$protein[idx,])

Y <- breast.TCGA$data.train$subtype[idx] # set the response variable

diablo.obj <- block.splsda(X, Y, ncomp = 2) # undergo multiblock sPLS-DA

plot the samples using an arrow plot -
plotArrow(diablo.obj,

ind.names = FALSE,
legend = TRUE,
title = 'TCGA, DIABLO comp 1 - 2')

pchs <- c(3, 2, 1)
names(pchs) <- c("miRNA", "mRNA", "protein")

plot the samples using an arrow plot changed shapes of data blocks
plotArrow(diablo.obj,

ind.names = FALSE,
legend = TRUE,
title = 'TCGA, DIABLO comp 1 - 2',
pch = pchs)

144 plotDiablo

plotDiablo Graphical output for the DIABLO framework

Description

Function to visualise correlation between components from different data sets

Usage

plotDiablo(
object,
ncomp = 1,
legend = TRUE,
legend.ncol,
col.per.group = NULL,
...

)

S3 method for class 'sgccda'
plot(x, ...)

Arguments

object, x object of class inheriting from "block.splsda".

ncomp Which component to plot calculated from each data set. Has to be lower than
the minimum of object$ncomp.

legend Logical. Whether the legend should be added. Default is TRUE.

legend.ncol Number of columns for the legend. Default to min(5,nlevels(x$Y)).

col.per.group A named character of colours for each group class representation. Its names
must match the levels of object$Y.

... not used

Details

The function uses a plot.data.frame to plot the component ncomp calculated from each data set to
visualise whether DIABLO (block.splsda) is successful at maximising the correlation between each
data sets’ component. The lower triangular panel indicated the Pearson’s correlation coefficient, the
upper triangular panel the scatter plot.

Value

none

Author(s)

Amrit Singh, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

plotIndiv 145

References

Singh A., Shannon C., Gautier B., Rohart F., Vacher M., Tebbutt S. and Lê Cao K.A. (2019),
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays,
Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062.

See Also

block.splsda and http://www.mixOmics.org/mixDIABLO for more details.

Examples

data('breast.TCGA')
Y = breast.TCGA$data.train$subtype

data = list(mrna = breast.TCGA$data.train$mrna,
mirna = breast.TCGA$data.train$mirna, prot = breast.TCGA$data.train$protein)

set number of component per data set
ncomp = 3
set number of variables to select, per component and per data set (arbitrarily set)
list.keepX = list(mrna = rep(20, 3), mirna = rep(10,3), prot = rep(10,3))

DIABLO using a full design where every block is connected
BC.diablo = block.splsda(X = data, Y = Y, ncomp = ncomp, keepX = list.keepX, design = 'full')
default col.per.group
plotDiablo(BC.diablo, ncomp = 1, legend = TRUE, col.per.group = NULL)
custom col.per.group
col.per.group <- color.mixo(1:3)
names(col.per.group) <- levels(Y)
plotDiablo(BC.diablo, ncomp = 1, legend = TRUE, col.per.group = col.per.group)

plotIndiv Plot of Individuals (Experimental Units)

Description

This function provides scatter plots for individuals (observations) representation in (s)(I)PCA, (r)CCA,
(s)PLS(DA), multiblock (s)PLS(DA) and MINT models.

Usage

plotIndiv(object, ...)

S3 method for class 'mint.pls'
plotIndiv(
object,
comp = NULL,
rep.space = NULL,

146 plotIndiv

study = "global",
layout = NULL,
style = "ggplot2",
group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
background = NULL,
pch,
title = NULL,
subtitle,
legend = FALSE,
legend.title = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,
xlim = NULL,
ylim = NULL,
abline = FALSE,
point.lwd = 1,
cex,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
...

)

S3 method for class 'mint.spls'
plotIndiv(
object,
comp = NULL,
rep.space = NULL,
study = "global",
layout = NULL,
style = "ggplot2",
group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
background = NULL,

plotIndiv 147

pch,
title = NULL,
subtitle,
legend = FALSE,
legend.title = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,
xlim = NULL,
ylim = NULL,
abline = FALSE,
point.lwd = 1,
cex,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
...

)

S3 method for class 'mint.plsda'
plotIndiv(
object,
comp = NULL,
rep.space = NULL,
study = "global",
layout = NULL,
style = "ggplot2",
group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
background = NULL,
pch,
title = NULL,
subtitle,
legend = FALSE,
legend.title = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,
xlim = NULL,
ylim = NULL,

148 plotIndiv

abline = FALSE,
point.lwd = 1,
cex,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
...

)

S3 method for class 'mint.splsda'
plotIndiv(
object,
comp = NULL,
rep.space = NULL,
study = "global",
layout = NULL,
style = "ggplot2",
group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
background = NULL,
pch,
title = NULL,
subtitle,
legend = FALSE,
legend.title = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,
xlim = NULL,
ylim = NULL,
abline = FALSE,
point.lwd = 1,
cex,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),

plotIndiv 149

...
)

S3 method for class 'pca'
plotIndiv(
object,
comp = NULL,
style = "ggplot2",
ind.names = TRUE,
group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
pch,
title = NULL,
legend = FALSE,
legend.title.pch = "Legend",
legend.title = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,
Z.label = NULL,
xlim = NULL,
ylim = NULL,
axes.box = "box",
abline = FALSE,
cex,
alpha = 0.2,
point.lwd = 1,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
...

)

S3 method for class 'mixo_pls'
plotIndiv(
object,
comp = NULL,
rep.space = NULL,
style = "ggplot2",
ind.names = TRUE,

150 plotIndiv

group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
background = NULL,
pch,
title = NULL,
subtitle,
legend = FALSE,
legend.title = "Legend",
legend.title.pch = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,
Z.label = NULL,
abline = FALSE,
xlim = NULL,
ylim = NULL,
axes.box = "box",
cex,
alpha = 0.2,
point.lwd = 1,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
...

)

S3 method for class 'sgcca'
plotIndiv(
object,
comp = NULL,
blocks = NULL,
style = "ggplot2",
ind.names = TRUE,
group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
pch,

plotIndiv 151

title = NULL,
subtitle,
legend = FALSE,
legend.title = "Legend",
legend.title.pch = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,
Z.label = NULL,
abline = FALSE,
xlim = NULL,
ylim = NULL,
axes.box = "box",
cex,
alpha = 0.2,
point.lwd = 1,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
...

)

S3 method for class 'rgcca'
plotIndiv(
object,
comp = NULL,
blocks = NULL,
style = "ggplot2",
ind.names = TRUE,
group,
col,
ellipse = FALSE,
ellipse.level = 0.95,
centroid = FALSE,
star = FALSE,
pch,
title = NULL,
subtitle,
legend = FALSE,
legend.title = "Legend",
legend.title.pch = "Legend",
legend.position = "right",
X.label = NULL,
Y.label = NULL,

152 plotIndiv

Z.label = NULL,
abline = FALSE,
xlim = NULL,
ylim = NULL,
axes.box = "box",
cex,
alpha = 0.2,
point.lwd = 1,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
...

)

Arguments

object object of class inherited from any mixOmics: PLS,sPLS, PLS-DA, SPLS-DA,
rCC, PCA, sPCA, IPCA, sIPCA, rGCCA, sGCCA, sGCCDA, MINT

... Optional arguments or type par can be added with style = 'graphics'

comp integer vector of length two (or three to 3d). The components that will be used
on the horizontal and the vertical axis respectively to project the individuals.

rep.space - only for objects of class "pca", "plsda", "plsda", "rcc". Can be "X-variate",
"Y-variate", "XY-variate", "multi".

study - only for MINT models. Indicates whether to plot all studies together "global"
or separately "all.partial". Default is "global".

layout layout parameter passed to mfrow. Only for MINT model and only used when
study is "all.partial"

style argument to be set to either 'graphics', 'lattice', 'ggplot2' or '3d' for a
style of plotting. Default set to ’ggplot2’. See details. 3d is not available for
MINT objects.

group factor indicating the group membership for each sample, useful for colouring
samples by groups, adding ellipses, centroids and stars. Coded as default for
the supervised methods PLS-DA,SPLS-DA,sGCCDA, but needs to be input for
the unsupervised methods PCA, sPCA, IPCA, sIPCA, PLS, sPLS, rCC, rGCCA,
sGCCA. Order of levels will reflect the order the groups appear in legends and
correspond to the order of set colours in col.

col character (or symbol) color to be used. If group provided, should be a vector of
the same length as groups, order of colours will be respected to correspond to
order of group levels.

ellipse Logical indicating if ellipse plots should be plotted. See details.
ellipse.level Numerical value indicating the confidence level of ellipse being plotted when

ellipse =TRUE (i.e. the size of the ellipse). The default is set to 0.95, for a 95%
region. See details.

plotIndiv 153

centroid Logical indicating whether centroid points should be plotted. See details.
star Logical indicating whether a star plot should be plotted, with arrows starting

from the centroid (see argument centroid, and ending for each sample belong-
ing to each group or outcome. See details.

background color the background by the predicted class, see background.predict

pch value or vector, controls shape of points to be plotted. Can be used to control the
shape of the points directly or to create a second group membership and legend.
See details.

title set of characters indicating the title plot.
subtitle subtitle for each plot, only used when several block or study are plotted.
legend Logical. Whether the legend should be added. Default is FALSE.
legend.title title of the legend
legend.position

position of the legend, one of "bottom", "left", "top" and "right".
X.label x axis titles.
Y.label y axis titles.
xlim, ylim numeric list of vectors of length 2 and length =length(blocks), giving the x and

y coordinates ranges.
abline should the vertical and horizontal line through the center be plotted? Default set

to FALSE

point.lwd lwd of the points, used when ind.names = FALSE

cex numeric character (or symbol) expansion, possibly vector.
size.title size of the title
size.subtitle size of the subtitle
size.xlabel size of xlabel
size.ylabel size of ylabel
size.axis size of the axis
size.legend size of the legend
size.legend.title

size of the legend title
ind.names either a character vector of names for the individuals to be plotted, or FALSE for

no names. If TRUE, the row names of the first (or second) data matrix is used
as names (see Details). If ‘pch‘ is set this will overwrite the names as shapes.
Default is TRUE. Not avaliable for MINT objects.

legend.title.pch

title of the second legend created by pch, if any.
Z.label z axis titles (when style = ’3d’).
axes.box for style ’3d’, argument to be set to either 'axes', 'box', 'bbox' or 'all',

defining the shape of the box.
alpha Semi-transparent colors (0 < 'alpha' < 1)
blocks - only for multiblock objects. Integer value or name(s) of block(s) to be plotted

OR "average" (averages the components from all blocks to produce a consensus
plot) OR "weighted.average" (weighted average of the components according to
their correlation with the outcome Y). See examples.

154 plotIndiv

Details

plotIndiv method makes scatter plot for individuals representation depending on the subspace of
projection. Each point corresponds to an individual.

If ind.names=TRUE and row names is NULL, then ind.names=1:n, where n is the number of indi-
viduals. Also, if pch is an input, then ind.names is set to FALSE as we do not show both names
and shapes.

The outputs of "ellipse", "ellipse.level", "centroid", "star" are: 1) based on the sample
group membership (specified with the group) for unsupervised models such as PCA, sPCA, IPCA,
sIPCA, PLS, sPLS, rCC, rGCCA,sGCCA or 2) based on the outcome Y for supervised models such
as PLS-DA, SPLS-DA,sGCCDA

#’ In the specific case of a single ‘omics supervised model (plsda, splsda), users can overlay
prediction results to sample plots in order to visualise the prediction areas of each class, via the
background input parameter. Note that this functionality is only available for models with less than
2 components as the surfaces obtained for higher order components cannot be projected onto a 2D
representation in a meaningful way. For more details, see background.predict

The group parameter is used to colour the samples by group membership, and by default the shape
of samples will also correspond to these groups. Sample shapes can be further customised using the
pch parameter. This can be done in 3 ways: 1) If pch is one numeric value, shape of all points will
be this. 2) If pch is a vector of numeric values length equal to the number of groups set in group,
then each group will have the given different shape. 3) If pch is a character vector of length equal
to the number of samples, then the shape of each sample will correspond to this grouping, i.e. this
allows users to visualise second group membership. In case 3), the elements of the vector should
be the names of the second group membership, as these will appear in the legend. The shapes of
the second group membership will be 1, 2, 3, etc by default, control of the shape is only possible by
reordering the levels of the second group membership. See examples.

For customized plots (i.e. adding points, text), use the style = ’graphics’ (default is ggplot2).

Note: the ellipse options were borrowed from the ellipse.

Value

none

Author(s)

Ignacio González, Benoit Gautier, Francois Bartolo, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

See Also

text, background.predict, points and http://mixOmics.org/graphics for more details.

Examples

'pca' class - examples demonstrate how to control sample colours and shapes

subset data and create model
data("srbct")

plotIndiv 155

X <- srbct$gene[1:6,]
rownames(X) <- c(paste0("Sample_", 1:6))
pca.obj <- pca(X, ncomp = 3)

primary_groups <- as.factor(c(rep("Group_1", 2), rep("Group_2", 2), rep("Group_3", 2)))
[1] Group_1 Group_1 Group_2 Group_2 Group_3 Group_3
Levels: Group_1 Group_2 Group_3
secondary_groups <- as.factor(c(rep("A", 3), rep("B", 2), rep("C", 1)))
[1] A A A B B C
Levels: A B C

plot samples coloured by primary groups, show sample names
plotIndiv(pca.obj, ind.names = TRUE,

group = primary_groups, legend = TRUE)

plot samples coloured using custom colours by primary groups, show sample names
plotIndiv(pca.obj, ind.names = TRUE,

group = primary_groups, legend = TRUE,
col = c("red", "pink", "blue"))

plot samples coloured by primary groups, by default shapes match primary groups
plotIndiv(pca.obj, ind.names = FALSE,

group = primary_groups, legend = TRUE)

plot samples coloured by primary groups, force all samples to have the same shape (2 = triangle)
plotIndiv(pca.obj, ind.names = FALSE,

group = primary_groups, legend = TRUE,
pch = 2)

plot samples coloured by primary groups, use shapes to visualise secondary grouping
plotIndiv(pca.obj, ind.names = FALSE,

group = primary_groups, legend = TRUE,
pch = secondary_groups)

plot samples coloured by primary groups, use shapes to visualise secondary grouping
and change order of secondary groups
plotIndiv(pca.obj, ind.names = FALSE,

group = primary_groups, legend = TRUE,
pch = factor(secondary_groups, levels = c("B", "C", "A")))

'rcc' class - examples demonstrate how to control rep.space
--

create model
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
rcc.obj <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

plot samples, by default makes a panel plot for X and Y subspaces (multi)
plotIndiv(rcc.obj)

156 plotIndiv

plot samples only on X-variate subspace
plotIndiv(rcc.obj, rep.space = "X-variate")

plot samples only on XY-variate subspace
plotIndiv(rcc.obj, rep.space = "XY-variate")

'spls' class - examples demonstrate how to add ellipses and centroids/stars on groups
--

create model
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
spls.obj <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),

keepY = c(10, 10, 10))

plot samples with ellipse on groups
plotIndiv(spls.obj, group = liver.toxicity$treatment$Time.Group, ellipse = TRUE)

plot samples with centroids on groups
plotIndiv(spls.obj, group = liver.toxicity$treatment$Time.Group, centroid = TRUE)

plot samples with centroids and stars on groups
plotIndiv(spls.obj, group = liver.toxicity$treatment$Time.Group, centroid = TRUE, star = TRUE)

'splsda' class - examples demonstrate how to add ellipses and backgrounds based on
predicted classes
--

create model
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- breast.tumors$sample$treatment
splsda.obj <- splsda(X, Y,keepX=c(10,10),ncomp=2)

plot samples with ellipse on groups, note groups do not have to be defined
plotIndiv(splsda.obj, ellipse = TRUE, ellipse.level = 0.8)

plot samples with background coloured by predicted classes
background <- background.predict(splsda.obj, comp.predicted = 2, dist = "max.dist")
plotIndiv(splsda.obj, background = background)

'sgccda' class - examples demonstrate how to control which data blocks are plotted
--

create model
data(nutrimouse)
Y <- nutrimouse$diet

plotLoadings 157

data <- list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design <- matrix(c(0,1,0,1), ncol = 2, nrow = 2, byrow = TRUE)
sgccda.obj <- wrapper.sgccda(X = data, Y = Y, design = design, ncomp = 2,

keepX = list(gene = c(10,10), lipid = c(15,15)))

plot samples, by default one data block for each plot
plotIndiv(sgccda.obj)

plot samples for just the gene data block
plotIndiv(sgccda.obj, blocks = 1)
plotIndiv(sgccda.obj, blocks = "gene")

plot samples by averaging components from all blocks
plotIndiv(sgccda.obj, blocks = "average")

plot samples by the weighted average of the components according to their correlation
with Y
plotIndiv(sgccda.obj, blocks = "weighted.average")

'mint.splsda' class - examples demonstrate how to control which studies are plotted
--

create model
data(stemcells)
mint.obj <- mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 2,

keepX = c(10, 5), study = stemcells$study)

plot samples, by default samples are plotted together coloured by groups and pch by study
plotIndiv(mint.obj, legend = TRUE)

plot samples separated by study, can control layout
plotIndiv(mint.obj, legend = TRUE, study = "all.partial")
plotIndiv(mint.obj, legend = TRUE, study = "all.partial", layout = c(1,1))

plotLoadings Plot of Loading vectors

Description

This function provides a horizontal bar plot to visualise loading vectors. For discriminant analysis,
it provides visualisation of highest or lowest mean/median value of the variables with color code
corresponding to the outcome of interest.

Usage

plotLoadings(object, ...)

S3 method for class 'mint.pls'

158 plotLoadings

plotLoadings(
object,
style = "graphics",
comp = 1,
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = 1.7,
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
study = "global",
...

)

S3 method for class 'mint.spls'
plotLoadings(
object,
style = "graphics",
comp = 1,
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = 1.7,
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
study = "global",
...

)

plotLoadings 159

S3 method for class 'mint.plsda'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = 1.7,
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
contrib = NULL,
method = "mean",
show.ties = TRUE,
col.ties = "white",
legend = TRUE,
legend.color = NULL,
legend.title = "Outcome",
size.legend = 0.8,
study = "global",
...

)

S3 method for class 'mint.splsda'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = 1.7,
size.axis = 0.7,

160 plotLoadings

X.label = NULL,
Y.label = NULL,
size.labs = 1,
contrib = NULL,
method = "mean",
show.ties = TRUE,
col.ties = "white",
legend = TRUE,
legend.color = NULL,
legend.title = "Outcome",
size.legend = 0.8,
study = "global",
...

)

S3 method for class 'pca'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
size.title = 2,
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
...

)

S3 method for class 'mixo_pls'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,

plotLoadings 161

title = NULL,
subtitle,
size.title = 2,
size.subtitle = rel(1.5),
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
...

)

S3 method for class 'mixo_spls'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = rel(1.5),
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
...

)

S3 method for class 'rcc'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,

162 plotLoadings

title = NULL,
subtitle,
size.title = 2,
size.subtitle = rel(1.5),
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
...

)

S3 method for class 'sgcca'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = rel(1.5),
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
...

)

S3 method for class 'rgcca'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
col = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,

plotLoadings 163

title = NULL,
subtitle,
size.title = 2,
size.subtitle = rel(1.5),
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
...

)

S3 method for class 'mixo_plsda'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = 1.6,
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
contrib = NULL,
method = "mean",
show.ties = TRUE,
col.ties = "white",
legend = TRUE,
legend.color = NULL,
legend.title = "Outcome",
size.legend = 0.8,
...

)

S3 method for class 'mixo_splsda'
plotLoadings(
object,
comp = 1,
style = "graphics",

164 plotLoadings

ndisplay = NULL,
xlim = NULL,
layout = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = 1.6,
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
contrib = NULL,
method = "mean",
show.ties = TRUE,
col.ties = "white",
legend = TRUE,
legend.color = NULL,
legend.title = "Outcome",
size.legend = 0.8,
...

)

S3 method for class 'sgccda'
plotLoadings(
object,
comp = 1,
style = "graphics",
ndisplay = NULL,
xlim = NULL,
layout = NULL,
border = NA,
name.var = NULL,
size.name = 0.7,
title = NULL,
subtitle,
size.title = 2,
size.subtitle = 1.6,
size.axis = 0.7,
X.label = NULL,
Y.label = NULL,
size.labs = 1,
block,
contrib = NULL,
method = "mean",

plotLoadings 165

show.ties = TRUE,
col.ties = "white",
legend = TRUE,
legend.color = NULL,
legend.title = "Outcome",
size.legend = 0.8,
...

)

Arguments

object object

... not used.

style argument to be set to either 'graphics' or 'ggplot2' to indicate the style of
the plot. Default is 'graphics'.

comp integer value, which component to plot. Default is 1.

ndisplay integer indicating how many of the most important variables are to be plotted
(ranked by decreasing weights in each component). Useful to lighten a graph.

xlim Limit of the x-axis, vector of length 2.

layout Vector of two values (rows,cols) that indicates the layout of the plot. If layout
is provided, the remaining empty subplots are still active. See details and exam-
ples.

col color of barplot, only for non-DA methods.

border Argument from barplot: indicates whether to draw a border on the barplot and
in which colour. Note that for -DA methods, when contrib is not provided, the
colour is set to white and border black.

name.var A character vector or list indicating the names of the variables. For single block
analysis or when study="all.partial", a vector of length equal to the number
of variables in the block. For multi-block analysis, a list where each element is
a vector of length equal to the number of variables in the corresponding block.
The names of the vector should match the names of the input data, see example.

size.name A numerical value giving the amount by which plotting the variable name text
should be magnified or reduced relative to the default.

title Title of the plot. Default is NULL.

subtitle subtitle for each plot, only used when several block or study are plotted.

size.title size of the title

size.subtitle size of the subtitle

size.axis size of text on the X axis

X.label X axis label. Default is NULL.

Y.label Y axis label. Default is NULL.

size.labs size of the axis labels.

block A single value or vector indicating which block to plot. See details for behavior
depending on object type.

166 plotLoadings

study Indicates which study are to be plotted. A character vector containing some
levels of object$study, "all.partial" to plot all studies or "global" is expected.

contrib a character set to ’max’ or ’min’ indicating if the color of the bar should corre-
spond to the group with the maximal or minimal expression levels / abundance.

method a character set to ’mean’ or ’median’ indicating the criterion to assess the con-
tribution. We recommend using median in the case of count or skewed data.

show.ties Logical. If TRUE then tie groups appear in the color set by col.ties, which
will appear in the legend. Ties can happen when dealing with count data type.
By default set to TRUE.

col.ties Color corresponding to ties, only used if show.ties=TRUE and ties are present.

legend Logical indicating if the legend indicating the group outcomes should be added
to the plot. Default value is TRUE.

legend.color A color vector of length the number of group outcomes. See examples.

legend.title A set of characters to indicate the title of the legend. Default value is NULL.

size.legend A numerical value giving the amount by which plotting the legend text should
be magnified or reduced relative to the default.

Details

The contribution of each variable for each component (depending on the object) is represented in a
barplot where each bar length corresponds to the loading weight (importance) of the feature. The
loading weight can be positive or negative.

For discriminant analysis, the color corresponds to the group in which the feature is most ’abun-
dant’. Note that this type of graphical output is particularly insightful for count microbial data - in
that latter case using the method = 'median' is advised. Note also that if the parameter contrib is
not provided, plots are white.

For MINT analysis, study="global" plots the global loadings while partial loadings are plotted
when study is a level of object$study. Since variable selection in MINT is performed at the global
level, only the selected variables are plotted for the partial loadings even if the partial loadings are
not sparse. See references. Importantly for multi plots, the legend accounts for one subplot in the
layout design.

The block argument behavior varies depending on the object type. For mixo_pls, mixo_spls, rcc,
rgcca, sgcca, block can be any number of blocks from object$names$blocks. For codemint.pls,
mint.spls: when study="all.partial", can only be one block from object$names$blocks.

Value

Invisibly returns a data.frame containing the contribution of features on each component. For
supervised models the contributions for each class is also specified. See details.

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Benoit Gautier, Al J Abadi

plotLoadings 167

References

Rohart F. et al (2016, submitted). MINT: A multivariate integrative approach to identify a repro-
ducible biomarker signature across multiple experiments and platforms.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2013). Multi-group PLS Regression:
Application to Epidemiology. In New Perspectives in Partial Least Squares and Related Methods,
pages 243-255. Springer.

Singh A., Shannon C., Gautier B., Rohart F., Vacher M., Tebbutt S. and Lê Cao K.A. (2019),
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays,
Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062.

Lê Cao, K.-A., Martin, P.G.P., Robert-Granie, C. and Besse, P. (2009). Sparse canonical methods
for biological data integration: application to a cross-platform study. BMC Bioinformatics 10:34.

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Wold H. (1966). Estimation of principal components and related models by iterative least squares.
In: Krishnaiah, P. R. (editors), Multivariate Analysis. Academic Press, N.Y., 391-420.

See Also

pls, spls, plsda, splsda, mint.pls, mint.spls, mint.plsda, mint.splsda, block.pls, block.spls,
block.plsda, block.splsda, mint.block.pls, mint.block.spls, mint.block.plsda, mint.block.splsda

Examples

object of class 'spls'

data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$clinic

toxicity.spls = spls(X, Y, ncomp = 2, keepX = c(50, 50),
keepY = c(10, 10))

plotLoadings(toxicity.spls)

with xlim
xlim = c(-0.5, 0.5)
plotLoadings(toxicity.spls, xlim = xlim)

Not run:
object of class 'splsda'

data(liver.toxicity)
X = as.matrix(liver.toxicity$gene)
Y = as.factor(paste0('treatment_' ,liver.toxicity$treatment[, 4]))

splsda.liver = splsda(X, Y, ncomp = 2, keepX = c(20, 20))

contribution on comp 1, based on the median.
Colors indicate the group in which the median expression is maximal

168 plotLoadings

plotLoadings(splsda.liver, comp = 1, method = 'median')
plotLoadings(splsda.liver, comp = 1, method = 'median', contrib = "max")

contribution on comp 2, based on median.
#Colors indicate the group in which the median expression is maximal
plotLoadings(splsda.liver, comp = 2, method = 'median', contrib = "max")

contribution on comp 2, based on median.
Colors indicate the group in which the median expression is minimal
plotLoadings(splsda.liver, comp = 2, method = 'median', contrib = 'min')

look at the contribution (median) for each variable
plot.contrib = plotLoadings(splsda.liver, comp = 2, method = 'median', plot = FALSE,
contrib = "max")
head(plot.contrib[[1]][,1:4])
change the title of the legend and title name
plotLoadings(splsda.liver, comp = 2, method = 'median', legend.title = 'Time',
title = 'Contribution plot', contrib = "max")

no legend
plotLoadings(splsda.liver, comp = 2, method = 'median', legend = FALSE, contrib = "max")

change the color of the legend
plotLoadings(splsda.liver, comp = 2, method = 'median', legend.color = c(1:4), contrib = "max")

object 'splsda multilevel'

data(vac18)
X = vac18$genes
Y = vac18$stimulation
sample indicates the repeated measurements
sample = vac18$sample
stimul = vac18$stimulation

multilevel sPLS-DA model
res.1level = splsda(X, Y = stimul, ncomp = 3, multilevel = sample,
keepX = c(30, 137, 123))

name.var = vac18$tab.prob.gene[, 'Gene']
names(name.var) = colnames(X)

plotLoadings(res.1level, comp = 2, method = 'median', legend.title = 'Stimu',
name.var = name.var, size.name = 0.2, contrib = "max")

too many transcripts? only output the top ones
plotLoadings(res.1level, comp = 2, method = 'median', legend.title = 'Stimu',
name.var = name.var, size.name = 0.5, ndisplay = 60, contrib = "max")

plotLoadings 169

object 'plsda'

breast tumors

data(breast.tumors)
X = breast.tumors$gene.exp
Y = breast.tumors$sample$treatment

plsda.breast = plsda(X, Y, ncomp = 2)

name.var = as.character(breast.tumors$genes$name)
names(name.var) = colnames(X)

with gene IDs, showing the top 60
plotLoadings(plsda.breast, contrib = 'max', comp = 1, method = 'median',
ndisplay = 60,
name.var = name.var,
size.name = 0.6,
legend.color = color.mixo(1:2))

liver toxicity

data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$treatment[, 4]

plsda.liver = plsda(X, Y, ncomp = 2)

name.var = liver.toxicity$gene.ID[, 'geneBank']
names(name.var) = rownames(liver.toxicity$gene.ID)

plotLoadings(plsda.liver, contrib = 'max', comp = 1, method = 'median', ndisplay = 100,
name.var = name.var, size.name = 0.4,
legend.color = color.mixo(1:4))

object 'sgccda'

data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

nutrimouse.sgccda = wrapper.sgccda(X = data,
Y = Y,
design = design,
keepX = list(gene = c(10,10), lipid = c(15,15)),
ncomp = 2)

170 plotLoadings

plotLoadings(nutrimouse.sgccda,block=2)
plotLoadings(nutrimouse.sgccda,block="gene")

End(Not run)

#' PCA example
#' -----------
data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$clinic

#' Simple PCA plot
pca.liver = pca(X, ncomp = 2)
plotLoadings(pca.liver)

#' Customize PCA plot
plotLoadings(pca.liver,

comp = 2,
ndisplay = 20, # Show top 20 variables
col = "steelblue",
border = "black",
size.name = 0.8,
title = "PCA Loadings - Component 2",
X.label = "Loading value",
Y.label = "Variables")

#' PLS/SPLS example
#' ----------------
toxicity.spls = spls(X, Y, ncomp = 2, keepX = c(50, 50), keepY = c(10, 10))

#' Plot both blocks with custom layout
plotLoadings(toxicity.spls,

comp = 2,
block = c("X", "Y"),
layout = c(2, 2),
title = "PLS Loadings - Component 2",
subtitle = c("Gene Block", "Clinical Block"))

#' PLSDA/SPLSDA example
#' -------------------
X = as.matrix(liver.toxicity$gene)
Y = as.factor(paste0('treatment_', liver.toxicity$treatment[, 4]))
splsda.liver = splsda(X, Y, ncomp = 2, keepX = c(20, 20))

#' Show contribution with gene names
name.var = liver.toxicity$gene.ID[, 'geneBank']
names(name.var) = rownames(liver.toxicity$gene.ID)

plotLoadings(splsda.liver,
comp = 2,
method = 'median',

plotLoadings 171

contrib = "max",
name.var = name.var,
size.name = 0.5,
title = "Liver Treatment - Component 2",
legend.title = "Treatment",
legend.color = color.mixo(1:4))

#' MINT PLSDA example
#' -----------------
data(stemcells)
X = stemcells$gene
Y = stemcells$celltype
study = stemcells$study
mint.splsda = mint.splsda(X = X, Y = Y, ncomp = 3, keepX = c(10, 5, 15), study = study)

#' All partial loadings with custom layout
plotLoadings(mint.splsda,

comp = 2,
study = "all.partial",
contrib = "max",
method = "median",
layout = c(2, 4),
legend.color = color.mixo(1:3),
subtitle = paste("Study", 1:4),
show.ties = TRUE,
col.ties = "gray")

#' Advanced customization examples
#' -----------------------------

#' Custom variable names and sizes
plotLoadings(splsda.liver,

comp = 2,
method = 'median',
contrib = "max",
name.var = name.var,
size.name = 0.8,
title = "Custom Variable Names",
size.title = 1.2,
size.axis = 0.8,
size.labs = 1.0)

#' No legend
plotLoadings(splsda.liver,

comp = 2,
method = 'median',
contrib = "max",
legend = FALSE)

#' Custom legend
plotLoadings(splsda.liver,

comp = 2,

172 plotMarkers

method = 'median',
contrib = "max",
legend.title = "Treatment Groups",
legend.color = c("red", "blue", "green", "purple"),
size.legend = 0.8)

#' Minimal display with top variables
plotLoadings(splsda.liver,

comp = 2,
method = 'median',
contrib = "max",
ndisplay = 20, # Show only top 20 variables
title = "Top 20 Contributing Variables")

plotMarkers Plot the values for multivariate markers in block analyses

Description

Plots the standardised values (after centring and/or scaling) for the selected variables for a given
block on a given component. Only applies to block.splsda or block.spls.

Usage

plotMarkers(
object,
block,
markers = NULL,
comp = 1,
group = NULL,
col.per.group = NULL,
global = FALSE,
title = NULL,
violin = TRUE,
boxplot.width = NULL,
violin.width = 0.9

)

Arguments

object An object of class block.splsda or block.spls

block Name or index of the block to use

markers Character or integer, only include these markers. If integer, the top ’markers’
features are shown

comp Integer, the component to use

group Factor, the grouping variable (only required for block.spls objects)

plotVar 173

col.per.group character (or symbol) color to be used when ’group’ is defined. Vector of the
same length as the number of groups.

global Logical indicating whether to show the global plots (TRUE) or segregate by
feature (FALSE). Only available when object$scale=TRUE

title The plot title

violin (if global = FALSE) Logical indicating whether violin plots should also be
shown

boxplot.width Numeric, adjusts the width of the box plots

violin.width Numeric, adjusts the width of the violin plots

Value

A ggplot object

See Also

plotLoadings, block.splsda, block.spls

Examples

see ?block.splsda and ?block.spls

plotVar Plot of Variables

Description

This function provides variables representation for (regularized) CCA, (sparse) PLS regression,
PCA and (sparse) Regularized generalised CCA.

Usage

plotVar(
object,
comp = NULL,
comp.select = comp,
plot = TRUE,
var.names = NULL,
blocks = NULL,
X.label = NULL,
Y.label = NULL,
Z.label = NULL,
abline = TRUE,
col,
cex,
pch,

174 plotVar

font,
cutoff = 0,
rad.in = 0.5,
title = "Correlation Circle Plot",
legend = FALSE,
legend.title = "Block",
style = "ggplot2",
overlap = TRUE,
axes.box = "all",
label.axes.box = "both"

)

Arguments

object object of class inheriting from "rcc", "pls", "plsda", "spls", "splsda",
"pca" or "spca".

comp integer vector of length two. The components that will be used on the hori-
zontal and the vertical axis respectively to project the variables. By default,
comp=c(1,2) except when style=’3d’, comp=c(1:3)

comp.select for the sparse versions, an input vector indicating the components on which the
variables were selected. Only those selected variables are displayed. By default,
comp.select=comp

plot if TRUE (the default) then a plot is produced. If not, the summaries which the
plots are based on are returned.

var.names either a character vector of names for the variables to be plotted, or FALSE for
no names. If TRUE, the col names of the first (or second) data matrix is used as
names.

blocks for an object of class "rgcca" or "sgcca", a numerical vector indicating the
block variables to display.

X.label x axis titles.

Y.label y axis titles.

Z.label z axis titles (when style = ’3d’).

abline should the vertical and horizontal line through the center be plotted? Default set
to FALSE

col character or integer vector of colors for plotted character and symbols, can be
of length 2 (one for each data set) or of length (p+q) (i.e. the total number of
variables). See Details.

cex numeric vector of character expansion sizes for the plotted character and sym-
bols, can be of length 2 (one for each data set) or of length (p+q) (i.e. the total
number of variables).

pch plot character. A vector of single characters or integers, can be of length 2 (one
for each data set) or of length (p+q) (i.e. the total number of variables). See
points for all alternatives.

font numeric vector of font to be used, can be of length 2 (one for each data set) or
of length (p+q) (i.e. the total number of variables). See par for details.

plotVar 175

cutoff numeric between 0 and 1. Variables with correlations below this cutoff in abso-
lute value are not plotted (see Details).

rad.in numeric between 0 and 1, the radius of the inner circle. Defaults to 0.5.

title character indicating the title plot.

legend Logical when more than 3 blocks. Can be a character vector when one or 2
blocks to customize the legend. See examples. Default is FALSE.

legend.title title of the legend

style argument to be set to either 'graphics', 'lattice', 'ggplot2' or '3d' for a
style of plotting.

overlap Logical. Whether the variables should be plotted in one single figure. Default is
TRUE.

axes.box for style ’3d’, argument to be set to either 'axes', 'box', 'bbox' or 'all',
defining the shape of the box.

label.axes.box for style ’3d’, argument to be set to either 'axes', 'box', 'both', indicating
which labels to print.

Details

plotVar produce a "correlation circle", i.e. the correlations between each variable and the selected
components are plotted as scatter plot, with concentric circles of radius one et radius given by
rad.in. Each point corresponds to a variable. For (regularized) CCA the components correspond
to the equiangular vector between X- and Y -variates. For (sparse) PLS regression mode the com-
ponents correspond to the X-variates. If mode is canonical, the components for X and Y variables
correspond to the X- and Y -variates respectively.

For plsda and splsda objects, only the X variables are represented.

For spls and splsda objects, only the X and Y variables selected on dimensions comp are repre-
sented.

The arguments col, pch, cex and font can be either vectors of length two or a list with two vector
components of length p and q respectively, where p is the number of X-variables and q is the
number of Y -variables. In the first case, the first and second component of the vector determine the
graphics attributes for the X- and Y -variables respectively. Otherwise, multiple arguments values
can be specified so that each point (variable) can be given its own graphic attributes. In this case,
the first component of the list correspond to the X attributs and the second component correspond
to the Y attributs. Default values exist for this arguments.

Value

A list containing the following components:

x a vector of coordinates of the variables on the x-axis.

y a vector of coordinates of the variables on the y-axis.

Block the data block name each variable belongs to.

names the name of each variable, matching their coordinates values.

176 plotVar

Author(s)

Ignacio González, Benoit Gautier, Francois Bartolo, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

González I., Lê Cao K-A., Davis, M.J. and Déjean, S. (2012). Visualising associations between
paired ’omics data sets. J. Data Mining 5:19. http://www.biodatamining.org/content/5/1/
19/abstract

See Also

cim, network, par and http://www.mixOmics.org for more details.

Examples

variable representation for objects of class 'rcc'
--
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

plotVar(nutri.res) #(default)

plotVar(nutri.res, comp = c(1,3), cutoff = 0.5)

Not run:
variable representation for objects of class 'pls' or 'spls'
--
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))

plotVar(toxicity.spls, cex = c(1,0.8))

with a customized legend
plotVar(toxicity.spls, legend = c("block 1", "my block 2"),
legend.title="my legend")

variable representation for objects of class 'splsda'
--

data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])

ncomp <- 2
keepX <- rep(20, ncomp)

http://www.biodatamining.org/content/5/1/19/abstract
http://www.biodatamining.org/content/5/1/19/abstract

plotVar 177

splsda.liver <- splsda(X, Y, ncomp = ncomp, keepX = keepX)
plotVar(splsda.liver)

variable representation for objects of class 'sgcca' (or 'rgcca')
--
see example in ??wrapper.sgcca
data(nutrimouse)
need to unmap the Y factor diet
Y = unmap(nutrimouse$diet)
set up the data as list
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)

set up the design matrix:
with this design, gene expression and lipids are connected to the diet factor
design = matrix(c(0,0,1,
0,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

with this design, gene expression and lipids are connected to the diet factor
and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

#note: the penalty parameters will need to be tuned
wrap.result.sgcca = wrapper.sgcca(X = data, design = design, penalty = c(.3,.3, 1),
ncomp = 2)
wrap.result.sgcca

#variables selected on component 1 for each block
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'lipid'$name

#variables selected on component 2 for each block
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'lipid'$name

plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), comp.select = c(1,1),
title = c('Variables selected on component 1 only'))

plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), comp.select = c(2,2),
title = c('Variables selected on component 2 only'))

-> this one shows the variables selected on both components
plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2),
title = c('Variables selected on components 1 and 2'))

variable representation for objects of class 'rgcca'
--

data(nutrimouse)

178 pls

need to unmap Y for an unsupervised analysis, where Y is included as a data block in data
Y = unmap(nutrimouse$diet)

data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
with this design, all blocks are connected
design = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3,
byrow = TRUE, dimnames = list(names(data), names(data)))

nutrimouse.rgcca <- wrapper.rgcca(X = data,
design = design,
tau = "optimal",
ncomp = 2)

plotVar(nutrimouse.rgcca, comp = c(1,2), block = c(1,2), cex = c(1.5, 1.5))

plotVar(nutrimouse.rgcca, comp = c(1,2), block = c(1,2))

set up the data as list
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y =Y)
with this design, gene expression and lipids are connected to the diet factor
design = matrix(c(0,0,1,
0,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

with this design, gene expression and lipids are connected to the diet factor
and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the tau parameter is the regularization parameter
wrap.result.rgcca = wrapper.rgcca(X = data, design = design, tau = c(1, 1, 0),
ncomp = 2)
#wrap.result.rgcca
plotVar(wrap.result.rgcca, comp = c(1,2), block = c(1,2))

End(Not run)

pls Partial Least Squares (PLS) Regression

Description

Function to perform Partial Least Squares (PLS) regression.

Usage

pls(

pls 179

X,
Y,
ncomp = 2,
scale = TRUE,
mode = c("regression", "canonical", "invariant", "classic"),
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
logratio = "none",
multilevel = NULL,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X numeric matrix of predictors with the rows as individual observations. missing
values (NAs) are allowed.

Y numeric matrix of response(s) with the rows as individual observations matching
X. missing values (NAs) are allowed.

ncomp Positive Integer. The number of components to include in the model. Default to
2.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

logratio Character, one of (’none’,’CLR’) specifies the log ratio transformation to deal
with compositional values that may arise from specific normalisation in se-
quencing data. Default to ’none’. See ?logratio.transfo for details.

multilevel Numeric, design matrix for repeated measurement analysis, where multilevel
decomposition is required. For a one factor decomposition, the repeated mea-
sures on each individual, i.e. the individuals ID is input as the first column. For a
2 level factor decomposition then 2nd AND 3rd columns indicate those factors.
See examplesin ?spls.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

180 pls

Details

pls function fit PLS models with 1, . . . ,ncomp components. Multi-response models are fully sup-
ported. The X and Y datasets can contain missing values.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available:
PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis
("invariant") and the classical PLS algorithm ("classic") (see References). Different modes
relate on how the Y matrix is deflated across the iterations of the algorithms - i.e. the different
components.

- Regression mode: the Y matrix is deflated with respect to the information extracted/modelled from
the local regression on X. Here the goal is to predict Y from X (Y and X play an asymmetric role).
Consequently the latent variables computed to predict Y from X are different from those computed
to predict X from Y.

- Canonical mode: the Y matrix is deflated to the information extracted/modelled from the local re-
gression on Y. Here X and Y play a symmetric role and the goal is similar to a Canonical Correlation
type of analysis.

- Invariant mode: the Y matrix is not deflated

- Classic mode: is similar to a regression mode. It gives identical results for the variates and
loadings associated to the X data set, but differences for the loadings vectors associated to the Y data
set (different normalisations are used). Classic mode is the PLS2 model as defined by Tenenhaus
(1998), Chap 9.

Note that in all cases the results are the same on the first component as deflation only starts after
component 1.

Value

pls returns an object of class "pls", a list that contains the following components:

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

ncomp the number of components included in the model.

mode the algorithm used to fit the model.

variates list containing the variates.

loadings list containing the estimated loadings for the X and Y variates. The loading
weights multiplied with their associated deflated (residual) matrix gives the vari-
ate.

loadings.stars list containing the estimated weighted loadings for the X and Y variates. The
loading weights are projected so that when multiplied with their associated orig-
inal matrix we obtain the variate.

names list containing the names to be used for individuals and variables.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

pls 181

max.iter the maximum number of iterations, used for subsequent S3 methods

nzv list containing the zero- or near-zero predictors information.

scale whether scaling was applied per predictor.

logratio whether log ratio transformation for relative proportion data was applied, and if
so, which type of transformation.

prop_expl_var The proportion of the variance explained by each variate / component divided
by the total variance in the data (after removing the possible missing values)
using the definition of ’redundancy’. Note that contrary to PCA, this amount
may not decrease in the following components as the aim of the method is not
to maximise the variance, but the covariance between data sets (including the
dummy matrix representation of the outcome variable in case of the supervised
approaches).

input.X numeric matrix of predictors in X that was input, before any scaling / logratio /
multilevel transformation.

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

defl.matrix residual matrices X for each dimension.

missing values

The estimation of the missing values can be performed using the impute.nipals function. Oth-
erwise, missing values are handled by element-wise deletion in the pls function without having to
delete the rows with missing data.

multilevel

Multilevel (s)PLS enables the integration of data measured on two different data sets on the same
individuals. This approach differs from multilevel sPLS-DA as the aim is to select subsets of vari-
ables from both data sets that are highly positively or negatively correlated across samples. The
approach is unsupervised, i.e. no prior knowledge about the sample groups is included.

logratio and multilevel

logratio transform and multilevel analysis are performed sequentially as internal pre-processing
step, through logratio.transfo and withinVariation respectively.

Author(s)

Sébastien Déjean, Ignacio González, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Wold H. (1966). Estimation of principal components and related models by iterative least squares.
In: Krishnaiah, P. R. (editors), Multivariate Analysis. Academic Press, N.Y., 391-420.

Abdi H (2010). Partial least squares regression and projection on latent structure regression (PLS
Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97-106.

182 plsda

See Also

spls, summary, plotIndiv, plotVar, predict, perf and http://www.mixOmics.org for more de-
tails.

Examples

data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y, mode = "classic")

Not run:
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.pls <- pls(X, Y, ncomp = 3)

End(Not run)

plsda Partial Least Squares Discriminant Analysis (PLS-DA).

Description

Function to perform standard Partial Least Squares regression to classify samples.

Usage

plsda(
X,
Y,
ncomp = 2,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
logratio = c("none", "CLR"),
multilevel = NULL,
all.outputs = TRUE

)

Arguments

X numeric matrix of predictors with the rows as individual observations. missing
values (NAs) are allowed.

Y a factor or a class vector for the discrete outcome.

plsda 183

ncomp Positive Integer. The number of components to include in the model. Default to
2.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

logratio Character, one of (’none’,’CLR’) specifies the log ratio transformation to deal
with compositional values that may arise from specific normalisation in se-
quencing data. Default to ’none’. See ?logratio.transfo for details.

multilevel sample information for multilevel decomposition for repeated measurements. A
numeric matrix or data frame indicating the repeated measures on each individ-
ual, i.e. the individuals ID. See examples in ?splsda.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

plsda function fit PLS models with 1, ...,ncomp components to the factor or class vector Y. The
appropriate indicator matrix is created.

Logratio transformation and multilevel analysis are performed sequentially as internal pre-processing
step, through logratio.transfo and withinVariation respectively. Logratio can only be applied
if the data do not contain any 0 value (for count data, we thus advise the normalise raw data with a
1 offset).

The type of deflation used is 'regression' for discriminant algorithms. i.e. no deflation is per-
formed on Y.

Value

plsda returns an object of class "plsda", a list that contains the following components:

X the centered and standardized original predictor matrix.

Y the centered and standardized indicator response vector or matrix.

ind.mat the indicator matrix.

ncomp the number of components included in the model.

variates list containing the X and Y variates.

loadings list containing the estimated loadings associated to each component/variate. The
loading weights multiplied with the deflated (residual) matrix gives the variate.

loadings.stars list containing the estimated loadings associated to each component/variate. The
loading weights are projected so that when multiplied with the original matrix
we obtain the variate.

184 plsda

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter the maximum number of iterations, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

prop_expl_var The proportion of the variance explained by each variate / component divided
by the total variance in the data (after removing the possible missing values)
using the definition of ’redundancy’. Note that contrary to PCA, this amount
may not decrease in the following components as the aim of the method is not
to maximise the variance, but the covariance between data sets (including the
dummy matrix representation of the outcome variable in case of the supervised
approaches).

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

defl.matrix residual matrices X for each dimension.

Author(s)

Ignacio González, Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

References

On PLSDA: Barker M and Rayens W (2003). Partial least squares for discrimination. Journal of
Chemometrics 17(3), 166-173. Perez-Enciso, M. and Tenenhaus, M. (2003). Prediction of clinical
outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach.
Human Genetics 112, 581-592. Nguyen, D. V. and Rocke, D. M. (2002). Tumor classification by
partial least squares using microarray gene expression data. Bioinformatics 18, 39-50. On log ratio
transformation: Filzmoser, P., Hron, K., Reimann, C.: Principal component analysis for composi-
tional data with outliers. Environmetrics 20(6), 621-632 (2009) Lê Cao K.-A., Costello ME, Lakis
VA, Bartolo, F,Chua XY, Brazeilles R, Rondeau P. MixMC: Multivariate insights into Microbial
Communities. PLoS ONE, 11(8): e0160169 (2016). On multilevel decomposition: Westerhuis,
J.A., van Velzen, E.J., Hoefsloot, H.C., Smilde, A.K.: Multivariate paired data analysis: multilevel
plsda versus oplsda. Metabolomics 6(1), 119-128 (2010) Liquet, B., Lê Cao K.-A., Hocini, H.,
Thiebaut, R.: A novel approach for biomarker selection and the integration of repeated measures
experiments from two assays. BMC bioinformatics 13(1), 325 (2012)

See Also

splsda, summary, plotIndiv, plotVar, predict, perf, mint.block.plsda, block.plsda and
http://mixOmics.org for more details.

Examples

First example
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- breast.tumors$sample$treatment

predict 185

plsda.breast <- plsda(X, Y, ncomp = 2)
plotIndiv(plsda.breast, ind.names = TRUE, ellipse = TRUE, legend = TRUE)

Not run:
Second example
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$treatment[, 4]

plsda.liver <- plsda(X, Y, ncomp = 2)
plotIndiv(plsda.liver, ind.names = Y, ellipse = TRUE, legend =TRUE)

End(Not run)

predict Predict Method for (mint).(block).(s)pls(da) methods

Description

Predicted values based on PLS models. New responses and variates are predicted using a fitted
model and a new matrix of observations.

Usage

S3 method for class 'mixo_pls'
predict(
object,
newdata,
study.test,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
multilevel = NULL,
...

)

S3 method for class 'mixo_spls'
predict(
object,
newdata,
study.test,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
multilevel = NULL,
...

)

S3 method for class 'mint.splsda'
predict(
object,

186 predict

newdata,
study.test,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
multilevel = NULL,
...

)

S3 method for class 'block.pls'
predict(
object,
newdata,
study.test,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
multilevel = NULL,
...

)

S3 method for class 'block.spls'
predict(
object,
newdata,
study.test,
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
multilevel = NULL,
...

)

Arguments

object object of class inheriting from "(mint).(block).(s)pls(da)".

newdata data matrix in which to look for for explanatory variables to be used for predic-
tion. Please note that this method does not perform multilevel decomposition or
log ratio transformations, which need to be processed beforehand.

study.test For MINT objects, grouping factor indicating which samples of newdata are
from the same study. Overlap with object$study are allowed.

dist distance to be applied for discriminant methods to predict the class of new data,
should be a subset of "centroids.dist", "mahalanobis.dist" or "max.dist"
(see Details). Defaults to "all".

multilevel Design matrix for multilevel analysis (for repeated measurements). A numeric
matrix or data frame. For a one level factor decomposition, the input is a vector
indicating the repeated measures on each individual, i.e. the individuals ID. For
a two level decomposition with splsda models, the two factors are included in Y.
Finally for a two level decomposition with spls models, 2nd AND 3rd columns
in design indicate those factors (see example in ?splsda and ?spls).

... not used currently.

predict 187

Details

predict produces predicted values, obtained by evaluating the PLS-derived methods, returned
by (mint).(block).(s)pls(da) in the frame newdata. Variates for newdata are also returned.
Please note that this method performs multilevel decomposition and/or log ratio transformations if
needed (multilevel is an input parameter while logratio is extracted from object).

Different prediction distances are proposed for discriminant analysis. The reason is that our super-
vised models work with a dummy indicator matrix of Y to indicate the class membership of each
sample. The prediction of a new observation results in either a predicted dummy variable (output
object$predict), or a predicted variate (output object$variates). Therefore, an appropriate
distance needs to be applied to those predicted values to assign the predicted class. We propose
distances such as ‘maximum distance’ for the predicted dummy variables, ‘Mahalanobis distance’
and ‘Centroids distance’ for the predicted variates.

"max.dist" is the simplest method to predict the class of a test sample. For each new individual,
the class with the largest predicted dummy variable is the predicted class. This distance performs
well in single data set analysis with multiclass problems (PLS-DA).

"centroids.dist" allocates to the new observation the class that mimimises the distance between
the predicted score and the centroids of the classes calculated on the latent components or variates
of the trained model.

"mahalanobis.dist" allocates the new sample the class defined as the centroid distance, but using
the Mahalanobis metric in the calculation of the distance.

In practice we found that the centroid-based distances ("centroids.dist" and "mahalanobis.dist"),
and specifically the Mahalanobis distance led to more accurate predictions than the maximum dis-
tance for complex classification problems and N-integration problems (block.splsda). The centroid
distances consider the prediction in dimensional space spanned by the predicted variates, while the
maximum distance considers a single point estimate using the predicted scores on the last dimen-
sion of the model. The user can assess the different distances, and choose the prediction distance
that leads to the best performance of the model, as highlighted from the tune and perf outputs

More (mathematical) details about the prediction distances are available in the supplemental of the
mixOmics article (Rohart et al 2017).

For a visualisation of those prediction distances, see background.predict that overlays the pre-
diction area in plotIndiv for a sPLS-DA object.

Allocates the individual x to the class of Y minimizing dist(x-variate, Gl), where Gl, l = 1, ..., L
are the centroids of the classes calculated on the X-variates of the model. "mahalanobis.dist"
allocates the individual x to the class of Y as in "centroids.dist" but by using the Mahalanobis
metric in the calculation of the distance.

For MINT objects, the study.test argument is required and provides the grouping factor of
newdata.

For multi block analysis (thus block objects), newdata is a list of matrices whose names are a subset
of names(object$X) and missing blocks are allowed. Several predictions are returned, either for
each block or for all blocks. For non discriminant analysis, the predicted values (predict) are
returned for each block and these values are combined by average (AveragedPredict) or weighted
average (WeightedPredict), using the weights of the blocks that are calculated as the correlation
between a block’s components and the outcome’s components.

For discriminant analysis, the predicted class is returned for each block (class) and each distance
(dist) and these predictions are combined by majority vote (MajorityVote) or weighted majority

188 predict

vote (WeightedVote), using the weights of the blocks that are calculated as the correlation between
a block’s components and the outcome’s components. NA means that there is no consensus among
the block. For PLS-DA and sPLS-DA objects, the prediction area can be visualised in plotIndiv via
the background.predict function.

Value

predict produces a list with the following components:

predict predicted response values. The dimensions correspond to the observations, the
response variables and the model dimension, respectively. For a supervised
model, it corresponds to the predicted dummy variables.

variates matrix of predicted variates.
B.hat matrix of regression coefficients (without the intercept).
AveragedPredict

if more than one block, returns the average predicted values over the blocks
(using the predict output)

WeightedPredict

if more than one block, returns the weighted average of the predicted values over
the blocks (using the predict and weights outputs)

class predicted class of newdata for each 1, ...,ncomp components.
MajorityVote if more than one block, returns the majority class over the blocks. NA for a

sample means that there is no consensus on the predicted class for this particular
sample over the blocks.

WeightedVote if more than one block, returns the weighted majority class over the blocks. NA
for a sample means that there is no consensus on the predicted class for this
particular sample over the blocks.

weights Returns the weights of each block used for the weighted predictions, for each
nrepeat and each fold

centroids matrix of coordinates for centroids.
dist type of distance requested.
vote majority vote result for multi block analysis (see details above).

Author(s)

Florian Rohart, Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Al J Abadi

References

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

See Also

pls, spls, plsda, splsda, mint.pls, mint.spls, mint.plsda, mint.splsda, block.pls, block.spls,
block.plsda, block.splsda, mint.block.pls, mint.block.spls, mint.block.plsda, mint.block.splsda
and visualisation with background.predict and http://www.mixOmics.org for more details.

predict 189

Examples

data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y, ncomp = 2, mode = "classic")

indiv1 <- c(200, 40, 60)
indiv2 <- c(190, 45, 45)
newdata <- rbind(indiv1, indiv2)
colnames(newdata) <- colnames(X)
newdata

pred <- predict(linn.pls, newdata)

plotIndiv(linn.pls, comp = 1:2, rep.space = "X-variate",style="graphics",ind.names=FALSE)
points(pred$variates[, 1], pred$variates[, 2], pch = 19, cex = 1.2)
text(pred$variates[, 1], pred$variates[, 2],
c("new ind.1", "new ind.2"), pos = 3)

First example with plsda
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])

if training is perfomed on 4/5th of the original data
samp <- sample(1:5, nrow(X), replace = TRUE)
test <- which(samp == 1) # testing on the first fold
train <- setdiff(1:nrow(X), test)

plsda.train <- plsda(X[train,], Y[train], ncomp = 2)
test.predict <- predict(plsda.train, X[test,], dist = "max.dist")
Prediction <- test.predict$class$max.dist[, 2]
cbind(Y = as.character(Y[test]), Prediction)

Not run:
Second example with splsda
splsda.train <- splsda(X[train,], Y[train], ncomp = 2, keepX = c(30, 30))
test.predict <- predict(splsda.train, X[test,], dist = "max.dist")
Prediction <- test.predict$class$max.dist[, 2]
cbind(Y = as.character(Y[test]), Prediction)

example with block.splsda=diablo=sgccda and a missing block
data(nutrimouse)
need to unmap Y for an unsupervised analysis, where Y is included as a data block in data
Y.mat = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y.mat)
with this design, all blocks are connected
design = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3,
byrow = TRUE, dimnames = list(names(data), names(data)))

190 print

train on 75% of the data
ind.train=NULL
for(i in 1:nlevels(nutrimouse$diet))
ind.train=c(ind.train,which(nutrimouse$diet==levels(nutrimouse$diet)[i])[1:6])

#training set
gene.train=nutrimouse$gene[ind.train,]
lipid.train=nutrimouse$lipid[ind.train,]
Y.mat.train=Y.mat[ind.train,]
Y.train=nutrimouse$diet[ind.train]
data.train=list(gene=gene.train,lipid=lipid.train,Y=Y.mat.train)

#test set
gene.test=nutrimouse$gene[-ind.train,]
lipid.test=nutrimouse$lipid[-ind.train,]
Y.mat.test=Y.mat[-ind.train,]
Y.test=nutrimouse$diet[-ind.train]
data.test=list(gene=gene.test,lipid=lipid.test)

example with block.splsda=diablo=sgccda and a missing block
res.train = block.splsda(X=list(gene=gene.train,lipid=lipid.train),Y=Y.train,
ncomp=3,keepX=list(gene=c(10,10,10),lipid=c(5,5,5)))
test.predict = predict(res.train, newdata=data.test[2], method = "max.dist")

example with mint.splsda
data(stemcells)

#training set
ind.test = which(stemcells$study == "3")
gene.train = stemcells$gene[-ind.test,]
Y.train = stemcells$celltype[-ind.test]
study.train = factor(stemcells$study[-ind.test])

#test set
gene.test = stemcells$gene[ind.test,]
Y.test = stemcells$celltype[ind.test]
study.test = factor(stemcells$study[ind.test])

res = mint.splsda(X = gene.train, Y = Y.train, ncomp = 3, keepX = c(10, 5, 15),
study = study.train)

pred = predict(res, newdata = gene.test, study.test = study.test)

data.frame(Truth = Y.test, prediction = pred$class$max.dist)

End(Not run)

print Print Methods for CCA, (s)PLS, PCA and Summary objects

print 191

Description

Produce print methods for class "rcc", "pls", "spls", "pca", "rgcca", "sgcca" and "summary".

Usage

S3 method for class 'mixo_pls'
print(x, ...)

S3 method for class 'mint.pls'
print(x, ...)

S3 method for class 'mixo_plsda'
print(x, ...)

S3 method for class 'mint.plsda'
print(x, ...)

S3 method for class 'mixo_spls'
print(x, ...)

S3 method for class 'mint.spls'
print(x, ...)

S3 method for class 'mixo_splsda'
print(x, ...)

S3 method for class 'mint.splsda'
print(x, ...)

S3 method for class 'rcc'
print(x, ...)

S3 method for class 'pca'
print(x, ...)

S3 method for class 'ipca'
print(x, ...)

S3 method for class 'sipca'
print(x, ...)

S3 method for class 'rgcca'
print(x, ...)

S3 method for class 'sgcca'
print(x, ...)

S3 method for class 'sgccda'

192 print

print(x, ...)

S3 method for class 'summary'
print(x, ...)

S3 method for class 'perf.pls.mthd'
print(x, ...)

S3 method for class 'perf.plsda.mthd'
print(x, ...)

S3 method for class 'perf.splsda.mthd'
print(x, ...)

S3 method for class 'perf.mint.splsda.mthd'
print(x, ...)

S3 method for class 'perf.sgccda.mthd'
print(x, ...)

S3 method for class 'tune.pca'
print(x, ...)

S3 method for class 'tune.spca'
print(x, ...)

S3 method for class 'tune.rcc'
print(x, ...)

S3 method for class 'tune.splsda'
print(x, ...)

S3 method for class 'tune.pls'
print(x, ...)

S3 method for class 'tune.spls1'
print(x, ...)

S3 method for class 'tune.mint.splsda'
print(x, ...)

S3 method for class 'tune.block.splsda'
print(x, ...)

S3 method for class 'predict'
print(x, ...)

print 193

Arguments

x object of class inherited from "rcc", "pls", "spls", "pca", "spca", "rgcca",
"sgcca" or "summary".

... not used currently.

Details

print method for "rcc", "pls", "spls" "pca", "rgcca", "sgcca" class, returns a description of
the x object including: the function used, the regularization parameters (if x of class "rcc"), the
(s)PLS algorithm used (if x of class "pls" or "spls"), the samples size, the number of variables
selected on each of the sPLS components (if x of class "spls") and the available components of
the object.

print method for "summary" class, gives the (s)PLS algorithm used (if x of class "pls" or "spls"),
the number of variates considered, the canonical correlations (if x of class "rcc"), the number
of variables selected on each of the sPLS components (if x of class "spls") and the available
components for Communalities Analysis, Redundancy Analysis and Variable Importance in the
Projection (VIP).

Value

none

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Fangzhou Yao, Jeff Coquery, Al J Abadi.

See Also

rcc, pls, spls, vip.

Examples

print for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
print(nutri.res)

Not run:
print for objects of class 'summary'
more <- summary(nutri.res, cutoff = 0.65)
print(more)

print for objects of class 'pls'
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)
print(linn.pls)

194 rcc

print for objects of class 'spls'
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))
print(toxicity.spls)

End(Not run)

rcc Regularized Canonical Correlation Analysis

Description

The function performs the regularized extension of the Canonical Correlation Analysis to seek
correlations between two data matrices.

Usage

rcc(
X,
Y,
ncomp = 2,
method = c("ridge", "shrinkage"),
lambda1 = 0,
lambda2 = 0,
verbose.call = FALSE

)

Arguments

X numeric matrix or data frame (n× p), the observations on the X variables. NAs
are allowed.

Y numeric matrix or data frame (n× q), the observations on the Y variables. NAs
are allowed.

ncomp the number of components to include in the model. Default to 2.

method One of "ridge" or "shrinkage". If "ridge", lambda1 and lambda2 need to be
supplied (see also our function tune.rcc); if "shrinkage", parameters are directly
estimated with Strimmer’s formula, see below and reference.

lambda1, lambda2
a non-negative real. The regularization parameter for the X and Y data. Defaults
to lambda1=lambda2=0. Only used if method="ridge"

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

rcc 195

Details

The main purpose of Canonical Correlations Analysis (CCA) is the exploration of sample correla-
tions between two sets of variables X and Y observed on the same individuals (experimental units)
whose roles in the analysis are strictly symmetric.

The cancor function performs the core of computations but additional tools are required to deal with
data sets highly correlated (nearly collinear), data sets with more variables than units by example.

The rcc function, the regularized version of CCA, is one way to deal with this problem by including
a regularization step in the computations of CCA. Such a regularization in this context was first pro-
posed by Vinod (1976), then developped by Leurgans et al. (1993). It consists in the regularization
of the empirical covariances matrices of X and Y by adding a multiple of the matrix identity, that
is, Cov(X) + λ1I and Cov(Y) + λ2I .

When lambda1=0 and lambda2=0, rcc performs a classical CCA, if possible (i.e. when n > p+ q.

The shrinkage estimates method = "shrinkage" can be used to bypass tune.rcc to choose the
shrinkage parameters - which can be long and costly to compute with very large data sets. Note that
both functions tune.rcc (which uses cross-validation) and the shrinkage parameters (which uses
the formula from Schafer and Strimmer, see the corpcor package estimate.lambda) may output
different results.

Note: when method = "shrinkage" the parameters are estimated using estimate.lambda from the
corpcor package. Data are then centered to calculate the regularised variance-covariance matrices
in rcc.

Missing values are handled in the function, except when using method = "shrinkage". In that case
the estimation of the missing values can be performed by the reconstitution of the data matrix using
the nipals function.

Value

rcc returns a object of class "rcc", a list that contains the following components:

X the original X data.
Y the original Y data.
cor a vector containing the canonical correlations.
lambda a vector containing the regularization parameters whether those were input if

ridge method or directly estimated with the shrinkage method.
loadings list containing the estimated coefficients used to calculate the canonical variates

in X and Y .
variates list containing the canonical variates.
names list containing the names to be used for individuals and variables.
prop_expl_var Proportion of the explained variance of derived components, after setting possi-

ble missing values to zero.
call if verbose.call = FALSE, then just the function call is returned. If verbose.call

= TRUE then all the inputted values are accessable via this component

Author(s)

Sébastien Déjean, Ignacio González, Francois Bartolo, Kim-Anh Lê Cao, Florian Rohart, Al J
Abadi

196 rcc

References

González, I., Déjean, S., Martin, P. G., and Baccini, A. (2008). CCA: An R package to extend
canonical correlation analysis. Journal of Statistical Software, 23(12), 1-14.

González, I., Déjean, S., Martin, P., Goncalves, O., Besse, P., and Baccini, A. (2009). Highlighting
relationships between heterogeneous biological data through graphical displays based on regular-
ized canonical correlation analysis. Journal of Biological Systems, 17(02), 173-199.

Leurgans, S. E., Moyeed, R. A. and Silverman, B. W. (1993). Canonical correlation analysis when
the data are curves. Journal of the Royal Statistical Society. Series B 55, 725-740.

Vinod, H. D. (1976). Canonical ridge and econometrics of joint production. Journal of Economet-
rics 6, 129-137.

Opgen-Rhein, R., and K. Strimmer. 2007. Accurate ranking of differentially expressed genes by a
distribution-free shrinkage approach. Statist. emphAppl. Genet. Mol. Biol. 6:9. (http://www.bepress.com/sagmb/vol6/iss1/art9/)

Sch"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estima-
tion and implications for functional genomics. Statist. emphAppl. Genet. Mol. Biol. 4:32.
(http://www.bepress.com/sagmb/vol4/iss1/art32/)

See Also

summary, tune.rcc, plot.rcc, plotIndiv, plotVar, cim, network and http://www.mixOmics.org
for more details.

Examples

Classic CCA
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.res <- rcc(X, Y)

Not run:
Regularized CCA
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res1 <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

using shrinkage parameters
nutri.res2 <- rcc(X, Y, ncomp = 3, method = 'shrinkage')
nutri.res2$lambda # the shrinkage parameters

End(Not run)

selectVar 197

selectVar Output of selected variables

Description

This function outputs the selected variables on each component for the sparse versions of the ap-
proaches (was also generalised to the non sparse versions for our internal functions).

Usage

selectVar(...)

S3 method for class 'mixo_pls'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'mixo_spls'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'pca'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'sgcca'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'rgcca'
selectVar(object, comp = 1, block = NULL, ...)

Arguments

... other arguments.

object object of class inherited from "pls", "spls", "plsda","splsda","sgcca", "rgcca",
"pca", "spca", "sipca".

comp integer value indicating the component of interest.

block for an object of class "sgcca", the block data sets can be specified as an input
vector, for example c(1,2) for the first two blocks. Default to NULL (all block
data sets)

Details

selectVar provides the variables selected on a given component. \

list("name") outputs the name of the selected variables (provided that the input data have column
names) ranked in decreasing order of importance.

list("value") outputs the loading value for each selected variable, the loadings are ranked accord-
ing to their absolute value.

These functions are only implemented for the sparse versions.

198 selectVar

Value

none

Author(s)

Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

Examples

data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$clinic

example with sPCA

liver.spca <- spca(X, ncomp = 1, keepX = 10)
selectVar(liver.spca, comp = 1)$name
selectVar(liver.spca, comp = 1)$value

Not run:
#example with sIPCA

liver.sipca <- sipca(X, ncomp = 3, keepX = rep(10, 3))
selectVar(liver.sipca, comp = 1)

example with sPLS

liver.spls = spls(X, Y, ncomp = 2, keepX = c(20, 40),keepY = c(5, 5))
selectVar(liver.spls, comp = 2)

example with sPLS-DA
data(srbct) # an example with no gene name in the data
X = srbct$gene
Y = srbct$class

srbct.splsda = splsda(X, Y, ncomp = 2, keepX = c(5, 10))
select = selectVar(srbct.splsda, comp = 2)
select
this is a very specific case where a data set has no rownames.
srbct$gene.name[substr(select$select, 2,5),]

example with sGCCA

data(nutrimouse)

! need to unmap the Y factor
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid,Y)

sipca 199

in this design, gene expression and lipids are connected to the diet factor
and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the penalty parameters need to be tuned
wrap.result.sgcca = wrapper.sgcca(X = data, design = design, penalty = c(.3,.3, 1),
ncomp = 2)

#variables selected and loadings values on component 1 for the two blocs
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))

#variables selected on component 1 for each block
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'lipid'$name

#variables selected on component 2 for each block
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'lipid'$name

loading value of the variables selected on the first block
selectVar(wrap.result.sgcca, comp = 1, block = 1)$'gene'$value

End(Not run)

sipca Independent Principal Component Analysis

Description

Performs sparse independent principal component analysis on the given data matrix to enable vari-
able selection.

Usage

sipca(
X,
ncomp = 3,
mode = c("deflation", "parallel"),
fun = c("logcosh", "exp"),
scale = FALSE,
max.iter = 200,
tol = 1e-04,
keepX = rep(50, ncomp),
w.init = NULL

)

200 sipca

Arguments

X a numeric matrix (or data frame).

ncomp integer, number of independent component to choose. Set by default to 3.

mode character string. What type of algorithm to use when estimating the unmixing
matrix, choose one of "deflation", "parallel". Default set to deflation.

fun the function used in approximation to neg-entropy in the FastICA algorithm.
Default set to logcosh, see details of FastICA.

scale (Default=FALSE) Logical indicating whether the variables should be scaled to
have unit variance before the analysis takes place. The default is FALSE for con-
sistency with prcomp function, but in general scaling is advisable. Alternatively,
a vector of length equal the number of columns of X can be supplied. The value
is passed to scale.

max.iter integer, the maximum number of iterations.

tol a positive scalar giving the tolerance at which the un-mixing matrix is considered
to have converged, see fastICA package.

keepX the number of variable to keep on each dimensions.

w.init initial un-mixing matrix (unlike fastICA, this matrix is fixed here).

Details

See Details of ipca.

Soft thresholding is implemented on the independent loading vectors to obtain sparse loading vec-
tors and enable variable selection.

Value

pca returns a list with class "ipca" containing the following components:

ncomp the number of principal components used.

unmixing the unmixing matrix of size (ncomp x ncomp)

mixing the mixing matrix of size (ncomp x ncomp

X the centered data matrix

x the principal components (with sparse independent loadings)

loadings the sparse independent loading vectors

kurtosis the kurtosis measure of the independent loading vectors

prop_expl_var Proportion of the explained variance of derived components, after setting possi-
ble missing values to zero.

Author(s)

Fangzhou Yao, Jeff Coquery, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi

spca 201

References

Yao, F., Coquery, J. and Lê Cao, K.-A. (2011) Principal component analysis with independent
loadings: a combination of PCA and ICA. (in preparation)

A. Hyvarinen and E. Oja (2000) Independent Component Analysis: Algorithms and Applications,
Neural Networks, 13(4-5):411-430

J L Marchini, C Heaton and B D Ripley (2010). fastICA: FastICA Algorithms to perform ICA and
Projection Pursuit. R package version 1.1-13.

See Also

ipca, pca, plotIndiv, plotVar and http://www.mixOmics.org for more details.

Examples

data(liver.toxicity)

implement IPCA on a microarray dataset
sipca.res <- sipca(liver.toxicity$gene, ncomp = 3, mode="deflation", keepX=c(50,50,50))
sipca.res

samples representation
plotIndiv(sipca.res, ind.names = liver.toxicity$treatment[, 4],
group = as.numeric(as.factor(liver.toxicity$treatment[, 4])))

Not run:
plotIndiv(sipca.res, cex = 0.01,

col = as.numeric(as.factor(liver.toxicity$treatment[, 4])),
style="3d")

variables representation
plotVar(sipca.res, cex = 2.5)

plotVar(sipca.res, rad.in = 0.5, cex = .6, style="3d")

End(Not run)

spca Sparse Principal Components Analysis

Description

Performs a sparse principal component analysis for variable selection using singular value decom-
position and lasso penalisation on the loading vectors.

202 spca

Usage

spca(
X,
ncomp = 2,
center = TRUE,
scale = TRUE,
keepX = rep(ncol(X), ncomp),
max.iter = 500,
tol = 1e-06,
logratio = c("none", "CLR"),
multilevel = NULL,
verbose.call = FALSE

)

Arguments

X a numeric matrix (or data frame) which provides the data for the sparse principal
components analysis. It should not contain missing values.

ncomp Integer, if data is complete ncomp decides the number of components and as-
sociated eigenvalues to display from the pcasvd algorithm and if the data has
missing values, ncomp gives the number of components to keep to perform the
reconstitution of the data using the NIPALS algorithm. If NULL, function sets
ncomp = min(nrow(X),ncol(X))

center (Default=TRUE) Logical, whether the variables should be shifted to be zero
centered. Only set to FALSE if data have already been centered. Alternatively, a
vector of length equal the number of columns of X can be supplied. The value is
passed to scale. If the data contain missing values, columns should be centered
for reliable results.

scale (Default=TRUE) Logical indicating whether the variables should be scaled to
have unit variance before the analysis takes place.

keepX numeric vector of length ncomp, the number of variables to keep in loading
vectors. By default all variables are kept in the model. See details.

max.iter Integer, the maximum number of iterations in the NIPALS algorithm.

tol Positive real, the tolerance used in the NIPALS algorithm.

logratio one of (’none’,’CLR’). Specifies the log ratio transformation to deal with com-
positional values that may arise from specific normalisation in sequencing data.
Default to ’none’

multilevel sample information for multilevel decomposition for repeated measurements.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

scale= TRUE is highly recommended as it will help obtaining orthogonal sparse loading vectors.

spca 203

keepX is the number of variables to select in each loading vector, i.e. the number of variables with
non zero coefficient in each loading vector.

Note that data can contain missing values only when logratio = 'none' is used. In this case,
center=TRUE should be used to center the data in order to effectively ignore the missing values.
This is the default behaviour in spca.

According to Filzmoser et al., a ILR log ratio transformation is more appropriate for PCA with
compositional data. Both CLR and ILR are valid.

Logratio transform and multilevel analysis are performed sequentially as internal pre-processing
step, through logratio.transfo and withinVariation respectively.

Logratio can only be applied if the data do not contain any 0 value (for count data, we thus advise
the normalise raw data with a 1 offset). For ILR transformation and additional offset might be
needed.

The principal components are not guaranteed to be orthogonal in sPCA. We adopt the approach of
Shen and Huang 2008 (Section 2.3) to estimate the explained variance in the case where the sparse
loading vectors (and principal components) are not orthogonal. The data are projected onto the
space spanned by the first loading vectors and the variance explained is then adjusted for potential
correlation between PCs. Note that in practice, the loading vectors tend to be orthogonal if the data
are centered and scaled in sPCA.

Value

spca returns a list with class "spca" containing the following components:

call if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then
all the inputted values are accessable via this component

ncomp the number of components to keep in the calculation.

prop_expl_var the adjusted percentage of variance explained for each component.

cum.var the adjusted cumulative percentage of variances explained.

keepX the number of variables kept in each loading vector.

iter the number of iterations needed to reach convergence for each component.

rotation the matrix containing the sparse loading vectors.

x the matrix containing the principal components.

Author(s)

Kim-Anh Lê Cao, Fangzhou Yao, Leigh Coonan, Ignacio Gonzalez, Al J Abadi

References

Shen, H. and Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank
matrix approximation. Journal of Multivariate Analysis 99, 1015-1034.

See Also

pca and http://www.mixOmics.org for more details.

204 spls

Examples

data(liver.toxicity)
spca.rat <- spca(liver.toxicity$gene, ncomp = 3, keepX = rep(50, 3))
spca.rat

variable representation
plotVar(spca.rat, cex = 1)
Not run:
plotVar(spca.rat,style="3d")

End(Not run)

samples representation
plotIndiv(spca.rat, ind.names = liver.toxicity$treatment[, 3],

group = as.numeric(liver.toxicity$treatment[, 3]))

Not run:
plotIndiv(spca.rat, cex = 0.01,
col = as.numeric(liver.toxicity$treatment[, 3]),style="3d")

End(Not run)

example with multilevel decomposition and CLR log ratio transformation
data("diverse.16S")
spca.res = spca(X = diverse.16S$data.TSS, ncomp = 5,
logratio = 'CLR', multilevel = diverse.16S$sample)
plot(spca.res)
plotIndiv(spca.res, ind.names = FALSE, group = diverse.16S$bodysite, title = '16S diverse data',
legend=TRUE)

spls Sparse Partial Least Squares (sPLS)

Description

Function to perform sparse Partial Least Squares (sPLS). The sPLS approach combines both inte-
gration and variable selection simultaneously on two data sets in a one-step strategy.

Usage

spls(
X,
Y,
ncomp = 2,
mode = c("regression", "canonical", "invariant", "classic"),
keepX,
keepY,
scale = TRUE,
tol = 1e-06,

spls 205

max.iter = 100,
near.zero.var = FALSE,
logratio = "none",
multilevel = NULL,
all.outputs = TRUE,
verbose.call = FALSE

)

Arguments

X numeric matrix of predictors with the rows as individual observations. missing
values (NAs) are allowed.

Y numeric matrix of response(s) with the rows as individual observations matching
X. missing values (NAs) are allowed.

ncomp Positive Integer. The number of components to include in the model. Default to
2.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

keepY numeric vector of length ncomp, the number of variables
scale Logical. If scale = TRUE, each block is standardized to zero means and unit

variances (default: TRUE)
tol Positive numeric used as convergence criteria/tolerance during the iterative pro-

cess. Default to 1e-06.
max.iter Integer, the maximum number of iterations. Default to 100.
near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-

ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

logratio Character, one of (’none’,’CLR’) specifies the log ratio transformation to deal
with compositional values that may arise from specific normalisation in se-
quencing data. Default to ’none’. See ?logratio.transfo for details.

multilevel Numeric, design matrix for repeated measurement analysis, where multilevel
decomposition is required. For a one factor decomposition, the repeated mea-
sures on each individual, i.e. the individuals ID is input as the first column. For a
2 level factor decomposition then 2nd AND 3rd columns indicate those factors.
See examples.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.

Details

spls function fit sPLS models with 1, . . . ,ncomp components. Multi-response models are fully
supported. The X and Y datasets can contain missing values.

206 spls

Value

spls returns an object of class "spls", a list that contains the following components:

call if verbose.call = FALSE, then just the function call is returned. If verbose.call
= TRUE then all the inputted values are accessable via this component

X the centered and standardized original predictor matrix.

Y the centered and standardized original response vector or matrix.

ncomp the number of components included in the model.

mode the algorithm used to fit the model.

keepX number of X variables kept in the model on each component.

keepY number of Y variables kept in the model on each component.

variates list containing the variates.

loadings list containing the estimated loadings for the X and Y variates.

names list containing the names to be used for individuals and variables.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

max.iter the maximum number of iterations, used for subsequent S3 methods

nzv list containing the zero- or near-zero predictors information.

scale whether scaling was applied per predictor.

logratio whether log ratio transformation for relative proportion data was applied, and if
so, which type of transformation.

prop_expl_var Proportion of variance explained per component (note that contrary to PCA,
this amount may not decrease as the aim of the method is not to maximise the
variance, but the covariance between data sets).

input.X numeric matrix of predictors in X that was input, before any saling / logratio /
multilevel transformation.

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

defl.matrix residual matrices X for each dimension.

missing values

The estimation of the missing values can be performed using the impute.nipals function. Oth-
erwise, missing values are handled by element-wise deletion in the pls function without having to
delete the rows with missing data.

multilevel

Multilevel (s)PLS enables the integration of data measured on two different data sets on the same
individuals. This approach differs from multilevel sPLS-DA as the aim is to select subsets of vari-
ables from both data sets that are highly positively or negatively correlated across samples. The
approach is unsupervised, i.e. no prior knowledge about the sample groups is included.

spls 207

logratio and multilevel

logratio transform and multilevel analysis are performed sequentially as internal pre-processing
step, through logratio.transfo and withinVariation respectively.

Author(s)

Sébastien Déjean, Ignacio González, Florian Rohart, Kim-Anh Lê Cao, Al J abadi

References

Sparse PLS: canonical and regression modes:

Lê Cao, K.-A., Martin, P.G.P., Robert-Granie, C. and Besse, P. (2009). Sparse canonical methods
for biological data integration: application to a cross-platform study. BMC Bioinformatics 10:34.

Lê Cao, K.-A., Rossouw, D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

Sparse SVD: Shen, H. and Huang, J. Z. (2008). Sparse principal component analysis via regularized
low rank matrix approximation. Journal of Multivariate Analysis 99, 1015-1034.

PLS methods: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic. Chapters 9 and 11.

Abdi H (2010). Partial least squares regression and projection on latent structure regression (PLS
Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97-106.

Wold H. (1966). Estimation of principal components and related models by iterative least squares.
In: Krishnaiah, P. R. (editors), Multivariate Analysis. Academic Press, N.Y., 391-420.

On multilevel analysis:

Liquet, B., Lê Cao, K.-A., Hocini, H. and Thiebaut, R. (2012) A novel approach for biomarker
selection and the integration of repeated measures experiments from two platforms. BMC Bioinfor-
matics 13:325.

Westerhuis, J. A., van Velzen, E. J., Hoefsloot, H. C., and Smilde, A. K. (2010). Multivariate paired
data analysis: multilevel PLSDA versus OPLSDA. Metabolomics, 6(1), 119-128.

See Also

pls, summary, plotIndiv, plotVar, cim, network, predict, perf and http://www.mixOmics.org
for more details.

Examples

data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic

toxicity.spls <- spls(X, Y, ncomp = 2, keepX = c(50, 50),
keepY = c(10, 10))

toxicity.spls <- spls(X, Y[,1:2,drop=FALSE], ncomp = 5, keepX = c(50, 50))#, mode="canonical")

208 spls

Not run:

Second example: one-factor multilevel analysis with sPLS, selecting a subset of variables
#--

data(liver.toxicity)
note: we made up those data, pretending they are repeated measurements
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,
6, 5, 6, 7, 7, 8, 6, 7, 8, 7, 8, 8, 9, 10, 9, 10, 11, 9, 9,
10, 11, 12, 12, 10, 11, 12, 11, 12, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 15, 16)
summary(as.factor(repeat.indiv)) # 16 rats, 4 measurements each

this is a spls (unsupervised analysis) so no need to mention any factor in design
we only perform a one level variation split
design <- data.frame(sample = repeat.indiv)
res.spls.1level <- spls(X = liver.toxicity$gene,
Y=liver.toxicity$clinic,
multilevel = design,
ncomp = 3,
keepX = c(50, 50, 50), keepY = c(5, 5, 5),
mode = 'canonical')

set up colors and pch for plotIndiv
col.stimu <- 1:nlevels(design$stimu)

plotIndiv(res.spls.1level, rep.space = 'X-variate', ind.names = FALSE,
group = liver.toxicity$treatment$Dose.Group,
pch = 20, main = 'Gene expression subspace',
legend = TRUE)

plotIndiv(res.spls.1level, rep.space = 'Y-variate', ind.names = FALSE,
group = liver.toxicity$treatment$Dose.Group,
pch = 20, main = 'Clinical measurements ssubpace',
legend = TRUE)

plotIndiv(res.spls.1level, rep.space = 'XY-variate', ind.names = FALSE,
group = liver.toxicity$treatment$Dose.Group,
pch = 20, main = 'Both Gene expression and Clinical subspaces',
legend = TRUE)

Third example: two-factor multilevel analysis with sPLS, selecting a subset of variables
#--

data(liver.toxicity)
dose <- as.factor(liver.toxicity$treatment$Dose.Group)
time <- as.factor(liver.toxicity$treatment$Time.Group)
note: we made up those data, pretending they are repeated measurements
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,
6, 5, 6, 7, 7, 8, 6, 7, 8, 7, 8, 8, 9, 10, 9, 10, 11, 9, 9,
10, 11, 12, 12, 10, 11, 12, 11, 12, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 15, 16)

splsda 209

summary(as.factor(repeat.indiv)) # 16 rats, 4 measurements each
design <- data.frame(sample = repeat.indiv, dose = dose, time = time)

res.spls.2level = spls(liver.toxicity$gene,
Y = liver.toxicity$clinic,
multilevel = design,
ncomp=2,
keepX = c(10,10), keepY = c(5,5))

End(Not run)

splsda Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)

Description

Function to perform sparse Partial Least Squares to classify samples (supervised analysis) and select
variables.

Usage

splsda(
X,
Y,
ncomp = 2,
keepX,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
logratio = "none",
multilevel = NULL,
all.outputs = TRUE

)

Arguments

X numeric matrix of predictors with the rows as individual observations. missing
values (NAs) are allowed.

Y a factor or a class vector for the discrete outcome.

ncomp Positive Integer. The number of components to include in the model. Default to
2.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

210 splsda

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

logratio Character, one of (’none’,’CLR’) specifies the log ratio transformation to deal
with compositional values that may arise from specific normalisation in se-
quencing data. Default to ’none’. See ?logratio.transfo for details.

multilevel sample information for multilevel decomposition for repeated measurements. A
numeric matrix or data frame indicating the repeated measures on each individ-
ual, i.e. the individuals ID. See examples in ?splsda.

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

splsda function fits an sPLS model with 1, . . . ,ncomp components to the factor or class vector Y.
The appropriate indicator (dummy) matrix is created.

Logratio transformation and multilevel analysis are performed sequentially as internal pre-processing
step, through logratio.transfo and withinVariation respectively. Logratio can only be applied
if the data do not contain any 0 value (for count data, we thus advise the normalise raw data with a
1 offset).

The type of deflation used is 'regression' for discriminant algorithms. i.e. no deflation is per-
formed on Y.

Value

splsda returns an object of class "splsda", a list that contains the following components:

X the centered and standardized original predictor matrix.

Y the centered and standardized indicator response vector or matrix.

ind.mat the indicator matrix.

ncomp the number of components included in the model.

keepX number of X variables kept in the model on each component.

variates list containing the variates.

loadings list containing the estimated loadings for the X and Y variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

max.iter the maximum number of iterations, used for subsequent S3 methods

scale Logical indicating whether the data were scaled in MINT S3 methods

splsda 211

logratio whether logratio transformations were used for compositional data

prop_expl_var Proportion of variance explained per component after setting possible missing
values in the data to zero (note that contrary to PCA, this amount may not de-
crease as the aim of the method is not to maximise the variance, but the covari-
ance between X and the dummy matrix Y).

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.

defl.matrix residual matrices X for each dimension.

Author(s)

Florian Rohart, Ignacio González, Kim-Anh Lê Cao, Al J abadi

References

On sPLS-DA: Lê Cao, K.-A., Boitard, S. and Besse, P. (2011). Sparse PLS Discriminant Analysis:
biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioin-
formatics 12:253. On log ratio transformations: Filzmoser, P., Hron, K., Reimann, C.: Principal
component analysis for compositional data with outliers. Environmetrics 20(6), 621-632 (2009) Lê
Cao K.-A., Costello ME, Lakis VA, Bartolo, F,Chua XY, Brazeilles R, Rondeau P. MixMC: Multi-
variate insights into Microbial Communities. PLoS ONE, 11(8): e0160169 (2016). On multilevel
decomposition: Westerhuis, J.A., van Velzen, E.J., Hoefsloot, H.C., Smilde, A.K.: Multivariate
paired data analysis: multilevel plsda versus oplsda. Metabolomics 6(1), 119-128 (2010) Liquet,
B., Lê Cao K.-A., Hocini, H., Thiebaut, R.: A novel approach for biomarker selection and the
integration of repeated measures experiments from two assays. BMC bioinformatics 13(1), 325
(2012)

See Also

spls, summary, plotIndiv, plotVar, cim, network, predict, perf, mint.block.splsda, block.splsda
and http://www.mixOmics.org for more details.

Examples

First example
data(breast.tumors)
X <- breast.tumors$gene.exp
Y will be transformed as a factor in the function,
but we set it as a factor to set up the colors.
Y <- as.factor(breast.tumors$sample$treatment)

res <- splsda(X, Y, ncomp = 2, keepX = c(25, 25))

individual names appear
plotIndiv(res, ind.names = Y, legend = TRUE, ellipse =TRUE)

Not run:
Second example: one-factor analysis with sPLS-DA, selecting a subset of variables
as in the paper Liquet et al.

212 splsda

#--
data(vac18)
X <- vac18$genes
Y <- vac18$stimulation
sample indicates the repeated measurements
design <- data.frame(sample = vac18$sample)
Y = data.frame(stimul = vac18$stimulation)

multilevel sPLS-DA model
res.1level <- splsda(X, Y = Y, ncomp = 3, multilevel = design,
keepX = c(30, 137, 123))

set up colors for plotIndiv
col.stim <- c("darkblue", "purple", "green4","red3")
plotIndiv(res.1level, ind.names = Y, col = col.stim)

Third example: two-factor analysis with sPLS-DA, selecting a subset of variables
as in the paper Liquet et al.
#--

data(vac18.simulated) # simulated data

X <- vac18.simulated$genes
design <- data.frame(sample = vac18.simulated$sample)
Y = data.frame(stimu = vac18.simulated$stimulation,
time = vac18.simulated$time)

res.2level <- splsda(X, Y = Y, ncomp = 2, multilevel = design,
keepX = c(200, 200))

plotIndiv(res.2level, group = Y$stimu, ind.names = vac18.simulated$time,
legend = TRUE, style = 'lattice')

Fourth example: with more than two classes
--

data(liver.toxicity)
X <- as.matrix(liver.toxicity$gene)
Y will be transformed as a factor in the function,
but we set it as a factor to set up the colors.
Y <- as.factor(liver.toxicity$treatment[, 4])

splsda.liver <- splsda(X, Y, ncomp = 2, keepX = c(20, 20))

individual name is set to the treatment
plotIndiv(splsda.liver, ind.names = Y, ellipse = TRUE, legend = TRUE)

Fifth example: 16S data with multilevel decomposion and log ratio transformation
--

srbct 213

data(diverse.16S)
splsda.16S = splsda(
X = diverse.16S$data.TSS, # TSS normalised data
Y = diverse.16S$bodysite,
multilevel = diverse.16S$sample, # multilevel decomposition
ncomp = 2,
keepX = c(10, 150),
logratio= 'CLR') # CLR log ratio transformation

plotIndiv(splsda.16S, ind.names = FALSE, pch = 16, ellipse = TRUE, legend = TRUE)
#OTUs selected at the family level
diverse.16S$taxonomy[selectVar(splsda.16S, comp = 1)$name,'Family']

End(Not run)

srbct Small version of the small round blue cell tumors of childhood data

Description

This data set from Khan et al., (2001) gives the expression measure of 2308 genes measured on 63
samples.

Usage

data(srbct)

Format

A list containing the following components:

list("gene") data frame with 63 rows and 2308 columns. The expression measure of 2308 genes
for the 63 subjects.

list("class") A class vector containing the class tumour of each case (4 classes in total).
list("gene.name") data frame with 2308 rows and 2 columns containing further information on

the genes.

Value

none

Source

https://www.research.nhgri.nih.gov/projects/Microarray/Supplement/index.html

References

Khan et al. (2001). Classification and diagnostic prediction of cancers using gene expression pro-
filing and artificial neural networks. Nature Medicine 7, Number 6, June.

https://www.research.nhgri.nih.gov/projects/Microarray/Supplement/index.html

214 stemcells

stemcells Human Stem Cells Data

Description

This data set contains the expression of a random subset of 400 genes in 125 samples from 4
independent studies and 3 cell types.

Usage

data(stemcells)

Format

A list containing the following components:

list("gene") data matrix with 125 rows and 400 columns. Each row represents an experimental
sample, and each column a single gene.

list("celltype") a factor indicating the cell type of each sample.

list("study") a factor indicating the study from which the sample was extracted.

Details

This data set contains the expression of a random subset of 400 genes in 125 samples from 4
independent studies and 3 cell types. Those studies can be combined and analysed using the MINT
procedure.

Value

none

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

study_split 215

study_split divides a data matrix in a list of matrices defined by a factor

Description

study_split divides a data matrix in a list of matrices defined by a study input.

Usage

study_split(data, study)

Arguments

data numeric matrix of predictors

study grouping factor indicating which samples are from the same study

Value

study_split simply returns a list of the same length as the number of levels of study that contains
sub-matrices of data.

Author(s)

Florian Rohart, Al J Abadi

See Also

mint.pls, mint.spls, mint.plsda, mint.splsda.

Examples

data(stemcells)
data = stemcells$gene
exp = stemcells$study

data.list = study_split(data, exp)

names(data.list)
lapply(data.list, dim)
table(exp)

216 summary

summary Summary Methods for CCA and PLS objects

Description

Produce summary methods for class "rcc", "pls" and "spls".

Usage

S3 method for class 'mixo_pls'
summary(
object,
what = c("all", "communalities", "redundancy", "VIP"),
digits = 4,
keep.var = FALSE,
...

)

S3 method for class 'mixo_spls'
summary(
object,
what = c("all", "communalities", "redundancy", "VIP"),
digits = 4,
keep.var = FALSE,
...

)

S3 method for class 'rcc'
summary(
object,
what = c("all", "communalities", "redundancy"),
cutoff = NULL,
digits = 4,
...

)

S3 method for class 'pca'
summary(object, ...)

Arguments

object object of class inherited from "rcc", "pls" or "spls".

what character string or vector. Should be a subset of c("all", "summarised",
"communalities", "redundancy", "VIP"). "VIP" is only available for (s)PLS.
See Details.

digits integer, the number of significant digits to use when printing. Defaults to 4.

summary 217

keep.var Logical. If TRUE only the variables with loadings not zero (as selected by spls)
are showed. Defaults to FALSE.

... not used currently.

cutoff real between 0 and 1. Variables with all correlations components below this
cut-off in absolute value are not showed (see Details).

Details

The information in the rcc, pls or spls object is summarised, it includes: the dimensions of X
and Y data, the number of variates considered, the canonical correlations (if object of class "rcc")
and the (s)PLS algorithm used (if object of class "pls" or "spls") and the number of variables
selected on each of the sPLS components (if x of class "spls").

"communalities" in what gives Communalities Analysis. "redundancy" display Redundancy
Analysis. "VIP" gives the Variable Importance in the Projection (VIP) coefficients fit by pls or
spls. If what is "all", all are given.

For class "rcc", when a value to cutoff is specified, the correlations between each variable and the
equiangular vector between X- and Y -variates are computed. Variables with at least one correlation
componente bigger than cutoff are showed. The defaults is cutoff=NULL all the variables are
given.

Value

The function summary returns a list with components:

ncomp the number of components in the model.

cor the canonical correlations.

cutoff the cutoff used.

keep.var list containing the name of the variables selected.

mode the algorithm used in pls or spls.

Cm list containing the communalities.

Rd list containing the redundancy.

VIP matrix of VIP coefficients.

what subset of c("all", "communalities", "redundancy", "VIP").

digits the number of significant digits to use when printing.

method method used: rcc, pls or spls.

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Al J Abadi

See Also

rcc, pls, spls, vip.

218 tune

Examples

summary for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
more <- summary(nutri.res, cutoff = 0.65)

Not run:
summary for objects of class 'pls'
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)
more <- summary(linn.pls)

summary for objects of class 'spls'
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))
more <- summary(toxicity.spls, what = "redundancy", keep.var = TRUE)

End(Not run)

tune Wrapper function to tune pls-derived methods.

Description

This function uses repeated cross-validation to tune hyperparameters such as the number of features
to select and possibly the number of components to extract.

Usage

tune(
method = c("pls", "spls", "plsda", "splsda", "block.plsda", "block.splsda",
"mint.plsda", "mint.splsda", "rcc", "pca", "spca"),

X,
Y,
test.keepX = c(5, 10, 15),
test.keepY = NULL,
already.tested.X,
already.tested.Y,
ncomp,
V,

tune 219

center = TRUE,
grid1 = seq(0.001, 1, length = 5),
grid2 = seq(0.001, 1, length = 5),
mode = c("regression", "canonical", "invariant", "classic"),
indY,
weighted = TRUE,
design,
study,
tol = 1e-09,
scale = TRUE,
logratio = c("none", "CLR"),
near.zero.var = FALSE,
max.iter = 100,
multilevel = NULL,
validation = "Mfold",
nrepeat = 1,
folds = 10,
signif.threshold = 0.01,
dist = "max.dist",
measure = ifelse(method == "spls", "cor", "BER"),
auc = FALSE,
seed = NULL,
BPPARAM = SerialParam(),
progressBar = FALSE,
light.output = TRUE

)

Arguments

method This parameter is used to pass all other argument to the suitable function. method
has to be one of the following: "spls", "splsda", "block.splsda", "mint.splsda",
"rcc", "pca", "spca" or "pls".

X numeric matrix of predictors. NAs are allowed.

Y Either a factor or a class vector for the discrete outcome, or a numeric vector or
matrix of continuous responses (for multi-response models).

test.keepX numeric vector for the different number of variables to test from the X data set

test.keepY If method = 'spls', numeric vector for the different number of variables to test
from the Y data set

already.tested.X

Optional, if ncomp > 1 A numeric vector indicating the number of variables to
select from the X data set on the firsts components.

already.tested.Y

if method = 'spls' and if(ncomp > 1) numeric vector indicating the number
of variables to select from the Y data set on the first components

ncomp the number of components to include in the model.

V Matrix used in the logratio transformation id provided (for tune.pca)

220 tune

center a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length equal the number of columns of X can
be supplied. The value is passed to scale.

grid1, grid2 vector numeric defining the values of lambda1 and lambda2 at which cross-
validation score should be computed. Defaults to grid1=grid2=seq(0.001,
1, length=5).

mode character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical", "invariant" or "classic". See Details.

indY To supply if Y is missing, indicates the position of the matrix response in the list
X.

weighted tune using either the performance of the Majority vote or the Weighted vote.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

study grouping factor indicating which samples are from the same study

tol Numeric, convergence tolerance criteria.

scale a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is FALSE for consistency
with prcomp function, but in general scaling is advisable. Alternatively, a vector
of length equal the number of columns of X can be supplied. The value is passed
to scale.

logratio one of (’none’,’CLR’). Default to ’none’

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Default value is FALSE

max.iter Integer, the maximum number of iterations.

multilevel Design matrix for multilevel analysis (for repeated measurements) that indicates
the repeated measures on each individual, i.e. the individuals ID. See Details.

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (see below). Default is "Mfold".

nrepeat Number of times the Cross-Validation process is repeated.

folds the folds in the Mfold cross-validation. See Details.
signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

dist distance metric to estimate the classification error rate, should be a subset of
"centroids.dist", "mahalanobis.dist" or "max.dist" (see Details).

measure The tuning measure used for different methods. See details.

auc if TRUE calculate the Area Under the Curve (AUC) performance of the model.

tune 221

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples.

progressBar by default set to TRUE to output the progress bar of the computation.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX
and each comp is returned.

Details

See the help file corresponding to the corresponding method, e.g. tune.splsda for further details.
Note that only the arguments used in the tune function corresponding to method are passed on.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017). More details about the PLS modes are in ?pls.

Value

Depending on the type of analysis performed and the input arguments, a list that may contain:

error.rate returns the prediction error for each test.keepX on each component, averaged
across all repeats and subsampling folds. Standard deviation is also output. All
error rates are also available as a list.

choice.keepX returns the number of variables selected (optimal keepX) on each component.

choice.ncomp For supervised models; returns the optimal number of components for the model
for each prediction distance using one-sided t-tests that test for a significant
difference in the mean error rate (gain in prediction) when components are added
to the model. See more details in Rohart et al 2017 Suppl. For more than one
block, an optimal ncomp is returned for each prediction framework.

error.rate.class

returns the error rate for each level of Y and for each component computed with
the optimal keepX

predict Prediction values for each sample, each test.keepX, each comp and each re-
peat. Only if light.output=FALSE

class Predicted class for each sample, each test.keepX, each comp and each repeat.
Only if light.output=FALSE

auc AUC mean and standard deviation if the number of categories in Y is greater
than 2, see details above. Only if auc = TRUE

cor.value only if multilevel analysis with 2 factors: correlation between latent variables.

Author(s)

Florian Rohart, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi

222 tune

References

Singh A., Shannon C., Gautier B., Rohart F., Vacher M., Tebbutt S. and Lê Cao K.A. (2019),
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays,
Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

MINT:

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

PLS and PLS citeria for PLS regression: Tenenhaus, M. (1998). La regression PLS: theorie et
pratique. Paris: Editions Technic.

Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS
en regression PLS1. Modulad n, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls
and perf.spls)

Mevik, B.-H., Cederkvist, H. R. (2004). Mean Squared Error of Prediction (MSEP) Estimates for
Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR). Journal of
Chemometrics 18(9), 422-429.

sparse PLS regression mode:

Lê Cao, K. A., Rossouw D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

One-sided t-tests (suppl material):

Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson
K, Khosrotehrani K, Fisk NM, Lê Cao K-A&, Wells CA& (2016). A Molecular Classification of
Human Mesenchymal Stromal Cells. PeerJ 4:e1845.

See Also

tune.rcc, tune.mint.splsda, tune.pca, tune.splsda, tune.splslevel and http://www.mixOmics.org
for more details.

Examples

sPLS-DA
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- as.factor(breast.tumors$sample$treatment)
tune= tune(method = "splsda", X, Y, ncomp=1, nrepeat=10, logratio="none",
test.keepX = c(5, 10, 15), folds=10, dist="max.dist", progressBar = TRUE)

plot(tune)

Not run:
mint.splsda

tune.block.plsda 223

data(stemcells)
data = stemcells$gene
type.id = stemcells$celltype
exp = stemcells$study

out = tune(method="mint.splsda", X=data,Y=type.id, ncomp=2, study=exp, test.keepX=seq(1,10,1))
out$choice.keepX

plot(out)

End(Not run)

tune.block.plsda Tuning function for block.plsda method (N-integration with Discrimi-
nant Analysis)

Description

Computes M-fold or Leave-One-Out Cross-Validation scores based on a user-input grid to deter-
mine the optimal parameters for method block.plsda.

Usage

tune.block.plsda(
X,
Y,
indY,
ncomp = 2,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
design,
scale = TRUE,
validation = "Mfold",
folds = 10,
nrepeat = 1,
signif.threshold = 0.01,
dist = "all",
weighted = TRUE,
progressBar = FALSE,
light.output = TRUE,
BPPARAM = SerialParam(),
seed = NULL,
...

)

224 tune.block.plsda

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in matrices, samples x variables, with samples
order matching in all data sets.

Y a factor or a class vector for the discrete outcome.

indY To supply if Y is missing, indicates the position of the matrix response in the list
X.

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected
or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (see below). Default is "Mfold".

folds the folds in the Mfold cross-validation. See Details.

nrepeat Number of times the Cross-Validation process is repeated.
signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

dist Distance metric. Should be a subset of "max.dist", "centroids.dist", "maha-
lanobis.dist" or "all". Default is "all"

weighted tune using either the performance of the Majority vote or the Weighted vote.

progressBar by default set to TRUE to output the progress bar of the computation.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX
and each comp is returned.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

tune.block.plsda 225

... Optional arguments:

• seed Integer. Seed number for reproducible parallel code. Default is NULL.

run in parallel when repeating the cross-validation, which is usually the most
computationally intensive process. If there is excess CPU, the cross-vaidation
is also parallelised on *nix-based OS which support mclapply. Note that the
argument ’scheme’ has now been hardcoded to ’horst’ and ’init’ to ’svd.single’.

Details

This tuning function should be used to tune the number of components in the block.plsda function
(N-integration with Discriminant Analysis).

M-fold or LOO cross-validation is performed with stratified subsampling where all classes are rep-
resented in each fold.

If validation = "Mfold", M-fold cross-validation is performed. The number of folds to generate
is to be specified in the argument folds.

If validation = "loo", leave-one-out cross-validation is performed. By default folds is set to the
number of unique individuals.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017). Details about the PLS modes are in ?pls.

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

Value

returns:

error.rate Prediction error rate for each block of object$X and each dist

error.rate.per.class

Prediction error rate for each block of object$X, each dist and each class

predict Predicted values of each sample for each class, each block and each component

class Predicted class of each sample for each block, each dist, each component and
each nrepeat

features a list of features selected across the folds ($stable.X and $stable.Y) for the
keepX and keepY parameters from the input object.

AveragedPredict.class

if more than one block, returns the average predicted class over the blocks (av-
eraged of the Predict output and prediction using the max.dist distance)

AveragedPredict.error.rate

if more than one block, returns the average predicted error rate over the blocks
(using the AveragedPredict.class output)

WeightedPredict.class

if more than one block, returns the weighted predicted class over the blocks
(weighted average of the Predict output and prediction using the max.dist
distance). See details for more info on weights.

226 tune.block.plsda

WeightedPredict.error.rate

if more than one block, returns the weighted average predicted error rate over
the blocks (using the WeightedPredict.class output.)

MajorityVote if more than one block, returns the majority class over the blocks. NA for a
sample means that there is no consensus on the predicted class for this particular
sample over the blocks.

MajorityVote.error.rate

if more than one block, returns the error rate of the MajorityVote output

WeightedVote if more than one block, returns the weighted majority class over the blocks. NA
for a sample means that there is no consensus on the predicted class for this
particular sample over the blocks.

WeightedVote.error.rate

if more than one block, returns the error rate of the WeightedVote output

weights Returns the weights of each block used for the weighted predictions, for each
nrepeat and each fold

choice.ncomp For supervised models; returns the optimal number of components for the model
for each prediction distance using one-sided t-tests that test for a significant
difference in the mean error rate (gain in prediction) when components are added
to the model. See more details in Rohart et al 2017 Suppl. For more than one
block, an optimal ncomp is returned for each prediction framework.

Author(s)

Florian Rohart, Amrit Singh, Kim-Anh Lê Cao, AL J Abadi

References

Method:

Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê Cao K.A. (2016).
DIABLO: multi omics integration for biomarker discovery.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

block.splsda and http://www.mixOmics.org for more details.

Examples

data("breast.TCGA")

X data - list of mRNA and miRNA
X <- list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna,

protein = breast.TCGA$data.train$protein)

Y data - single data set of proteins
Y <- breast.TCGA$data.train$subtype

tune.block.splsda 227

subset the X and Y data to speed up computation in this example
set.seed(100)
subset <- mixOmics:::stratified.subsampling(breast.TCGA$data.train$subtype, folds = 3)[[1]][[1]]
X <- lapply(X, function(omic) omic[subset,])
Y <- Y[subset]

set up a full design where every block is connected
could also consider other weights, see our mixOmics manuscript
design = matrix(1, ncol = length(X), nrow = length(X),

dimnames = list(names(X), names(X)))
diag(design) = 0
design

Tune number of components to keep - use all distance metrics
tune_res <- tune.block.plsda(X, Y, design = design,

ncomp = 5,
nrepeat = 3,
seed = 13,
dist = c("all"))

plot(tune_res)
tune_res$choice.ncomp # 3 components best for max.dist, 1 for centroids.dist

Tune number of components to keep - use weighted vote rather than majority vote
tune_res <- tune.block.plsda(X, Y, design = design,

ncomp = 5,
nrepeat = 3,
seed = 13,
dist = c("all"),
weighted = FALSE)

tune_res$weights

Tune number of components to keep - plot just max.dist
tune_res <- tune.block.plsda(X, Y, design = design,

ncomp = 5,
nrepeat = 3,
seed = 13,
dist = c("max.dist"))

plot(tune_res)

tune.block.splsda Tuning function for block.splsda method (N-integration with sparse
Discriminant Analysis)

Description

Computes M-fold or Leave-One-Out Cross-Validation scores based on a user-input grid to deter-
mine the optimal parameters for method block.splsda.

228 tune.block.splsda

Usage

tune.block.splsda(
X,
Y,
indY,
ncomp = 2,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
design,
scale = TRUE,
test.keepX,
already.tested.X,
validation = "Mfold",
folds = 10,
nrepeat = 1,
signif.threshold = 0.01,
dist = "max.dist",
measure = "BER",
weighted = TRUE,
progressBar = FALSE,
light.output = TRUE,
BPPARAM = SerialParam(),
seed = NULL

)

Arguments

X A named list of data sets (called ’blocks’) measured on the same samples. Data
in the list should be arranged in matrices, samples x variables, with samples
order matching in all data sets.

Y a factor or a class vector for the discrete outcome.

indY To supply if Y is missing, indicates the position of the matrix response in the list
X.

ncomp the number of components to include in the model. Default to 2. Applies to all
blocks.

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c(’null’, ’full’) indicating a disconnected

tune.block.splsda 229

or fully connected design, respecively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

test.keepX A named list with the same length and names as X (without the outcome Y, if it
is provided in X and designated using indY). Each entry of this list is a numeric
vector for the different keepX values to test for that specific block. If set to
NULL, ncomp is tuned.

already.tested.X

Optional, if ncomp > 1 A named list of numeric vectors each of length n_tested
indicating the number of variables to select from the X data set on the first
n_tested components.

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (see below). Default is "Mfold".

folds the folds in the Mfold cross-validation. See Details.

nrepeat Number of times the Cross-Validation process is repeated.
signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

dist distance metric to estimate the classification error rate, should be one of "cen-
troids.dist", "mahalanobis.dist" or "max.dist" (see Details). If test.keepX =
NULL, can also input "all" or more than one distance metric

measure only used when test.keepX is not NULL. Measure used when plotting, should
be ’BER’ or ’overall’

weighted tune using either the performance of the Majority vote or the Weighted vote.

progressBar by default set to TRUE to output the progress bar of the computation.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX
and each comp is returned.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

Details

This tuning function should be used to tune the number of components and the keepX parameters
in the block.splsda function (N-integration with sparse Discriminant Analysis).

M-fold or LOO cross-validation is performed with stratified subsampling where all classes are rep-
resented in each fold.

If validation = "Mfold", M-fold cross-validation is performed. The number of folds to generate
is to be specified in the argument folds.

230 tune.block.splsda

If validation = "loo", leave-one-out cross-validation is performed. By default folds is set to the
number of unique individuals.

All combination of test.keepX values are tested. A message informs how many will be fitted on
each component for a given test.keepX.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017). Details about the PLS modes are in ?pls.

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

Value

A list that contains:

error.rate returns the prediction error for each test.keepX on each component, averaged
across all repeats and subsampling folds. Standard deviation is also output. All
error rates are also available as a list.

choice.keepX returns the number of variables selected (optimal keepX) on each component,
for each block.

choice.ncomp returns the optimal number of components for the model fitted with $choice.keepX.
error.rate.class

returns the error rate for each level of Y and for each component computed with
the optimal keepX

predict Prediction values for each sample, each test.keepX, each comp and each re-
peat. Only if light.output=FALSE

class Predicted class for each sample, each test.keepX, each comp and each repeat.
Only if light.output=FALSE

cor.value compute the correlation between latent variables for two-factor sPLS-DA anal-
ysis.

If test.keepX = NULL, returns:

error.rate Prediction error rate for each block of object$X and each dist

error.rate.per.class

Prediction error rate for each block of object$X, each dist and each class

predict Predicted values of each sample for each class, each block and each component

class Predicted class of each sample for each block, each dist, each component and
each nrepeat

features a list of features selected across the folds ($stable.X and $stable.Y) for the
keepX and keepY parameters from the input object.

AveragedPredict.class

if more than one block, returns the average predicted class over the blocks (av-
eraged of the Predict output and prediction using the max.dist distance)

AveragedPredict.error.rate

if more than one block, returns the average predicted error rate over the blocks
(using the AveragedPredict.class output)

tune.block.splsda 231

WeightedPredict.class

if more than one block, returns the weighted predicted class over the blocks
(weighted average of the Predict output and prediction using the max.dist
distance). See details for more info on weights.

WeightedPredict.error.rate

if more than one block, returns the weighted average predicted error rate over
the blocks (using the WeightedPredict.class output.)

MajorityVote if more than one block, returns the majority class over the blocks. NA for a
sample means that there is no consensus on the predicted class for this particular
sample over the blocks.

MajorityVote.error.rate

if more than one block, returns the error rate of the MajorityVote output

WeightedVote if more than one block, returns the weighted majority class over the blocks. NA
for a sample means that there is no consensus on the predicted class for this
particular sample over the blocks.

WeightedVote.error.rate

if more than one block, returns the error rate of the WeightedVote output

weights Returns the weights of each block used for the weighted predictions, for each
nrepeat and each fold

choice.ncomp For supervised models; returns the optimal number of components for the model
for each prediction distance using one-sided t-tests that test for a significant
difference in the mean error rate (gain in prediction) when components are added
to the model. See more details in Rohart et al 2017 Suppl. For more than one
block, an optimal ncomp is returned for each prediction framework.

Author(s)

Florian Rohart, Amrit Singh, Kim-Anh Lê Cao, AL J Abadi

References

Method:

Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê Cao K.A. (2016).
DIABLO: multi omics integration for biomarker discovery.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

block.splsda and http://www.mixOmics.org for more details.

Examples

Set up data

load data

232 tune.block.splsda

data("breast.TCGA")

X data - list of mRNA and miRNA
X <- list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna,

protein = breast.TCGA$data.train$protein)

Y data - single data set of proteins
Y <- breast.TCGA$data.train$subtype

subset the X and Y data to speed up computation in this example
set.seed(100)
subset <- mixOmics:::stratified.subsampling(breast.TCGA$data.train$subtype, folds = 3)[[1]][[1]]
X <- lapply(X, function(omic) omic[subset,])
Y <- Y[subset]

set up a full design where every block is connected
could also consider other weights, see our mixOmics manuscript
design = matrix(1, ncol = length(X), nrow = length(X),

dimnames = list(names(X), names(X)))
diag(design) = 0
design

Tune number of components to keep
tune_res <- tune.block.splsda(X, Y, design = design,

ncomp = 5,
test.keepX = NULL,
validation = "Mfold", nrepeat = 3,
dist = "all", measure = "BER",
seed = 13)

plot(tune_res)

tune_res$choice.ncomp # 3 components best

Tune number of variables to keep

definition of the keepX value to be tested for each block mRNA miRNA and protein
names of test.keepX must match the names of 'data'
test.keepX = list(mrna = c(10, 30), mirna = c(15, 25), protein = c(4, 8))

load parallel package
library(BiocParallel)

run tuning in parallel on 2 cores, output plot on overall error
tune_res <- tune.block.splsda(X, Y, design = design,

ncomp = 2,
test.keepX = test.keepX,
validation = "Mfold", nrepeat = 3,
measure = "overall",
seed = 13, BPPARAM = SnowParam(workers = 2))

plot(tune_res)
tune_res$choice.keepX

tune.mint.plsda 233

Now tuning a new component given previous tuned keepX
already.tested.X <- tune_res$choice.keepX
tune_res <- tune.block.splsda(X, Y, design = design,

ncomp = 3,
test.keepX = test.keepX,
validation = "Mfold", nrepeat = 3,
measure = "overall",
seed = 13, BPPARAM = SnowParam(workers = 2),
already.tested.X = already.tested.X)

tune_res$choice.keepX

tune.mint.plsda Estimate the parameters of mint.plsda method

Description

Computes Leave-One-Group-Out-Cross-Validation (LOGOCV) scores on a user-input grid to de-
termine optimal values for the parameters in mint.plsda.

Usage

tune.mint.plsda(
X,
Y,
ncomp = 1,
study,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
signif.threshold = 0.01,
dist = c("max.dist", "centroids.dist", "mahalanobis.dist"),
auc = FALSE,
progressBar = FALSE,
light.output = TRUE

)

Arguments

X numeric matrix of predictors. NAs are allowed.

Y Outcome. Numeric vector or matrix of responses (for multi-response models)

ncomp Number of components to include in the model (see Details). Default to 1

study grouping factor indicating which samples are from the same study

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Convergence stopping value.

234 tune.mint.plsda

max.iter integer, the maximum number of iterations.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Default value is FALSE

signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

dist only applies to an object inheriting from "plsda" or "splsda" to evaluate the
classification performance of the model. Should be a subset of "max.dist",
"centroids.dist", "mahalanobis.dist". Default is "all". See predict.

auc if TRUE calculate the Area Under the Curve (AUC) performance of the model.

progressBar by default set to TRUE to output the progress bar of the computation.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX
and each comp is returned.

Details

This function performs a Leave-One-Group-Out-Cross-Validation (LOGOCV), where each of study
is left out once.

The function outputs the optimal number of components that achieve the best performance based
on the overall error rate or BER. The assessment is data-driven and similar to the process detailed
in (Rohart et al., 2016), where one-sided t-tests assess whether there is a gain in performance when
adding a component to the model. Our experience has shown that in most case, the optimal number
of components is the number of categories in Y - 1, but it is worth tuning a few extra components to
check (see our website and case studies for more details).

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017).

Value

The returned value is a list with components:

study.specific.error

A list that gives BER, overall error rate and error rate per class, for each study

global.error A list that gives BER, overall error rate and error rate per class for all samples

predict A list of length ncomp that produces the predicted values of each sample for each
class

class A list which gives the predicted class of each sample for each dist and each of
the ncomp components. Directly obtained from the predict output.

auc AUC values

auc.study AUC values for each study in mint models

.

tune.mint.splsda 235

Author(s)

Florian Rohart, Al J Abadi

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

mint.plsda and http://www.mixOmics.org for more details.

Examples

set up data
data(stemcells)
data <- stemcells$gene
type.id <- stemcells$celltype
exp <- stemcells$study

tune number of components
tune_res <- tune.mint.plsda(X = data,Y = type.id, ncomp=5,

near.zero.var=FALSE,
study=exp)

plot(tune_res)
tune_res$choice.ncomp # 1 component

tune.mint.splsda Estimate the parameters of mint.splsda method

Description

Computes Leave-One-Group-Out-Cross-Validation (LOGOCV) scores on a user-input grid to de-
termine optimal values for the parameters in mint.splsda.

Usage

tune.mint.splsda(
X,
Y,
ncomp = 1,
study,

236 tune.mint.splsda

test.keepX = NULL,
already.tested.X,
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
signif.threshold = 0.01,
dist = c("max.dist", "centroids.dist", "mahalanobis.dist"),
measure = c("BER", "overall"),
auc = FALSE,
progressBar = FALSE,
light.output = TRUE

)

Arguments

X numeric matrix of predictors. NAs are allowed.

Y Outcome. Numeric vector or matrix of responses (for multi-response models)

ncomp Number of components to include in the model (see Details). Default to 1

study grouping factor indicating which samples are from the same study

test.keepX numeric vector for the different number of variables to test from the X data set.
If set to NULL only number of components will be tuned.

already.tested.X

if ncomp > 1 Numeric vector indicating the number of variables to select from
the X data set on the firsts components

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Convergence stopping value.

max.iter integer, the maximum number of iterations.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Default value is FALSE

signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

dist only applies to an object inheriting from "plsda" or "splsda" to evaluate the
classification performance of the model. Should be a subset of "max.dist",
"centroids.dist", "mahalanobis.dist". Default is "all". See predict.

measure Two misclassification measure are available: overall misclassification error overall
or the Balanced Error Rate BER. Only used when test.keepX = NULL.

auc if TRUE calculate the Area Under the Curve (AUC) performance of the model.

progressBar by default set to TRUE to output the progress bar of the computation.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX
and each comp is returned.

tune.mint.splsda 237

Details

This function performs a Leave-One-Group-Out-Cross-Validation (LOGOCV), where each of study
is left out once.

When test.keepX is not NULL, all component 1 : ncomp are tuned to identify number of variables
to keep, except the first ones for which a already.tested.X is provided. See examples below.

The function outputs the optimal number of components that achieve the best performance based
on the overall error rate or BER. The assessment is data-driven and similar to the process detailed
in (Rohart et al., 2016), where one-sided t-tests assess whether there is a gain in performance when
adding a component to the model. Our experience has shown that in most case, the optimal number
of components is the number of categories in Y - 1, but it is worth tuning a few extra components to
check (see our website and case studies for more details).

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017).

Value

The returned value is a list with components:

error.rate returns the prediction error for each test.keepX on each component, averaged
across all repeats and subsampling folds. Standard deviation is also output. All
error rates are also available as a list.

choice.keepX returns the number of variables selected (optimal keepX) on each component.

choice.ncomp returns the optimal number of components for the model fitted with $choice.keepX

error.rate.class

returns the error rate for each level of Y and for each component computed with
the optimal keepX

predict Prediction values for each sample, each test.keepX and each comp.

class Predicted class for each sample, each test.keepX and each comp.

If test.keepX = NULL, returns:

study.specific.error

A list that gives BER, overall error rate and error rate per class, for each study

global.error A list that gives BER, overall error rate and error rate per class for all samples

predict A list of length ncomp that produces the predicted values of each sample for each
class

class A list which gives the predicted class of each sample for each dist and each of
the ncomp components. Directly obtained from the predict output.

auc AUC values

auc.study AUC values for each study in mint models

.

238 tune.mint.splsda

Author(s)

Florian Rohart, Al J Abadi

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate inte-
grative approach to identify a reproducible biomarker signature across multiple experiments and
platforms. BMC Bioinformatics 18:128.

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

mint.splsda and http://www.mixOmics.org for more details.

Examples

set up data
data(stemcells)
data <- stemcells$gene
type.id <- stemcells$celltype
exp <- stemcells$study

tune number of components
tune_res <- tune.mint.splsda(X = data,Y = type.id, ncomp=5,

near.zero.var=FALSE,
study=exp,
test.keepX = NULL)

plot(tune_res)
tune_res$choice.ncomp # 1 component

tune number of variables to keep
tune_res <- tune.mint.splsda(X = data,Y = type.id, ncomp = 1,

near.zero.var = FALSE,
study=exp,
test.keepX=seq(1,10,1))

plot(tune_res)
tune_res$choice.keepX # 9 variables to keep on component 1

only tune component 3 and keeping 10 genes on comp1
tune_res <- tune.mint.splsda(X = data, Y = type.id, ncomp = 2, study = exp,

already.tested.X = c(9),
test.keepX = seq(1,10,1))

plot(tune_res)
tune_res$choice.keepX # 10 variables to keep on comp2

tune.pca 239

tune.pca Tune the number of principal components in PCA

Description

tune.pca can be used to quickly visualise the proportion of explained variance for a large number
of principal components in PCA.

Usage

tune.pca(
X,
ncomp = NULL,
center = TRUE,
scale = TRUE,
max.iter = 100,
tol = 1e-09,
logratio = c("none", "CLR", "ILR"),
V = NULL,
multilevel = NULL

)

Arguments

X numeric matrix of predictors. NAs are allowed.

ncomp integer, the number of components to initially analyse in tune.pca to choose a
final ncomp for pca. If NULL, function sets ncomp = min(nrow(X), ncol(X))

center a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length equal the number of columns of X can
be supplied. The value is passed to scale.

scale a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is FALSE for consistency
with prcomp function, but in general scaling is advisable. Alternatively, a vector
of length equal the number of columns of X can be supplied. The value is passed
to scale.

max.iter Integer, the maximum number of iterations.

tol Numeric, convergence tolerance criteria.

logratio one of (’none’,’CLR’,’ILR’). Default to ’none’

V Matrix used in the logratio transformation id provided.

multilevel Design matrix for multilevel analysis (for repeated measurements).

240 tune.pca

Details

The calculation is done either by a singular value decomposition of the (possibly centered and
scaled) data matrix, if the data is complete or by using the NIPALS algorithm if there is data missing.
Unlike princomp, the print method for these objects prints the results in a nice format and the plot
method produces a bar plot of the percentage of variance explaned by the principal components
(PCs).

When using NIPALS (missing values), we make the assumption that the first (min(ncol(X),
nrow(X)) principal components will account for 100 % of the explained variance.

Note that scale= TRUE cannot be used if there are zero or constant (for center = TRUE) variables.

Components are omitted if their standard deviations are less than or equal to comp.tol times the
standard deviation of the first component. With the default null setting, no components are omitted.
Other settings for comp.tol could be comp.tol = sqrt(.Machine$double.eps), which would
omit essentially constant components, or comp.tol = 0.

logratio transform and multilevel analysis are performed sequentially as internal pre-processing
step, through logratio.transfo and withinVariation respectively.

Value

tune.pca returns a list with class "tune.pca" containing the following components:

sdev the square root of the eigenvalues of the covariance/correlation matrix, though
the calculation is actually done with the singular values of the data matrix).

prop_expl_var The proportion of explained variance accounted for by each principal compo-
nent.

cum.var the cumulative proportion of explained variance accounted for by the sequen-
tial accumulation of principal components is calculated using the sum of the
proportion of explained variance

Author(s)

Ignacio González, Leigh Coonan, Kim-Anh Le Cao, Fangzhou Yao, Florian Rohart, Al J Abadi

See Also

nipals, biplot, plotIndiv, plotVar and http://www.mixOmics.org for more details.

Examples

load data
data(liver.toxicity)

run tuning
tune <- tune.pca(liver.toxicity$gene, center = TRUE, scale = TRUE)
plot(tune)

set up multilevel dataset
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,

6, 5, 6, 7, 7, 8, 6, 7, 8, 7, 8, 8, 9, 10, 9, 10, 11, 9, 9,

tune.pls 241

10, 11, 12, 12, 10, 11, 12, 11, 12, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 15, 16)

design <- data.frame(sample = repeat.indiv)

run tuning
tune <- tune.pca(liver.toxicity$gene, center = TRUE, scale = TRUE, multilevel = design)
plot(tune)

tune.pls Tuning functions for PLS method

Description

Computes M-fold or Leave-One-Out Cross-Validation scores on a user-input grid to determine op-
timal values for the parameters in spls.

Usage

tune.pls(
X,
Y,
ncomp,
validation = c("Mfold", "loo"),
nrepeat = 1,
folds,
measure = NULL,
mode = c("regression", "canonical", "classic"),
scale = TRUE,
logratio = "none",
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
multilevel = NULL,
BPPARAM = SerialParam(),
seed = NULL,
progressBar = FALSE,
...

)

Arguments

X numeric matrix of predictors with the rows as individual observations.

Y numeric matrix of response(s) with the rows as individual observations matching
X.

ncomp Positive Integer. The number of components to include in the model. Default to
2.

242 tune.pls

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (Leave-One-out). Default is "Mfold".

nrepeat Positive integer. Number of times the Cross-Validation process should be re-
peated. nrepeat > 2 is required for robust tuning. See details.

folds Positive Integer, The folds in the Mfold cross-validation.

measure The tuning measure to use. Cannot be NULL when applied to sPLS1 object.
See details.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE

logratio Character, one of (’none’,’CLR’) specifies the log ratio transformation to deal
with compositional values that may arise from specific normalisation in se-
quencing data. Default to ’none’. See ?logratio.transfo for details.

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

multilevel Numeric, design matrix for repeated measurement analysis, where multilevel
decomposition is required. For a one factor decomposition, the repeated mea-
sures on each individual, i.e. the individuals ID is input as the first column. For a
2 level factor decomposition then 2nd AND 3rd columns indicate those factors.
See examples.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples
in ?tune.spca.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

progressBar Logical. If TRUE a progress bar is shown as the computation completes. Default
to FALSE.

... Optional parameters passed to pls

Details

This tuning function should be used to tune the number of components to select for spls models.

Value

Returns a list with the following components for every repeat:

MSEP Mean Square Error Prediction for each Y variable, only applies to object inher-
ited from "pls", and "spls". Only available when in regression (s)PLS.

tune.pls 243

RMSEP Root Mean Square Error Prediction for each Y variable, only applies to object
inherited from "pls", and "spls". Only available when in regression (s)PLS.

R2 a matrix of R2 values of the Y -variables for models with 1, . . . ,ncomp compo-
nents, only applies to object inherited from "pls", and "spls". Only available
when in regression (s)PLS.

Q2 if Y contains one variable, a vector of Q2 values else a list with a matrix of Q2

values for each Y -variable. Note that in the specific case of an sPLS model, it
is better to have a look at the Q2.total criterion, only applies to object inherited
from "pls", and "spls". Only available when in regression (s)PLS.

Q2.total a vector of Q2-total values for models with 1, . . . ,ncomp components, only ap-
plies to object inherited from "pls", and "spls". Available in both (s)PLS
modes.

RSS Residual Sum of Squares across all selected features and the components.
PRESS Predicted Residual Error Sum of Squares across all selected features and the

components.
features a list of features selected across the folds ($stable.X and $stable.Y) for the

keepX and keepY parameters from the input object. Note, this will be NULL if
using standard (non-sparse) PLS.

cor.tpred, cor.upred
Correlation between the predicted and actual components for X (t) and Y (u)

RSS.tpred, RSS.upred
Residual Sum of Squares between the predicted and actual components for X (t)
and Y (u)

folds

During a cross-validation (CV), data are randomly split into M subgroups (folds). M-1 subgroups are
then used to train submodels which would be used to predict prediction accuracy statistics for the
held-out (test) data. All subgroups are used as the test data exactly once. If validation = "loo",
leave-one-out CV is used where each group consists of exactly one sample and hence M == N where
N is the number of samples.

nrepeat

The cross-validation process is repeated nrepeat times and the accuracy measures are averaged
across repeats. If validation = "loo", the process does not need to be repeated as there is only
one way to split N samples into N groups and hence nrepeat is forced to be 1.

measure

• For PLS2 Two measures of accuracy are available: Correlation (cor, used as default), as well
as the Residual Sum of Squares (RSS). For cor, the parameters which would maximise the
correlation between the predicted and the actual components are chosen. The RSS measure
tries to predict the held-out data by matrix reconstruction and seeks to minimise the error be-
tween actual and predicted values. For mode='canonical', The X matrix is used to calculate
the RSS, while for others modes the Y matrix is used. This measure gives more weight to any
large errors and is thus sensitive to outliers. It also intrinsically selects less number of features
on the Y block compared to measure='cor'.

244 tune.pls

• For PLS1 Four measures of accuracy are available: Mean Absolute Error (MAE), Mean Square
Error (MSE, used as default), Bias and R2. Both MAE and MSE average the model prediction
error. MAE measures the average magnitude of the errors without considering their direction.
It is the average over the fold test samples of the absolute differences between the Y predic-
tions and the actual Y observations. The MSE also measures the average magnitude of the
error. Since the errors are squared before they are averaged, the MSE tends to give a relatively
high weight to large errors. The Bias is the average of the differences between the Y predic-
tions and the actual Y observations and the R2 is the correlation between the predictions and
the observations.

Optimisation Process

The optimisation process is data-driven and similar to the process detailed in (Rohart et al., 2016),
where one-sided t-tests assess whether there is a gain in performance when incrementing the number
of features or components in the model. However, it will assess all the provided grid through pair-
wise comparisons as the performance criteria do not always change linearly with respect to the
added number of features or components.

more

See also ?perf for more details.

Author(s)

Kim-Anh Lê Cao, Al J Abadi, Benoit Gautier, Francois Bartolo and Florian Rohart.

References

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

PLS and PLS citeria for PLS regression: Tenenhaus, M. (1998). La regression PLS: theorie et
pratique. Paris: Editions Technic.

Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS
en regression PLS1. Modulad n, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls
and perf.spls)

Mevik, B.-H., Cederkvist, H. R. (2004). Mean Squared Error of Prediction (MSEP) Estimates for
Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR). Journal of
Chemometrics 18(9), 422-429.

Sparse PLS regression mode:

Lê Cao, K. A., Rossouw D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

One-sided t-tests (suppl material):

Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson
K, Khosrotehrani K, Fisk NM, Lê Cao K-A&, Wells CA& (2016). A Molecular Classification of
Human Mesenchymal Stromal Cells. PeerJ 4:e1845.

tune.plsda 245

See Also

splsda, predict.splsda, and http://www.mixOmics.org for more details.

Examples

set up data
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic

tune PLS2 model to find optimal number of components
tune.res <- tune.pls(X, Y, ncomp = 10, measure = "cor",

folds = 5, nrepeat = 3, progressBar = TRUE)
plot(tune.res) # plot outputs

PLS1 model example
Y1 <- liver.toxicity$clinic[,1]

tune.res <- tune.pls(X, Y1, ncomp = 10, measure = "cor",
folds = 5, nrepeat = 3, progressBar = TRUE)

plot(tune.res)

Multilevel PLS2 model
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,

6, 5, 6, 7, 7, 8, 6, 7, 8, 7, 8, 8, 9, 10, 9, 10, 11, 9, 9,
10, 11, 12, 12, 10, 11, 12, 11, 12, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 15, 16)

design <- data.frame(sample = repeat.indiv)

tune.res <- tune.pls(X, Y1, ncomp = 10, measure = "cor", multilevel = design,
folds = 5, nrepeat = 3, progressBar = TRUE)

plot(tune.res)

tune.plsda Tuning functions for PLS-DA method

Description

Computes M-fold or Leave-One-Out Cross-Validation scores on a user-input grid to determine op-
timal values for the parameters in plsda.

Usage

tune.plsda(
X,
Y,
ncomp = 1,

246 tune.plsda

scale = TRUE,
logratio = c("none", "CLR"),
max.iter = 100,
tol = 1e-06,
near.zero.var = FALSE,
multilevel = NULL,
validation = "Mfold",
folds = 10,
nrepeat = 1,
signif.threshold = 0.01,
dist = "all",
auc = FALSE,
progressBar = FALSE,
light.output = TRUE,
BPPARAM = SerialParam(),
seed = NULL

)

Arguments

X numeric matrix of predictors. NAs are allowed.

Y if(method = 'spls') numeric vector or matrix of continuous responses (for
multi-response models) NAs are allowed.

ncomp the number of components to include in the model.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

logratio one of (’none’,’CLR’). Default to ’none’

max.iter integer, the maximum number of iterations.

tol Convergence stopping value.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Default value is FALSE

multilevel Design matrix for multilevel analysis (for repeated measurements) that indicates
the repeated measures on each individual, i.e. the individuals ID. See Details.

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (short for ’leave-one-out’). Default is "Mfold".

folds the folds in the Mfold cross-validation. See Details.

nrepeat Number of times the Cross-Validation process is repeated.
signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

dist distance metric to use for splsda to estimate the classification error rate, should
be a subset of "centroids.dist", "mahalanobis.dist" or "max.dist" (see
Details).

auc if TRUE calculate the Area Under the Curve (AUC)

tune.plsda 247

progressBar by default set to TRUE to output the progress bar of the computation.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX
and each comp is returned.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples
in ?tune.spca.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

Details

This tuning function should be used to tune the parameters in the plsda function (number of com-
ponents and distance metric to select).

For a PLS-DA, M-fold or LOO cross-validation is performed with stratified subsampling where all
classes are represented in each fold.

If validation = "loo", leave-one-out cross-validation is performed. By default folds is set to the
number of unique individuals.

The function outputs the optimal number of components that achieve the best performance based
on the overall error rate or BER. The assessment is data-driven and similar to the process detailed
in (Rohart et al., 2016), where one-sided t-tests assess whether there is a gain in performance when
adding a component to the model. Our experience has shown that in most case, the optimal number
of components is the number of categories in Y - 1, but it is worth tuning a few extra components to
check (see our website and case studies for more details).

For PLS-DA multilevel one-factor analysis, M-fold or LOO cross-validation is performed where all
repeated measurements of one sample are in the same fold. Note that logratio transform and the
multilevel analysis are performed internally and independently on the training and test set.

For a PLS-DA multilevel two-factor analysis, the correlation between components from the within-
subject variation of X and the cond matrix is computed on the whole data set. The reason why we
cannot obtain a cross-validation error rate as for the pls-DA one-factor analysis is because of the
difficulty to decompose and predict the within matrices within each fold.

For a PLS two-factor analysis a PLS canonical mode is run, and the correlation between components
from the within-subject variation of X and Y is computed on the whole data set.

If validation = "Mfold", M-fold cross-validation is performed. How many folds to generate is
selected by specifying the number of folds in folds.

If auc = TRUE and there are more than 2 categories in Y, the Area Under the Curve is averaged
using one-vs-all comparison. Note however that the AUC criteria may not be particularly insightful
as the prediction threshold we use in PLS-DA differs from an AUC threshold (PLS-DA relies on
prediction distances for predictions, see ?predict.plsda for more details) and the supplemental
material of the mixOmics article (Rohart et al. 2017).

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017).

248 tune.plsda

The tune.plsda() function calls older function perf() to perform this cross-validation, for more details
see the perf() help pages.

Value

matrix of classification error rate estimation. The dimensions correspond to the components in the
model and to the prediction method used, respectively.

auc Averaged AUC values over the nrepeat

cor.value only if multilevel analysis with 2 factors: correlation between latent variables.

Author(s)

Kim-Anh Lê Cao, Benoit Gautier, Francois Bartolo, Florian Rohart, Al J Abadi

References

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

splsda, predict.splsda and http://www.mixOmics.org for more details.

Examples

Example: analysis with PLS-DA
data(breast.tumors)

tune components and distance
tune = tune.plsda(breast.tumors$gene.exp, as.factor(breast.tumors$sample$treatment),

ncomp = 5, logratio = "none",
nrepeat = 10, folds = 10,
progressBar = TRUE,
seed = 20) # set for reproducibility of example only

plot(tune) # optimal distance = centroids.dist
tune$choice.ncomp # optimal component number = 3

Example: multilevel PLS-DA
data(vac18)
design <- data.frame(sample = vac18$sample) # set the multilevel design

tune1 <- tune.plsda(vac18$genes, vac18$stimulation,
ncomp = 5, multilevel = design,
nrepeat = 10, folds = 10,
seed = 20)

plot(tune1)

tune.rcc 249

tune.rcc Estimate the parameters of regularization for Regularized CCA

Description

Computes leave-one-out or M-fold cross-validation scores on a two-dimensional grid to determine
optimal values for the parameters of regularization in rcc.

Usage

tune.rcc(
X,
Y,
grid1 = seq(0.001, 1, length = 5),
grid2 = seq(0.001, 1, length = 5),
validation = c("loo", "Mfold"),
folds = 10,
BPPARAM = SerialParam(),
seed = NULL

)

Arguments

X numeric matrix or data frame (n× p), the observations on the X variables. NAs
are allowed.

Y numeric matrix or data frame (n× q), the observations on the Y variables. NAs
are allowed.

grid1, grid2 vector numeric defining the values of lambda1 and lambda2 at which cross-
validation score should be computed. Defaults to grid1=grid2=seq(0.001,
1, length=5).

validation character string. What kind of (internal) cross-validation method to use, (par-
tially) matching one of "loo" (leave-one-out) or "Mfolds" (M-folds). See De-
tails.

folds positive integer. Number of folds to use if validation="Mfold". Defaults to
folds=10.

BPPARAM a BiocParallel parameter object; see BiocParallel::bpparam for details. De-
fault is MulticoreParam() for parallel processing.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

Details

If validation="Mfolds", M-fold cross-validation is performed by calling Mfold. When folds
is given, the elements of folds should be integer vectors specifying the indices of the validation

250 tune.rcc

sample and the argument M is ignored. Otherwise, the folds are generated. The number of cross-
validation folds is specified with the argument M.

If validation="loo", leave-one-out cross-validation is performed by calling the loo function. In
this case the arguments folds and M are ignored.

The estimation of the missing values can be performed by the reconstitution of the data matrix
using the nipals function. Otherwise, missing values are handled by casewise deletion in the rcc
function.

Value

The returned value is a list with components:

opt.lambda1

opt.lambda2 value of the parameters of regularization on which the cross-validation method
reached its optimal.

opt.score the optimal cross-validation score reached on the grid.

grid1, grid2 original vectors grid1 and grid2.

mat matrix containing the cross-validation score computed on the grid.

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Al J Abadi

See Also

image.tune.rcc and http://www.mixOmics.org for more details.

Examples

#load data
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene

run tuning
tune_res <- tune.rcc(X, Y, validation = "Mfold")

plot output
plot(tune_res)

tune.spca 251

tune.spca Tune number of selected variables for spca

Description

This function performs sparse pca and optimises the number of variables to keep on each component
using repeated cross-validation.

Usage

tune.spca(
X,
ncomp = 2,
nrepeat = 1,
folds,
test.keepX,
center = TRUE,
scale = TRUE,
BPPARAM = SerialParam(),
seed = NULL

)

Arguments

X a numeric matrix (or data frame) which provides the data for the sparse principal
components analysis. It should not contain missing values.

ncomp Integer, if data is complete ncomp decides the number of components and as-
sociated eigenvalues to display from the pcasvd algorithm and if the data has
missing values, ncomp gives the number of components to keep to perform the
reconstitution of the data using the NIPALS algorithm. If NULL, function sets
ncomp = min(nrow(X),ncol(X))

nrepeat Number of times the Cross-Validation process is repeated.

folds Number of folds in ’Mfold’ cross-validation. See details.

test.keepX numeric vector for the different number of variables to test from the X data set.

center (Default=TRUE) Logical, whether the variables should be shifted to be zero
centered. Only set to FALSE if data have already been centered. Alternatively, a
vector of length equal the number of columns of X can be supplied. The value is
passed to scale. If the data contain missing values, columns should be centered
for reliable results.

scale (Default=TRUE) Logical indicating whether the variables should be scaled to
have unit variance before the analysis takes place.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

252 tune.spca

Details

Essentially, for the first component, and for a grid of the number of variables to select (keepX),
a number of repeats and folds, data are split to train and test and the extracted components are
compared against those from a spca model with all the data to ascertain the optimal keepX. In order
to keep at least 3 samples in each test set for reliable scaling of the test data for comparison, folds
must be <= floor(nrow(X)/3)

The number of selected variables for the following components will then be sequentially optimised.
If the number of observations are small (e.g. < 30), it is recommended to use Leave-One-Out
Cross-Validation which can be achieved by setting folds = nrow(X).

Value

A tune.spca object containing:

call The function call

choice.keepX The selected number of components on each component

cor.comp The correlations between the components from the cross-validated studies and those
from the study which used all of the data in training.

Examples

data("nutrimouse")
nrepeat <- 5
tune.spca.res <- tune.spca(

X = nutrimouse$lipid,
ncomp = 2,
nrepeat = nrepeat,
folds = 3,
test.keepX = seq(5, 15, 5),
seed = 42

)
tune.spca.res
plot(tune.spca.res)
Not run:
parallel processing using BiocParallel on repeats with more workers (cpus)
Check if the environment variable exists (during R CMD check) and limit cores accordingly
max_cores <- if (Sys.getenv("_R_CHECK_LIMIT_CORES_") != "") 2 else parallel::detectCores() - 1
Setup the parallel backend with the appropriate number of workers
BPPARAM <- BiocParallel::MulticoreParam(workers = max_cores)
tune.spca.res <- tune.spca(

X = nutrimouse$lipid,
ncomp = 2,
nrepeat = nrepeat,
folds = 3,
test.keepX = seq(5, 15, 5),
BPPARAM = BPPARAM

)
plot(tune.spca.res)

End(Not run)

tune.spls 253

tune.spls Tuning functions for sPLS method

Description

Computes M-fold or Leave-One-Out Cross-Validation scores on a user-input grid to determine op-
timal values for the parameters in spls.

Usage

tune.spls(
X,
Y,
test.keepX = NULL,
test.keepY = NULL,
ncomp,
mode = c("regression", "canonical", "classic"),
scale = TRUE,
logratio = "none",
tol = 1e-09,
max.iter = 100,
near.zero.var = FALSE,
multilevel = NULL,
validation = c("Mfold", "loo"),
nrepeat = 1,
folds,
measure = NULL,
BPPARAM = SerialParam(),
seed = NULL,
progressBar = FALSE,
...

)

Arguments

X numeric matrix of predictors with the rows as individual observations.

Y numeric matrix of response(s) with the rows as individual observations matching
X.

test.keepX numeric vector for the different number of variables to test from the X data set.

test.keepY numeric vector for the different number of variables to test from the Y data set.
Default to ncol(Y).

ncomp Positive Integer. The number of components to include in the model. Default to
2.

mode Character string indicating the type of PLS algorithm to use. One of "regression",
"canonical", "invariant" or "classic". See Details.

254 tune.spls

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE

logratio Character, one of (’none’,’CLR’) specifies the log ratio transformation to deal
with compositional values that may arise from specific normalisation in se-
quencing data. Default to ’none’. See ?logratio.transfo for details.

tol Positive numeric used as convergence criteria/tolerance during the iterative pro-
cess. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.

multilevel Numeric, design matrix for repeated measurement analysis, where multilevel
decomposition is required. For a one factor decomposition, the repeated mea-
sures on each individual, i.e. the individuals ID is input as the first column. For a
2 level factor decomposition then 2nd AND 3rd columns indicate those factors.
See examples.

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (Leave-One-out). Default is "Mfold".

nrepeat Positive integer. Number of times the Cross-Validation process should be re-
peated. nrepeat > 2 is required for robust tuning. See details.

folds Positive Integer, The folds in the Mfold cross-validation.

measure The tuning measure to use. Cannot be NULL when applied to sPLS1 object.
See details.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples
in ?tune.spca.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

progressBar Logical. If TRUE a progress bar is shown as the computation completes. Default
to FALSE.

... Optional parameters passed to spls

Details

This tuning function should be used to tune the parameters in the spls function (number of com-
ponents and number of variables to select).

Value

If test.keepX != NULL and test.keepY != NULL returns a list that contains:

cor.pred The correlation of predicted vs actual components from X (t) and Y (u) for each
component

RSS.pred The Residual Sum of Squares of predicted vs actual components from X (t) and
Y (u) for each component

tune.spls 255

choice.keepX returns the number of variables selected for X (optimal keepX) on each compo-
nent.

choice.keepY returns the number of variables selected for Y (optimal keepY) on each compo-
nent.

choice.ncomp returns the optimal number of components for the model fitted with $choice.keepX
and $choice.keepY

call The functioncal call including the parameteres used.

If test.keepX = NULL and test.keepY = NULL returns a list with the following components for
every repeat:

MSEP Mean Square Error Prediction for each Y variable, only applies to object inher-
ited from "pls", and "spls". Only available when in regression (s)PLS.

RMSEP Root Mean Square Error Prediction for each Y variable, only applies to object
inherited from "pls", and "spls". Only available when in regression (s)PLS.

R2 a matrix of R2 values of the Y -variables for models with 1, . . . ,ncomp compo-
nents, only applies to object inherited from "pls", and "spls". Only available
when in regression (s)PLS.

Q2 if Y contains one variable, a vector of Q2 values else a list with a matrix of Q2

values for each Y -variable. Note that in the specific case of an sPLS model, it
is better to have a look at the Q2.total criterion, only applies to object inherited
from "pls", and "spls". Only available when in regression (s)PLS.

Q2.total a vector of Q2-total values for models with 1, . . . ,ncomp components, only ap-
plies to object inherited from "pls", and "spls". Available in both (s)PLS
modes.

RSS Residual Sum of Squares across all selected features and the components.

PRESS Predicted Residual Error Sum of Squares across all selected features and the
components.

features a list of features selected across the folds ($stable.X and $stable.Y) for the
keepX and keepY parameters from the input object. Note, this will be NULL if
using standard (non-sparse) PLS.

cor.tpred, cor.upred
Correlation between the predicted and actual components for X (t) and Y (u)

RSS.tpred, RSS.upred
Residual Sum of Squares between the predicted and actual components for X (t)
and Y (u)

folds

During a cross-validation (CV), data are randomly split into M subgroups (folds). M-1 subgroups are
then used to train submodels which would be used to predict prediction accuracy statistics for the
held-out (test) data. All subgroups are used as the test data exactly once. If validation = "loo",
leave-one-out CV is used where each group consists of exactly one sample and hence M == N where
N is the number of samples.

256 tune.spls

nrepeat

The cross-validation process is repeated nrepeat times and the accuracy measures are averaged
across repeats. If validation = "loo", the process does not need to be repeated as there is only
one way to split N samples into N groups and hence nrepeat is forced to be 1.

measure

• For PLS2 Two measures of accuracy are available: Correlation (cor, used as default), as well
as the Residual Sum of Squares (RSS). For cor, the parameters which would maximise the
correlation between the predicted and the actual components are chosen. The RSS measure
tries to predict the held-out data by matrix reconstruction and seeks to minimise the error be-
tween actual and predicted values. For mode='canonical', The X matrix is used to calculate
the RSS, while for others modes the Y matrix is used. This measure gives more weight to any
large errors and is thus sensitive to outliers. It also intrinsically selects less number of features
on the Y block compared to measure='cor'.

• For PLS1 Four measures of accuracy are available: Mean Absolute Error (MAE), Mean Square
Error (MSE, used as default), Bias and R2. Both MAE and MSE average the model prediction
error. MAE measures the average magnitude of the errors without considering their direction.
It is the average over the fold test samples of the absolute differences between the Y predic-
tions and the actual Y observations. The MSE also measures the average magnitude of the
error. Since the errors are squared before they are averaged, the MSE tends to give a relatively
high weight to large errors. The Bias is the average of the differences between the Y predic-
tions and the actual Y observations and the R2 is the correlation between the predictions and
the observations.

Optimisation Process

The optimisation process is data-driven and similar to the process detailed in (Rohart et al., 2016),
where one-sided t-tests assess whether there is a gain in performance when incrementing the number
of features or components in the model. However, it will assess all the provided grid through pair-
wise comparisons as the performance criteria do not always change linearly with respect to the
added number of features or components.

more

See also ?perf for more details.

Author(s)

Kim-Anh Lê Cao, Al J Abadi, Benoit Gautier, Francois Bartolo, Florian Rohart,

References

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

PLS and PLS citeria for PLS regression: Tenenhaus, M. (1998). La regression PLS: theorie et
pratique. Paris: Editions Technic.

tune.spls 257

Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS
en regression PLS1. Modulad n, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls
and perf.spls)

Mevik, B.-H., Cederkvist, H. R. (2004). Mean Squared Error of Prediction (MSEP) Estimates for
Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR). Journal of
Chemometrics 18(9), 422-429.

sparse PLS regression mode:

Lê Cao, K. A., Rossouw D., Robert-Granie, C. and Besse, P. (2008). A sparse PLS for variable
selection when integrating Omics data. Statistical Applications in Genetics and Molecular Biology
7, article 35.

One-sided t-tests (suppl material):

Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson
K, Khosrotehrani K, Fisk NM, Lê Cao K-A&, Wells CA& (2016). A Molecular Classification of
Human Mesenchymal Stromal Cells. PeerJ 4:e1845.

See Also

splsda, predict.splsda and http://www.mixOmics.org for more details.

Examples

sPLS2 model example (more than one Y outcome variable)

set up data
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic

tune spls model for components only
tune.res.ncomp <- tune.spls(X, Y, ncomp = 5,

test.keepX = NULL,
test.keepY = NULL, measure = "cor",
folds = 5, nrepeat = 3, progressBar = TRUE)

plot(tune.res.ncomp) # plot outputs

tune spls model for number of X and Y variables to keep
tune.res <- tune.spls(X, Y, ncomp = 3,

test.keepX = c(5, 10, 15),
test.keepY = c(3, 6, 8), measure = "cor",
folds = 5, nrepeat = 3, progressBar = TRUE)

plot(tune.res) # plot outputs

sPLS1 model example (only one Y outcome variable)

set up data
Y1 <- liver.toxicity$clinic[,1]

tune spls model for components only
plot(tune.spls(X, Y1, ncomp = 3,

folds = 3,

258 tune.splsda

test.keepX = NULL, test.keepY = NULL))

tune spls model for number of X variables to keep, note for sPLS1 models 'measure' needs to be set
plot(tune.spls(X, Y1, ncomp = 3,

folds = 3, measure = "MSE",
test.keepX = c(5, 10, 15), test.keepY = c(3, 6, 8)))

sPLS2 multilevel model example

set up multilevel design
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,

6, 5, 6, 7, 7, 8, 6, 7, 8, 7, 8, 8, 9, 10, 9, 10, 11, 9, 9,
10, 11, 12, 12, 10, 11, 12, 11, 12, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 15, 16)

design <- data.frame(sample = repeat.indiv)

tune spls model for components only
tune.res.ncomp <- tune.spls(X, Y, ncomp = 5,

test.keepX = NULL,
test.keepY = NULL, measure = "cor", multilevel = design,
folds = 5, nrepeat = 3, progressBar = TRUE)

plot(tune.res.ncomp) # plot outputs

tune spls model for number of X and Y variables to keep
tune.res <- tune.spls(X, Y, ncomp = 3,

test.keepX = c(5, 10, 15),
test.keepY = c(3, 6, 8), measure = "cor", multilevel = design,
folds = 5, nrepeat = 3, progressBar = TRUE)

plot(tune.res) # plot outputs

tune.splsda Tuning functions for sPLS-DA method

Description

Computes M-fold or Leave-One-Out Cross-Validation scores on a user-input grid to determine op-
timal values for the parameters in splsda.

Usage

tune.splsda(
X,
Y,
ncomp = 1,
test.keepX = NULL,
already.tested.X,
scale = TRUE,
logratio = c("none", "CLR"),

tune.splsda 259

max.iter = 100,
tol = 1e-06,
near.zero.var = FALSE,
multilevel = NULL,
validation = "Mfold",
folds = 10,
nrepeat = 1,
signif.threshold = 0.01,
dist = "max.dist",
measure = "BER",
auc = FALSE,
progressBar = FALSE,
light.output = TRUE,
BPPARAM = SerialParam(),
seed = NULL

)

Arguments

X numeric matrix of predictors. NAs are allowed.

Y if(method = 'spls') numeric vector or matrix of continuous responses (for
multi-response models) NAs are allowed.

ncomp the number of components to include in the model.

test.keepX numeric vector for the different number of variables to test from the X data set.
If set to NULL, tuning will be performed on ncomp using all variables in the X
data set.

already.tested.X

Optional, if ncomp > 1 A numeric vector indicating the number of variables to
select from the X data set on the firsts components.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

logratio one of (’none’,’CLR’). Default to ’none’

max.iter integer, the maximum number of iterations.

tol Convergence stopping value.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Default value is FALSE

multilevel Design matrix for multilevel analysis (for repeated measurements) that indicates
the repeated measures on each individual, i.e. the individuals ID. See Details.

validation character. What kind of (internal) validation to use, matching one of "Mfold"
or "loo" (short for ’leave-one-out’). Default is "Mfold".

folds the folds in the Mfold cross-validation. See Details.

nrepeat Number of times the Cross-Validation process is repeated.
signif.threshold

numeric between 0 and 1 indicating the significance threshold required for im-
provement in error rate of the components. Default to 0.01.

260 tune.splsda

dist distance metric to use for splsda to estimate the classification error rate, should
one of "centroids.dist", "mahalanobis.dist" or "max.dist" (see Details).
If test.keepX = NULL multiple distances can be inputted or "all".

measure Three misclassification measure are available: overall misclassification error
overall, the Balanced Error Rate BER or the Area Under the Curve AUC. Only
used when test.keepX is not NULL.

auc if TRUE calculate the Area Under the Curve (AUC) performance of the model
based on the optimisation measure measure.

progressBar by default set to TRUE to output the progress bar of the computation.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX
and each comp is returned.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples
in ?tune.spca.

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

Details

This tuning function should be used to tune the parameters in the splsda function (number of
components and number of variables in keepX to select).

For a sPLS-DA, M-fold or LOO cross-validation is performed with stratified subsampling where all
classes are represented in each fold.

If validation = "loo", leave-one-out cross-validation is performed. By default folds is set to the
number of unique individuals.

The function outputs the optimal number of components that achieve the best performance based
on the overall error rate or BER. The assessment is data-driven and similar to the process detailed
in (Rohart et al., 2016), where one-sided t-tests assess whether there is a gain in performance when
adding a component to the model. Our experience has shown that in most case, the optimal number
of components is the number of categories in Y - 1, but it is worth tuning a few extra components to
check (see our website and case studies for more details).

For sPLS-DA multilevel one-factor analysis, M-fold or LOO cross-validation is performed where
all repeated measurements of one sample are in the same fold. Note that logratio transform and the
multilevel analysis are performed internally and independently on the training and test set.

For a sPLS-DA multilevel two-factor analysis, the correlation between components from the within-
subject variation of X and the cond matrix is computed on the whole data set. The reason why we
cannot obtain a cross-validation error rate as for the spls-DA one-factor analysis is because of the
difficulty to decompose and predict the within matrices within each fold.

For a sPLS two-factor analysis a sPLS canonical mode is run, and the correlation between compo-
nents from the within-subject variation of X and Y is computed on the whole data set.

If validation = "Mfold", M-fold cross-validation is performed. How many folds to generate is
selected by specifying the number of folds in folds.

If auc = TRUE and there are more than 2 categories in Y, the Area Under the Curve is averaged using
one-vs-all comparison. Note however that the AUC criteria may not be particularly insightful as

tune.splsda 261

the prediction threshold we use in sPLS-DA differs from an AUC threshold (sPLS-DA relies on
prediction distances for predictions, see ?predict.splsda for more details) and the supplemental
material of the mixOmics article (Rohart et al. 2017). If you want the AUC criterion to be insightful,
you should use measure==AUC as this will output the number of variable that maximises the AUC;
in this case there is no prediction threshold from sPLS-DA (dist is not used). If measure==AUC,
we do not output SD as this measure can be a mean (over nrepeat) of means (over the categories).

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017).

If test.keepX is set to NULL, the perf() function will be run internally, which performs cross-
validation to identify optimal number of components and distance measure. Running tuning initially
using test.keepX = NULL speeds up the parameter tuning workflow, as then a lower ncomp value
can be used for variable selection tuning.

Value

Depending on the type of analysis performed, a list that contains:

error.rate returns the prediction error for each test.keepX on each component, averaged
across all repeats and subsampling folds. Standard deviation is also output. All
error rates are also available as a list.

choice.keepX returns the number of variables selected (optimal keepX) on each component.

choice.ncomp returns the optimal number of components for the model fitted with $choice.keepX

error.rate.class

returns the error rate for each level of Y and for each component computed with
the optimal keepX

If test.keepX = FALSE,produces a matrix of classification error rate estimation. The dimensions
correspond to the components in the model and to the prediction method used, respectively. Note
that error rates reported in any component include the performance of the model in earlier compo-
nents for the specified keepX parameters (e.g. error rate reported for component 3 for keepX = 20
already includes the fitted model on components 1 and 2 for keepX = 20).

predict Prediction values for each sample, each test.keepX, each comp and each re-
peat. Only if light.output=FALSE

class Predicted class for each sample, each test.keepX, each comp and each repeat.
Only if light.output=FALSE

auc AUC mean and standard deviation if the number of categories in Y is greater
than 2, see details above. Only if auc = TRUE

cor.value only if multilevel analysis with 2 factors: correlation between latent variables.

Author(s)

Kim-Anh Lê Cao, Benoit Gautier, Francois Bartolo, Florian Rohart, Al J Abadi

262 tune.splsda

References

mixOmics article:

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection
and multiple data integration. PLoS Comput Biol 13(11): e1005752

See Also

splsda, predict.splsda and http://www.mixOmics.org for more details.

Examples

First example: analysis with sPLS-DA
data(breast.tumors)
X = breast.tumors$gene.exp
Y = as.factor(breast.tumors$sample$treatment)

first tune on components only
tune = tune.splsda(X, Y, ncomp = 5, logratio = "none",

nrepeat = 10, folds = 10,
test.keepX = NULL,
dist = "all",
progressBar = TRUE,
seed = 20) # set for reproducibility of example only

plot(tune) # optimal distance = centroids.dist
tune$choice.ncomp # optimal component number = 3

then tune optimal keepX for each component
tune = tune.splsda(X, Y, ncomp = 3, logratio = "none",

nrepeat = 10, folds = 10,
test.keepX = c(5, 10, 15), dist = "centroids.dist",
progressBar = TRUE,
seed = 20)

plot(tune)
tune$choice.keepX # optimal number of variables to keep c(15, 5, 15)

With already tested variables:
tune = tune.splsda(X, Y, ncomp = 3, logratio = "none",

nrepeat = 10, folds = 10,
test.keepX = c(5, 10, 15), already.tested.X = c(5, 10),
dist = "centroids.dist",
progressBar = TRUE,
seed = 20)

plot(tune)

Second example: multilevel one-factor analysis with sPLS-DA

data(vac18)
X = vac18$genes
Y = vac18$stimulation
sample indicates the repeated measurements

tune.splslevel 263

design = data.frame(sample = vac18$sample)

tune on components
tune = tune.splsda(X, Y = Y, ncomp = 5, nrepeat = 10, logratio = "none",

test.keepX = NULL, folds = 10, dist = "max.dist", multilevel = design)

plot(tune)

tune on variables
tune = tune.splsda(X, Y = Y, ncomp = 3, nrepeat = 10, logratio = "none",

test.keepX = c(5,50,100),folds = 10, dist = "max.dist", multilevel = design)

plot(tune)

tune.splslevel Parallelized Tuning function for multilevel sPLS method using Bioc-
Parallel

Description

For a multilevel spls analysis, the tuning criterion is based on the maximisation of the correlation
between the components from both data sets

Usage

tune.splslevel(
X,
Y,
multilevel,
ncomp = NULL,
mode = "regression",
test.keepX = rep(ncol(X), ncomp),
test.keepY = rep(ncol(Y), ncomp),
already.tested.X = NULL,
already.tested.Y = NULL,
BPPARAM = BiocParallel::SerialParam(),
seed = NULL

)

Arguments

X numeric matrix of predictors. NAs are allowed.

Y if(method = 'spls') numeric vector or matrix of continuous responses (for
multi-response models) NAs are allowed.

multilevel Design matrix for multilevel analysis (for repeated measurements) that indicates
the repeated measures on each individual, i.e. the individuals ID. See Details.

ncomp the number of components to include in the model.

264 unmap

mode character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical", "invariant" or "classic".

test.keepX numeric vector for the different number of variables to test from the X data set

test.keepY numeric vector for the different number of variables to test from the Y data set

already.tested.X

Optional, if ncomp > 1 A numeric vector indicating the number of variables to
select from the X data set on the firsts components.

already.tested.Y

Optional, if ncomp > 1 A numeric vector indicating the number of variables to
select from the Y data set on the firsts components.

BPPARAM BiocParallelParam object to manage parallelization

seed set a number here if you want the function to give reproducible outputs. Not
recommended during exploratory analysis. Note if RNGseed is set in ’BPPA-
RAM’, this will be overwritten by ’seed’.

Value

cor.value correlation between latent variables

unmap Dummy matrix for an outcome factor

Description

Converts a class or group vector or factor into a matrix of indicator variables.

Usage

unmap(classification, groups = NULL, noise = NULL)

Arguments

classification A numeric or character vector or factor. Typically the distinct entries of this
vector would represent a classification of observations in a data set.

groups A numeric or character vector indicating the groups from which classification
is drawn. If not supplied, the default is to assumed to be the unique entries of
classification.

noise A single numeric or character value used to indicate the value of groups corre-
sponding to noise.

vac18 265

Value

An n by K matrix of (0,1) indicator variables, where n is the length of samples and K the number of
classes in the outcome.

If a noise value of symbol is designated, the corresponding indicator variables are relocated to the
last column of the matrix.

Note: - you can remap an unmap vector using the function map from the package mclust. - this func-
tion should be used to unmap an outcome vector as in the non-supervised methods of mixOmics.
For other supervised analyses such as (s)PLS-DA, (s)gccaDA this function is used internally.

Author(s)

Ignacio Gonzalez, Kim-Anh Le Cao, Pierre Monget, AL J Abadi

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association 97:611-631.

C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal
Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical
Report No. 597, Department of Statistics, University of Washington.

Examples

data(nutrimouse)
Y = unmap(nutrimouse$diet)
Y
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
data could then used as an input in wrapper.rgcca, which is not, technically,
a supervised method, see ??wrapper.rgcca

vac18 Vaccine study Data

Description

The data come from a trial evaluating a vaccine based on HIV-1 lipopeptides in HIV-negative vol-
unteers. The vaccine (HIV-1 LIPO-5 ANRS vaccine) contains five HIV-1 amino acid sequences
coding for Gag, Pol and Nef proteins. This data set contains the expression measure of a subset of
1000 genes from purified in vitro stimulated Peripheral Blood Mononuclear Cells from 42 repeated
samples (12 unique vaccinated participants) 14 weeks after vaccination, , 6 hours after in vitro
stimulation by either (1) all the peptides included in the vaccine (LIPO-5), or (2) the Gag peptides
included in the vaccine (GAG+) or (3) the Gag peptides not included in the vaccine (GAG-) or (4)
without any stimulation (NS).

Usage

data(vac18)

266 vac18.simulated

Format

A list containing the following components:

list("gene") data frame with 42 rows and 1000 columns. The expression measure of 1000 genes
for the 42 samples (PBMC cells from 12 unique subjects).

list("stimulation") is a fctor of 42 elements indicating the type of in vitro simulation for each
sample.

list("sample") is a vector of 42 elements indicating the unique subjects (for example the value ’1’
correspond to the first patient PBMC cells). Note that the design of this study is unbalanced.

list("tab.prob.gene") is a data frame with 1000 rows and 2 columns, indicating the Illumina probe
ID and the gene name of the annotated genes.

Details

This is a subset of the original study for illustrative purposes.

Value

none

References

Salmon-Ceron D, Durier C, Desaint C, Cuzin L, Surenaud M, Hamouda N, Lelievre J, Bonnet B,
Pialoux G, Poizot-Martin I, Aboulker J, Levy Y, Launay O, trial group AV: Immunogenicity and
safety of an HIV-1 lipopeptide vaccine in healthy adults: a phase 2 placebo-controlled ANRS trial.
AIDS 2010, 24(14):2211-2223.

vac18.simulated Simulated data based on the vac18 study for multilevel analysis

Description

Simulated data based on the vac18 study to illustrate the use of the multilevel analysis for one and
two-factor analysis with sPLS-DA. This data set contains the expression simulated of 500 genes.

Usage

data(vac18.simulated)

Format

A list containing the following components:

list("genes") data frame with 48 rows and 500 columns. The simulated expression of 500 genes
for 48 subjects.

list("sample") a vector indicating the repeated measurements on each unique subject. See Details.
list("stimulation") a factor indicating the stimulation condition on each sample.
list("time") a factor indicating the time condition on each sample.

vip 267

Details

In this cross-over design, repeated measurements are performed 12 experiments units (or unique
subjects) for each of the 4 stimulations.

The simulation study was based on a mixed effects model (see reference for details). Ten clusters
of 100 genes were generated. Amongt those, 4 clusters of genes discriminate the 4 stimulations
(denoted LIPO5, GAG+, GAG- and NS) as follows: \ -2 gene clusters discriminate (LIPO5, GAG+)
versus (GAG-, NS) \ -2 gene clusters discriminate LIPO5 versus GAG+, while GAG+ and NS have
the same effect \ -2 gene clusters discriminate GAG- versus NS, while LIPO5 and GAG+ have the
same effect \ -the 4 remaining clusters represent noisy signal (no stimulation effect) \

Only a subset of those genes are presented here (to save memory space).

Value

none

References

Liquet, B., Lê Cao, K.-A., Hocini, H. and Thiebaut, R. (2012). A novel approach for biomarker
selection and the integration of repeated measures experiments from two platforms. BMC Bioinfor-
matics 13:325.

vip Variable Importance in the Projection (VIP)

Description

The function vip computes the influence on the Y -responses of every predictor X in the model.

Usage

vip(object)

Arguments

object object of class inheriting from "pls", "plsda", "spls" or "splsda".

Details

Variable importance in projection (VIP) coefficients reflect the relative importance of each X vari-
able for each X variate in the prediction model. VIP coefficients thus represent the importance of
each X variable in fitting both the X- and Y -variates, since the Y -variates are predicted from the
X-variates.

VIP allows to classify the X-variables according to their explanatory power of Y . Predictors with
large VIP, larger than 1, are the most relevant for explaining Y .

268 withinVariation

Value

vip produces a matrix of VIP coefficients for each X variable (rows) on each variate component
(columns).

Author(s)

Sébastien Déjean, Ignacio Gonzalez, Florian Rohart, Al J Abadi

References

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

See Also

pls, spls, summary.

Examples

data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)

linn.vip <- vip(linn.pls)

barplot(linn.vip,
beside = TRUE, col = c("lightblue", "mistyrose", "lightcyan"),
ylim = c(0, 1.7), legend = rownames(linn.vip),
main = "Variable Importance in the Projection", font.main = 4)

withinVariation Within matrix decomposition for repeated measurements (cross-over
design)

Description

This function is internally called by pca, pls, spls, plsda and splsda functions for cross-over
design data, but can be called independently prior to any kind of multivariate analyses.

Usage

withinVariation(X, design)

Arguments

X numeric matrix of predictors. NAs are allowed.

design a numeric matrix or data frame. The first column indicates the repeated measures
on each individual, i.e. the individuals ID. The 2nd and 3rd columns are to split
the variation for a 2 level factor.

withinVariation 269

Details

withinVariation function decomposes the Within variation in the X data set. The resulting Xw
matrix is then input in the multilevel function.

One or two-factor analyses are available.

Value

withinVariation simply returns the Xw within matrix, which can be input in the other multivari-
ate approaches already implemented in mixOmics (i.e. spls or splsda, see multilevel, but also pca
or ipca).

Author(s)

Benoit Liquet, Kim-Anh Lê Cao, Benoit Gautier, Ignacio González, Florian Rohart, AL J Abadi

References

On multilevel analysis:

Liquet, B., Lê Cao, K.-A., Hocini, H. and Thiebaut, R. (2012) A novel approach for biomarker
selection and the integration of repeated measures experiments from two platforms. BMC Bioinfor-
matics 13:325.

Westerhuis, J. A., van Velzen, E. J., Hoefsloot, H. C., and Smilde, A. K. (2010). Multivariate paired
data analysis: multilevel PLSDA versus OPLSDA. Metabolomics, 6(1), 119-128.

See Also

spls, splsda, plotIndiv, plotVar, cim, network.

Examples

Example: one-factor analysis matrix decomposition
#--
data(vac18)
X <- vac18$genes
in design we only need to mention the repeated measurements to split the one level variation
design <- data.frame(sample = vac18$sample)

Xw <- withinVariation(X = X, design = design)
multilevel PCA
res.pca.1level <- pca(Xw, ncomp = 3)

compare a normal PCA with a multilevel PCA for repeated measurements.
note: PCA makes the assumptions that all samples are independent,
so this analysis is flawed and you should use a multilevel PCA instead
res.pca <- pca(X, ncomp = 3)

set up colors for plotIndiv
col.stim <- c("darkblue", "purple", "green4","red3")
col.stim <- col.stim[as.numeric(vac18$stimulation)]

270 wrapper.rgcca

plotIndiv comparing both PCA and PCA multilevel
plotIndiv(res.pca, ind.names = vac18$stimulation, group = col.stim)
title(main = 'PCA ')
plotIndiv(res.pca.1level, ind.names = vac18$stimulation, group = col.stim)
title(main = 'PCA multilevel')

wrapper.rgcca mixOmics wrapper for Regularised Generalised Canonical Correla-
tion Analysis (rgcca)

Description

Wrapper function to perform Regularized Generalised Canonical Correlation Analysis (rGCCA), a
generalised approach for the integration of multiple datasets. For more details, see the help(rgcca)
from the RGCCA package.

Usage

wrapper.rgcca(
X,
design = 1 - diag(length(X)),
tau = rep(1, length(X)),
ncomp = 1,
keepX,
scale = TRUE,
tol = .Machine$double.eps,
max.iter = 1000,
near.zero.var = FALSE,
all.outputs = TRUE

)

Arguments

X a list of data sets (called ’blocks’) matching on the same samples. Data in the
list should be arranged in samples x variables. NAs are not allowed.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship
to be modelled between two blocks using sGCCA; a value of 0 indicates no
relationship, 1 is the maximum value. If Y is provided instead of indY, the
design matrix is changed to include relationships to Y.

tau numeric vector of length the number of blocks in X. Each regularization param-
eter will be applied on each block and takes the value between 0 (no regularisa-
tion) and 1. If tau = "optimal" the shrinkage paramaters are estimated for each
block and each dimension using the Schafer and Strimmer (2005) analytical for-
mula.

ncomp the number of components to include in the model. Default to 1.

wrapper.rgcca 271

keepX A vector of same length as X. Each entry keepX[i] is the number of X[[i]]-
variables kept in the model.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Convergence stopping value.
max.iter integer, the maximum number of iterations.
near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-

ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

This wrapper function performs rGCCA (see RGCCA) with 1, . . . ,ncomp components on each
block data set. A supervised or unsupervised model can be run. For a supervised model, the unmap
function should be used as an input data set. More details can be found on the package RGCCA.

Value

wrapper.rgcca returns an object of class "rgcca", a list that contains the following components:

data the input data set (as a list).
design the input design.
variates the sgcca components.
loadings the loadings for each block data set (outer wieght vector).
loadings.star the laodings, standardised.
tau the input tau parameter.
ncomp the number of components included in the model for each block.
crit the convergence criterion.
AVE Indicators of model quality based on the Average Variance Explained (AVE):

AVE(for one block), AVE(outer model), AVE(inner model)..
names list containing the names to be used for individuals and variables.

More details can be found in the references. Note that the argument ’scheme’ has now been hard-
coded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Arthur Tenenhaus, Vincent Guillemot, Kim-Anh Lê Cao, Florian Rohart, Benoit Gautier

References

Tenenhaus A. and Tenenhaus M., (2011), Regularized Generalized Canonical Correlation Analysis,
Psychometrika, Vol. 76, Nr 2, pp 257-284.

Schafer J. and Strimmer K., (2005), A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32.

272 wrapper.sgcca

See Also

wrapper.rgcca, plotIndiv, plotVar, wrapper.sgcca and http://www.mixOmics.org for more
details.

Examples

data(nutrimouse)
need to unmap the Y factor diet
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
with this design, gene expression and lipids are connected to the diet factor
design = matrix(c(0,0,1,
0,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

with this design, gene expression and lipids are connected to the diet factor
and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the tau parameter is the regularization parameter
wrap.result.rgcca = wrapper.rgcca(X = data, design = design, tau = c(1, 1, 0),
ncomp = 2)
#wrap.result.rgcca

wrapper.sgcca mixOmics wrapper for Sparse Generalised Canonical Correlation
Analysis (sgcca)

Description

Wrapper function to perform Sparse Generalised Canonical Correlation Analysis (sGCCA), a gen-
eralised approach for the integration of multiple datasets. For more details, see the help(sgcca)
from the RGCCA package.

Usage

wrapper.sgcca(
X,
design = 1 - diag(length(X)),
penalty = NULL,
ncomp = 1,
keepX,
mode = "canonical",
scale = TRUE,
tol = .Machine$double.eps,
max.iter = 1000,

http://www.mixOmics.org

wrapper.sgcca 273

near.zero.var = FALSE,
all.outputs = TRUE

)

Arguments

X a list of data sets (called ’blocks’) matching on the same samples. Data in the
list should be arranged in samples x variables. NAs are not allowed.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship
to be modelled between two blocks using sGCCA; a value of 0 indicates no
relationship, 1 is the maximum value. If Y is provided instead of indY, the
design matrix is changed to include relationships to Y.

penalty numeric vector of length the number of blocks in X. Each penalty parameter will
be applied on each block and takes the value between 0 (no variable selected)
and 1 (all variables included).

ncomp the number of components to include in the model. Default to 1.

keepX A vector of same length as X. Each entry keepX[i] is the number of X[[i]]-
variables kept in the model.

mode character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)

tol Convergence stopping value.

max.iter integer, the maximum number of iterations.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE

all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.

Details

This wrapper function performs sGCCA (see RGCCA) with 1, . . . ,ncomp components on each
block data set. A supervised or unsupervised model can be run. For a supervised model, the unmap
function should be used as an input data set. More details can be found on the package RGCCA.

Note that this function is the same as block.spls with different default arguments.

More details about the PLS modes in ?pls.

Value

wrapper.sgcca returns an object of class "sgcca", a list that contains the following components:

data the input data set (as a list).

design the input design.

274 wrapper.sgcca

variates the sgcca components.

loadings the loadings for each block data set (outer wieght vector).

loadings.star the laodings, standardised.

penalty the input penalty parameter.

scheme the input schme.

ncomp the number of components included in the model for each block.

crit the convergence criterion.

AVE Indicators of model quality based on the Average Variance Explained (AVE):
AVE(for one block), AVE(outer model), AVE(inner model)..

names list containing the names to be used for individuals and variables.

More details can be found in the references. Note that the argument ’scheme’ has now been hard-
coded to ’horst’ and ’init’ to ’svd.single’.

Author(s)

Arthur Tenenhaus, Vincent Guillemot, Kim-Anh Lê Cao, Florian Rohart, Benoit Gautier, Al J Abadi

References

Tenenhaus A. and Tenenhaus M., (2011), Regularized Generalized Canonical Correlation Analysis,
Psychometrika, Vol. 76, Nr 2, pp 257-284.

Tenenhaus A., Phillipe C., Guillemot, V., Lê Cao K-A., Grill J., Frouin, V. Variable Selection For
Generalized Canonical Correlation Analysis. 2013. (in revision)

See Also

wrapper.sgcca, plotIndiv, plotVar, wrapper.rgcca and http://www.mixOmics.org for more
details.

Examples

data(nutrimouse)
need to unmap the Y factor diet if you pretend this is not a classification pb.
see also the function block.splsda for discriminant analysis where you dont
need to unmap Y.
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
with this design, gene expression and lipids are connected to the diet factor
design = matrix(c(0,0,1,
0,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

with this design, gene expression and lipids are connected to the diet factor
and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

http://www.mixOmics.org

yeast 275

#note: the penalty parameters will need to be tuned
wrap.result.sgcca = wrapper.sgcca(X = data, design = design, penalty = c(.3,.5, 1),
ncomp = 2)
wrap.result.sgcca
#did the algo converge?
wrap.result.sgcca$crit # yes

yeast Yeast metabolomic study

Description

Two Saccharomyces Cerevisiae strains were compared under two different environmental condi-
tions, 37 metabolites expression are measured.

Usage

data(yeast)

Format

A list containing the following components:

list("data") data matrix with 55 rows and 37 columns. Each row represents an experimental sam-
ple, and each column a single metabolite.

list("strain") a factor containing the type of strain (MT or WT).

list("condition") a factor containing the type of environmental condition (AER or ANA).

list("strain.condition") a crossed factor between strain and condition.

Details

In this study, two Saccharomyces cerevisiae strains were used - wild-type (WT) and mutant (MT),
and were carried out in batch cultures under two different environmental conditions, aerobic (AER)
and anaerobic (ANA) in standard mineral media with glucose as the sole carbon source. After
normalization and pre processing, the metabolomic data results in 37 metabolites and 55 samples
which include 13 MT-AER, 14 MT-ANA, 15 WT-AER and 13 WT-ANA samples

Value

none

References

Villas-Boas S, Moxley J, Akesson M, Stephanopoulos G, Nielsen J: High-throughput metabolic
state analysis (2005). The missing link in integrated functional genomics. Biochemical Journal,
388:669–677.

Index

∗ algebra
ipca, 58
mat.rank, 66
nipals, 106
pca, 108
sipca, 199
spca, 201
tune.pca, 239

∗ cluster
cim, 33
cimDiablo, 41
unmap, 264

∗ color
colors, 47

∗ datasets
breast.TCGA, 31
breast.tumors, 32
diverse.16S, 50
Koren.16S, 61
linnerud, 62
liver.toxicity, 63
multidrug, 98
nutrimouse, 107
srbct, 213
stemcells, 214
vac18, 265
vac18.simulated, 266
yeast, 275

∗ dplot
image.tune.rcc, 54
imgCor, 55
mixOmics, 93
network, 100
plotArrow, 140
plotIndiv, 145
plotVar, 173
tune.mint.plsda, 233
tune.mint.splsda, 235
tune.rcc, 249

∗ graphs
cim, 33
cimDiablo, 41
network, 100

∗ hplot
cim, 33
cimDiablo, 41
image.tune.rcc, 54
mixOmics, 93
network, 100
plot.perf, 131
plot.perf.pls, 133
plot.rcc, 135
plot.tune, 136
plotArrow, 140
plotIndiv, 145
plotVar, 173

∗ iplot
cim, 33
cimDiablo, 41
network, 100

∗ multivariate
auroc, 5
block.pls, 17
block.plsda, 20
block.spls, 23
block.splsda, 26
cim, 33
cimDiablo, 41
circosPlot, 43
explained_variance, 51
imgCor, 55
mint.block.pls, 67
mint.block.plsda, 70
mint.block.spls, 73
mint.block.splsda, 76
mint.pca, 79
mint.pls, 81
mint.plsda, 84

276

INDEX 277

mint.spls, 87
mint.splsda, 90
mixOmics, 93
network, 100
nipals, 106
perf, 112
perf.assess, 122
plot.perf, 131
plot.perf.pls, 133
plot.rcc, 135
plot.tune, 136
plotArrow, 140
plotDiablo, 144
plotIndiv, 145
plotLoadings, 157
plotVar, 173
pls, 178
plsda, 182
predict, 185
print, 190
rcc, 194
spls, 204
splsda, 209
study_split, 215
summary, 216
tune, 218
tune.block.plsda, 223
tune.block.splsda, 227
tune.mint.plsda, 233
tune.mint.splsda, 235
tune.pls, 241
tune.plsda, 245
tune.rcc, 249
tune.spls, 253
tune.splsda, 258
vip, 267
withinVariation, 268
wrapper.rgcca, 270
wrapper.sgcca, 272

∗ regression
auroc, 5
block.pls, 17
block.plsda, 20
block.spls, 23
block.splsda, 26
circosPlot, 43
explained_variance, 51
mint.block.pls, 67

mint.block.plsda, 70
mint.block.spls, 73
mint.block.splsda, 76
mint.pca, 79
mint.pls, 81
mint.plsda, 84
mint.spls, 87
mint.splsda, 90
perf, 112
perf.assess, 122
plot.perf, 131
plot.perf.pls, 133
plot.tune, 136
plotDiablo, 144
pls, 178
plsda, 182
predict, 185
print, 190
spls, 204
splsda, 209
study_split, 215
summary, 216
tune, 218
tune.block.plsda, 223
tune.block.splsda, 227
tune.pls, 241
tune.plsda, 245
tune.spls, 253
tune.splsda, 258
vip, 267
withinVariation, 268

∗ utilities
nearZeroVar, 99

arrows, 142
auroc, 5, 116, 119, 125, 128

background.predict, 10, 153, 154, 188
barplot, 136, 165
BiocParallelParam, 115, 124, 221, 224, 229,

242, 247, 251, 254, 260
biplot, 12, 111, 240
block.pls, 17, 22, 25, 96, 167, 188
block.plsda, 19, 20, 29, 96, 167, 184, 188
block.spls, 19, 23, 29, 96, 167, 173, 188, 273
block.splsda, 22, 25, 26, 46, 96, 145, 167,

173, 188, 211, 226, 231
breast.TCGA, 31
breast.tumors, 32

278 INDEX

cim, 33, 42, 43, 52, 104, 176, 196, 207, 211,
269

cimDiablo, 41
circosPlot, 43
color.GreenRed, 104
color.GreenRed (colors), 47
color.jet, 34, 41, 57, 104
color.jet (colors), 47
color.mixo (colors), 47
color.spectral, 104
color.spectral (colors), 47
colorRamp, 48
colors, 47, 48
cor, 57

dist, 34
diverse.16S, 49

eigen, 107
estim.regul, 51
estimate.lambda, 195
explained_variance, 51

get.BER (get.confusion_matrix), 52
get.confusion_matrix, 52
gray, 48

hclust, 34, 37, 43
heat.colors, 48, 54
heatmap, 37, 43
hsv, 48

image, 35, 55, 57
image.estim.regul (estim.regul), 51
image.tune.rcc, 51, 54, 250
imgCor, 55
impute.nipals, 18, 21, 28, 51, 57, 58, 71, 78,

91, 107, 181, 206
ipca, 58, 201

Koren.16S, 61

layout, 36
linnerud, 62
liver.toxicity, 63
logratio-transformations, 64
logratio.transfo, 110, 181, 183, 203, 207,

210, 240
logratio.transfo

(logratio-transformations), 64

map, 65
mat.rank, 66
mint.block.pls, 67, 75, 79, 96, 167, 188
mint.block.plsda, 69, 70, 72, 75, 79, 96,

167, 184, 188
mint.block.spls, 69, 72, 73, 79, 96, 167, 188
mint.block.splsda, 69, 72, 75, 76, 96, 167,

188, 211
mint.pca, 79
mint.pls, 81, 86, 90, 93, 96, 167, 188, 215
mint.plsda, 81, 84, 84, 90, 93, 96, 167, 188,

215, 235
mint.spls, 81, 84, 86, 87, 96, 167, 188, 215
mint.splsda, 81, 84, 86, 90, 90, 96, 167, 188,

215, 238
mixOmics, 93
mixOmics-package, 4
multidrug, 98

nearZeroVar, 18, 21, 24, 28, 68, 71, 74, 77,
82, 85, 88, 91, 94, 99, 179, 183, 205,
210, 220, 224, 228, 234, 236, 246,
259, 271, 273

network, 37, 43, 52, 100, 176, 196, 207, 211,
269

nipals, 57, 66, 106, 106, 109, 111, 119, 128,
240

nutrimouse, 107

order.dendrogram, 36, 42

palette, 48
par, 35, 41, 56, 136, 174, 176
pca, 58, 60, 65, 108, 201, 203
pcatune (estim.regul), 51
perf, 9, 19, 22, 25, 29, 69, 72, 75, 79, 81, 84,

86, 90, 93, 112, 132–135, 182, 184,
207, 211

perf.assess, 122
plot.pca, 130
plot.perf, 119, 128, 131
plot.perf.pls, 133
plot.perf.spls.mthd (plot.perf.pls), 133
plot.rcc, 135, 196
plot.sgccda (plotDiablo), 144
plot.tune, 136
plot.tune.rcc (image.tune.rcc), 54
plotArrow, 19, 22, 25, 29, 140
plotDiablo, 144

INDEX 279

plotIndiv, 11, 19, 22, 25, 29, 52, 60, 69, 72,
75, 79–81, 83–86, 89, 90, 92, 93,
111, 145, 182, 184, 196, 201, 207,
211, 240, 269, 272, 274

plotLoadings, 19, 22, 25, 29, 80, 83, 85, 89,
92, 157, 173

plotMarkers, 172
plotVar, 19, 22, 25, 29, 37, 43, 52, 60, 69, 72,

75, 79–81, 83–86, 89, 90, 92, 93,
104, 111, 173, 182, 184, 196, 201,
207, 211, 240, 269, 272, 274

pls, 65, 96, 100, 133, 135, 167, 178, 188, 193,
207, 217, 242, 268

plsda, 65, 96, 100, 133, 135, 154, 167, 182,
188

points, 136, 142, 154, 174
polygon, 11
prcomp, 107, 111
predict, 11, 19, 22, 25, 29, 53, 69, 72, 75, 79,

81, 84, 86, 90, 93, 115, 119, 124,
128, 182, 184, 185, 207, 211, 234,
236

predict.splsda, 245, 248, 257, 262
princomp, 107, 109, 240
print, 190

rainbow, 34, 41, 48, 54
rcc, 193, 194, 195, 217

scale, 35, 59, 109, 200, 202, 220, 239, 251
select.var (selectVar), 197
selectVar, 19, 22, 25, 29, 197
sipca, 60, 199
spca, 201
spls, 52, 65, 69, 72, 75, 79, 81, 84, 86, 90, 93,

96, 100, 133, 135, 167, 182, 188,
193, 204, 211, 217, 254, 268, 269

splsda, 52, 65, 96, 100, 133, 135, 154, 167,
184, 188, 209, 245, 248, 257, 262,
269

srbct, 213
stemcells, 214
study_split, 215
summary, 69, 72, 75, 79, 81, 84, 86, 90, 93,

182, 184, 196, 207, 211, 216, 268
svd, 107

terrain.colors, 34, 41, 48, 54
text, 142, 154

theme, 15
topo.colors, 34, 41, 48, 54
tune, 9, 218
tune.block.plsda, 223
tune.block.splsda, 138, 227
tune.mint.plsda, 233
tune.mint.splsda, 138, 222, 235
tune.pca, 51, 222, 239
tune.pls, 241
tune.plsda, 245
tune.rcc, 51, 55, 195, 196, 222, 249
tune.spca, 138, 251
tune.spls, 253
tune.splsda, 138, 222, 258
tune.splslevel, 222, 263

unmap, 66, 264, 271, 273

vac18, 265
vac18.simulated, 266
vip, 193, 217, 267

withinVariation, 110, 181, 183, 203, 207,
210, 240, 268

wrapper.rgcca, 270, 272, 274
wrapper.sgcca, 272, 272, 274
wrapper.sgccda (block.splsda), 26

yeast, 275

	mixOmics-package
	auroc
	background.predict
	biplot
	block.pls
	block.plsda
	block.spls
	block.splsda
	breast.TCGA
	breast.tumors
	cim
	cimDiablo
	circosPlot
	colors
	diverse.16S
	estim.regul
	explained_variance
	get.confusion_matrix
	image.tune.rcc
	imgCor
	impute.nipals
	ipca
	Koren.16S
	linnerud
	liver.toxicity
	logratio-transformations
	map
	mat.rank
	mint.block.pls
	mint.block.plsda
	mint.block.spls
	mint.block.splsda
	mint.pca
	mint.pls
	mint.plsda
	mint.spls
	mint.splsda
	mixOmics
	multidrug
	nearZeroVar
	network
	nipals
	nutrimouse
	pca
	perf
	perf.assess
	plot.pca
	plot.perf
	plot.perf.pls
	plot.rcc
	plot.tune
	plotArrow
	plotDiablo
	plotIndiv
	plotLoadings
	plotMarkers
	plotVar
	pls
	plsda
	predict
	print
	rcc
	selectVar
	sipca
	spca
	spls
	splsda
	srbct
	stemcells
	study_split
	summary
	tune
	tune.block.plsda
	tune.block.splsda
	tune.mint.plsda
	tune.mint.splsda
	tune.pca
	tune.pls
	tune.plsda
	tune.rcc
	tune.spca
	tune.spls
	tune.splsda
	tune.splslevel
	unmap
	vac18
	vac18.simulated
	vip
	withinVariation
	wrapper.rgcca
	wrapper.sgcca
	yeast
	Index

