
Package ‘missMethyl’
February 4, 2026

Type Package

Title Analysing Illumina HumanMethylation BeadChip Data

Version 1.45.0

Date 2025-09-08

Author Belinda Phipson and Jovana Maksimovic

Maintainer Belinda Phipson <phipson.b@wehi.edu.au>, Jovana
Maksimovic <jovana.maksimovic@petermac.org>,
Andrew Lonsdale <andrew.lonsdale@petermac.org>,
Calandra Grima <calandra.grima@petermac.org>

Depends R (>= 3.6.0), IlluminaHumanMethylation450kanno.ilmn12.hg19,
IlluminaHumanMethylationEPICanno.ilm10b4.hg19,
IlluminaHumanMethylationEPICv2anno.20a1.hg38

Imports AnnotationDbi, BiasedUrn, Biobase, BiocGenerics, GenomeInfoDb,
GenomicRanges, GO.db, IlluminaHumanMethylation450kmanifest,
IlluminaHumanMethylationEPICmanifest,
IlluminaHumanMethylationEPICv2manifest, IRanges, limma,
methods, methylumi, minfi, org.Hs.eg.db, ruv, S4Vectors,
statmod, stringr, SummarizedExperiment

VignetteBuilder knitr

Suggests BiocStyle, edgeR, knitr, minfiData, rmarkdown,
tweeDEseqCountData, DMRcate, ExperimentHub

Description Normalisation, testing for differential variability and
differential methylation and gene set testing for data from Illumina's
Infinium HumanMethylation arrays. The normalisation procedure is
subset-quantile within-array normalisation (SWAN), which allows
Infinium I and II type probes on a single array to be normalised
together. The test for differential variability is based on an
empirical Bayes version of Levene's test. Differential
methylation testing is performed using RUV, which can adjust for
systematic errors of unknown origin in high-dimensional data by
using negative control probes. Gene ontology analysis is performed
by taking into account the number of probes per gene on the
array, as well as taking into account multi-gene associated probes.

1

2 Contents

License GPL-2

biocViews Normalization, DNAMethylation, MethylationArray,
GenomicVariation, GeneticVariability, DifferentialMethylation,
GeneSetEnrichment

RoxygenNote 7.3.3

Encoding UTF-8

git_url https://git.bioconductor.org/packages/missMethyl

git_branch devel

git_last_commit 886b656

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-03

Contents

missMethyl-package . 3
contrasts.varFit . 4
densityByProbeType . 5
getAdj . 6
getINCs . 8
getLeveneResiduals . 9
getMappedEntrezIDs . 10
gometh . 12
goregion . 16
gsameth . 20
gsaregion . 23
gsaseq . 27
RUVadj . 30
RUVfit . 32
SWAN . 34
topGSA . 36
topRUV . 38
topVar . 40
varFit . 41

Index 45

missMethyl-package 3

missMethyl-package Introduction to the missMethyl package

Description

missMethyl is a library for the analysis of Illumina’s 450K human methylation BeadChip. Specif-
ically, functions for SWAN normalisation and differential variability analysis are provided. SWAN
normalisation uses probe specific information, and the differential variability procedure uses linear
models which can handle any designed experiment.

Details

Package: missMethyl
Type: Package
Version: 0.99.0
Date: 2014-06-30
License: GPL-2

Normalisation of the 450K arrays can be performed using the function SWAN.

Differential variability analysis can be performed by calling varFit followed by topVar for a list
of the top ranked differentially variable CpGs between conditions.

More detailed help documentation is provided in each function’s help page.

Author(s)

Belinda Phipson and Jovana Maksimovic

Maintainer: Belinda Phipson <belinda.phipson@mcri.edu.au>, Jovana Maksimovic <jovana.maksimovic@petermac.org>

References

Maksimovic, J., Gordon, L., Oshlack, A. (2012). SWAN: Subset-quantile within array normaliza-
tion for illumina infinium HumanMethylation450 BeadChips. Genome Biology, 13:R44.

Phipson, B., and Oshlack, A. (2014). DiffVar: A new method for detecting differential variability
with application to methylation in cancer and aging. Genome Biology, 15:465.

4 contrasts.varFit

contrasts.varFit Compute contrasts for a varFit object.

Description

Compute estimated coefficients, standard errors and LogVarRatios for a given set of contrasts.

Usage

contrasts.varFit(fit, contrasts = NULL)

Arguments

fit List containing a linear model fit produced by varFit. The fit object should be
of class MArrayLM.

contrasts Numeric matrix with rows corresponding to coefficients in fit and columns
containing contrasts.

Details

This function calls the contrasts.fit function in limma to compute coefficients and standard
errors for the specified contrasts corresponding to a linear model fit obtained from the varFit
function. LogVarRatios are also computed in terms of the contrasts. A contrasts matrix can be
computed using the makeContrasts function.

Value

A list object of the same class as fit.

Author(s)

Belinda Phipson

See Also

varFit, contrasts.fit, makeContrasts

Examples

Randomly generate data for a 3 group problem with 100 CpG sites and 4
arrays in each group.

library(limma)

y<-matrix(rnorm(1200),ncol=12)

group<-factor(rep(c(1,2,3),each=4))
design<-model.matrix(~0+group)

densityByProbeType 5

colnames(design)<-c("grp1","grp2","grp3")
design

Fit linear model for differential variability
Please always specify the coef parameter in the call to varFit
vfit<-varFit(y,design,coef=c(1,2,3))

Specify contrasts
contr<-makeContrasts(grp2-grp1,grp3-grp1,grp3-grp2,levels=colnames(design))

Compute contrasts from fit object
vfit.contr<-contrasts.varFit(vfit,contrasts=contr)

summary(decideTests(vfit.contr))

Look at top table of results for first contrast
topVar(vfit.contr,coef=1)

densityByProbeType Plot the beta value distributions of the Infinium I and II probe types
relative to the overall beta value distribution.

Description

Plot the overall density distribution of beta values and the density distributions of the Infinium I and
II probe types.

Usage

densityByProbeType(
data,
legendPos = "top",
colors = c("black", "red", "blue"),
main = "",
lwd = 3,
cex.legend = 1

)

Arguments

data A MethylSet or a matrix or a vector. We either use the getBeta function to
get Beta values (in the first case) or we assume the matrix or vector contains
Beta values.

legendPos The x and y co-ordinates to be used to position the legend. They can be specified
by keyword or in any way which is accepted by xy.coords. See legend for
details.

colors Colors to be used for the different beta value density distributions. Must be a
vector of length 3.

6 getAdj

main Plot title.

lwd The line width to be used for the different beta value density distributions.

cex.legend The character expansion factor for the legend text.

Details

The density distribution of the beta values for a single sample is plotted. The density distributions
of the Infinium I and II probes are then plotted individually, showing how they contribute to the
overall distribution. This is useful for visualising how using SWAN affects the data.

Value

No return value. Plot is produced as a side-effect.

Author(s)

Jovana Maksimovic

See Also

densityPlot, densityBeanPlot, par, legend

Examples

if (require(minfi) & require(minfiData)) {
dat <- preprocessRaw(RGsetEx)
datSwan <- SWAN(dat)
par(mfrow=c(1,2))
densityByProbeType(dat[,1], main="Raw")
densityByProbeType(datSwan[,1], main="SWAN")

}

getAdj Extract values adjusted for unwanted variation by RUVm

Description

Extract values adjusted for unwanted variation by RUVm.

Usage

getAdj(Y, fit)

Arguments

Y A matrix of M-values.

fit The list list object produced by RUVfit.

getAdj 7

Details

This function extracts values adjusted for unwanted variation by RUVm. These values are ONLY
intendeded to be used for visualisation purposes. It is NOT recommended that they are used for any
further analysis.

Value

An matrix of M-values.

Author(s)

Jovana Maksimovic

See Also

MArrayLM

Examples

if(require(minfi) & require(minfiData) & require(limma)) {

Get methylation data for a 2 group comparison
meth <- getMeth(MsetEx)
unmeth <- getUnmeth(MsetEx)
Mval <- log2((meth + 100)/(unmeth + 100))

group <- factor(pData(MsetEx)$Sample_Group, labels=c(0,1))
design <- model.matrix(~group)

Perform initial analysis to empirically identify negative control features
when not known a priori
lFit <- lmFit(Mval,design)
lFit2 <- eBayes(lFit)
lTop <- topTable(lFit2,coef=2,num=Inf)

The negative control features should *not* be associated with factor of
interest but *should* be affected by unwanted variation
ctl <- rownames(Mval) %in% rownames(lTop[lTop$adj.P.Val > 0.5,])

Perform RUV adjustment and fit
fit <- RUVfit(Y=Mval, X=group, ctl=ctl)
fit2 <- RUVadj(Y=Mval, fit=fit)

get adjusted values
Madj <- getAdj(Y=Mval,fit=fit)
}

8 getINCs

getINCs Extract intensity data for Illumina negative controls found on 450k or
EPIC arrays.

Description

Extracts the intensity data for the Illumina negative controls found on 450k or EPIC arrays and
returns a matrix of M-values (log2 ratio of the green to red intensities).

Usage

getINCs(rgSet)

Arguments

rgSet An object of class RGChannelSet.

Details

The getINCs function extracts the intensity data for the INCs from an RGChannelSet object. The
function retrieves both the green and red channel intensity values and returns the data as the log2
ratio of the green to red intensities. Essentially, the INCs are being treated like Type II probes for
which the M-values are also given as the log2 ratio of the green to red intensities.

Value

An matrix of M-values.

Author(s)

Jovana Maksimovic

See Also

RGChannelSet

Examples

if (require(minfi) & require(minfiData)) {

INCs <- getINCs(RGsetEx)
head(INCs)
dim(INCs)

}

getLeveneResiduals 9

getLeveneResiduals Obtain Levene residuals

Description

Obtain absolute or squared Levene residuals for each CpG given a series of methylation arrays

Usage

getLeveneResiduals(data, design = NULL, type = NULL)

Arguments

data Object of class matrix of M values, with rows corresponding to features of
interest such as CpG sites and columns corresponding to samples or arrays.

design The design matrix of the experiment, with rows corresponding to arrays/samples
and columns to coefficients to be estimated. Defaults to the unit vector.

type Character string, "AD" for absolute residuals or "SQ" for squared residuals. De-
fault is "AD".

Details

This function will return absolute or squared Levene residuals given a matrix of M values and a
design matrix. This can be used for graphing purposes or for downstream analysis such a gene set
testing based on differential variability rather than differential methylation. If no design matrix is
given, the residuals are determined by treating all samples as coming from one group.

Value

Returns a list with three components. data contains a matrix of absolute or squared residuals,
AvgVar is a vector of sample variances and LogVarRatio corresponds to the columns of the design
matrix and is usually the ratios of the log of the group variances.

Author(s)

Belinda Phipson

References

Phipson, B., and Oshlack, A. (2014). A method for detecting differential variability in methylation
data shows CpG islands are highly variably methylated in cancers. Genome Biology, 15:465.

See Also

varFit

10 getMappedEntrezIDs

Examples

Randomly generate data for a 2 group problem with 100 CpG sites and 5
arrays in each group
y <- matrix(rnorm(1000),ncol=10)

group <- factor(rep(c(1,2),each=5))
design <- model.matrix(~group)

Get absolute Levene Residuals
resid <- getLeveneResiduals(y,design)

Plot the first CpG
barplot(resid$data[1,],col=rep(c(2,4),each=5),
ylab="Absolute Levene Residuals",names=group)

getMappedEntrezIDs Get mapped Entrez Gene IDs from CpG probe names

Description

Given a set of CpG probe names and optionally all the CpG sites tested, this function outputs a list
containing the mapped Entrez Gene IDs as well as the numbers of probes per gene, and a vector
indicating significance.

Usage

getMappedEntrezIDs(
sig.cpg,
all.cpg = NULL,
array.type = c("450K", "EPIC", "EPIC_V2"),
anno = NULL,
genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR",

"ExonBnd")
)

Arguments

sig.cpg Character vector of significant CpG sites used for testing gene set enrichment.
all.cpg Character vector of all CpG sites tested. Defaults to all CpG sites on the array.
array.type The Illumina methylation array used. Options are "450K", "EPIC" or "EPIC_V2".
anno Optional. A DataFrame object containing the complete array annotation as gen-

erated by the minfi getAnnotation function. Speeds up execution, if provided.
genomic.features

Character vector or scalar indicating whether the gene set enrichment analy-
sis should be restricted to CpGs from specific genomic locations. Options are
"ALL", "TSS200","TSS1500","Body","1stExon", "3’UTR","5’UTR","ExonBnd";
and the user can select any combination. Defaults to "ALL".

getMappedEntrezIDs 11

Details

This function is used by the gene set testing functions gometh and gsameth. It maps the significant
CpG probe names to Entrez Gene IDs, as well as all the CpG sites tested. It also calculates the
numbers of probes for gene. Input CpGs are able to be restricted by genomic features using the
genomic.features argument.

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19
if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19
is used. For the EPIC v2 array, the annotation package IlluminaHumanMethylationEPICv2anno.20a1.hg38
is used. To use a different annotation package, please supply it using the anno argument.

Value

A list with the following elements

sig.eg mapped Entrez Gene IDs for the significant probes

universe mapped Entrez Gene IDs for all probes on the array, or for all the CpG probes
tested.

freq table output with numbers of probes associated with each gene

equiv table output with equivalent numbers of probes associated with each gene taking
into account multi-gene bias

de a vector of ones and zeroes of the same length of universe indicating which
genes in the universe are significantly differentially methylated.

fract.counts a dataframe with 2 columns corresponding to the Entrez Gene IDS for the sig-
nificant probes and the associated weight to account for multi-gene probes.

Author(s)

Belinda Phipson

See Also

gometh,gsameth

Examples

Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(org.Hs.eg.db)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)

Randomly select 1000 CpGs to be significantly differentially methylated
sigcpgs <- sample(rownames(ann),1000,replace=FALSE)

All CpG sites tested
allcpgs <- rownames(ann)

mappedEz <- getMappedEntrezIDs(sigcpgs,allcpgs,array.type="450K")

12 gometh

names(mappedEz)
Entrez IDs of the significant genes
mappedEz$sig.eg[1:10]
Entrez IDs for the universe
mappedEz$universe[1:10]
Number of CpGs per gene
mappedEz$freq[1:10]
Equivalent numbers of CpGs measured per gene
mappedEz$equiv[1:10]
A vector of 0s and 1s indicating which genes in the universe are significant
mappedEz$de[1:10]

End(Not run)

gometh Gene ontology testing for Ilumina methylation array data

Description

Tests gene ontology enrichment for significant CpGs from Illumina’s Infinium HumanMethyla-
tion450 or MethylationEPIC array, taking into account two different sources of bias: 1) the differing
number of probes per gene present on the array, and 2) CpGs that are annotated to multiple genes.

Usage

gometh(
sig.cpg,
all.cpg = NULL,
collection = c("GO", "KEGG"),
array.type = c("450K", "EPIC", "EPIC_V2"),
plot.bias = FALSE,
prior.prob = TRUE,
anno = NULL,
equiv.cpg = TRUE,
fract.counts = TRUE,
genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR",

"ExonBnd"),
sig.genes = FALSE

)

Arguments

sig.cpg Character vector of significant CpG sites to test for GO term enrichment.

all.cpg Character vector of all CpG sites tested. Defaults to all CpG sites on the array.

collection The collection of pathways to test. Options are "GO" and "KEGG". Defaults to
"GO".

gometh 13

array.type The Illumina methylation array used. Options are "450K", "EPIC" or "EPIC_V2".
Defaults to "450K".

plot.bias Logical, if true a plot showing the bias due to the differing numbers of probes
per gene will be displayed.

prior.prob Logical, if true will take into account the probability of significant differential
methylation due to numbers of probes per gene. If false, a hypergeometric test
is performed ignoring any bias in the data.

anno Optional. A DataFrame object containing the complete array annotation as gen-
erated by the minfi getAnnotation function. Speeds up execution, if provided.

equiv.cpg Logical, if true then equivalent numbers of cpgs are used for odds calculation
rather than total number cpgs. Only used if prior.prob=TRUE.

fract.counts Logical, if true then fractional counting of Cpgs is used to account for CpGs that
are annotated to multiple genes. Only used if prior.prob=TRUE.

genomic.features

Character vector or scalar indicating whether the gene set enrichment analy-
sis should be restricted to CpGs from specific genomic locations. Options are
"ALL", "TSS200","TSS1500","Body","1stExon", "3’UTR","5’UTR","ExonBnd";
and the user can select any combination. Defaults to "ALL".

sig.genes Logical, if true then the significant differentially methylated genes that overlap
with the gene set of interest is outputted as the final column in the results table.
Default is FALSE.

Details

This function takes a character vector of significant CpG sites, maps the CpG sites to Entrez Gene
IDs, and tests for GO term or KEGG pathway enrichment using a Wallenius’ non central hyper-
geometric test, taking into account the number of CpG sites per gene on the 450K/EPIC array and
multi-gene annotated CpGs. Geeleher et al. (2013) showed that a severe bias exists when perform-
ing gene set analysis for genome-wide methylation data that occurs due to the differing numbers of
CpG sites profiled for each gene. gometh is based on the goseq method (Young et al., 2010), and
is a modification of the goana function in the limma package. If prior.prob is set to FALSE, then
prior probabilities are not used and it is assumed that each gene is equally likely to have a significant
CpG site associated with it.

The testing now also takes into account that some CpGs are annotated to multiple genes. For a
small number of gene families, this previously caused their associated GO categories/gene sets to
be erroneously overrepresented and thus highly significant. If fract.counts=FALSE then CpGs are
allowed to map to multiple genes (this is NOT recommended).

A new feature of gometh and gsameth is the ability to restrict the input CpGs by genomic feature
with the argument genomic.features. The possible options include "ALL", "TSS200", "TSS1500",
"Body", "1stExon", "3’UTR", "5’UTR" and "ExonBnd", and the user may specify any combination.
Please not that "ExonBnd" is not an annotated feature on 450K arrays. For example if you are inter-
ested in the promoter region only, you could specify genomic.features = c("TSS1500","TSS200","1stExon").
The default behaviour is to test all input CpGs sig.cpg even if the user specifies "ALL" and one or
more other features.

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19
if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19

14 gometh

is used. For the EPIC v2 array, the annotation package IlluminaHumanMethylationEPICv2anno.20a1.hg38
is used. To use a different annotation package, please supply it using the anno argument.

If you are interested in which genes overlap with the genes in the gene set, setting sig.genes to
TRUE will output an additional column in the results data frame that contains all the significant
differentially methylated gene symbols, comma separated. The default is FALSE.

In order to get a list which contains the mapped Entrez gene IDs, please use the getMappedEntrezIDs
function. gometh tests all GO or KEGG terms, and false discovery rates are calculated using the
method of Benjamini and Hochberg (1995). The topGSA function can be used to display the top 20
most enriched pathways.

For more generalised gene set testing where the user can specify the gene set/s of interest to be
tested, please use the gsameth function. If you are interested in performing gene set testing follow-
ing a region analysis, then the functions goregion and gsaregion can be used.

Value

A data frame with a row for each GO or KEGG term and the following columns:

Term GO term if testing GO pathways
Ont ontology that the GO term belongs to if testing GO pathways. "BP" - biological

process, "CC" - cellular component, "MF" - molecular function.
Pathway the KEGG pathway being tested if testing KEGG terms.
N number of genes in the GO or KEGG term
DE number of genes that are differentially methylated
P.DE p-value for over-representation of the GO or KEGG term term
FDR False discovery rate
SigGenesInSet Significant differentially methylated genes overlapping with the gene set of in-

terest.

Author(s)

Belinda Phipson

References

Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl: an R package for analysing
methylation data from Illuminas HumanMethylation450 platform. Bioinformatics, 15;32(2), 286–
8.

Geeleher, P., Hartnett, L., Egan, L. J., Golden, A., Ali, R. A. R., and Seoighe, C. (2013). Gene-set
analysis is severely biased when applied to genome-wide methylation data. Bioinformatics, 29(15),
1851–1857.

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology, 11, R14.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research, gkv007.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

gometh 15

See Also

gsameth,goregion,gsaregion,getMappedEntrezIDs

Examples

Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
Randomly select 1000 CpGs to be significantly differentially methylated
sigcpgs <- sample(rownames(ann),1000,replace=FALSE)
All CpG sites tested
allcpgs <- rownames(ann)

GO testing with prior probabilities taken into account
Plot of bias due to differing numbers of CpG sites per gene
gst <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",

plot.bias = TRUE, prior.prob = TRUE, anno = ann)
Total number of GO categories significant at 5% FDR
table(gst$FDR<0.05)
Table of top GO results
topGSA(gst)

GO testing ignoring bias
gst.bias <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",

prior.prob=FALSE, anno = ann)
Total number of GO categories significant at 5% FDR ignoring bias
table(gst.bias$FDR<0.05)
Table of top GO results ignoring bias
topGSA(gst.bias)

GO testing ignoring multi-mapping CpGs
gst.multi <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",

plot.bias = TRUE, prior.prob = TRUE, fract.counts = FALSE,
anno = ann)

topGSA(gst.multi, n=10)

Restrict to CpGs in promoter regions
gst.promoter <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs,

collection = "GO", anno = ann,
genomic.features=c("TSS200","TSS1500","1stExon"))

topGSA(gst.promoter)

KEGG testing
kegg <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "KEGG",

prior.prob=TRUE, anno = ann)
Table of top KEGG results
topGSA(kegg)

Add significant genes to KEGG output
kegg.siggenes <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs,

collection = "KEGG", anno = ann, sig.genes = TRUE)

16 goregion

Output top 5 KEGG pathways
topGSA(kegg.siggenes, n=5)

End(Not run)

goregion Gene ontology testing of DMRs for Ilumina methylation array data

Description

Tests gene ontology or KEGG pathway enrichment for differentially methylated regions (DMRs)
identified from Illumina’s Infinium HumanMethylation450 or MethylationEPIC array, taking into
account the differing number of probes per gene present on the array.

Usage

goregion(
regions,
all.cpg = NULL,
collection = c("GO", "KEGG"),
array.type = c("450K", "EPIC", "EPIC_V2"),
plot.bias = FALSE,
prior.prob = TRUE,
anno = NULL,
equiv.cpg = TRUE,
fract.counts = TRUE,
genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR",

"ExonBnd"),
sig.genes = FALSE

)

Arguments

regions GRanges object of DMR coordinates to test for GO term enrichment.

all.cpg Character vector of all CpG sites tested. Defaults to all CpG sites on the array.

collection The collection of pathways to test. Options are "GO" and "KEGG". Defaults to
"GO".

array.type The Illumina methylation array used. Options are "450K", "EPIC" or "EPIC_V2".
Defaults to "450K".

plot.bias Logical, if true a plot showing the bias due to the differing numbers of probes
per gene will be displayed.

prior.prob Logical, if true will take into account the probability of significant differentially
methylation due to numbers of probes per gene. If false, a hypergeometric test
is performed ignoring any bias in the data.

goregion 17

anno Optional. A DataFrame object containing the complete array annotation as gen-
erated by the minfi. getAnnotation function. Speeds up execution, if pro-
vided.

equiv.cpg Logical, if true then equivalent numbers of cpgs are used for odds calculation
rather than total number cpgs. Only used if prior.prob=TRUE.

fract.counts Logical, if true then fractional counting of cpgs is used to account for cgps that
map to multiple genes. Only used if prior.prob=TRUE.

genomic.features

Character vector or scalar indicating whether the gene set enrichment analy-
sis should be restricted to CpGs from specific genomic locations. Options are
"ALL", "TSS200","TSS1500","Body","1stExon", "3’UTR","5’UTR","ExonBnd";
and the user can select any combination. Defaults to "ALL".

sig.genes Logical, if true then the significant differentially methylated genes that overlap
with the gene set of interest is outputted as the final column in the results table.
Default is FALSE.

Details

This function takes a GRanges object of DMR coordinates, maps them to CpG sites on the array
and then to Entrez Gene IDs, and tests for GO term or KEGG pathway enrichment using Walle-
nius’ noncentral hypergeometric test, taking into account the number of CpG sites per gene on the
450K/EPIC array. If prior.prob is set to FALSE, then prior probabilities are not used and it is
assumed that each gene is equally likely to have a significant CpG site associated with it. Please not
that we have tested goregion and gsaregion extensively using the DMRCate package to identify
differentially methylated regions (Peters, et al., 2015).

The testing now also takes into account that some CpGs map to multiple genes. For a small number
of gene families, this previously caused their associated GO categories/gene sets to be erroneously
overrepresented and thus highly significant. If fract.counts=FALSE then CpGs are allowed to map
to multiple genes (this is NOT recommended).

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19
if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19
is used. For the EPIC v2 array, the annotation package IlluminaHumanMethylationEPICv2anno.20a1.hg38
is used. To use a different annotation package, please supply it using the anno argument.

In order to get a list which contains the mapped Entrez gene IDS, please use the getMappedEntrezIDs
function. goregion tests all GO or KEGG terms, and false discovery rates are calculated using the
method of Benjamini and Hochberg (1995). The topGSA function can be used to display the top 20
most enriched pathways.

If you are interested in which genes overlap with the genes in the gene set, setting sig.genes to
TRUE will output an additional column in the results data frame that contains all the significant
differentially methylated gene symbols, comma separated. The default is FALSE.

For more generalised gene set testing where the user can specify the gene set/s of interest to be
tested, please use the gsaregion function.

Value

A data frame with a row for each GO or KEGG term and the following columns:

18 goregion

Term GO term if testing GO pathways

Ont ontology that the GO term belongs to if testing GO pathways. "BP" - biological
process, "CC" - cellular component, "MF" - molecular function.

Pathway the KEGG pathway being tested if testing KEGG terms.

N number of genes in the GO or KEGG term

DE number of genes that are differentially methylated

P.DE p-value for over-representation of the GO or KEGG term term

FDR False discovery rate

SigGenesInSet Significant differentially methylated genes overlapping with the gene set of in-
terest.

Author(s)

Jovana Maksimovic

References

Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl: an R package for analysing
methylation data from Illuminas HumanMethylation450 platform. Bioinformatics, 15;32(2), 286–
8.

Geeleher, P., Hartnett, L., Egan, L. J., Golden, A., Ali, R. A. R., and Seoighe, C. (2013). Gene-set
analysis is severely biased when applied to genome-wide methylation data. Bioinformatics, 29(15),
1851–1857.

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology, 11, R14.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research, gkv007.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

Peters, T.J., Buckley, M.J., Statham, A.L., Pidsley, R., Samaras, K., Lord, R.V., Clark, S.J.,Molloy,
P.L. (2015). De novo identification of differentially methylated regions in the human genome.
Epigenetics & Chromatin, 8, 6.

See Also

gometh,gsameth,gsaregion

Examples

Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
library(limma)
library(DMRcate)
library(ExperimentHub)

goregion 19

Follow the example for the dmrcate function to get some EPIC data from
ExperimentHub
eh <- ExperimentHub()
FlowSorted.Blood.EPIC <- eh[["EH1136"]]
tcell <- FlowSorted.Blood.EPIC[,colData(FlowSorted.Blood.EPIC)$CD4T==100 |

colData(FlowSorted.Blood.EPIC)$CD8T==100]
detP <- detectionP(tcell)
remove <- apply(detP, 1, function (x) any(x > 0.01))
tcell <- tcell[!remove,]
tcell <- preprocessFunnorm(tcell)
#Subset to chr2 only
tcell <- tcell[seqnames(tcell) == "chr2",]
tcellms <- getM(tcell)
tcellms.noSNPs <- rmSNPandCH(tcellms, dist=2, mafcut=0.05)
tcell$Replicate[tcell$Replicate==""] <- tcell$Sample_Name[tcell$Replicate==""]
tcellms.noSNPs <- avearrays(tcellms.noSNPs, tcell$Replicate)
tcell <- tcell[,!duplicated(tcell$Replicate)]
tcell <- tcell[rownames(tcellms.noSNPs),]
colnames(tcellms.noSNPs) <- colnames(tcell)
assays(tcell)[["M"]] <- tcellms.noSNPs
assays(tcell)[["Beta"]] <- ilogit2(tcellms.noSNPs)

Perform region analysis
type <- factor(tcell$CellType)
design <- model.matrix(~type)
myannotation <- cpg.annotate("array", tcell, arraytype = "EPIC",

analysis.type="differential", design=design,
coef=2)

Run DMRCate with beta value cut-off filter of 0.1
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2, betacutoff = 0.1)
regions <- extractRanges(dmrcoutput)
length(regions)

ann <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
All CpG sites tested (limited to chr 2)
allcpgs <- rownames(tcell)
GO testing with prior probabilities taken into account
Plot of bias due to differing numbers of CpG sites per gene
gst <- goregion(regions = regions, all.cpg = allcpgs, collection = "GO",

array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,
anno = ann)

Table of top GO results
topGSA(gst, n=10)

KEGG testing
kegg <- goregion(regions = regions, all.cpg = allcpgs, collection = "KEGG",

array.type = "EPIC", prior.prob=TRUE, anno = ann)
Table of top KEGG results
topGSA(kegg, n=10)

Restrict to promoter regions
gst.prom <- goregion(regions = regions, all.cpg = allcpgs, collection = "GO",

array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,

20 gsameth

anno = ann, genomic.features = c("TSS200","TSS1500"))
topGSA(gst.prom, n=10)

Add significant genes in gene set to KEGG output
kegg <- goregion(regions = regions, all.cpg = allcpgs, collection = "KEGG",

array.type = "EPIC", prior.prob=TRUE, anno = ann,
sig.genes = TRUE)

Table of top KEGG results
topGSA(kegg, n=5)

End(Not run)

gsameth Generalised gene set testing for Illumina’s methylation array data

Description

Given a user specified list of gene sets to test, gsameth tests whether significantly differentially
methylated CpG sites are enriched in these gene sets.

Usage

gsameth(
sig.cpg,
all.cpg = NULL,
collection,
array.type = c("450K", "EPIC", "EPIC_V2"),
plot.bias = FALSE,
prior.prob = TRUE,
anno = NULL,
equiv.cpg = TRUE,
fract.counts = TRUE,
genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR",

"ExonBnd"),
sig.genes = FALSE

)

Arguments

sig.cpg Character vector of significant CpG sites to test for gene set enrichment.

all.cpg Character vector of all CpG sites tested. Defaults to all CpG sites on the array.

collection A list of user specified gene sets to test. Can also be a single character vector
gene set. Gene identifiers must be Entrez Gene IDs.

array.type The Illumina methylation array used. Options are "450K", "EPIC" or "EPIC_V2".
Defaults to "450K".

gsameth 21

plot.bias Logical, if true a plot showing the bias due to the differing numbers of probes
per gene will be displayed

prior.prob Logical, if true will take into account the probability of significant differentially
methylation due to numbers of probes per gene. If false, a hypergeometric test
is performed ignoring any bias in the data.

anno Optional. A DataFrame object containing the complete array annotation as gen-
erated by the minfi getAnnotation function. Speeds up execution, if provided.

equiv.cpg Logical, if true then equivalent numbers of cpgs are used for odds calculation
rather than total number cpgs. Only used if prior.prob=TRUE.

fract.counts Logical, if true then fractional counting of cpgs is used to account for cgps that
map to multiple genes. Only used if prior.prob=TRUE.

genomic.features

Character vector or scalar indicating whether the gene set enrichment analy-
sis should be restricted to CpGs from specific genomic locations. Options are
"ALL", "TSS200","TSS1500","Body","1stExon", "3’UTR","5’UTR","ExonBnd";
and the user can select any combination. Defaults to "ALL".

sig.genes Logical, if true then the significant differentially methylated genes that overlap
with the gene set of interest is outputted as the final column in the results table.
Default is FALSE.

Details

This function extends gometh, which only tests GO and KEGG pathways. gsameth can take a
list of user specified gene sets and test whether the significant CpG sites are enriched in these
pathways. gsameth maps the CpG sites to Entrez Gene IDs and tests for pathway enrichment using
Wallenius’ concentral hypergeometric test, taking into account the number of CpG sites per gene
on the 450K/EPIC arrays. Please note the gene ids for the collection of gene,sets must be Entrez
Gene IDs. If prior.prob is set to FALSE, then prior probabilities are not used and it is assumed
that each gene is equally likely to have a significant CpG site associated with it.

The testing now also takes into account that some CpGs map to multiple genes. For a small number
of gene families, this previously caused their associated GO categories/gene sets to be erroneously
overrepresented and thus highly significant. If fract.counts=FALSE then CpGs are allowed to map
to multiple genes (this is NOT recommended).

A new feature of gometh and gsameth is the ability to restrict the input CpGs by genomic feature
with the argument genomic.features. The possible options include "ALL", "TSS200", "TSS1500",
"Body", "1stExon", "3’UTR", "5’UTR" and "ExonBnd", and the user may specify any combination.
Please not that "ExonBnd" is not an annotatedfeature on 450K arrays. For example if you are inter-
ested in the promoter region only, you could specify genomic.features = c("TSS1500","TSS200","1stExon").
The default behaviour is to test all input CpGs sig.cpg even if the user specifies "ALL" and one or
more other features.

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19
if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19
is used. For the EPIC v2 array, the annotation package IlluminaHumanMethylationEPICv2anno.20a1.hg38
is used. To use a different annotation package, please supply it using the anno argument.

In order to get a list which contains the mapped Entrez gene IDS, please use the getMappedEntrezIDs
function.

22 gsameth

If you are interested in which genes overlap with the genes in the gene set, setting sig.genes to
TRUE will output an additional column in the results data frame that contains all the significant
differentially methylated gene symbols, comma separated. The default is FALSE.

Value

A data frame with a row for each gene set and the following columns:

N number of genes in the gene set

DE number of genes that are differentially methylated

P.DE p-value for over-representation of the gene set

FDR False discovery rate, calculated using the method of Benjamini and Hochberg
(1995).

SigGenesInSet Significant differentially methylated genes overlapping with the gene set of in-
terest.

Author(s)

Belinda Phipson

References

Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl: an R package for analysing
methylation data from Illuminas HumanMethylation450 platform. Bioinformatics, 15;32(2), 286–
8.

Geeleher, P., Hartnett, L., Egan, L. J., Golden, A., Ali, R. A. R., and Seoighe, C. (2013). Gene-set
analysis is severely biased when applied to genome-wide methylation data. Bioinformatics, 29(15),
1851–1857.

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology, 11, R14.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research, gkv007.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

See Also

gometh,getMappedEntrezIDs

Examples

Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(org.Hs.eg.db)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
Randomly select 1000 CpGs to be significantly differentially methylated

gsaregion 23

sigcpgs <- sample(rownames(ann),1000,replace=FALSE)
All CpG sites tested
allcpgs <- rownames(ann)
Use org.Hs.eg.db to extract a GO term
GOtoID <- suppressMessages(select(org.Hs.eg.db, keys=keys(org.Hs.eg.db),

columns=c("ENTREZID","GO"),
keytype="ENTREZID"))

setname1 <- GOtoID$GO[1]
setname1
keep.set1 <- GOtoID$GO %in% setname1
set1 <- GOtoID$ENTREZID[keep.set1]
setname2 <- GOtoID$GO[2]
setname2
keep.set2 <- GOtoID$GO %in% setname2
set2 <- GOtoID$ENTREZID[keep.set2]
Make the gene sets into a list
sets <- list(set1, set2)
names(sets) <- c(setname1,setname2)
Testing with prior probabilities taken into account
Plot of bias due to differing numbers of CpG sites per gene
gst <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,

plot.bias = TRUE, prior.prob = TRUE)
topGSA(gst)

Add significant gene symbols in each set to output
gst <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,

plot.bias = TRUE, prior.prob = TRUE, sig.genes = TRUE)
topGSA(gst)

Testing ignoring bias
gst.bias <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,

prior.prob = FALSE)
topGSA(gst.bias)

Restrict to CpGs in gene bodies
gst.body <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,

genomic.features = "Body")
topGSA(gst.body)

End(Not run)

gsaregion Generalised gene set testing for Illumina’s methylation array data

Description

Given a user specified list of gene sets to test, gsaregion tests whether differentially methylated
regions (DMRs) identified from Illumina’s Infinium HumanMethylation450 or MethylationEPIC
array are enriched, taking into account the differing number of probes per gene present on the array.

24 gsaregion

Usage

gsaregion(
regions,
all.cpg = NULL,
collection,
array.type = c("450K", "EPIC", "EPIC_V2"),
plot.bias = FALSE,
prior.prob = TRUE,
anno = NULL,
equiv.cpg = TRUE,
fract.counts = TRUE,
genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR",

"ExonBnd"),
sig.genes = FALSE

)

Arguments

regions GRanges Object of DMR coordinates to test for GO term enrichment.

all.cpg Character vector of all CpG sites tested. Defaults to all CpG sites on the array.

collection A list of user specified gene sets to test. Can also be a single character vector
gene set. Gene identifiers must be Entrez Gene IDs.

array.type The Illumina methylation array used. Options are "450K", "EPIC" or "EPIC_V2".
Defaults to "450K".

plot.bias Logical, if true a plot showing the bias due to the differing numbers of probes
per gene will be displayed.

prior.prob Logical, if true will take into account the probability of significant differentially
methylation due to numbers of probes per gene. If false, a hypergeometric test
is performed ignoring any bias in the data.

anno Optional. A DataFrame object containing the complete array annotation as gen-
erated by the minfi getAnnotation function. Speeds up execution, if provided.

equiv.cpg Logical, if true then equivalent numbers of cpgs are used for odds calculation
rather than total number cpgs. Only used if prior.prob=TRUE.

fract.counts Logical, if true then fractional counting of cpgs is used to account for cgps that
map to multiple genes. Only used if prior.prob=TRUE.

genomic.features

Character vector or scalar indicating whether the gene set enrichment analy-
sis should be restricted to CpGs from specific genomic locations. Options are
"ALL", "TSS200","TSS1500","Body","1stExon", "3’UTR","5’UTR","ExonBnd";
and the user can select any combination. Defaults to "ALL".

sig.genes Logical, if true then the significant differentially methylated genes that overlap
with the gene set of interest is outputted as the final column in the results table.
Default is FALSE.

gsaregion 25

Details

This function extends goregion, which only tests GO and KEGG pathways. gsaregion can take a
list of user specified gene sets and test whether the significant DMRs are enriched in these pathways.
This function takes a GRanges object of DMR coordinates, maps them to CpG sites on the array and
then to Entrez Gene IDs, and tests for enrichment using Wallenius’ noncentral hypergeometric test,
taking into account the number of CpG sites per gene on the 450K/EPIC array. If prior.prob is
set to FALSE, then prior probabilities are not used and it is assumed that each gene is equally likely
to have a significant CpG site associated with it.

The testing now also takes into account that some CpGs map to multiple genes. For a small number
of gene families, this previously caused their associated GO categories/gene sets to be erroneously
overrepresented and thus highly significant. If fract.counts=FALSE then CpGs are allowed to map
to multiple genes (this is NOT recommended).

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19
if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19
is used. For the EPIC v2 array, the annotation package IlluminaHumanMethylationEPICv2anno.20a1.hg38
is used. To use a different annotation package, please supply it using the anno argument.

In order to get a list which contains the mapped Entrez gene IDS, please use the getMappedEntrezIDs
function. The topGSA function can be used to display the top 20 most enriched pathways.

If you are interested in which genes overlap with the genes in the gene set, setting sig.genes to
TRUE will output an additional column in the results data frame that contains all the significant
differentially methylated gene symbols, comma separated. The default is FALSE.

Value

A data frame with a row for each gene set and the following columns:

N number of genes in the gene set

DE number of genes that are differentially methylated

P.DE p-value for over-representation of the gene set

FDR False discovery rate, calculated using the method of Benjamini and Hochberg
(1995).

SigGenesInSet Significant differentially methylated genes overlapping with the gene set of in-
terest.

Author(s)

Jovana Maksimovic

References

Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl: an R package for analysing
methylation data from Illuminas HumanMethylation450 platform. Bioinformatics, 15;32(2), 286–
8.

Geeleher, P., Hartnett, L., Egan, L. J., Golden, A., Ali, R. A. R., and Seoighe, C. (2013). Gene-set
analysis is severely biased when applied to genome-wide methylation data. Bioinformatics, 29(15),
1851–1857.

26 gsaregion

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology, 11, R14.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research, gkv007.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

See Also

gometh,goregion,gsameth,getMappedEntrezIDs

Examples

Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
library(limma)
library(DMRcate)
library(ExperimentHub)
library(org.Hs.eg.db)

Follow the example for the dmrcate function to get some EPIC data from
ExperimentHub
eh <- ExperimentHub()
FlowSorted.Blood.EPIC <- eh[["EH1136"]]
tcell <- FlowSorted.Blood.EPIC[,colData(FlowSorted.Blood.EPIC)$CD4T==100 |

colData(FlowSorted.Blood.EPIC)$CD8T==100]
detP <- detectionP(tcell)
remove <- apply(detP, 1, function (x) any(x > 0.01))
tcell <- tcell[!remove,]
tcell <- preprocessFunnorm(tcell)
#Subset to chr2 only
tcell <- tcell[seqnames(tcell) == "chr2",]
tcellms <- getM(tcell)
tcellms.noSNPs <- rmSNPandCH(tcellms, dist=2, mafcut=0.05)
tcell$Replicate[tcell$Replicate==""] <- tcell$Sample_Name[tcell$Replicate==""]
tcellms.noSNPs <- avearrays(tcellms.noSNPs, tcell$Replicate)
tcell <- tcell[,!duplicated(tcell$Replicate)]
tcell <- tcell[rownames(tcellms.noSNPs),]
colnames(tcellms.noSNPs) <- colnames(tcell)
assays(tcell)[["M"]] <- tcellms.noSNPs
assays(tcell)[["Beta"]] <- ilogit2(tcellms.noSNPs)

Perform region analysis
type <- factor(tcell$CellType)
design <- model.matrix(~type)
myannotation <- cpg.annotate("array", tcell, arraytype = "EPIC",

analysis.type="differential", design=design,
coef=2)

Run DMRCate with beta value cut-off filter of 0.1
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2, betacutoff = 0.1)

gsaseq 27

regions <- extractRanges(dmrcoutput)
length(regions)

ann <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
All CpG sites tested (limited to chr 2)
allcpgs <- rownames(tcell)
Use org.Hs.eg.db to extract a GO term
GOtoID <- suppressMessages(select(org.Hs.eg.db, keys=keys(org.Hs.eg.db),

columns=c("ENTREZID","GO"),
keytype="ENTREZID"))

keep.set1 <- GOtoID$GO %in% "GO:0010951"
set1 <- GOtoID$ENTREZID[keep.set1]
keep.set2 <- GOtoID$GO %in% "GO:0042742"
set2 <- GOtoID$ENTREZID[keep.set2]
keep.set3 <- GOtoID$GO %in% "GO:0031295"
set3 <- GOtoID$ENTREZID[keep.set3]
Make the gene sets into a list
sets <- list(set1, set2, set3)
names(sets) <- c("GO:0010951","GO:0042742","GO:0031295")

Testing with prior probabilities taken into account
Plot of bias due to differing numbers of CpG sites per gene
gst <- gsaregion(regions = regions, all.cpg = allcpgs, collection = sets,

array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,
anno = ann)

topGSA(gst)

Add significant genes in gene set to output
gst <- gsaregion(regions = regions, all.cpg = allcpgs, collection = sets,

array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,
anno = ann, sig.genes = TRUE)

topGSA(gst)

End(Not run)

gsaseq Generalised gene set testing for RNA-seq data

Description

Given a user defined list of gene sets, gsaseq will test whether significantly differentially expressed
genes are enriched in these gene sets.

Usage

gsaseq(
sig.de,
universe,
collection,

28 gsaseq

plot.bias = FALSE,
gene.length = NULL,
sort = TRUE

)

Arguments

sig.de Character vector of significant differentially expressed genes to test for gene set
enrichment. Must be Entrez Gene ID format.

universe Character vector of all genes analysed in the experiment. Must be Entrez Gene
ID format.

collection A list of user specified gene sets to test. Can also be a single character vector
gene set. Gene identifiers must be Entrez Gene IDs.

plot.bias Logical, if true a plot showing gene length bias related to differential expression
will be displayed.

gene.length A vector containing the gene lengths for each gene in the same order as universe.

sort Logical, if TRUE then the output dataframe is sorted by p-value.

Details

This function is a generalised version of goana and kegga from the limma package in that it can
take a user-defined list of differentially expressed genes and perform gene set enrichment analysis,
and is not limited to only testing GO and KEGG categories. It is not as flexible as goana and kegga.
Please note the vector of differentially expressed genes and list of gene sets must be Entrez Gene
IDs.

The gsaseq function will test for enrichment using a hypergeometric test if the gene.length pa-
rameter is NULL. If the gene.length parameter is supplied then the p-values are derived from
Walllenius’ noncentral hypergeometric distribution from the BiasedUrn package. Please note that
the gene.length parameter must be in the same order and of the same length as the universe
parameter.

Value

A data frame with a row for each gene set and the following columns:

N number of genes in the gene set

DE number of genes that are differentially expressed

P.DE p-value for over-representation of the gene set

FDR False discovery rate, calculated using the method of Benjamini and Hochberg
(1995).

Author(s)

Belinda Phipson

See Also

goana,kegga,camera,roast

gsaseq 29

Examples

Not run: # to avoid timeout on Bioconductor build
library(org.Hs.eg.db)
Use org.Hs.eg.db to extract GO terms
GOtoID <- suppressMessages(select(org.Hs.eg.db, keys=keys(org.Hs.eg.db),

columns=c("ENTREZID","GO"),
keytype="ENTREZID"))

head(GOtoID)

Define the universe as random sample of 20000 genes in the annotation
universe <- sample(unique(GOtoID$ENTREZID),20000)

Randomly sample 500 genes as DE
de.genes <- sample(universe, 500)

Generate random gene lengths for genes in universe
This is based on the true distribution of log(gene length) of genes in the
hg19 genome
logGL <- rnorm(length(universe),mean=7.9, sd=1.154)
genelength <- exp(logGL)

Define a list of gene sets containing two GO terms
setname1 <- GOtoID$GO[1]
setname1
keep.set1 <- GOtoID$GO %in% setname1
set1 <- GOtoID$ENTREZID[keep.set1]
setname2 <- GOtoID$GO[2]
setname2
keep.set2 <- GOtoID$GO %in% setname2
set2 <- GOtoID$ENTREZID[keep.set2]
Make the gene sets into a list
sets <- list(set1, set2)
names(sets) <- c(setname1,setname2)

Test for enrichment of gene sets with no gene length bias
The genes are randomly selected so we don't expect significant results
gsaseq(sig.de = de.genes, universe = universe, collection = sets)

Test for enrichment of gene sets taking into account gene length bias
Since the gene lengths are randomly generated this shouldn't make much
difference to the results
Using log(gene length) or gene length doesn't make a difference to the
p-values because the probability weighting function is transformation
invariant
gsaseq(sig.de = de.genes, univers = universe, collection = sets,
gene.length = genelength)

End(Not run)

30 RUVadj

RUVadj RUV adjust

Description

Post-process and summarize the results of call to RUVfit.

Usage

RUVadj(
Y,
fit,
var.type = c("ebayes", "standard", "pooled"),
p.type = c("standard", "rsvar", "evar"),
cpginfo = NULL,
...

)

Arguments

Y The original data matrix used in the call to RUVfit.

fit A RUV model fit (a list) as returned by RUVfit.

var.type Which type of estimate for sigma2 should be used from the call to variance_adjust?
The options are "ebayes", "standard", or "pooled." See variance_adjust for
details.

p.type Which type of p-values should be used from the call to variance_adjust? The
options are "standard", "rsvar", or "evar".

cpginfo A matrix or dataframe containing information about the CpGs. This information
is included in the summary that is returned.

... Other parameters that can be passed to ruv function ruv_summary.

Details

This function post-processes the results of a call to RUVfit and then summarizes the output. The
post-processing step primarily consists of a call to ruv_summary and variance_adjust, which
computes various adjustments to variances, t-statistics, and and p-values. See variance_adjust
for details. The var.type and p.type options determine which of these adjustments are used.

After post-processing, the results are summarized into a list containing 4 objects: 1) the data matrix
Y; 2) a dataframe R containing information about the rows (samples); 3) a dataframe C containing
information about the columns (features, e.g. genes), and 4) a list misc of other information returned
by RUVfit.

RUVadj 31

Value

An list containing:

Y The original data matrix..

R A dataframe of sample-wise information, including X, Z, and any other data
passed in with rowinfo.

C A dataframe of cpg-wise information, including p-values, estimated regression
coefficients, estimated variances, column means, an index of the negative con-
trols, and any other data passed in with cpginfo.

misc A list of additional information returned by RUVfit.

Author(s)

Jovana Maksimovic <jovana.maksimovic@mcri.edu.au>

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

Gagnon-Bartsch JA, Speed TP. (2012). Using control genes to correct for unwanted variation in mi-
croarray data. Biostatistics. 13(3), 539-52. Available at: http://biostatistics.oxfordjournals.
org/content/13/3/539.full.

Gagnon-Bartsch, Jacob, and Speed. 2013. Removing Unwanted Variation from High Dimensional
Data with Negative Controls. Available at: http://statistics.berkeley.edu/tech-reports/
820.

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential ex-
pression in microarray experiments. Statistical Applications in Genetics and Molecular Biology,
Volume 3, Article 3. http://www.statsci.org/smyth/pubs/ebayes.pdf.

See Also

MArrayLM, RUV2, RUV4, RUVinv, RUVrinv, p.adjust, get_empirical_variances, sigmashrink

Examples

if(require(minfi) & require(minfiData) & require(limma)) {

Get methylation data for a 2 group comparison
meth <- getMeth(MsetEx)
unmeth <- getUnmeth(MsetEx)
Mval <- log2((meth + 100)/(unmeth + 100))

group<-factor(pData(MsetEx)$Sample_Group)
design<-model.matrix(~group)

Perform initial analysis to empirically identify negative control features
when not known a priori
lFit <- lmFit(Mval,design)

http://biostatistics.oxfordjournals.org/content/13/3/539.full
http://biostatistics.oxfordjournals.org/content/13/3/539.full
http://statistics.berkeley.edu/tech-reports/820
http://statistics.berkeley.edu/tech-reports/820
http://www.statsci.org/smyth/pubs/ebayes.pdf

32 RUVfit

lFit2 <- eBayes(lFit)
lTop <- topTable(lFit2,coef=2,num=Inf)

The negative control features should *not* be associated with factor of
interest but *should* be affected by unwanted variation
ctl <- rownames(Mval) %in% rownames(lTop[lTop$adj.P.Val > 0.5,])

Perform RUV adjustment and fit
fit <- RUVfit(Y=Mval, X=group, ctl=ctl)
fit2 <- RUVadj(Y=Mval, fit=fit)

Look at table of top results
top <- topRUV(fit2)
}

RUVfit Remove unwanted variation when testing for differential methylation

Description

Provides an interface similar to lmFit from limma to the RUV2, RUV4, RUVinv and RUVrinv func-
tions from the ruv package, which facilitates the removal of unwanted variation in a differential
methylation analysis. A set of negative control variables, as described in the references, must be
specified.

Usage

RUVfit(
Y,
X,
ctl,
Z = 1,
k = NULL,
method = c("inv", "rinv", "ruv4", "ruv2"),
...

)

Arguments

Y numeric matrix with rows corresponding to the features of interest such as CpG
sites and columns corresponding to samples or arrays.

X The factor(s) of interest. A m by p matrix, where m is the number of samples and
p is the number of factors of interest. Very often p = 1. Factors and dataframes
are also permissible, and converted to a matrix by design.matrix.

ctl logical vector, length == nrow(Y). Features that are to be used as negative con-
trol variables are indicated as TRUE, all other features are FALSE.

RUVfit 33

Z Any additional covariates to include in the model, typically a m by q matrix.
Factors and dataframes are also permissible, and converted to a matrix by design.matrix.
Alternatively, may simply be 1 (the default) for an intercept term. May also be
NULL.

k integer, required if method is "ruv2" or "ruv4". Indicates the number of un-
wanted factors to use. Can be 0.

method character string, indicates which ruv method should be used.
... additional arguments that can be passed to RUV2, RUV4, RUVinv and RUVrinv.

See linked function documentation for details.

Details

This function depends on the ruv package and is used to estimate and adjust for unwanted variation
in a differential methylation analysis. Briefly, the unwanted factors W are estimated using negative
control variables. Y is then regressed on the variables X, Z, and W. For methylation data, the anal-
ysis is performed on the M-values, defined as the log base 2 ratio of the methylated signal to the
unmethylated signal.

Value

A list containing:

betahat The estimated coefficients of the factor(s) of interest. A p by n matrix.
sigma2 Estimates of the features’ variances. A vector of length n.
t t statistics for the factor(s) of interest. A p by n matrix.
p P-values for the factor(s) of interest. A p by n matrix.
Fstats F statistics for testing all of the factors in X simultaneously..
Fpvals P-values for testing all of the factors in X simultaneously.
multiplier The constant by which sigma2 must be multiplied in order to get an estimate of

the variance of betahat.
df The number of residual degrees of freedom.
W The estimated unwanted factors.
alpha The estimated coefficients of W.
byx The coefficients in a regression of Y on X (after both Y and X have been "ad-

justed" for Z). Useful for projection plots.
bwx The coefficients in a regression of W on X (after X has been "adjusted" for Z).

Useful for projection plots.
X X. Included for reference.
k k. Included for reference.
ctl ctl. Included for reference.
Z Z. Included for reference.
fullW0 Can be used to speed up future calls of RUVfit.
include.intercept

include.intercept. Included for reference.
method Character variable with value indicating which RUV method was used. Included

for reference.

34 SWAN

Author(s)

Jovana Maksimovic

References

Gagnon-Bartsch JA, Speed TP. (2012). Using control genes to correct for unwanted variation in mi-
croarray data. Biostatistics. 13(3), 539-52. Available at: http://biostatistics.oxfordjournals.
org/content/13/3/539.full.

Gagnon-Bartsch, Jacob, and Speed. 2013. Removing Unwanted Variation from High Dimensional
Data with Negative Controls. Available at: http://statistics.berkeley.edu/tech-reports/
820.

See Also

RUV2, RUV4, RUVinv, RUVrinv, topRUV

Examples

if(require(minfi) & require(minfiData) & require(limma)) {
Get methylation data for a 2 group comparison
meth <- getMeth(MsetEx)
unmeth <- getUnmeth(MsetEx)
Mval <- log2((meth + 100)/(unmeth + 100))
group <- factor(pData(MsetEx)$Sample_Group)
design <- model.matrix(~group)
Perform initial analysis to empirically identify negative control features
when not known a priori
lFit <- lmFit(Mval,design)
lFit2 <- eBayes(lFit)
lTop <- topTable(lFit2,coef=2,num=Inf)
The negative control features should *not* be associated with factor of
interest but *should* be affected by unwanted variation
ctl <- rownames(Mval) %in% rownames(lTop[lTop$adj.P.Val > 0.5,])
Perform RUV adjustment and fit
fit <- RUVfit(Y=Mval, X=group, ctl=ctl)
fit2 <- RUVadj(Y=Mval, fit=fit)
Look at table of top results
top <- topRUV(fit2)
}

SWAN Subset-quantile Within Array Normalisation for Illumina Infinium Hu-
manMethylation450 BeadChips

Description

Subset-quantile Within Array Normalisation (SWAN) is a within array normalisation method for
the Illumina Infinium HumanMethylation450 platform. It allows Infinium I and II type probes on a
single array to be normalized together.

http://biostatistics.oxfordjournals.org/content/13/3/539.full
http://biostatistics.oxfordjournals.org/content/13/3/539.full
http://statistics.berkeley.edu/tech-reports/820
http://statistics.berkeley.edu/tech-reports/820

SWAN 35

Usage

SWAN(data, verbose = FALSE)

S3 method for class 'MethyLumiSet'
SWAN(data, verbose = FALSE)

S3 method for class 'RGChannelSet'
SWAN(data, verbose = FALSE)

Default S3 method:
SWAN(data, verbose = FALSE)

Arguments

data An object of class either MethylSet, RGChannelSet or MethyLumiSet.

verbose Should the function be verbose?

Details

The SWAN method has two parts. First, an average quantile distribution is created using a subset of
probes defined to be biologically similar based on the number of CpGs underlying the probe body.
This is achieved by randomly selecting N Infinium I and II probes that have 1, 2 and 3 underlying
CpGs, where N is the minimum number of probes in the 6 sets of Infinium I and II probes with
1, 2 or 3 probe body CpGs. If no probes have previously been filtered out e.g. sex chromosome
probes, etc. N=11,303. This results in a pool of 3N Infinium I and 3N Infinium II probes. The
subset for each probe type is then sorted by increasing intensity. The value of each of the 3N pairs
of observations is subsequently assigned to be the mean intensity of the two probe types for that row
or ’quantile’. This is the standard quantile procedure. The intensities of the remaining probes are
then separately adjusted for each probe type using linear interpolation between the subset probes.

Value

An object of class MethylSet.

NULL

NULL

NULL

Note

SWAN uses a random subset of probes to perform the within-array normalization. In order to achive
reproducible results, the seed needs to be set using set.seed.

Author(s)

Jovana Maksimovic

36 topGSA

References

J Maksimovic, L Gordon and A Oshlack (2012). SWAN: Subset quantile Within-Array Normaliza-
tion for Illumina Infinium HumanMethylation450 BeadChips. Genome Biology 13, R44.

See Also

RGChannelSet and MethylSet as well as MethyLumiSet and IlluminaMethylationManifest.

Examples

if (require(minfi) & require(minfiData)) {

set.seed(100)
datSwan1 <- SWAN(RGsetEx)

dat <- preprocessRaw(RGsetEx)
set.seed(100)
datSwan2 <- SWAN(dat)

head(getMeth(datSwan2)) == head(getMeth(datSwan1))
}

topGSA Get table of top 20 enriched pathways

Description

After using gsameth, calling topGSA will output the top 20 most significantly enriched pathways.

Usage

topGSA(gsa, number = 20, sort = TRUE)

Arguments

gsa Matrix, from output of gsameth.

number Scalar, number of pathway results to output. Default is 20.

sort Logical, should the table be ordered by p-value. Default is TRUE.

Details

This function will output the top 20 most significant pathways from a pathway analysis using the
gsameth function. The output is ordered by p-value.

topGSA 37

Value

A matrix ordered by P.DE, with a row for each gene set and the following columns:

N number of genes in the gene set

DE number of genes that are differentially methylated

P.DE p-value for over-representation of the gene set

FDR False discovery rate, calculated using the method of Benjamini and Hochberg
(1995)

.

SigGenesInSet Significant differentially methylated genes overlapping with the gene set of in-
terest.

Author(s)

Belinda Phipson

See Also

gsameth

Examples

library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(org.Hs.eg.db)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)

Randomly select 1000 CpGs to be significantly differentially methylated
sigcpgs <- sample(rownames(ann),1000,replace=FALSE)

All CpG sites tested
allcpgs <- rownames(ann)

Use org.Hs.eg.db to extract a GO term
GOtoID <- toTable(org.Hs.egGO2EG)
setname1 <- GOtoID$go_id[1]
setname1
keep.set1 <- GOtoID$go_id %in% setname1
set1 <- GOtoID$gene_id[keep.set1]
setname2 <- GOtoID$go_id[2]
setname2
keep.set2 <- GOtoID$go_id %in% setname2
set2 <- GOtoID$gene_id[keep.set2]

Make the gene sets into a list
sets <- list(set1, set2)
names(sets) <- c(setname1,setname2)

Testing with prior probabilities taken into account

38 topRUV

Plot of bias due to differing numbers of CpG sites per gene
gst <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,
plot.bias = TRUE, prior.prob = TRUE)
topGSA(gst)

Testing ignoring bias
gst.bias <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,

prior.prob = FALSE)
topGSA(gst.bias)

topRUV Table of top-ranked differentially methylated CpGs obatained from a
differential methylation analysis using RUV

Description

Extract a table of the top-ranked CpGs from a linear model fit after performing a differential methy-
lation analysis using RUVfit and RUVadj.

Usage

topRUV(fitsum, number = 10, sort.by = c("p", "F.p"), p.BH = 1)

Arguments

fitsum An object containing the summary fit object produced by RUVadj. The object
should be a list.

number integer, maximum number of genes to list. Default is 10.

sort.by character string, what the results should be sorted by. Default is unadjusted
p-value.

p.BH numeric, cutoff value for Benjamini-Hochberg adjusted p-values. Only features
with lower p-values are listed. Must be between 0 and 1. Default is 1.

Details

This function summarises the results of a differential methylation analysis performed using RUVfit,
followed by RUVadj. The top ranked CpGs are sorted by p-value.

Value

Produces a dataframe with rows corresponding to the top number CpGs and the following columns:
F.p F.p.BH p_X1 p.BH_X1 b_X1 sigma2 var.b_X1 fit.ctl mean

F.p P-values for testing all of the factors of interest simultaneously.

F.p.BH Benjamini-Hochberg adjusted p-values for testing all of the factors of interest
simultaneously.

topRUV 39

p_X1 p-values for the factor of interest.

p.BH_X1 Benjamini-Hochberg adjusted p-values for the factor of interest.

b_X1 The estimated coefficients of the factor of interest.

sigma2 Estimate of the methylation variance.

var.b_X1 Variance estimate of betahat.

fit.ctl logical, indicating whether CpG was designated as a negative control.

mean The mean methylation (M-value).

Author(s)

Jovana Maksimovic <jovana.maksimovic@mcri.edu.au>

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential ex-
pression in microarray experiments. Statistical Applications in Genetics and Molecular Biology,
Volume 3, Article 3. http://www.statsci.org/smyth/pubs/ebayes.pdf.

See Also

RUVfit, RUVadj, MArrayLM

Examples

if(require(minfi) & require(minfiData) & require(limma)){

Get methylation data for a 2 group comparison
meth <- getMeth(MsetEx)
unmeth <- getUnmeth(MsetEx)
Mval <- log2((meth + 100)/(unmeth + 100))

group <- factor(pData(MsetEx)$Sample_Group)
design <- model.matrix(~group)

Perform initial analysis to empirically identify negative control features
when *not* known a priori
lFit <- lmFit(Mval,design)
lFit2 <- eBayes(lFit)
lTop <- topTable(lFit2,coef=2,num=Inf)

The negative control features should *not* be associated with factor of
interest but *should* be affected by unwanted variation
ctl <- rownames(Mval) %in% rownames(lTop[lTop$adj.P.Val > 0.5,])

Perform RUV adjustment and fit
fit <- RUVfit(Y=Mval, X=group, ctl=ctl)
fit2 <- RUVadj(Y=Mval, fit=fit)

http://www.statsci.org/smyth/pubs/ebayes.pdf

40 topVar

Look at table of top results
top <- topRUV(fit2)
}

topVar Table of top-ranked differentially variable CpGs

Description

Extract a table of the top-ranked CpGs from a linear model fit after a differential variability analysis.

Usage

topVar(fit, coef = NULL, number = 10, sort = TRUE)

Arguments

fit List containing a linear model fit produced by varFit. The fit object should be
of class MArrayLM.

coef Column number or column name specifying which coefficient of the linear
model fit is of interest. It should be the same coefficient that the differential
variability testing was performed on. Default is last column of fit object.

number Maximum number of genes to list. Default is 10.

sort Logical, default is TRUE. Sorts output according the P-value. FALSE will return
results in same order as fit object.

Details

This function summarises the results of a differential variability analysis performed with varFit.
The p-values from the comparison of interest are adjusted using Benjamini and Hochberg’s false
discovery rate with the function p.adjust. The top ranked CpGs are selected by first ranking the
adjusted p-values, then ranking the raw p-values. At this time no other sorting option is catered for.

Value

Produces a dataframe with rows corresponding to the top CpGs and the following columns:

genelist one or more columns of annotation for each CpG, if the gene information is
available in fit

AvgVar average of the absolute or squared Levene residuals across all samples

DiffVar estimate of the difference in the Levene residuals corresponding to the compar-
ison of interest

t moderated t-statistic

P.Value raw p-value

Adj.P.Value adjusted p-value

varFit 41

Author(s)

Belinda Phipson

References

Phipson, B., and Oshlack, A. (2014). A method for detecting differential variability in methylation
data shows CpG islands are highly variably methylated in cancers. Genome Biology, 15:465.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

See Also

varFit, p.adjust

Examples

Randomly generate data for a 2 group problem with 100 CpG sites and 5
arrays in each group.

y<-matrix(rnorm(1000),ncol=10)

group<-factor(rep(c(1,2),each=5))
design<-model.matrix(~group)

Fit linear model for differential variability
vfit<-varFit(y,design)

Look at top table of results
topVar(vfit,coef=2)

varFit Testing for differential variability

Description

Fit linear model on mean absolute or squared deviations for each CpG given a series of methylation
arrays

Usage

varFit(
data,
design = NULL,
coef = NULL,
type = NULL,
trend = TRUE,
robust = TRUE,

42 varFit

weights = NULL
)

S3 method for class 'MethylSet'
varFit(
data,
design = NULL,
coef = NULL,
type = NULL,
trend = TRUE,
robust = TRUE,
weights = NULL

)

S3 method for class 'DGEList'
varFit(
data,
design = NULL,
coef = NULL,
type = NULL,
trend = TRUE,
robust = TRUE,
weights = NULL

)

Default S3 method:
varFit(
data,
design = NULL,
coef = NULL,
type = NULL,
trend = TRUE,
robust = TRUE,
weights = NULL

)

Arguments

data Object of class MethylSet or matrix of M-values with rows corresponding to
the features of interest such as CpG sites and columns corresponding to samples
or arrays.

design The design matrix of the experiment, with rows corresponding to arrays/samples
and columns to coefficients to be estimated. Defaults to the unit vector.

coef The columns of the design matrix containing the comparisons to test for differ-
ential variability. Defaults to all columns of design matrix.

type Character string, "AD" for absolute residuals or "SQ" for squared residuals. De-
fault is absolute.

trend Logical, if true fits a mean variance trend on the absolute or squared deviations.

varFit 43

robust Logical, if true performs robust empirical Bayes shrinkage of the variances for
the moderated t statistics.

weights Non-negative observation weights. Can be a numeric matrix of individual weights,
of same size as the object matrix, or a numeric vector of array weights, or a nu-
meric vector of gene/feature weights.

Details

This function depends on the limma package and is used to rank features such as CpG sites or genes
in order of evidence of differential variability between different comparisons corresponding to the
columns of the design matrix. A measure of variability is calculated for each CpG in each sample
by subtracting out the group mean and taking the absolute or squared deviation. A linear model is
then fitted to the absolute or squared deviations. The residuals of the linear model fit are subjected
to empirical Bayes shrinkage and moderated t statistics (Smyth, 2004) calculated. False discovery
rates are calculated using the method of Benjamini and Hochberg (1995).

Please always specify the coef parameter in the call to varFit, which indicates which groups are
to be tested for differential variability. If coef is not specified, then group means are estimated
based on all the columns of the design matrix and subtracted out before testing for differential
variability. If the design matrix contains nuisance parameters, then subsetting the design matrix
columns by coef should remove these columns from the design matrix. If the design matrix includes
an intercept term, this should be included in coef. The nuisance parameters are included in the
linear model fit to the absolute or squared deviations, but should not be considered when subtracting
group means to obtain the deviations. Note that design matrices without an intercept term are
permitted, and specific contrasts tested using the function contrasts.varFit.

For methylation data, the analysis is performed on the M-values, defined as the log base 2 ratio of
the methylated signal to the unmethylated signal. If a MethylSet object is supplied, M-values are
extracted with an offset of 100 added to the numerator and denominator.

For testing differential variability on RNA-Seq data, a DGEList object can be supplied directly to the
function. A voom transformation is applied before testing for differential variability. The weights
calculated in voom are used in the linear model fit.

Since the output is of class MArrayLM, any functions that can be applied to fit objects from lmFit
and eBayes can be applied, for example, topTable and decideTests.

Value

Produces an object of class MArrayLM (see MArrayLM-class) containing everything found in a fitted
model object produced by lmFit and eBayes as well as a vector containing the sample CpG-wise
variances and a matrix of LogVarRatios corresponding to the differential variability analysis.

NULL

NULL

NULL

Author(s)

Belinda Phipson

44 varFit

References

Phipson, B., and Oshlack, A. (2014). A method for detecting differential variability in methylation
data shows CpG islands are highly variably methylated in cancers. Genome Biology, 15:465.

Smyth, G.K. (2004). Linear models and empirical Bayes methods for assessing differential ex-
pression in microarray experiments. Statistical Applications in Genetics and Molecular Biology,
Volume 3, Article 3.

Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, 2005.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series, B, 57, 289-300.

See Also

contrasts.varFit, topVar, getLeveneResiduals, lmFit, eBayes, topTable, decideTests,
voom

Examples

Randomly generate data for a 2 group problem with 100 CpG sites and 5
arrays in each # group.

y<-matrix(rnorm(1000),ncol=10)

group<-factor(rep(c(1,2),each=5))
design<-model.matrix(~group)

Fit linear model for differential variability
vfit<-varFit(y,design,coef=c(1,2))

Look at top table of results
topVar(vfit,coef=2)

Index

camera, 28
contrasts.varFit, 4, 44

decideTests, 44
densityBeanPlot, 6
densityByProbeType, 5
densityPlot, 6
design.matrix, 32, 33

eBayes, 44

get_empirical_variances, 31
getAdj, 6
getAnnotation, 10, 13, 17, 21, 24
getINCs, 8
getLeveneResiduals, 9, 44
getMappedEntrezIDs, 10, 15, 22, 26
goana, 28
gometh, 11, 12, 18, 22, 26
goregion, 15, 16, 26
gsameth, 11, 15, 18, 20, 26, 37
gsaregion, 15, 18, 23
gsaseq, 27

IlluminaMethylationManifest, 36

kegga, 28

legend, 5, 6
limma, 32
lmFit, 32, 44

MArrayLM, 7, 31, 39
MethylSet, 36
MethyLumiSet, 36
minfi, 10, 13, 17, 21, 24
missMethyl (missMethyl-package), 3
missMethyl-package, 3

p.adjust, 31
par, 6

RGChannelSet, 8, 36
roast, 28
ruv, 30, 32, 33
RUV2, 31–34
RUV4, 31–34
ruv_summary, 30
RUVadj, 30, 39
RUVfit, 30, 31, 32, 39
RUVinv, 31–34
RUVrinv, 31–34

sigmashrink, 31
SWAN, 6, 34

topGSA, 36
topRUV, 34, 38
topTable, 44
topVar, 40, 44

varFit, 9, 41
variance_adjust, 30
voom, 44

xy.coords, 5

45

	missMethyl-package
	contrasts.varFit
	densityByProbeType
	getAdj
	getINCs
	getLeveneResiduals
	getMappedEntrezIDs
	gometh
	goregion
	gsameth
	gsaregion
	gsaseq
	RUVadj
	RUVfit
	SWAN
	topGSA
	topRUV
	topVar
	varFit
	Index

