
Package ‘mia’
February 2, 2026

Type Package

Version 1.19.2

Title Microbiome analysis

Description mia implements tools for microbiome analysis based on the
SummarizedExperiment, SingleCellExperiment and TreeSummarizedExperiment
infrastructure. Data wrangling and analysis in the context of taxonomic data
is the main scope. Additional functions for common task are implemented such
as community indices calculation and summarization.

biocViews Microbiome, Software, DataImport

License Artistic-2.0 | file LICENSE

Encoding UTF-8

LazyData false

Depends R (>= 4.0), MultiAssayExperiment, SingleCellExperiment,
SummarizedExperiment, TreeSummarizedExperiment (>= 1.99.3)

Imports ape, BiocGenerics, BiocParallel, Biostrings, bluster,
DECIPHER, decontam, DelayedArray, DelayedMatrixStats,
DirichletMultinomial, dplyr, IRanges, MASS, MatrixGenerics,
methods, ecodive, rlang, S4Vectors, scater, scuttle, stats,
stringr, tibble, tidyr, utils, vegan, Rcpp

Suggests ade4, BiocStyle, biomformat, dada2, knitr, mediation,
miaTime, miaViz, microbiomeDataSets, NMF, patchwork, philr,
phyloseq, reldist, rhdf5, rmarkdown, testthat, topicdoc,
topicmodels, yaml

LinkingTo Rcpp

URL https://microbiome.github.io/mia/,

https://github.com/microbiome/mia

BugReports https://github.com/microbiome/mia/issues

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

VignetteBuilder knitr

1

https://microbiome.github.io/mia/
https://github.com/microbiome/mia
https://github.com/microbiome/mia/issues

2 Contents

git_url https://git.bioconductor.org/packages/mia

git_branch devel

git_last_commit 3645a0c

git_last_commit_date 2025-12-09

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Tuomas Borman [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8563-8884>),

Felix G.M. Ernst [aut] (ORCID: <https://orcid.org/0000-0001-5064-0928>),
Sudarshan A. Shetty [aut] (ORCID:

<https://orcid.org/0000-0001-7280-9915>),
Leo Lahti [aut] (ORCID: <https://orcid.org/0000-0001-5537-637X>),
Yang Cao [ctb],
Nathan D. Olson [ctb],
Levi Waldron [ctb],
Marcel Ramos [ctb],
Héctor Corrada Bravo [ctb],
Jayaram Kancherla [ctb],
Domenick Braccia [ctb],
Basil Courbayre [ctb],
Geraldson Muluh [ctb],
Giulio Benedetti [ctb],
Moritz Emanuel Beber [ctb] (ORCID:

<https://orcid.org/0000-0003-2406-1978>),
Chouaib Benchraka [ctb],
Akewak Jeba [ctb] (ORCID: <https://orcid.org/0009-0007-1347-7552>),
Himmi Lindgren [ctb],
Noah De Gunst [ctb],
Théotime Pralas [ctb],
Shadman Ishraq [ctb],
Eineje Ameh [ctb],
Artur Sannikov [ctb],
Hervé Pagès [ctb],
Rajesh Shigdel [ctb],
Katariina Pärnänen [ctb],
Pande Erawijantari [ctb],
Danielle Callan [ctb],
Sam Hillman [ctb],
Jesse Pasanen [ctb],
Eetu Tammi [ctb]

Maintainer Tuomas Borman <tuomas.v.borman@utu.fi>

Contents
mia-package . 4
addAlpha . 5

https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-7280-9915
https://orcid.org/0000-0001-5537-637X
https://orcid.org/0000-0003-2406-1978
https://orcid.org/0009-0007-1347-7552

Contents 3

addCluster . 12
addContaminantQC . 14
addDissimilarity . 16
addDivergence . 20
addMediation . 22
agglomerateByPrevalence . 26
agglomerateByRank . 27
calculateDMN . 34
convertFromDADA2 . 38
convertToBIOM . 39
convertToPhyloseq . 41
deprecate . 42
dmn_se . 50
enterotype . 51
esophagus . 52
getAbundant . 53
getCCA . 56
getCrossAssociation . 61
getDominant . 67
getDPCoA . 69
getHierarchyTree . 71
getLDA . 72
getMDS . 74
getNMDS . 75
getNMF . 78
getPERMANOVA . 80
getPrevalence . 82
getReducedDimAttribute . 88
GlobalPatterns . 89
HintikkaXOData . 90
importHUMAnN . 91
importMetaPhlAn . 92
importMothur . 93
importQIIME2 . 95
importTaxpasta . 98
meltSE . 99
mergeSEs . 101
mia-datasets . 104
peerj13075 . 105
rarefyAssay . 106
splitOn . 108
summarizeDominance . 110
taxonomyRanks . 113
Tengeler2020 . 117
Tito2024QMP . 118
transformAssay . 119

Index 123

4 mia-package

mia-package mia Package.

Description

mia implements tools for microbiome analysis based on the SummarizedExperiment, SingleCellExperiment
and TreeSummarizedExperiment infrastructure. Data wrangling and analysis in the context of tax-
onomic data is the main scope. Additional functions for common task are implemented such as
community indices calculation and summarization.

Author(s)

Maintainer: Tuomas Borman <tuomas.v.borman@utu.fi> (ORCID)

Authors:

• Felix G.M. Ernst (ORCID)

• Sudarshan A. Shetty (ORCID)

• Leo Lahti <leo.lahti@iki.fi> (ORCID)

Other contributors:

• Yang Cao [contributor]

• Nathan D. Olson [contributor]

• Levi Waldron [contributor]

• Marcel Ramos [contributor]

• Héctor Corrada Bravo [contributor]

• Jayaram Kancherla [contributor]

• Domenick Braccia [contributor]

• Basil Courbayre [contributor]

• Geraldson Muluh [contributor]

• Giulio Benedetti [contributor]

• Moritz Emanuel Beber (ORCID) [contributor]

• Chouaib Benchraka [contributor]

• Akewak Jeba (ORCID) [contributor]

• Himmi Lindgren [contributor]

• Noah De Gunst [contributor]

• Théotime Pralas [contributor]

• Shadman Ishraq [contributor]

• Eineje Ameh [contributor]

• Artur Sannikov [contributor]

• Hervé Pagès [contributor]

https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-7280-9915
https://orcid.org/0000-0001-5537-637X
https://orcid.org/0000-0003-2406-1978
https://orcid.org/0009-0007-1347-7552

addAlpha 5

• Rajesh Shigdel [contributor]

• Katariina Pärnänen [contributor]

• Pande Erawijantari [contributor]

• Danielle Callan [contributor]

• Sam Hillman [contributor]

• Jesse Pasanen [contributor]

• Eetu Tammi [contributor]

See Also

TreeSummarizedExperiment

addAlpha Estimate alpha diversity indices

Description

These functions estimates alpha diversity indices optionally using rarefaction.

Usage

addAlpha(x, ...)

getAlpha(x, ...)

S4 method for signature 'SummarizedExperiment'
addAlpha(x, ...)

S4 method for signature 'SummarizedExperiment'
getAlpha(
x,
assay.type = "counts",
index = c("dbp_dominance", "faith_diversity", "observed_richness", "shannon_diversity"),
name = index,
niter = NULL,
BPPARAM = SerialParam(),
...

)

Arguments

x a SummarizedExperiment object.

... optional arguments:

• sample: Integer scalar. Specifies the rarefaction depth i.e. the number
of counts drawn from each sample. (Default: min(colSums2(assay(x,
assay.type))))

6 addAlpha

• tree.name: Character scalar. Specifies which rowTree will be used. (
Faith’s index). (Default: "phylo")

• node.label: Character vector or NULL Specifies the links between rows
and node labels of phylogeny tree specified by tree.name. If a certain row
is not linked with the tree, missing instance should be noted as NA. When
NULL, all the rownames should be found from the tree. (Faith’s index).
(Default: NULL)

• only.tips: (Faith’s index). Logical scalar. Specifies whether to remove
internal nodes when Faith’s index is calculated. When only.tips=TRUE,
those rows that are not tips of tree are removed. (Default: FALSE)

• threshold: (Coverage and all evenness indices). Numeric scalar. From
0 to 1, determines the threshold for coverage and evenness indices. When
evenness indices are calculated values under or equal to this threshold are
denoted as zeroes. For coverage index, see details. (Default: 0.5 for cover-
age, 0 for evenness indices)

• quantile: (log modulo skewness index). Numeric scalar. Arithmetic
abundance classes are evenly cut up to to this quantile of the data. The
assumption is that abundances higher than this are not common, and they
are classified in their own group. (Default: 0.5)

• nclasses: (log modulo skewness index). Integer scalar. The number of
arithmetic abundance classes from zero to the quantile cutoff indicated by
quantile. (Default: 50)

• ntaxa: (absolute and relative indices). Integer scalar. The n-th position
of the dominant taxa to consider. (Default: 1)

• aggregate: (absolute, dbp, dmn, and relative indices). Logical scalar.
Aggregate the values for top members selected by ntaxa or not. If TRUE,
then the sum of relative abundances is returned. Otherwise the relative
abundance is returned for the single taxa with the indicated rank (default:
aggregate = TRUE).

• detection: (observed index). Numeric scalar Selects detection threshold
for the abundances (Default: 0)

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

index Character vector. Specifies the alpha diversity indices to be calculated.

name Character vector. A name for the column of the colData where results will
be stored. (Default: index)

niter Integer scalar. Specifies the number of rarefaction rounds. Rarefaction is not
applied when niter=NULL (see Details section). (Default: NULL)

BPPARAM A BiocParallelParam object specifying whether the calculation should be par-
allelized.

Details

Different diversity metrics considers different aspects of microbial community. Cassol et al. (2025)
categorized alpha diversity metrics into four categories: richness, dominance, information, and phy-
logenetic. These categories provide complementary information, and by default, *Alpha function

addAlpha 7

return indices from each category: observed richness, Berger-Parker dominance, Shannon index for
"information", and Faith phylogenetic index.

Diversity:
Alpha diversity is a joint quantity that combines elements or community richness and evenness.
Diversity increases, in general, when species richness or evenness increase.
The following diversity indices are available:

• ’coverage’: Number of species needed to cover a given fraction of the ecosystem (50 percent
by default). Tune this with the threshold argument.

• ’faith’: Faith’s phylogenetic alpha diversity index measures how long the taxonomic dis-
tance is between taxa that are present in the sample (Faith 1992). Larger values represent
higher diversity. The current implementation is based on the Stacked Faith’s Phylogenetic
Diversity (SFPhD) algorithm (Armstrong et al. 2021), which produces values equivalent to
picante::pd with the parameter include.root=TRUE. Using this index requires a rowTree.
If the data includes features that are not in tree’s tips but in internal nodes, there are two
options. First, you can keep those features, and prune the tree to match features so that each
tip can be found from the features. Other option is to remove all features that are not tips.
(See only.tips parameter)

• ’fisher’: Fisher’s alpha; as implemented in vegan::fisher.alpha. (Fisher et al. 1943)
• ’gini_simpson’: Gini-Simpson diversity i.e. 1 − lambda, where lambda is the Simpson

index, calculated as the sum of squared relative abundances. This corresponds to the diversity
index ’simpson’ in vegan::diversity. This is also called Gibbs–Martin, or Blau index in
sociology, psychology and management studies. The Gini-Simpson index (1-lambda) should
not be confused with Simpson’s dominance (lambda), Gini index, or inverse Simpson index
(1/lambda).

• ’inverse_simpson’: Inverse Simpson diversity: 1/lambda where lambda = sum(p2) and
p refers to relative abundances. This corresponds to the diversity index ’invsimpson’ in ve-
gan::diversity. Don’t confuse this with the closely related Gini-Simpson index

• ’log_modulo_skewness’: The rarity index characterizes the concentration of species at low
abundance. Here, we use the skewness of the frequency distribution of arithmetic abundance
classes (see Magurran & McGill 2011). These are typically right-skewed; to avoid taking
log of occasional negative skews, we follow Locey & Lennon (2016) and use the log-modulo
transformation that adds a value of one to each measure of skewness to allow logarithmiza-
tion.

• ’shannon’: Shannon diversity (entropy).

Dominance:
A dominance index quantifies the dominance of one or few species in a community. Greater
values indicate higher dominance.
Dominance indices are in general negatively correlated with alpha diversity indices (species rich-
ness, evenness, diversity, rarity). More dominant communities are less diverse.
The following community dominance indices are available:

• ’absolute’: Absolute index equals to the absolute abundance of the most dominant n species
of the sample (specify the number with the argument ntaxa). Index gives positive integer
values.

8 addAlpha

• ’dbp’: Berger-Parker index (See Berger & Parker 1970) calculation is a special case of the
’relative’ index. dbp is the relative abundance of the most abundant species of the sample.
Index gives values in interval 0 to 1, where bigger value represent greater dominance.

dbp =
N1

Ntot

where N1 is the absolute abundance of the most dominant species and Ntot is the sum of
absolute abundances of all species.

• ’core_abundance’: Core abundance index is related to core species. Core species are species
that are most abundant in all samples, i.e., in whole data set. Core species are defined as
those species that have prevalence over 50\ species must be prevalent in 50\ calculate the
core abundance index. Core abundance index is sum of relative abundances of core species
in the sample. Index gives values in interval 0 to 1, where bigger value represent greater
dominance.

coreabundance =
Ncore

Ntot

where Ncore is the sum of absolute abundance of the core species and Ntot is the sum of
absolute abundances of all species.

• ’gini’: Gini index is probably best-known from socio-economic contexts (Gini 1921). In
economics, it is used to measure, for example, how unevenly income is distributed among
population. Here, Gini index is used similarly, but income is replaced with abundance.
If there is small group of species that represent large portion of total abundance of microbes,
the inequality is large and Gini index closer to 1. If all species has equally large abundances,
the equality is perfect and Gini index equals 0. This index should not be confused with
Gini-Simpson index, which quantifies diversity.

• ’dmn’: McNaughton’s index is the sum of relative abundances of the two most abundant
species of the sample (McNaughton & Wolf, 1970). Index gives values in the unit interval:

dmn = (N1 +N2)/Ntot

where N1 and N2 are the absolute abundances of the two most dominant species and Ntot is
the sum of absolute abundances of all species.

• ’relative’: Relative index equals to the relative abundance of the most dominant n species of
the sample (specify the number with the argument ntaxa). This index gives values in interval
0 to 1.

relative = N1/Ntot

where N1 is the absolute abundance of the most dominant species and Ntot is the sum of
absolute abundances of all species.

• ’simpson_lambda’: Simpson’s (dominance) index or Simpson’s lambda is the sum of squared
relative abundances. This index gives values in the unit interval. This value equals the prob-
ability that two randomly chosen individuals belongs to the same species. The higher the
probability, the greater the dominance (See e.g. Simpson 1949).

lambda =
∑

(p2)

where p refers to relative abundances.

addAlpha 9

There is also a more advanced Simpson dominance index (Simpson 1949). However, this
is not provided and the simpler squared sum of relative abundances is used instead as the
alternative index is not in the unit interval and it is highly correlated with the simpler variant
implemented here.

Evenness:
Evenness is a standard index in community ecology, and it quantifies how evenly the abundances
of different species are distributed. The following evenness indices are provided:
By default, four indices are returned, each taking into account different aspects: richness (the
number of observed unique features), dominance (Berger-Parker), information (Shannon), and
phylogenetics (Faith) (Cassol et al., 2025).
The available evenness indices include the following (all in lowercase):

• ’camargo’: Camargo’s evenness (Camargo 1992)
• ’simpson_evenness’: Simpson’s evenness is calculated as inverse Simpson diversity (1/lambda)

divided by observed species richness S: (1/lambda)/S.
• ’pielou’: Pielou’s evenness (Pielou, 1966), also known as Shannon or Shannon-Weaver/Wiener/Weiner

evenness; H/ln(S). The Shannon-Weaver is the preferred term; see Spellerberg and Fedor
(2003).

• ’evar’: Smith and Wilson’s Evar index (Smith & Wilson 1996).
• ’bulla’: Bulla’s index (O) (Bulla 1994).

Desirable statistical evenness metrics avoid strong bias towards very large or very small abun-
dances; are independent of richness; and range within the unit interval with increasing evenness
(Smith & Wilson 1996). Evenness metrics that fulfill these criteria include at least camargo, simp-
son, smith-wilson, and bulla. Also see Magurran & McGill (2011) and Beisel et al. (2003) for
further details.

Richness:
The richness is calculated per sample. This is a standard index in community ecology, and it
provides an estimate of the number of unique species in the community. This is often not directly
observed for the whole community but only for a limited sample from the community. This has
led to alternative richness indices that provide different ways to estimate the species richness.
Richness index differs from the concept of species diversity or evenness in that it ignores species
abundance, and focuses on the binary presence/absence values that indicate simply whether the
species was detected.
The function takes all index names in full lowercase. The user can provide the desired spelling
through the argument name (see examples).
The following richness indices are provided.

• ’ace’: Abundance-based coverage estimator (ACE) is another nonparametric richness index
that uses sample coverage, defined based on the sum of the probabilities of the observed
species. This method divides the species into abundant (more than 10 reads or observations)
and rare groups in a sample and tends to underestimate the real number of species. The ACE
index ignores the abundance information for the abundant species, based on the assumption
that the abundant species are observed regardless of their exact abundance. We use here the
bias-corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. For an
exact formulation, see estimateR. Note that this index comes with an additional column with
standard error information.

10 addAlpha

• ’chao1’: This is a nonparametric estimator of species richness. It assumes that rare species
carry information about the (unknown) number of unobserved species. We use here the bias-
corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. This index
implicitly assumes that every taxa has equal probability of being observed. Note that it gives a
lower bound to species richness. The bias-corrected for an exact formulation, see estimateR.
This estimator uses only the singleton and doubleton counts, and hence it gives more weight
to the low abundance species. Note that this index comes with an additional column with
standard error information.

• ’hill’: Effective species richness aka Hill index (see e.g. Chao et al. 2016). Currently only the
case 1D is implemented. This corresponds to the exponent of Shannon diversity. Intuitively,
the effective richness indicates the number of species whose even distribution would lead to
the same diversity than the observed community, where the species abundances are unevenly
distributed.

• ’observed’: The observed richness gives the number of species that is detected above a given
detection threshold in the observed sample (default 0). This is conceptually the simplest
richness index. The corresponding index in the vegan package is "richness".

Rarefaction:
Rarefaction can be used to control uneven sequencing depths. Although, it is highly debated
method. Some think that it is the only option that successfully controls the variation caused by
uneven sampling depths. The biggest argument against rarefaction is the fact that it omits data.
Rarefaction works by sampling the counts randomly. This random sampling is done niter times.
In each sampling iteration, sample number of random samples are drawn, and alpha diversity is
calculated for this subset. After the iterative process, there are niter number of result that are
then averaged to get the final result.
Refer to Schloss (2024) for more details on rarefaction.

Value

getAlpha returns a DataFrame. addAlpha returns a x with additional colData column(s) named
name.

References

Armstrong G. et al. (2021) Efficient computation of Faith’s phylogenetic diversity with applications
in characterizing microbiomes. Genome Res. 31(11):2131-2137. doi: 10.1101/gr.275777.121

Beisel J-N. et al. (2003) A Comparative Analysis of Diversity Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.
pdf

Berger WH & Parker FL (1970) Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Sci-
ence 168(3937):1345-1347. doi: 10.1126/science.168.3937.1345

Bulla L. (1994) An index of diversity and its associated diversity measure. Oikos 70:167–171

Camargo, JA. (1992) New diversity index for assessing structural alterations in aquatic communi-
ties. Bull. Environ. Contam. Toxicol. 48:428–434.

Cassol, I. (2025) Key features and guidelines for the application of microbial alpha diversity metrics.
Sci. Rep. 15:622. doi: 10.1038/s41598-024-77864-y

https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf

addAlpha 11

Chao A. (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat.
11:265–270.

Chao A, Chun-Huo C, Jost L (2016). Phylogenetic Diversity Measures and Their Decomposition:
A Framework Based on Hill Numbers. Biodiversity Conservation and Phylogenetic Systematics,
Springer International Publishing, pp. 141–172, doi:10.1007/978-3-319-22461-9_8.

Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound
of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671-682.

Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation
61(1):1-10.

Fisher R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species and
the number of individuals in a random sample of animal population. Journal of Animal Ecology 12,
42-58.

Gini C (1921) Measurement of Inequality of Incomes. The Economic Journal 31(121): 124-126.
doi: 10.2307/2223319

Locey KJ and Lennon JT. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975; doi:10.1073/pnas.1521291113.

Magurran AE, McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment (Oxford Univ Press, Oxford), Vol 12.

McNaughton, SJ and Wolf LL. (1970). Dominance and the niche in ecological systems. Science
167:13, 1–139

O’Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a
pin? J. Anim. Ecol. 74, 375-386.

Pielou, EC. (1966) The measurement of diversity in different types of biological collections. J
Theoretical Biology 13:131–144.

Schloss PD (2024) Rarefaction is currently the best approach to control for uneven sequencing effort
in amplicon sequence analyses. mSphere 28;9(2):e0035423. doi: 10.1128/msphere.00354-23

Simpson EH (1949) Measurement of Diversity. Nature 163(688). doi: 10.1038/163688a0

Smith B and Wilson JB. (1996) A Consumer’s Guide to Evenness Indices. Oikos 76(1):70-82.

Spellerberg and Fedor (2003). A tribute to Claude Shannon (1916 –2001) and a plea for more
rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Alpha Ecology
& Biogeography 12, 177–197.

Cassol, I., Ibañez, M. & Bustamante, J.P. (2025) Key features and guidelines for the application of
microbial alpha diversity metrics. Sci Rep 15, 622. doi:10.1038/s41598-024-77864-y

See Also

• plotColData

• estimateR

• diversity

12 addCluster

Examples

data("GlobalPatterns")
tse <- GlobalPatterns

Calculate the default Shannon index with no rarefaction
tse <- addAlpha(tse, index = "shannon")

Shows the estimated Shannon index
tse$shannon

Calculate observed richness with 10 rarefaction rounds
tse <- addAlpha(tse,

assay.type = "counts",
index = "observed_richness",
sample = min(colSums(assay(tse, "counts")), na.rm = TRUE),
niter=10)

Shows the estimated observed richness
tse$observed_richness

One can also calculate the indices and get the results without adding
them to colData
res <- getAlpha(tse, index = "shannon")
res |> head()

addCluster Clustering wrapper

Description

This function returns a SummarizedExperiment with clustering information in its colData or row-
Data

Usage

addCluster(
x,
BLUSPARAM,
assay.type = assay_name,
assay_name = "counts",
by = MARGIN,
MARGIN = "rows",
full = FALSE,
name = "clusters",
clust.col = "clusters",
...

)

addCluster 13

S4 method for signature 'SummarizedExperiment'
addCluster(
x,
BLUSPARAM,
assay.type = assay_name,
assay_name = "counts",
by = MARGIN,
MARGIN = "rows",
full = FALSE,
name = "clusters",
clust.col = "clusters",
...

)

Arguments

x A SummarizedExperiment object.

BLUSPARAM A BlusterParam object specifying the algorithm to use.

assay.type Character scalar. Specifies the name of the assay used in calculation. (De-
fault: "counts")

assay_name Deprecated. Use assay.type instead.

by Character scalar. Determines if association is calculated row-wise / for fea-
tures (’rows’) or column-wise / for samples (’cols’). Must be 'rows' or 'cols'.

MARGIN Deprecated. Use by instead.

full Logical scalar indicating whether the full clustering statistics should be returned
for each method.

name Character scalar. The name to store the result in metadata

clust.col Character scalar. Indicates the name of the rowData (or colData) where the
data will be stored. (Default: "clusters")

... Additional parameters to use altExps for example

Details

This is a wrapper for the clusterRows function from the bluster package.

When setting full = TRUE, the clustering information will be stored in the metadata of the object.

By default, clustering is done on the features.

Value

addCluster returns an object of the same type as the x parameter with clustering information
named clusters stored in colData or rowData.

14 addContaminantQC

Examples

library(bluster)
data(GlobalPatterns, package = "mia")
tse <- GlobalPatterns

Cluster on rows using Kmeans
tse <- addCluster(tse, KmeansParam(centers = 3))

Clustering done on the samples using Hclust
tse <- addCluster(tse,

by = "samples",
HclustParam(metric = "bray", dist.fun = vegan::vegdist))

Getting the clusters
colData(tse)$clusters

addContaminantQC decontam functions

Description

The decontam functions isContaminant and isNotContaminant are made available for SummarizedExperiment
objects.

Usage

addContaminantQC(x, name = "isContaminant", ...)

addNotContaminantQC(x, name = "isNotContaminant", ...)

S4 method for signature 'SummarizedExperiment'
isContaminant(
seqtab,
assay.type = assay_name,
assay_name = "counts",
concentration = NULL,
control = NULL,
batch = NULL,
threshold = 0.1,
normalize = TRUE,
detailed = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
isNotContaminant(
seqtab,

addContaminantQC 15

assay.type = assay_name,
assay_name = "counts",
control = NULL,
threshold = 0.5,
normalize = TRUE,
detailed = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
addContaminantQC(x, name = "contaminant", ...)

S4 method for signature 'SummarizedExperiment'
addNotContaminantQC(x, name = "not_contaminant", ...)

Arguments

name Character scalar. A name for the column of the colData where results will
be stored. (Default: "contaminant" or "not_contaminant")

... • for isContaminant/ isNotContaminant: arguments passed on to decontam:isContaminant
or decontam:isNotContaminant

• for addContaminantQC/addNotContaminantQC: arguments passed on to
isContaminant/ isNotContaminant

seqtab, x a SummarizedExperiment

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.
concentration Character scalar or NULL. Defining a column with numeric values from the

colData to use as concentration information. (Default: NULL)
control Character scalar or NULL. Defining a column with logical values from the

colData to define control and non-control samples. (Default: NULL)
batch Character scalar or NULL. Defining a column with values interpretable as a

factor from the colData to use as batch information. (Default: NULL)
threshold Numeric scalar.. See decontam:isContaminant or decontam:isNotContaminant
normalize Logical scalar. See decontam:isContaminant or decontam:isNotContaminant
detailed Logical scalar. If TRUE, the return value is a data.frame containing diagnostic

information on the contaminant decision. If FALSE, the return value is a logical
vector containing the binary contaminant classifications. (Default: TRUE)

Value

for isContaminant/ isNotContaminant a DataFrame or for addContaminantQC/addNotContaminantQC
a modified object of class(x)

See Also

decontam:isContaminant, decontam:isNotContaminant

16 addDissimilarity

Examples

data(esophagus)
setup of some mock data just for example
colData(esophagus)$concentration <- c(1, 2, 3)
colData(esophagus)$control <- c(FALSE, FALSE, TRUE)

isContaminant(
esophagus,
method = "frequency",
concentration = "concentration"
)

esophagus <- addContaminantQC(
esophagus,
method = "frequency",
concentration = "concentration"
)

rowData(esophagus)

isNotContaminant(esophagus, control = "control")
esophagus <- addNotContaminantQC(esophagus, control = "control")
rowData(esophagus)

addDissimilarity Calculate dissimilarities

Description

These functions are designed to calculate dissimilarities on data stored within a TreeSummarizedExperiment
object. For overlap, Unifrac, and Jensen-Shannon Divergence (JSD) dissimilarities, the functions
use mia internal functions, while for other types of dissimilarities, they rely on vegdist by default.

Usage

addDissimilarity(x, method, ...)

getDissimilarity(x, method, ...)

S4 method for signature 'SummarizedExperiment'
addDissimilarity(x, method = "bray", name = method, ...)

S4 method for signature 'SummarizedExperiment'
getDissimilarity(
x,
method = "bray",
assay.type = "counts",
niter = NULL,
transposed = FALSE,

addDissimilarity 17

...
)

S4 method for signature 'TreeSummarizedExperiment'
getDissimilarity(
x,
method = "bray",
assay.type = "counts",
niter = NULL,
transposed = FALSE,
...

)

S4 method for signature 'ANY'
getDissimilarity(x, method = "bray", niter = NULL, ...)

Arguments

x TreeSummarizedExperiment or matrix.

method Character scalar. Specifies which dissimilarity to calculate. (Default: "bray")

... other arguments passed into avgdist, vegdist, or into mia internal functions:

• sample: The sampling depth in rarefaction. (Default: min(rowSums2(x)))
• dis.fun: Character scalar. Specifies the dissimilarity function to be

used.
• transf: Function. Specifies the optional transformation applied before

calculating the dissimilarity matrix.
• tree.name: (Unifrac) Character scalar. Specifies the name of the tree

from rowTree(x) that is used in calculation. Disabled when tree is speci-
fied. (Default: "phylo")

• tree: (Unifrac) phylo. A phylogenetic tree used in calculation. (Default:
NULL)

• weighted: (Unifrac) Logical scalar. Should use weighted-Unifrac cal-
culation? Weighted-Unifrac takes into account the relative abundance of
species/taxa shared between samples, whereas unweighted-Unifrac only
considers presence/absence. Default is FALSE, meaning the unweighted-
Unifrac dissimilarity is calculated for all pairs of samples. (Default: FALSE)

• node.label (Unifrac) character vector. Used only if x is a matrix.
Specifies links between rows/columns and tips of tree. All the node labs
must be present in tree. For the links, you can provide a vector with whose
length equals to the number of rows/columns in x. Alternatively, you can
provide a named vector where names represent names in abundance table
and values their corresponding node in tree.

• chunkSize: (JSD) Integer scalar. Defines the size of data send to the
individual worker. Only has an effect, if BPPARAM defines more than one
worker. (Default: nrow(x))

• BPPARAM: (JSD) BiocParallelParam. Specifies whether the calculation
should be parallelized.

18 addDissimilarity

• detection: (Overlap) Numeric scalar. Defines detection threshold for
absence/presence of features. Feature that has abundance under threshold
in either of samples, will be discarded when evaluating overlap between
samples. (Default: 0)

• binary: Logical scalar. Whether to perform presence/absence transfor-
mation before dissimilarity calculation. For Jaccard index the default is
TRUE. For other dissimilarity metrics, please see vegdist.

name Character scalar. The name to be used to store the result in metadata of the
output. (Default: method)

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

niter Integer scalar. Specifies the number of rarefaction rounds. Rarefaction is not
applied when niter=NULL (see Details section). (Default: NULL)

transposed Logical scalar. Specifies if x is transposed with cells in rows. (Default:
FALSE)

Details

Overlap reflects similarity between sample-pairs. When overlap is calculated using relative abun-
dances, the higher the value the higher the similarity is. When using relative abundances, overlap
value 1 means that all the abundances of features are equal between two samples, and 0 means that
samples have completely different relative abundances.

Unifrac is calculated with ecodive:unweighted_unifrac() or ecodive:weighted_unifrac().

If rarefaction is enabled, vegan:avgdist() is utilized.

Rarefaction can be used to control uneven sequencing depths. Although, it is highly debated
method. Some think that it is the only option that successfully controls the variation caused by
uneven sampling depths. The biggest argument against rarefaction is the fact that it omits data.

Rarefaction works by sampling the counts randomly. This random sampling is done niter times.
In each sampling iteration, sample number of random samples are drawn, and dissimilarity is cal-
culated for this subset. After the iterative process, there are niter number of result that are then
averaged to get the final result.

Refer to Schloss (2024) for more details on rarefaction.

Value

getDissimilarity returns a sample-by-sample dissimilarity matrix.

addDissimilarity returns x that includes dissimilarity matrix in its metadata.

References

For unifrac dissimilarity: http://bmf.colorado.edu/unifrac/

See also additional descriptions of Unifrac in the following articles:

Lozupone, Hamady and Knight, “Unifrac - An Online Tool for Comparing Microbial Community
Diversity in a Phylogenetic Context.”, BMC Bioinformatics 2006, 7:371

http://bmf.colorado.edu/unifrac/

addDissimilarity 19

Lozupone, Hamady, Kelley and Knight, “Quantitative and qualitative (beta) diversity measures lead
to different insights into factors that structure microbial communities.” Appl Environ Microbiol.
2007

Lozupone C, Knight R. “Unifrac: a new phylogenetic method for comparing microbial communi-
ties.” Appl Environ Microbiol. 2005 71 (12):8228-35.

For JSD dissimilarity: Jensen-Shannon Divergence and Hilbert space embedding. Bent Fuglede
and Flemming Topsoe University of Copenhagen, Department of Mathematics http://www.math.
ku.dk/~topsoe/ISIT2004JSD.pdf

For rarefaction: Schloss PD (2024) Rarefaction is currently the best approach to control for uneven
sequencing effort in amplicon sequence analyses. mSphere 28;9(2):e0035423. doi: 10.1128/msphere.00354-
23

See Also

http://en.wikipedia.org/wiki/Jensen-Shannon_divergence

Examples

library(mia)
library(scater)

load dataset
data(GlobalPatterns)
tse <- GlobalPatterns

Overlap dissimilarity

tse <- addDissimilarity(tse, method = "overlap", detection = 0.25)
metadata(tse)[["overlap"]][1:6, 1:6]

JSD dissimilarity

tse <- addDissimilarity(tse, method = "jsd")
metadata(tse)[["jsd"]][1:6, 1:6]

Multi Dimensional Scaling applied to JSD dissimilarity matrix
tse <- addMDS(tse, method = "overlap", assay.type = "counts")
reducedDim(tse, "MDS") |> head()

Unifrac dissimilarity

res <- getDissimilarity(tse, method = "unifrac", weighted = FALSE)
dim(as.matrix(res))

tse <- addDissimilarity(tse, method = "unifrac", weighted = TRUE)
metadata(tse)[["unifrac"]][1:6, 1:6]

Bray dissimilarity

Bray is usually applied to relative abundances so we have to apply
transformation first

http://www.math.ku.dk/~topsoe/ISIT2004JSD.pdf
http://www.math.ku.dk/~topsoe/ISIT2004JSD.pdf
http://en.wikipedia.org/wiki/Jensen-Shannon_divergence

20 addDivergence

tse <- transformAssay(tse, method = "relabundance")
res <- getDissimilarity(tse, method = "bray", assay.type = "relabundance")
as.matrix(res)[1:6, 1:6]

If applying rarefaction, the input must be count matrix and transformation
method specified in function call (Note: increase niter)
rclr <- function(x){

vegan::decostand(x, method="rclr")
}
res <- getDissimilarity(

tse, method = "euclidean", transf = rclr, niter = 2L)
as.matrix(res)[1:6, 1:6]

addDivergence Estimate divergence

Description

Estimate divergence against a given reference sample.

Usage

addDivergence(x, name = "divergence", ...)

getDivergence(
x,
assay.type = assay_name,
assay_name = "counts",
reference = "median",
method = "bray",
...

)

S4 method for signature 'SummarizedExperiment'
addDivergence(x, name = "divergence", ...)

S4 method for signature 'SummarizedExperiment'
getDivergence(
x,
assay.type = assay_name,
assay_name = "counts",
reference = "median",
method = "bray",
...

)

addDivergence 21

Arguments

x a SummarizedExperiment object.

name Character scalar. The name to be used to store the result in metadata of the
output. (Default: method)

... optional arguments passed to addDissimilarity. Additionally:

• dimred: Character scalar. Specifies the name of dimension reduction
result from reducedDim(x). If used, these values are used to calculate
divergence instead of the assay. Can be disabled with NULL. (Default: NULL)

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

reference Character scalar. A column name from colData(x) or either "mean" or
"median". If column name is specified, the column must include reference sam-
ples for each sample. If "mean" or "median" is specified, the mean or median
of the entire dataset is calculated and used as the reference value. (Default:
"median")

method Character scalar. Specifies which dissimilarity to calculate. (Default: "bray")

Details

Microbiota divergence (heterogeneity / spread) within a given sample set can be quantified by the
average sample dissimilarity or beta diversity with respect to a given reference sample.

The calculation makes use of the function getDissimilarity(). The divergence measure is sensi-
tive to sample size. Subsampling or bootstrapping can be applied to equalize sample sizes between
comparisons.

Value

x with additional colData named name

See Also

• addAlpha

• addDissimilarity

• plotColData

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

By default, reference is median of all samples. The name of column where
results is "divergence" by default, but it can be specified.
tse <- addDivergence(tse)

The method that are used to calculate distance in divergence and

22 addMediation

reference can be specified. Here, euclidean distance is used. Reference is
the first sample. It is recommended # to add reference to colData.
tse[["reference"]] <- rep(colnames(tse)[[1]], ncol(tse))
tse <- addDivergence(

tse, name = "divergence_first_sample",
reference = "reference",
method = "euclidean")

Here we compare samples to global mean
tse <- addDivergence(tse, name = "divergence_average", reference = "mean")

All three divergence results are stored in colData.
colData(tse)

addMediation Perform mediation analysis

Description

getMediation and addMediation provide a wrapper of mediate for SummarizedExperiment.

Usage

addMediation(x, ...)

getMediation(x, ...)

S4 method for signature 'SummarizedExperiment'
addMediation(
x,
outcome,
treatment,
name = "mediation",
mediator = NULL,
assay.type = NULL,
dimred = NULL,
family = gaussian(),
covariates = NULL,
p.adj.method = "holm",
add.metadata = TRUE,
verbose = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
getMediation(
x,

addMediation 23

outcome,
treatment,
mediator = NULL,
assay.type = NULL,
dimred = NULL,
family = gaussian(),
covariates = NULL,
p.adj.method = "holm",
add.metadata = TRUE,
sort = FALSE,
verbose = TRUE,
...

)

Arguments

x a SummarizedExperiment.

... additional parameters that can be passed to mediate.

outcome Character scalar. Indicates the colData variable used as outcome in the model.

treatment Character scalar. Indicates the colData variable used as treatment in the
model.

name Character scalar. A name for the column of the colData where results will
be stored. (Default: "mediation")

mediator Character scalar. Indicates the colData variable used as mediator in the model.
(Default: NULL)

assay.type Character scalar. Specifies the assay used for feature-wise mediation analy-
sis. (Default: NULL)

dimred Character scalar. Indicates the reduced dimension result in reducedDims(object)
for component-wise mediation analysis. (Default: NULL)

family Character scalar. A specification for the outcome model link function. (De-
fault: gaussian("identity"))

covariates Character scalar or character vector. Indicates the colData variables used
as covariates in the model. (Default: NULL)

p.adj.method Character scalar. Selects adjustment method of p-values. Passed to p.adjust
function. (Default: "holm")

add.metadata Logical scalar. Should the model metadata be returned. (Default: TRUE)

verbose Logical scalar. Should execution messages be printed. (Default: TRUE)

sort Logical scalar. Should the results be sorted by decreasing significance in
terms of ACME_pval. (Default: FALSE)

Details

This wrapper of mediate for SummarizedExperiment provides a simple method to analyse the
effect of a treatment variable on an outcome variable found in colData(se) through the mediation
of either another variable in colData (argument mediator) or an assay (argument assay.type) or
a reducedDim (argument dimred). Importantly, those three arguments are mutually exclusive.

24 addMediation

Value

getMediation returns a data.frame of adjusted p-values and effect sizes for the ACMEs and
ADEs of every mediator given as input, whereas addMediation returns an updated SummarizedExperiment
instance with the same data.frame stored in the metadata as "mediation" or as specified in the name
argument. Its columns include:

mediator the mediator variable

acme the Average Causal Mediation Effect (ACME) estimate

acme_pval the original p-value for the ACME estimate

acme_lower the lower bound of the CI for the ACME estimate

acme_upper the upper bound of the CI for the ACME estimate

ade the Average Direct Effect (ADE) estimate

ade_pval the original p-value for the ADE estimate

ade_lower the lower bound of the CI for the ADE estimate

ade_upper the upper bound of the CI for the ADE estimate

total the Total Effect estimate

total_lower the lower bound of the CI for the Total Effect estimate

total_upper the upper bound of the CI for the Total Effect estimate

total_pval the original p-value for the Total Effect estimate

acme_padj the adjusted p-value for the ACME estimate

ade_padj the adjusted p-value for the ADE estimate

total_padj the adjusted p-value for the Total Effect estimate

The original output of mediate for each analysed mediator is stored as the "model_metadata" at-
tribute of the resulting data.frame and can be accessed via the attr function.

Examples

Not run:
Import libraries
library(mia)
library(miaViz)
library(scater)

Load dataset
data(hitchip1006, package = "miaTime")
tse <- hitchip1006

Agglomerate features by family (merely to speed up execution)
tse <- agglomerateByRank(tse, rank = "Phylum")
Convert BMI variable to numeric
tse$bmi_group <- as.numeric(tse$bmi_group)

Analyse mediated effect of nationality on BMI via alpha diversity
100 permutations were done to speed up execution, but ~1000 are recommended

addMediation 25

med_df <- getMediation(
tse,
outcome = "bmi_group",
treatment = "nationality",
mediator = "diversity",
covariates = c("sex", "age"),
treat.value = "Scandinavia",
control.value = "CentralEurope",
boot = TRUE, sims = 100)

Visualise model statistics
plotMediation(med_df)

Apply clr transformation to counts assay
tse <- transformAssay(tse, method = "clr", pseudocount = 1)

Analyse mediated effect of nationality on BMI via clr-transformed features
100 permutations were done to speed up execution, but ~1000 are recommended
tse <- addMediation(

tse, name = "assay_mediation",
outcome = "bmi_group",
treatment = "nationality",
assay.type = "clr",
covariates = c("sex", "age"),
treat.value = "Scandinavia",
control.value = "CentralEurope",
boot = TRUE, sims = 100,
p.adj.method = "fdr")

Show results for first 5 mediators
head(metadata(tse)$assay_mediation, 5)

Perform ordination
tse <- addMDS(

tse, name = "MDS", method = "euclidean", assay.type = "clr",
ncomponents = 3)

Analyse mediated effect of nationality on BMI via NMDS components
100 permutations were done to speed up execution, but ~1000 are recommended
tse <- addMediation(

tse, name = "reddim_mediation",
outcome = "bmi_group",
treatment = "nationality",
dimred = "MDS",
covariates = c("sex", "age"),
treat.value = "Scandinavia",
control.value = "CentralEurope",
boot = TRUE, sims = 100,
p.adj.method = "fdr")

Show results for first 5 mediators
head(metadata(tse)$reddim_mediation, 5)

26 agglomerateByPrevalence

Access model metadata
attr(metadata(tse)$reddim_mediation, "model_metadata")

End(Not run)

agglomerateByPrevalence

Agglomerate data based on population prevalence

Description

Agglomerate data based on population prevalence

Usage

agglomerateByPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment'
agglomerateByPrevalence(
x,
rank = NULL,
other.name = other_label,
other_label = "Other",
...

)

S4 method for signature 'TreeSummarizedExperiment'
agglomerateByPrevalence(
x,
rank = NULL,
other.name = other_label,
other_label = "Other",
update.tree = TRUE,
...

)

Arguments

x TreeSummarizedExperiment.
... arguments passed to agglomerateByRank function for SummarizedExperiment

objects and other functions. See agglomerateByRank for more details.
rank Character scalar. Defines a taxonomic rank. Must be a value of taxonomyRanks()

function.
other.name Character scalar. Used as the label for the summary of non-prevalent taxa.

(default: "Other")
other_label Deprecated. use other.name instead.
update.tree Logical scalar. Should rowTree() also be merged? (Default: TRUE)

agglomerateByRank 27

Details

agglomerateByPrevalence sums up the values of assays at the taxonomic level specified by rank
(by default the highest taxonomic level available) and selects the summed results that exceed the
given population prevalence at the given detection level. The other summed values (below the
threshold) are agglomerated in an additional row taking the name indicated by other.name (by
default "Other").

Value

agglomerateByPrevalence returns a taxonomically-agglomerated object of the same class as x
and based on prevalent taxonomic results.

Examples

Data can be aggregated based on prevalent taxonomic results
data(GlobalPatterns)
tse <- GlobalPatterns
tse <- transformAssay(tse, method = "relabundance")
tse <- agglomerateByPrevalence(

tse,
rank = "Phylum",
assay.type = "relabundance",
detection = 1/100,
prevalence = 50/100)

tse

Here data is aggregated at the taxonomic level "Phylum". The five phyla
that exceed the population prevalence threshold of 50/100 represent the
five first rows of the assay in the aggregated data. The sixth and last row
named by default "Other" takes the summed up values of all the other phyla
that are below the prevalence threshold.

assay(tse)[,1:5]

agglomerateByRank Agglomerate data using taxonomic information or other grouping

Description

Agglomeration functions can be used to sum-up data based on specific criteria such as taxonomic
ranks, variables or prevalence.

agglomerateByRank can be used to sum up data based on associations with certain taxonomic
ranks, as defined in rowData. Only available taxonomyRanks can be used.

agglomerateByVariable and agglomerateByModule merge data on rows or columns of a SummarizedExperiment
as defined by a factor alongside the chosen dimension. This function allows agglomeration of data
based on other variables than taxonomy ranks. Metadata from the rowData or colData are retained

28 agglomerateByRank

as defined by archetype. assay are agglomerated, i.e. summed up. If the assay contains values
other than counts or absolute values, this can lead to meaningless values being produced.

agglomerateByRanks takes a SummarizedExperiment, splits it along the taxonomic ranks, ag-
gregates the data per rank, converts the input to a SingleCellExperiment objects and stores the
aggregated data as alternative experiments. unsplitByRanks takes these alternative experiments
and flattens them again into a single SummarizedExperiment.

Usage

agglomerateByRank(x, ...)

agglomerateByVariable(x, ...)

agglomerateByModule(x, ...)

agglomerateByRanks(x, ...)

unsplitByRanks(x, ...)

S4 method for signature 'TreeSummarizedExperiment'
agglomerateByRank(
x,
rank = taxonomyRanks(x)[1],
update.tree = agglomerateTree,
agglomerate.tree = agglomerateTree,
agglomerateTree = TRUE,
...

)

S4 method for signature 'SingleCellExperiment'
agglomerateByRank(
x,
rank = taxonomyRanks(x)[1],
altexp = NULL,
altexp.rm = strip_altexp,
strip_altexp = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
agglomerateByRank(
x,
rank = taxonomyRanks(x)[1],
empty.rm = TRUE,
empty.fields = c(NA, "", " ", "\t", "-", "_"),
...

)

agglomerateByRank 29

S4 method for signature 'TreeSummarizedExperiment'
agglomerateByVariable(
x,
by,
group = f,
f,
update.tree = mergeTree,
mergeTree = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
agglomerateByVariable(x, by, group = f, f, ...)

S4 method for signature 'SummarizedExperiment'
agglomerateByModule(x, by, group, na.rm = FALSE)

S4 method for signature 'SummarizedExperiment'
agglomerateByRanks(
x,
ranks = taxonomyRanks(x),
na.rm = TRUE,
as.list = FALSE,
...

)

S4 method for signature 'SingleCellExperiment'
agglomerateByRanks(
x,
ranks = taxonomyRanks(x),
na.rm = TRUE,
as.list = FALSE,
...

)

S4 method for signature 'TreeSummarizedExperiment'
agglomerateByRanks(
x,
ranks = taxonomyRanks(x),
na.rm = TRUE,
as.list = FALSE,
...

)

splitByRanks(x, ...)

S4 method for signature 'SingleCellExperiment'
unsplitByRanks(

30 agglomerateByRank

x,
ranks = taxonomyRanks(x),
keep.dimred = keep_reducedDims,
keep_reducedDims = FALSE,
...

)

S4 method for signature 'TreeSummarizedExperiment'
unsplitByRanks(
x,
ranks = taxonomyRanks(x),
keep.dimred = keep_reducedDims,
keep_reducedDims = FALSE,
...

)

Arguments

x TreeSummarizedExperiment.

... arguments passed to agglomerateByRank function for SummarizedExperiment
objects and other functions. See agglomerateByRank for more details.

rank Character scalar. Defines a taxonomic rank. Must be a value of taxonomyRanks()
function.

update.tree Logical scalar. Should rowTree() also be merged? (Default: TRUE)
agglomerate.tree

Deprecated. Use update.tree instead.
agglomerateTree

Deprecated. Use update.tree instead.

altexp Character scalar or integer scalar. Specifies an alternative experiment
containing the input data.

altexp.rm Logical scalar. Should alternative experiments be removed prior to agglom-
eration? This prevents too many nested alternative experiments by default. (De-
fault: TRUE)

strip_altexp Deprecated. Use altexp.rm instead.

empty.rm Logical scalar. Defines whether rows including empty.fields in specified
rank will be excluded. (Default: TRUE)

empty.fields Character vector. Defines which values should be regarded as empty. (De-
fault: c(NA, "", " ", "\t")). They will be removed if na.rm = TRUE before
agglomeration.

by Character scalar. Determines if data is merged row-wise / for features (’rows’)
or column-wise / for samples (’cols’). Must be 'rows' or 'cols'.

group Character scalar, character vector or factor vector. A column name
from rowData(x) or colData(x) or alternatively a vector specifying how the
merging is performed. If vector, the value must be the same length as nrow(x)/ncol(x).
Rows or columns corresponding to the same level will be merged. If length(levels(group))

agglomerateByRank 31

== nrow(x)/ncol(x), x will be returned unchanged. For agglomerateByModule,
group should specify one or several names of logical or numeric binary variables
from the rowData(x)/colData(x) by which to agglomerate rows or columns.

f Deprecated. Use group instead.
mergeTree Deprecated. Use update.tree instead.
na.rm Logical scalar. Should NA values be omitted? (Default: TRUE)
ranks Character vector. Defines taxonomic ranks. Must all be values of taxonomyRanks()

function.
as.list Logical scalar. Should the list of SummarizedExperiment objects be re-

turned by the function agglomerateByRanks as a SimpleList or stored in alt-
Exps? (Default: FALSE)

keep.dimred Logical scalar. Should the reducedDims(x) be transferred to the result?
Please note, that this breaks the link between the data used to calculate the re-
duced dims. (Default: FALSE)

keep_reducedDims

Deprecated. Use keep.dimred instead.

Details

Agglomeration sums up the values of assays at the specified taxonomic level. With certain assays,
e.g. those that include binary or negative values, this summing can produce meaningless values. In
those cases, consider performing agglomeration first, and then applying the transformation after-
wards.

agglomerateByVariable works similarly to sumCountsAcrossFeatures. However, additional
support for TreeSummarizedExperiment was added and science field agnostic names were used.
In addition the archetype argument lets the user select how to preserve row or column data. For
merge data of assays the function from scuttle are used.

agglomerateByModule allows to agglomerate features or samples based on one or multiple vari-
ables of logical or numeric binary (0/1) type. It is particularly useful for agglomerating by taxo-
nomic or functional modules, each defined by a logical or binary variable in the rowData, as features
can belong to several modules.

agglomerateByRanks will use by default all available taxonomic ranks, but this can be controlled
by setting ranks manually. NA values are removed by default, since they would not make sense, if
the result should be used for unsplitByRanks at some point. The input data remains unchanged in
the returned SingleCellExperiment objects.

unsplitByRanks will remove any NA value on each taxonomic rank so that no ambiguous data is
created. In additional, a column taxonomicLevel is created or overwritten in the rowData to spec-
ify from which alternative experiment this originates from. This can also be used for splitAltExps
to split the result along the same factor again. The input data from the base objects is not returned,
only the data from the altExp(). Be aware that changes to rowData of the base object are not
returned, whereas only the colData of the base object is kept.

Value

agglomerateByRank returns a taxonomically-agglomerated, optionally-pruned object of the same
class as x. agglomerateByVariable and agglomerateByModule return an object of the same class
as x with the specified entries merged into one entry in all relevant components.

32 agglomerateByRank

For agglomerateByRanks: If as.list = TRUE : SummarizedExperiment objects in a SimpleList
If as.list = FALSE : The SummarizedExperiment passed as a parameter and now containing the
SummarizedExperiment objects in its altExps

For unsplitByRanks: x, with rowData and assay data replaced by the unsplit data. colData of x
is kept as well and any existing rowTree is dropped as well, since existing rowLinks are not valid
anymore.

See Also

splitOn unsplitOn agglomerateByVariable, sumCountsAcrossFeatures, agglomerateByRank,
altExps, splitAltExps

Examples

Agglomerate data based on taxonomic information

data(GlobalPatterns)
print the available taxonomic ranks
colnames(rowData(GlobalPatterns))
taxonomyRanks(GlobalPatterns)

agglomerate at the Family taxonomic rank
x1 <- agglomerateByRank(GlobalPatterns, rank="Family")
How many taxa before/after agglomeration?
nrow(GlobalPatterns)
nrow(x1)

Do not agglomerate the tree
x2 <- agglomerateByRank(

GlobalPatterns, rank="Family", update.tree = FALSE)
nrow(x2) # same number of rows, but
rowTree(x1) # ... different
rowTree(x2) # ... tree

If assay contains binary or negative values, summing might lead to
meaningless values, and you will get a warning. In these cases, you might
want to do agglomeration again at chosen taxonomic level.
tse <- transformAssay(GlobalPatterns, method = "pa")
tse <- agglomerateByRank(tse, rank = "Genus")
tse <- transformAssay(tse, method = "pa")

Removing empty labels by setting empty.rm = TRUE
sum(is.na(rowData(GlobalPatterns)$Family))
x3 <- agglomerateByRank(GlobalPatterns, rank="Family", empty.rm = TRUE)
nrow(x3) # different from x2

Because all the rownames are from the same rank, rownames do not include
prefixes, in this case "Family:".
print(rownames(x3[1:3,]))

To add them, use getTaxonomyLabels function.
rownames(x3) <- getTaxonomyLabels(x3, with.rank = TRUE)

agglomerateByRank 33

print(rownames(x3[1:3,]))

use 'empty.ranks.rm' to remove columns that include only NAs
x4 <- agglomerateByRank(

GlobalPatterns, rank="Phylum", empty.ranks.rm = TRUE)
head(rowData(x4))

If the assay contains NAs, you might want to specify na.rm=TRUE,
since summing-up NAs lead to NA
x5 <- GlobalPatterns
Replace first value with NA
assay(x5)[1,1] <- NA
x6 <- agglomerateByRank(x5, "Kingdom")
head(assay(x6))
Use na.rm=TRUE
x6 <- agglomerateByRank(x5, "Kingdom", na.rm = TRUE)
head(assay(x6))

Look at enterotype dataset...
data(enterotype)
Print the available taxonomic ranks. Shows only 1 available rank,
not useful for agglomerateByRank
taxonomyRanks(enterotype)

Merge TreeSummarizedExperiments on rows and columns

data(esophagus)
esophagus
plot(rowTree(esophagus))
Get a factor for merging
f <- factor(regmatches(rownames(esophagus),

regexpr("^[0-9]*_[0-9]*",rownames(esophagus))))
merged <- agglomerateByVariable(

esophagus, by = "rows", f, update.tree = TRUE)
plot(rowTree(merged))
#
data(GlobalPatterns)
GlobalPatterns
merged <- agglomerateByVariable(

GlobalPatterns, by = "cols", colData(GlobalPatterns)$SampleType)
merged

Agglomerate by multiple modules

Generate 30 random modules
N_module <- 30L
modules <- sample(

c(TRUE, FALSE),
size = nrow(tse) * N_module,
prob = c(0.2, 0.8),
replace = TRUE

)

34 calculateDMN

Convert modules to matrix
modules <- matrix(modules, nrow = nrow(tse))

Add module names as colnames
colnames(modules) <- paste0("module_", seq_len(ncol(modules)))

Add modules to rowData
rowData(tse) <- cbind(rowData(tse), modules)

Extract module columns
module_columns <- grep("module_", colnames(rowData(tse)), value = TRUE)

Agglomerate based on modules
tse_module <- agglomerateByModule(tse, by = 1, group = module_columns)

Optionally, store results into altExp slot
altExp(tse, "modules") <- tse_module

data(GlobalPatterns)
print the available taxonomic ranks
taxonomyRanks(GlobalPatterns)

agglomerateByRanks
#
tse <- agglomerateByRanks(GlobalPatterns)
altExps(tse)
altExp(tse,"Kingdom")
altExp(tse,"Species")

unsplitByRanks
tse <- unsplitByRanks(tse)
tse

calculateDMN Dirichlet-Multinomial Mixture Model: Machine Learning for Micro-
biome Data

Description

These functions are accessors for functions implemented in the DirichletMultinomial package

Usage

calculateDMN(x, ...)

getDMN(x, name = "DMN", ...)

bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)

calculateDMN 35

calculateDMNgroup(x, ...)

performDMNgroupCV(x, ...)

getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)

S4 method for signature 'ANY'
calculateDMN(
x,
k = 1,
BPPARAM = SerialParam(),
seed = runif(1, 0, .Machine$integer.max),
...

)

S4 method for signature 'SummarizedExperiment'
calculateDMN(
x,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...

)

runDMN(x, name = "DMN", ...)

S4 method for signature 'SummarizedExperiment'
getDMN(x, name = "DMN")

S4 method for signature 'SummarizedExperiment'
bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))

S4 method for signature 'SummarizedExperiment'
getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))

S4 method for signature 'ANY'
calculateDMNgroup(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...

)

S4 method for signature 'SummarizedExperiment'
calculateDMNgroup(
x,

36 calculateDMN

variable,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...

)

S4 method for signature 'ANY'
performDMNgroupCV(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...

)

S4 method for signature 'SummarizedExperiment'
performDMNgroupCV(
x,
variable,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...

)

Arguments

x a numeric matrix with samples as rows or a SummarizedExperiment object.
... optional arguments not used.
name Character scalar. The name to store the result in metadata

type Character scalar. The type of measure used for the goodness of fit. One of
‘laplace’, ‘AIC’ or ‘BIC’.

k Numeric scalar. The number of Dirichlet components to fit. See dmn. (Default:
1)

BPPARAM A BiocParallelParam object specifying whether the calculation should be par-
allelized.

seed Numeric scalar. Random number seed. See dmn

assay.type Character scalar. Specifies the name of the assay used in calculation. (De-
fault: "counts")

assay_name Deprecated. Use assay.type instead.
exprs_values Deprecated. Use assay.type instead.
transposed Logical scalar. Is x transposed with samples in rows? (Default: FALSE)
variable Character scalar. A variable from colData to use as a grouping variable.

Must be a character of factor.

calculateDMN 37

Value

calculateDMN and getDMN return a list of DMN objects, one element for each value of k provided.

bestDMNFit returns the index for the best fit and getBestDMNFit returns a single DMN object.

calculateDMNgroup returns a DMNGroup object

performDMNgroupCV returns a data.frame

See Also

DMN-class, DMNGroup-class, dmn, dmngroup, cvdmngroup , accessors for DMN objects

Examples

fl <- system.file(package="DirichletMultinomial", "extdata", "Twins.csv")
counts <- as.matrix(read.csv(fl, row.names=1))
fl <- system.file(package="DirichletMultinomial", "extdata", "TwinStudy.t")
pheno0 <- scan(fl)
lvls <- c("Lean", "Obese", "Overwt")
pheno <- factor(lvls[pheno0 + 1], levels=lvls)
colData <- DataFrame(pheno = pheno)

tse <- TreeSummarizedExperiment(assays = list(counts = counts),
colData = colData)

library(bluster)

Compute DMM algorithm and store result in metadata
tse <- addCluster(tse, name = "DMM", DmmParam(k = 1:3, type = "laplace"),

by = "samples", full = TRUE)

Get the list of DMN objects
metadata(tse)DMMdmm

Get and display which objects fits best
bestFit <- metadata(tse)DMMbest
bestFit

Get the model that generated the best fit
bestModel <- metadata(tse)DMMdmm[[bestFit]]
bestModel

Get the sample-cluster assignment probability matrix
head(metadata(tse)DMMprob)

Get the weight of each component for the best model
bestModel@mixture$Weight

38 convertFromDADA2

convertFromDADA2 Create a TreeSummarizedExperiment object from ‘DADA2’ results

Description

Create a TreeSummarizedExperiment object from ‘DADA2’ results

Usage

convertFromDADA2(...)

Arguments

... Additional arguments. For convertFromDADA2, see mergePairs function for
more details.

Details

convertFromDADA2 is a wrapper for the mergePairs function from the dada2 package. A count
matrix is constructed via makeSequenceTable(mergePairs(...)) and rownames are dynamically
created as ASV(N) with N from 1 to nrow of the count tables. The colnames and rownames from
the output of makeSequenceTable are stored as colnames and in the referenceSeq slot of the
TreeSummarizedExperiment, respectively.

Value

convertFromDADA2 returns an object of class TreeSummarizedExperiment

Examples

Coerce DADA2 results to a TreeSE object
if(requireNamespace("dada2")) {

fnF <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
fnR = system.file("extdata", "sam1R.fastq.gz", package="dada2")
dadaF <- dada2::dada(fnF, selfConsist=TRUE)
dadaR <- dada2::dada(fnR, selfConsist=TRUE)

tse <- convertFromDADA2(dadaF, fnF, dadaR, fnR)
tse

}

convertToBIOM 39

convertToBIOM Convert a TreeSummarizedExperiment object to/from ‘BIOM’ re-
sults

Description

For convenience, a few functions are available to convert BIOM, DADA2 and phyloseq objects to
TreeSummarizedExperiment objects, and TreeSummarizedExperiment objects to phyloseq ob-
jects.

Usage

convertToBIOM(x, assay.type = "counts", ...)

importBIOM(file, ...)

convertFromBIOM(
x,
prefix.rm = removeTaxaPrefixes,
removeTaxaPrefixes = FALSE,
rank.from.prefix = rankFromPrefix,
rankFromPrefix = FALSE,
artifact.rm = remove.artifacts,
remove.artifacts = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
convertToBIOM(x, assay.type = "counts", ...)

Arguments

x TreeSummarizedExperiment

assay.type Character scaler. The name of assay. (Default: "counts")

... Additional arguments. Not used currently.

file BIOM file location

prefix.rm Logical scalar. Should taxonomic prefixes be removed? The prefixes is
removed only from detected taxa columns meaning that rank.from.prefix
should be enabled in the most cases. (Default: FALSE)

removeTaxaPrefixes

Deprecated. Use prefix.rm instead.
rank.from.prefix

Logical scalar. If file does not have taxonomic ranks on feature table, should
they be scraped from prefixes? (Default: FALSE)

rankFromPrefix Deprecated.Use rank.from.prefix instead.

40 convertToBIOM

artifact.rm Logical scalar. If file have some taxonomic character naming artifacts, should
they be removed. (default (Default: FALSE)

remove.artifacts

Deprecated. Use artifact.rm instead.

Details

convertFromBIOM coerces a biom object to a TreeSummarizedExperiment object.

convertToBIOM coerces a TreeSummarizedExperiment object to a biom object.

importBIOM loads a BIOM file and creates a TreeSummarizedExperiment object from the BIOM
object contained in the loaded file.

Value

convertFromBIOM returns an object of class TreeSummarizedExperiment

importBIOM returns an object of class TreeSummarizedExperiment

See Also

importQIIME2 importMothur

importMetaPhlAn convertFromPhyloseq convertFromBIOM convertFromDADA2 importQIIME2
importMothur importHUMAnN

Examples

Convert BIOM results to a TreeSE
Load biom file
library(biomformat)
biom_file <- system.file("extdata", "rich_dense_otu_table.biom",

package = "biomformat")

Make TreeSE from BIOM object
biom_object <- biomformat::read_biom(biom_file)
tse <- convertFromBIOM(biom_object)

Convert TreeSE object to BIOM
biom <- convertToBIOM(tse)

Load biom file
library(biomformat)
biom_file <- system.file(

"extdata", "rich_dense_otu_table.biom", package = "biomformat")

Make TreeSE from biom file
tse <- importBIOM(biom_file)

Get taxonomyRanks from prefixes and remove prefixes
tse <- importBIOM(

biom_file, rank.from.prefix = TRUE, prefix.rm = TRUE)

convertToPhyloseq 41

Load another biom file
biom_file <- system.file(

"extdata", "Aggregated_humanization2.biom", package = "mia")

Clean artifacts from taxonomic data
tse <- importBIOM(biom_file, artifact.rm = TRUE)

convertToPhyloseq Create a TreeSummarizedExperiment object from a phyloseq object

Description

Create a TreeSummarizedExperiment object from a phyloseq object

Create a phyloseq object from a TreeSummarizedExperiment object

Usage

convertToPhyloseq(x, ...)

convertFromPhyloseq(x)

S4 method for signature 'SummarizedExperiment'
convertToPhyloseq(x, assay.type = "counts", assay_name = NULL, ...)

S4 method for signature 'TreeSummarizedExperiment'
convertToPhyloseq(x, tree.name = tree_name, tree_name = "phylo", ...)

Arguments

x a TreeSummarizedExperiment object

... Additional arguments. Not used currently.

assay.type Character scalar. Specifies the name of assay used. (Default: "counts")

assay_name Deprecated. Use assay.type instead.

tree.name Character scalar. Specifies the name of the tree to be included in the phyloseq
object that is created, (Default: "phylo")

tree_name Deprecated. Use tree.name instead.

Details

convertFromPhyloseq converts phyloseq objects into TreeSummarizedExperiment objects. All
data stored in a phyloseq object is transferred.

convertToPhyloseq creates a phyloseq object from a TreeSummarizedExperiment object. By
using assay.type, it is possible to specify which table from assay is added to the phyloseq object.

42 deprecate

Value

convertFromPhyloseq returns an object of class TreeSummarizedExperiment

convertToPhyloseq returns an object of class phyloseq

Examples

Coerce a phyloseq object to a TreeSE object
if (requireNamespace("phyloseq")) {

data(GlobalPatterns, package="phyloseq")
convertFromPhyloseq(GlobalPatterns)
data(enterotype, package="phyloseq")
convertFromPhyloseq(enterotype)
data(esophagus, package="phyloseq")
convertFromPhyloseq(esophagus)

}

Coerce a TreeSE object to a phyloseq object
Get tse object
data(GlobalPatterns)
tse <- GlobalPatterns

Create a phyloseq object from it
phy <- convertToPhyloseq(tse)
phy

By default the chosen table is counts, but if there are other tables,
they can be chosen with assay.type.

Counts relative abundances table
tse <- transformAssay(tse, method = "relabundance")
phy2 <- convertToPhyloseq(tse, assay.type = "relabundance")
phy2

deprecate These functions will be deprecated. Please use other functions instead.

Description

These functions will be deprecated. Please use other functions instead.

Usage

cluster(x, ...)

S4 method for signature 'SummarizedExperiment'
cluster(x, ...)

deprecate 43

addTaxonomyTree(x, ...)

S4 method for signature 'SummarizedExperiment'
addTaxonomyTree(x, ...)

taxonomyTree(x, ...)

S4 method for signature 'SummarizedExperiment'
taxonomyTree(x, ...)

mergeRows(x, ...)

S4 method for signature 'SummarizedExperiment'
mergeRows(x, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeRows(x, ...)

mergeCols(x, ...)

S4 method for signature 'SummarizedExperiment'
mergeCols(x, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeCols(x, ...)

mergeFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
mergeFeatures(x, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeFeatures(x, ...)

mergeSamples(x, ...)

S4 method for signature 'SummarizedExperiment'
mergeSamples(x, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeSamples(x, ...)

mergeFeaturesByRank(x, ...)

S4 method for signature 'SummarizedExperiment'
mergeFeaturesByRank(x, ...)

S4 method for signature 'SingleCellExperiment'

44 deprecate

mergeFeaturesByRank(x, ...)

mergeFeaturesByPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment'
mergeFeaturesByPrevalence(x, ...)

getExperimentCrossAssociation(x, ...)

S4 method for signature 'MultiAssayExperiment'
getExperimentCrossAssociation(x, ...)

S4 method for signature 'SummarizedExperiment'
getExperimentCrossAssociation(x, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeFeaturesByRank(x, ...)

testExperimentCrossAssociation(x, ...)

S4 method for signature 'ANY'
testExperimentCrossAssociation(x, ...)

testExperimentCrossCorrelation(x, ...)

S4 method for signature 'ANY'
testExperimentCrossCorrelation(x, ...)

getExperimentCrossCorrelation(x, ...)

S4 method for signature 'ANY'
getExperimentCrossCorrelation(x, ...)

loadFromBiom(...)

loadFromQIIME2(...)

readQZA(...)

loadFromMothur(...)

loadFromMetaphlan(...)

loadFromHumann(...)

countDominantFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'

deprecate 45

countDominantFeatures(x, ...)

subsetByRareTaxa(x, ...)

S4 method for signature 'ANY'
subsetByRareTaxa(x, ...)

subsetByRareFeatures(x, ...)

S4 method for signature 'ANY'
subsetByRareFeatures(x, ...)

subsetByPrevalentTaxa(x, ...)

S4 method for signature 'ANY'
subsetByPrevalentTaxa(x, ...)

subsetByPrevalentFeatures(x, ...)

S4 method for signature 'ANY'
subsetByPrevalentFeatures(x, ...)

countDominantTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
countDominantTaxa(x, ...)

full_join(x, ...)

S4 method for signature 'ANY'
full_join(x, ...)

inner_join(x, ...)

S4 method for signature 'ANY'
inner_join(x, ...)

left_join(x, ...)

S4 method for signature 'ANY'
left_join(x, ...)

right_join(x, ...)

S4 method for signature 'ANY'
right_join(x, ...)

plotNMDS(x, ...)

46 deprecate

estimateDivergence(x, ...)

S4 method for signature 'SummarizedExperiment'
estimateDivergence(x, ...)

meltAssay(x, ...)

S4 method for signature 'SummarizedExperiment'
meltAssay(x, ...)

transformSamples(x, ...)

S4 method for signature 'SummarizedExperiment'
transformSamples(x, ...)

ZTransform(x, ...)

S4 method for signature 'SummarizedExperiment'
ZTransform(x, ...)

relAbundanceCounts(x, ...)

S4 method for signature 'SummarizedExperiment'
relAbundanceCounts(x, ...)

transformCounts(x, ...)

transformFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
transformFeatures(x, ...)

getUniqueFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
getUniqueFeatures(x, ...)

getUniqueTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
getUniqueTaxa(x, ...)

getTopFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
getTopFeatures(x, ...)

deprecate 47

getTopTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
getTopTaxa(x, ...)

getRareFeatures(x, ...)

S4 method for signature 'ANY'
getRareFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
getRareFeatures(x, ...)

getRareTaxa(x, ...)

S4 method for signature 'ANY'
getRareTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
getRareTaxa(x, ...)

getPrevalentFeatures(x, ...)

S4 method for signature 'ANY'
getPrevalentFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
getPrevalentFeatures(x, ...)

getPrevalentTaxa(x, ...)

S4 method for signature 'ANY'
getPrevalentTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
getPrevalentTaxa(x, ...)

subsampleCounts(x, ...)

S4 method for signature 'SummarizedExperiment'
subsampleCounts(x, ...)

addPerSampleDominantFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
addPerSampleDominantFeatures(x, ...)

addPerSampleDominantTaxa(x, ...)

48 deprecate

S4 method for signature 'SummarizedExperiment'
addPerSampleDominantTaxa(x, ...)

perSampleDominantFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
perSampleDominantFeatures(x, ...)

perSampleDominantTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
perSampleDominantTaxa(x, ...)

makePhyloseqFromTreeSE(x, ...)

S4 method for signature 'SummarizedExperiment'
makePhyloseqFromTreeSE(x)

S4 method for signature 'TreeSummarizedExperiment'
makePhyloseqFromTreeSE(x)

makePhyloseqFromTreeSummarizedExperiment(x)

S4 method for signature 'ANY'
makePhyloseqFromTreeSummarizedExperiment(x)

makeTreeSummarizedExperimentFromPhyloseq(x)

S4 method for signature 'ANY'
makeTreeSummarizedExperimentFromPhyloseq(x)

makeTreeSEFromBiom(...)

makeTreeSummarizedExperimentFromBiom(...)

makeTreeSEFromDADA2(...)

makeTreeSummarizedExperimentFromDADA2(...)

makeTreeSEFromPhyloseq(x)

estimateEvenness(x, ...)

S4 method for signature 'ANY'
estimateEvenness(x, ...)

estimateRichness(x, ...)

deprecate 49

S4 method for signature 'ANY'
estimateRichness(x, ...)

estimateDiversity(x, ...)

S4 method for signature 'ANY'
estimateDiversity(x, ...)

estimateFaith(x, ...)

S4 method for signature 'ANY'
estimateFaith(x, ...)

estimateDominance(x, ...)

S4 method for signature 'ANY'
estimateDominance(x, ...)

subsetSamples(x, ...)

subsetFeatures(x, ...)

subsetTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetSamples(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetTaxa(x, ...)

relabundance(x, ...)

relabundance(x) <- value

S4 method for signature 'SummarizedExperiment'
relabundance(x)

S4 replacement method for signature 'SummarizedExperiment'
relabundance(x) <- value

runOverlap(x, ...)

S4 method for signature 'SummarizedExperiment'
runOverlap(x, ...)

50 dmn_se

calculateOverlap(x, ...)

S4 method for signature 'ANY'
calculateOverlap(x, ...)

calculateJSD(x, ...)

S4 method for signature 'ANY'
calculateJSD(x, ...)

runJSD(x, ...)

S4 method for signature 'SummarizedExperiment'
runJSD(x, ...)

calculateUnifrac(x, ...)

S4 method for signature 'ANY'
calculateUnifrac(x, ...)

runUnifrac(mat, tree, ...)

Arguments

x A SummarizedExperiment object.

... Additional parameters. See dedicated function.

value a matrix to store as the ‘relabundance’ assay

mat An abundance matrix

tree A phylogenetic tree

dmn_se Twins’ microbiome data from 278 individuals

Description

dmn_se is a dataset on twins’ microbiome where samples are stratified by their community compo-
sition through Dirichlet Multinomial Mixtures (DMM). It was derived from the DirichletMultino-
mial package.

Usage

data(dmn_se)

enterotype 51

Format

A SummarizedExperiment with 130 features and 278 samples. The rowData contains no taxonomic
information. The colData includes:

pheno participant’s weight condition (Lean, Overwt and Obese)

Author(s)

Turnbaugh, PJ et al.

References

Holmes I, Harris K, Quince C (2012). Dirichlet Multinomial Mixtures: Generative Models for
Microbial Metagenomics. PLoS ONE 7(2): e30126. https://doi.org/10.1371/journal.pone.
0030126

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009). A core gut micro-
biome in obese and lean twins. Nature 457: 480–484. https://doi.org/10.1038/nature07540

See Also

mia-datasets calculateDMN

enterotype Human gut microbiome dataset from 22 subjects based on shotgun
DNA sequencing

Description

The enterotype data of the human gut microbiome includes taxonomic profiling for 280 fecal sam-
ples from 22 subjects based on shotgun DNA sequencing. The authors claimed that the data nat-
urally clumps into three community-level clusters, or "enterotypes", that are not immediately ex-
plained by sequencing technology or demographic features of the subjects. In a later addendum
from 2014 the authors stated that enterotypes should not be seen as discrete clusters, but as a way
of stratifying samples to reduce complexity. It was converted into a TreeSummarizedExperiment
from the phyloseq package.

Usage

data(enterotype)

Format

A TreeSummarizedExperiment with 553 features and 280 samples. The rowData contains taxo-
nomic information at Genus level. The colData includes:

Enterotype enterotype the sample belongs to (1, 2 and 3)

Sample_ID sample ID of samples from all studies

https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1038/nature07540

52 esophagus

SeqTech sequencing technology

SampleID sample ID of complete samples

Project original project from which sample was obtained (gill06, turnbaugh09, MetaHIT, Mi-
croObes, MicroAge and kurokawa07)

Nationality participant’s nationality (american, danish, spanish, french, italian and japanese)

Gender participant’s gender (F or M)

Age participant’s age (0.25 – 87)

ClinicalStatus participant’s clinical status (healthy, obese, CD, UC and elderly)

Author(s)

Arumugam, M., Raes, J., et al.

Source

http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html

References

Arumugam, M., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346),
174-180. https://doi.org/10.1038/nature09944

Arumugam, M., et al. (2014). Addendum: Enterotypes of the human gut microbiome. Nature 506,
516 (2014). https://doi.org/10.1038/nature13075

See Also

mia-datasets

esophagus Human esophageal community from 3 individuals

Description

This small dataset from a human esophageal community includes 3 samples from 3 human adults
based on biopsies analysed with 16S rDNA PCR. The 16S rRNA sequence processing is provided
in the mothur wiki from the link below. It was converted into a TreeSummarizedExperiment from
the phyloseq package.

Usage

data(esophagus)

Format

A TreeSummarizedExperiment with 58 features and 3 samples. The rowData contains no taxonomic
information. The colData is empty.

http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html
https://doi.org/10.1038/nature09944
https://doi.org/10.1038/nature13075

getAbundant 53

Author(s)

Pei et al. <zhiheng.pei@med.nyu.edu>.

Source

http://www.mothur.org/wiki/Esophageal_community_analysis

References

Pei, Z., Bini, E. J., Yang, L., Zhou, M., Francois, F., & Blaser, M. J. (2004). Bacterial biota in the
human distal esophagus. Proceedings of the National Academy of Sciences of the United States of
America, 101(12), 4250-4255. https://doi.org/10.1073/pnas.0306398101

McMurdie, J. & Holmes, S. (2013) phyloseq: An R Package for reproducible interactive analysis
and graphics of microbiome census data. PLoS ONE. 8(4):e61217. https://doi.org/10.1371/
journal.pone.0061217

See Also

mia-datasets

getAbundant Determine abundant and rare taxa. Rare taxa can be further classified
to conditionally rare and permanently rare.

Description

These functions determine abundant and rare taxa based on the abundances of taxa. Compared to
getPrevalent and getRare, these functions determine abundant and rare taxa based on abundance
while the first mentioned are based on prevalence.

Usage

getAbundant(x, ...)

getLowAbundant(x, ...)

getConditionallyLowAbundant(x, ...)

getPermanentlyLowAbundant(x, ...)

getAbundanceClass(x, ...)

addAbundanceClass(x, ...)

S4 method for signature 'SingleCellExperiment'
getAbundant(x, ...)

http://www.mothur.org/wiki/Esophageal_community_analysis
https://doi.org/10.1073/pnas.0306398101
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217

54 getAbundant

S4 method for signature 'SummarizedExperiment'
getAbundant(x, assay.type = "relabundance", ...)

S4 method for signature 'ANY'
getAbundant(x, abundant.th = 1/100, ...)

S4 method for signature 'SingleCellExperiment'
getLowAbundant(x, ...)

S4 method for signature 'SummarizedExperiment'
getLowAbundant(x, assay.type = "relabundance", abundant.th = 1/100, ...)

S4 method for signature 'ANY'
getLowAbundant(x, abundant.th = 1/100, ...)

S4 method for signature 'SingleCellExperiment'
getConditionallyLowAbundant(x, ...)

S4 method for signature 'SummarizedExperiment'
getConditionallyLowAbundant(x, assay.type = "relabundance", ...)

S4 method for signature 'ANY'
getConditionallyLowAbundant(x, abundant.th = 1/100, crt.th = 100, ...)

S4 method for signature 'SingleCellExperiment'
getPermanentlyLowAbundant(x, ...)

S4 method for signature 'SummarizedExperiment'
getPermanentlyLowAbundant(x, assay.type = "relabundance", ...)

S4 method for signature 'ANY'
getPermanentlyLowAbundant(x, abundant.th = 1/100, prt.th = 5, ...)

S4 method for signature 'SingleCellExperiment'
getAbundanceClass(x, ...)

S4 method for signature 'SummarizedExperiment'
getAbundanceClass(x, assay.type = "relabundance", ...)

S4 method for signature 'ANY'
getAbundanceClass(x, abundant.th = 1/100, crt.th = 100, prt.th = 5, ...)

S4 method for signature 'SingleCellExperiment'
addAbundanceClass(x, ...)

S4 method for signature 'SummarizedExperiment'
addAbundanceClass(x, name = "abundance_class", ...)

getAbundant 55

Arguments

x a SummarizedExperiment object.

... additional arguments.

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"relabundance")

abundant.th Numeric scalar. Specifies threshold that is used to separate abundant features
from rare. (Default: 1/100)

crt.th Numeric scalar. Specifies threshold that is used to separate conditionally rare
features from other rare features. (Default: 100)

prt.th Numeric scalar. Specifies threshold that is used to separate permanently rare
features from other rare features. (Default: 5)

name Character scalar. Specifies name of column in rowData where the results
will be stored. (Default: "abundance_class")

Details

These functions identify abundant and rare taxa in a dataset. Abundant taxa are characterized by
high average abundance across the dataset, while rare taxa are characterized by consistently low
abundance.

Conditionally rare taxa exhibit variable abundance, being abundant in some samples and rare in
others. In contrast, permanently rare taxa consistently maintain low abundance across all samples.

• Abundant taxa: Taxa with an average abundance exceeding abundant.th.

• Low abundant / rare taxa: Taxa with an average abundance not exceeding abundant.th. Op-
tionally, if specified, they must also satisfy the condition crt.th >= abundancemax

abundancemin
> prt.th.

• Conditionally rare or low abundant taxa (CRT): Taxa with an average abundance not exceeding
abundant.th and with a maximum-to-minimum abundance ratio (abundancemax

abundancemin
) greater than

crt.th.

• Permanently rare or low abundant taxa (PRT): Taxa with an average abundance not exceeding
abundant.th and with a maximum-to-minimum abundance ratio (abundancemax

abundancemin
) less than or

equal to prt.th.

Value

For getAbundant, getLowAbundant, getConditionallyLowAbundant, and getPermanentlyLowAbundant
a vector of taxa. For getAbudanceClass a vector of abundance classes for each feature. For
addAbudanceClass, a SummarizedExperiment object.

References

Sizhong Y. et al. (2017) Community structure of rare methanogenic archaea: insight from a single
functional group- FEMS Microbiol. Ecol. 93(11). https://doi.org/10.1093/femsec/fix126

See Also

getPrevalent and getRare

https://doi.org/10.1093/femsec/fix126

56 getCCA

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

Agglomerate to family level
tse <- agglomerateByRank(tse, rank = "Family")
Transform to relative abundances. Note that we add pseudocount. This is
because otherwise we cannot calculate CRT and PRT due to zeroes and
zero division in calculating abundance ratio.
tse <- transformAssay(tse, method = "relabundance", pseudocount = TRUE)

Get abundant taxa
abundant <- getAbundant(tse, assay.type = "relabundance")
abundant |> head()

Get all rare taxa that have average relative abundance below 10%
rare <- getLowAbundant(

tse, assay.type = "relabundance", abundant.th = 10/100)
rare |> head()

Get rare taxa that are not permanently or conditionally rare
rare <- getLowAbundant(

tse, assay.type = "relabundance", prt.th = 5, crt.th = 100)
rare |> head()

Get permanently rare taxa
prt <- getPermanentlyLowAbundant(

tse, assay.type = "relabundance", prt.th = 5)
prt |> head()

Get conditionally rare taxa
prt <- getConditionallyLowAbundant(

tse, assay.type = "relabundance", crt.th = 100)
prt |> head()

To classify all features, one can use *AbundantClass function
tse <- addAbundanceClass(tse)
When one uses add* function, the results are stored to rowData
rowData(tse)

getCCA Canonical Correspondence Analysis and Redundancy Analysis

Description

These functions perform Canonical Correspondence Analysis on data stored in a SummarizedExperiment.

getCCA 57

Usage

getCCA(x, ...)

addCCA(x, ...)

getRDA(x, ...)

addRDA(x, ...)

calculateCCA(x, ...)

runCCA(x, ...)

S4 method for signature 'ANY'
getCCA(x, formula, data, ...)

S4 method for signature 'SummarizedExperiment'
getCCA(
x,
formula = NULL,
col.var = variables,
variables = NULL,
test.signif = TRUE,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
...

)

S4 method for signature 'SingleCellExperiment'
addCCA(x, altexp = NULL, name = "CCA", ...)

calculateRDA(x, ...)

runRDA(x, ...)

S4 method for signature 'ANY'
getRDA(x, formula, data, ...)

S4 method for signature 'SummarizedExperiment'
getRDA(
x,
formula = NULL,
col.var = variables,
variables = NULL,
test.signif = TRUE,
assay.type = assay_name,
assay_name = exprs_values,

58 getCCA

exprs_values = NULL,
dis.name = NULL,
...

)

S4 method for signature 'SingleCellExperiment'
addRDA(x, altexp = NULL, name = "RDA", ...)

Arguments

x TreeSummarizedExperiment.

... additional arguments passed to vegan::cca or vegan::dbrda and other internal
functions.

• method a dissimilarity measure to be applied in dbRDA and possible fol-
lowing homogeneity test. (Default: "euclidean")

• scale: Logical scalar. Should the expression values be standardized?
scale is disabled when using *RDA functions. Please scale before perform-
ing RDA. (Default: TRUE)

• na.action: function. Action to take when missing values for any of the
variables in formula are encountered. (Default: na.fail)

• full Logical scalar. Should all the results from the significance calcu-
lations be returned. When FALSE, only summary tables are returned. (De-
fault: FALSE)

• homogeneity.test: Character scalar. Specifies the significance test
used to analyse vegan::betadisper results. Options include ’permanova’
(vegan::permutest), ’anova’ (stats::anova) and ’tukeyhsd’ (stats::TukeyHSD).
(Default: "permanova")

• permutations: Integer scalar. Specifies the number of permutations
for significance testing in vegan::anova.cca. (Default: 999)

• subset.result: Logical result. Specifies whether to subset x to match
the result if some samples were removed during calculation. (Default:
TRUE)

• binary: Logical scalar. Whether to perform presence/absence transfor-
mation before dissimilarity calculation. For Jaccard index the default is
TRUE. For other dissimilarity metrics, please see vegdist.

formula formula. If x is a SummarizedExperiment a formula can be supplied. Based
on the right-hand side of the given formula colData is subset to col.var.
col.var and formula can be missing, which turns the CCA analysis into a CA
analysis and dbRDA into PCoA/MDS.

data data.frame or coarcible to one. The covariance table including covariates de-
fined by formula.

col.var Character scalar. When x is a SummarizedExperiment,col.var can be used
to specify variables from colData.

variables Deprecated. Use col.var instead.

test.signif Logical scalar. Should the PERMANOVA and analysis of multivariate ho-
mogeneity of group dispersions be performed. (Default: TRUE)

getCCA 59

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
NULL)

assay_name Deprecated. Use assay.type instead.

exprs_values Deprecated. Use assay.type instead.

altexp Character scalar or integer scalar. Specifies an alternative experiment
containing the input data.

name Character scalar. A name for the reducedDim() where results will be stored.
(Default: "CCA")

dis.name Character scalar. Specifies the name of dissimilarity matrix from metadata
slot used in calculation. (Default: NULL)

Details

*CCA functions utilize vegan:cca and *RDA functions vegan:dbRDA. By default, dbRDA is done
with euclidean distances, which is equivalent to RDA. col.var and formula can be missing, which
turns the CCA analysis into a CA analysis and dbRDA into PCoA/MDS.

Significance tests are done with vegan:anova.cca (PERMANOVA). Group dispersion, i.e., homo-
geneity within groups is analyzed with vegan::betadisper (multivariate homogeneity of groups
dispersions (variances)) and statistical significance of homogeneity is tested with a test specified by
homogeneity.test parameter.

Value

For getCCA a matrix with samples as rows and CCA dimensions as columns. Attributes include
output from scores, eigenvalues, the cca/rda object and significance analysis results.

For addCCA a modified x with the results stored in reducedDim as the given name.

See Also

For more details on the actual implementation see cca and dbrda

Examples

library(miaViz)
data("enterotype", package = "mia")
tse <- enterotype

Perform CCA and exclude any sample with missing ClinicalStatus
tse <- addCCA(

tse,
assay.type = "counts",
formula = data ~ ClinicalStatus,
na.action = na.exclude
)

Plot CCA
plotCCA(tse, "CCA", colour_by = "ClinicalStatus")

Fetch significance results

60 getCCA

getReducedDimAttribute(tse, dimred = "CCA", name = "significance")

tse <- transformAssay(tse, method = "relabundance")

Specify dissimilarity measure
tse <- addRDA(

tse,
formula = data ~ ClinicalStatus,
assay.type = "relabundance",
method = "bray",
name = "RDA_bray",
na.action = na.exclude
)

To scale values when using *RDA functions, use
transformAssay(MARGIN = "features", ...)
tse <- transformAssay(tse, method = "standardize", MARGIN = "features")

Data might include taxa that do not vary. Remove those because after
z-transform their value is NA
tse <- tse[rowSums(is.na(assay(tse, "standardize"))) == 0,]

Calculate RDA
tse <- addRDA(

tse,
formula = data ~ ClinicalStatus,
assay.type = "standardize",
name = "rda_scaled",
na.action = na.omit
)

Plot RDA
plotRDA(tse, "rda_scaled", colour_by = "ClinicalStatus")

A common choice along with PERMANOVA is ANOVA when statistical significance
of homogeneity of groups is analysed. Moreover, full significance test
results can be returned.
tse <- transformAssay(tse, method = "clr", pseudocount = 1)
tse <- addRDA(

tse,
assay.type = "clr",
formula = data ~ ClinicalStatus,
homogeneity.test = "anova",
full = TRUE
)

Example showing how to pass extra parameters, such as 'permutations',
to anova.cca
tse <- addRDA(

tse,
assay.type = "clr",
formula = data ~ ClinicalStatus,
permutations = 500

getCrossAssociation 61

)

In dbRDA, dissimilarity matrix is calculated internally which is
computationally heavy operation. If you have large number of samples, and
you want to fit multiple dbRDA models, you might want to consider
pre-calculation of dissimilarity matrix as the same matrix will be used for
all models. You can then run dbRDA with the pre-calculated dissimilarity
avoiding redundant dissimilarity calculations.
tse <- addDissimilarity(tse, assay.type = "relabundance", method = "bray")
tse <- addRDA(

tse,
formula = data ~ ClinicalStatus,
dis.name = "bray",
name = "RDA_precalc_bray",
na.action = na.exclude
)

getCrossAssociation Calculate correlations between features of two experiments.

Description

Calculate correlations between features of two experiments.

Usage

getCrossAssociation(x, ...)

S4 method for signature 'MultiAssayExperiment'
getCrossAssociation(
x,
experiment1 = 1,
experiment2 = 2,
assay.type1 = assay_name1,
assay_name1 = NULL,
assay.type2 = assay_name2,
assay_name2 = NULL,
altexp1 = NULL,
altexp2 = NULL,
col.var1 = colData_variable1,
colData_variable1 = NULL,
col.var2 = colData_variable2,
colData_variable2 = NULL,
by = MARGIN,
MARGIN = 1,
method = "kendall",
mode = "table",

62 getCrossAssociation

p.adj.method = p_adj_method,
p_adj_method = c("fdr", "BH", "bonferroni", "BY", "hochberg", "holm", "hommel", "none"),
p.adj.threshold = p_adj_threshold,
p_adj_threshold = NULL,
cor.threshold = cor_threshold,
cor_threshold = NULL,
sort = FALSE,
filter.self.cor = filter_self_correlations,
filter_self_correlations = FALSE,
verbose = TRUE,
test.signif = test_significance,
test_significance = FALSE,
show.warnings = show_warnings,
show_warnings = TRUE,
paired = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
getCrossAssociation(x, experiment2 = x, ...)

Arguments

x A MultiAssayExperiment or SummarizedExperiment object.

... Additional arguments:

• symmetric: Logical scalar. Specifies if measure is symmetric or not.
When symmetric = TRUE, associations are calculated only for unique variable-
pairs, and they are assigned to corresponding variable-pair. This decreases
the number of calculations in 2-fold meaning faster execution. (By default:
FALSE)

• association.fun: A function that is used to calculate (dis-)similarity be-
tween features. Function must take matrix as an input and give numeric
values as an output. Adjust method and other parameters correspondingly.
Supported functions are, for example, stats::dist and vegan::vegdist.

• dimred1 Character scalar or numeric scalar. Specifies reduced di-
mensionality from the reducedDim of experiment
1. (Default: NULL)

• dimred2 Character scalar or numeric scalar. Specifies reduced di-
mensionality from the reducedDim of experiment 2. (Default: NULL)

experiment1 Character scalar or numeric scalar. Selects the experiment 1 from experiments(x)
of MultiassayExperiment object. (Default: 1)

experiment2 Character scalar or numeric scalar. Selects the experiment 2 fromexperiments(x)
of MultiAssayExperiment object or altExp(x) of TreeSummarizedExperiment
object. Alternatively, experiment2 can also be TreeSE object when x is TreeSE
object. (Default: 2 when x is MAE and x when x is TreeSE)

assay.type1 Character scalar. Specifies the name of the assay in experiment 1 to be trans-
formed. (Default: NULL)

getCrossAssociation 63

assay_name1 Deprecated. Use assay.type1 instead.

assay.type2 Character scalar. Specifies the name of the assay in experiment 2 to be trans-
formed. (Default: NULL)

assay_name2 Deprecated. Use assay.type2 instead.

altexp1 Character scalar or numeric scalar. Specifies alternative experiment from
the altExp of experiment 1. If NULL, then the experiment is itself and altExp
option is disabled. (Default: NULL)

altexp2 Character scalar or numeric scalar. Specifies alternative experiment from
the altExp of experiment 2. If NULL, then the experiment is itself and altExp
option is disabled. (Default: NULL)

col.var1 Character scalar. Specifies column(s) from colData of experiment 1. If
col.var1 is used, assay.type1 is disabled. (Default: NULL)

colData_variable1

Deprecated. Use col.var1 instead.

col.var2 Character scalar. Specifies column(s) from colData of experiment 2. If
col.var2 is used, assay.type2 is disabled. (Default: NULL)

colData_variable2

Deprecated. Use col.var2 instead.

by ACharacter scalar. Determines if association are calculated row-wise / for
features (’rows’) or column-wise / for samples (’cols’). Must be 'rows' or
'cols'.

MARGIN Deprecated. Use by instead.

method Character scalar. Defines the association method (’kendall’, ’pearson’, or
’spearman’ for continuous/numeric; ’categorical’ for discrete) (Default: "kendall")

mode Character scalar. Specifies the output format Available formats are ’table’
and ’matrix’. (Default: "table")

p.adj.method Character scalar. Specifies adjustment method of p-values. Passed to p.adjust
function. (Default: "fdr")

p_adj_method Deprecated. Use p.adj.method instead.
p.adj.threshold

Numeric scalar. From 0 to 1, specifies adjusted p-value threshold for filtering.
(Default: NULL)

p_adj_threshold

Deprecated. Use p.dj.threshold instead.

cor.threshold Numeric scalar. From 0 to 1, specifies correlation threshold for filtering. (De-
fault: NULL)

cor_threshold Deprecated. Use cor.threshold instead.

sort Logical scalar. Specifies whether to sort features or not in result matrices.
Used method is hierarchical clustering. (Default: FALSE)

filter.self.cor

Logical scalar. Specifies whether to filter out correlations between identical
items. Applies only when correlation between experiment itself is tested, i.e.,
when assays are identical. (Default: FALSE)

64 getCrossAssociation

filter_self_correlations

Deprecated. Use filter.self.cor instead.

verbose Logical scalar. Specifies whether to get messages about progress of calcula-
tion. (Default: FALSE)

test.signif Logical scalar. Specifies whether to test statistical significance of associa-
tions. (Default: FALSE)

test_significance

Deprecated. Use test.signif instead.

show.warnings Logical scalar. specifies whether to show warnings that might occur when
correlations and p-values are calculated. (Default: FALSE)

show_warnings Deprecated. use show.warnings instead.

paired Logical scalar. Specifies if samples are paired or not. colnames must match
between twp experiments. paired is disabled when by = 1. (Default: FALSE)

Details

The function getCrossAssociation calculates associations between features of two experiments.
By default, it not only computes associations but also tests their significance. If desired, setting
test.signif to FALSE disables significance calculation.

We recommend the non-parametric Kendall’s tau as the default method for association analysis.
Kendall’s tau has desirable statistical properties and robustness at lower sample sizes. Spearman
rank correlation can provide faster solutions when running times are critical.

Value

This function returns associations in table or matrix format. In table format, returned value is a data
frame that includes features and associations (and p-values) in columns. In matrix format, returned
value is a one matrix when only associations are calculated. If also significances are tested, then
returned value is a list of matrices.

Examples

data(HintikkaXOData)
mae <- HintikkaXOData

Subset so that less observations / quicker to run, just for example
mae[[1]] <- mae[[1]][1:20, 1:10]
mae[[2]] <- mae[[2]][1:20, 1:10]
Several rows in the counts assay have a standard deviation of zero
Remove them, since they do not add useful information about
cross-association
mae[[1]] <- mae[[1]][rowSds(assay(mae[[1]])) > 0,]
Transform data
mae[[1]] <- transformAssay(mae[[1]], method = "rclr")

Calculate cross-correlations
result <- getCrossAssociation(

mae, method = "pearson", assay.type1 = "counts", assay.type2 = "nmr",
show.warnings = FALSE, verbose = FALSE)

getCrossAssociation 65

Show first 5 entries
head(result, 5)

Use altExp option to specify alternative experiment from the experiment
altExp(mae[[1]], "Phylum") <- agglomerateByRank(mae[[1]], rank = "Phylum")
Transform data
altExp(mae[[1]], "Phylum") <- transformAssay(

altExp(mae[[1]], "Phylum"), method = "relabundance")
When mode = "matrix", the return value is a matrix
result <- getCrossAssociation(

mae, experiment2 = 2, assay.type1 = "relabundance", assay.type2 = "nmr",
altexp1 = "Phylum", method = "pearson", mode = "matrix",
show.warnings = FALSE, verbose = FALSE)

Show first 5 entries
head(result, 5)

If test.signif = TRUE, then getCrossAssociation additionally returns
significances
filter.self.cor = TRUE filters self correlations
p.adj.threshold can be used to filter those features that do not
have any correlations whose p-value is lower than the threshold
result <- getCrossAssociation(

mae[[1]], experiment2 = mae[[1]], method = "pearson",
assay.type1 = "counts", assay.type2 = "counts",
filter.self.cor = TRUE, p.adj.threshold = 0.05, test.signif = TRUE,
show.warnings = FALSE, verbose = FALSE)

Show first 5 entries
head(result, 5)

Returned value is a list of matrices
names(result)

Calculate Bray-Curtis dissimilarity between samples. If dataset includes
paired samples, you can use paired = TRUE.
result <- getCrossAssociation(

mae[[1]], mae[[1]], by = 2, paired = FALSE,
assay.type1 = "counts", assay.type2 = "counts",
association.fun = getDissimilarity, method = "bray",
show.warnings = FALSE, verbose = FALSE)

If experiments are equal and measure is symmetric
(e.g., taxa1 vs taxa2 == taxa2 vs taxa1),
it is possible to speed-up calculations by calculating association only
for unique variable-pairs. Use "symmetric" to choose whether to measure
association for only other half of of variable-pairs.
result <- getCrossAssociation(

mae, experiment1 = "microbiota", experiment2 = "microbiota",
assay.type1 = "counts", assay.type2 = "counts", symmetric = TRUE,
show.warnings = FALSE, verbose = FALSE)

For big data sets, the calculations might take a long time.
To speed them up, you can take a random sample from the data.
When dealing with complex biological problems, random samples can be

66 getCrossAssociation

enough to describe the data. Here, our random sample is 30 % of whole data.
sample_size <- 0.3
tse <- mae[[1]]
tse_sub <- tse[sample(seq_len(nrow(tse)), sample_size * nrow(tse)),]
result <- getCrossAssociation(

tse_sub, assay.type1 = "counts", assay.type2 = "counts",
show.warnings = FALSE, verbose = FALSE)

It is also possible to choose variables from colData and calculate
association between assay and sample metadata or between variables of
sample metadata
mae[[1]] <- addAlpha(mae[[1]])
col.var works similarly to assay.type. Instead of fetching
an assay named assay.type from assay slot, it fetches a column named
col.var from colData.
result <- getCrossAssociation(

mae[[1]], assay.type1 = "counts",
col.var2 = c("shannon_diversity", "dbp_dominance"),
test.signif = TRUE, show.warnings = FALSE, verbose = FALSE)

If your data contains TreeSE with alternative experiment in altExp,
correlations can be calculated as follows.

Create TreeSE with altExp
tse <- mae[[1]]
altExp(tse, "metabolites") <- mae[[2]]
Calculate
res <- getCrossAssociation(

tse,
altexp2 = "metabolites",
assay.type1 = "rclr",
assay.type2 = "nmr",
show.warnings = FALSE, verbose = FALSE

)

To calculate correlation of features to principal coordinates, you have to
first calculate PCoA...
library(scater)
tse <- addMDS(tse, assay.type = "rclr", method = "euclidean")
...then calculate the correlation.
res <- getCrossAssociation(tse, assay.type1 = "rclr", dimred2 = "MDS",

show.warnings = FALSE, verbose = FALSE)
head(res)

In ecological studies the association analyses are sometimes carried out
only for those samples that have observations. You can ignore zeroes by
replacing them with NA.
mat <- assay(tse, "counts")
mat[mat == 0] <- NA
assay(tse, "non_zero", withDimnames = FALSE) <- mat
res2 <- getCrossAssociation(

tse, tse,
assay.type1 = "non_zero", assay.type2 = "non_zero"

getDominant 67

)

getDominant Get dominant taxa

Description

These functions return information about the most dominant taxa in a SummarizedExperiment
object.

Usage

getDominant(
x,
assay.type = assay_name,
assay_name = "counts",
group = rank,
rank = NULL,
other.name = "Other",
n = NULL,
complete = TRUE,
...

)

addDominant(x, name = "dominant_taxa", other.name = "Other", n = NULL, ...)

S4 method for signature 'SummarizedExperiment'
getDominant(
x,
assay.type = assay_name,
assay_name = "counts",
group = rank,
rank = NULL,
other.name = "Other",
n = NULL,
complete = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
addDominant(
x,
name = "dominant_taxa",
other.name = "Other",
n = NULL,
complete = FALSE,

68 getDominant

...
)

Arguments

x TreeSummarizedExperiment.

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

group Character scalar. Defines a group. Must be one of the columns from rowData(x).
(Default: NULL)

rank Deprecated. Use group instead.

other.name Character scalar. A name for features that are not included in n the most
frequent dominant features in the data. (Default: "Other")

n Numeric scalar. The number of features that are the most frequent dominant
features. Default is NULL, which defaults that each sample is assigned a domi-
nant taxon. (Default: NULL)

complete Logical scalar. A value to manage multiple dominant taxa for a sample. De-
fault for getDominant is TRUE to include all equally dominant taxa for each
sample. complete = FALSE samples one taxa for the samples that have multi-
ple. Default for addDominant is FALSE to add a column with only one dominant
taxon assigned for each sample into colData. complete = TRUE adds a list that
includes all dominant taxa for each sample into colData.

... Additional arguments passed on to agglomerateByRank() when rank is speci-
fied.

name Character scalar. A name for the column of the colData where results will
be stored. (Default: "dominant_taxa")

Details

addDominant extracts the most abundant taxa in a SummarizedExperiment object, and stores the
information in the colData. It is a wrapper for getDominant.

With group parameter, it is possible to agglomerate rows based on groups. If the value is one of the
columns in taxonomyRanks(), agglomerateByRank() is applied. Otherwise, agglomerateByVariable()
is utilized. E.g. if ’Genus’ rank is used, all abundances of same Genus are added together, and ag-
glomerated features are returned. See corresponding functions for additional arguments to deal with
missing values or special characters.

Value

getDominant returns a named character vector x while addDominant returns SummarizedExperiment
with additional column in colData named *name*.

getDPCoA 69

Examples

data(GlobalPatterns)
x <- GlobalPatterns

Finds the dominant taxa.
sim.dom <- getDominant(x, group = "Genus")

Add information to colData
x <- addDominant(x, group = "Genus", name ="dominant_genera")
colData(x)

getDPCoA Calculation of Double Principal Correspondence analysis

Description

Double Principal Correspondence analysis is made available via the ade4 package in typical fash-
ion. Results are stored in the reducedDims and are available for all the expected functions.

Usage

getDPCoA(x, y, ...)

S4 method for signature 'ANY,ANY'
getDPCoA(
x,
y,
ncomponents = 2,
ntop = NULL,
subset.row = subset_row,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
...

)

S4 method for signature 'TreeSummarizedExperiment,missing'
getDPCoA(
x,
...,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
tree.name = tree_name,
tree_name = "phylo"

)

70 getDPCoA

calculateDPCoA(x, ...)

addDPCoA(x, ..., altexp = NULL, name = "DPCoA")

runDPCoA(x, ...)

Arguments

x TreeSummarizedExperiment.

y a dist or a symmetric matrix compatible with ade4:dpcoa

... Currently not used.

ncomponents Numeric scalar. Indicates the number of DPCoA dimensions to obtain. (De-
fault: 2)

ntop Numeric scalar. Specifies the number of features with the highest variances to
use for dimensionality reduction. Alternatively NULL, if all features should be
used. (Default: NULL)

subset.row Character Vector. Specifies the subset of features to use for dimensionality
reduction. This can be a character vector of row names, an integer vector of row
indices or a logical vector. (Default: NULL)

subset_row Deprecated. Use subset.row instead.

scale Logical scalar. Should the expression values be standardized? (Default:
FALSE)

transposed Logical scalar. Specifies if x is transposed with cells in rows. (Default:
FALSE)

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

exprs_values Deprecated. Use assay.type instead.

tree.name Character scalar. Specifies the name of the tree to be included in the phyloseq
object that is created, (Default: "phylo")

tree_name Deprecated. Use tree.name instead.

altexp Character scalar or integer scalar. Specifies an alternative experiment
containing the input data. (Default: NULL)

name Character scalar. A name for the column of the colData where results will
be stored. (Default: "DPCoA")

Details

For addDPCoA a TreeSummarizedExperiment containing the expression values as well as a rowTree
to calculate y using cophenetic.phylo.

In addition to the reduced dimension on the features, the reduced dimension for samples are returned
as well as sample_red attribute. eig, feature_weights and sample_weights are returned as
attributes as well.

getHierarchyTree 71

Value

For getDPCoA a matrix with samples as rows and CCA dimensions as columns

For addDPCoA a modified x with the results stored in reducedDim as the given name

See Also

plotReducedDim reducedDims

Examples

data(esophagus)
dpcoa <- getDPCoA(esophagus)
head(dpcoa)

esophagus <- addDPCoA(esophagus)
reducedDims(esophagus)

library(scater)
plotReducedDim(esophagus, "DPCoA")

getHierarchyTree Calculate hierarchy tree

Description

These functions generate a hierarchy tree using taxonomic information from a SummarizedExperiment
object and add this hierarchy tree into the rowTree.

Usage

getHierarchyTree(x, ...)

addHierarchyTree(x, ...)

S4 method for signature 'SummarizedExperiment'
getHierarchyTree(x, ...)

S4 method for signature 'SummarizedExperiment'
addHierarchyTree(x, ...)

Arguments

x TreeSummarizedExperiment.

... optional arguments not used currently.

72 getLDA

Details

addHierarchyTree calculates a hierarchy tree from the available taxonomic information and add it
to rowTree.

getHierarchyTree generates a hierarchy tree from the available taxonomic information. Internally
it uses toTree and resolveLoop to sanitize data if needed.

Please note that a hierarchy tree is not an actual phylogenetic tree. A phylogenetic tree represents
evolutionary relationships among features. On the other hand, a hierarchy tree organizes species
into a hierarchical structure based on their taxonomic ranks.

Value

• addHierarchyTree: a TreeSummarizedExperiment whose phylo tree represents the hierar-
chy among available taxonomy information.

• getHierarchyTree: a phylo tree representing the hierarchy among available taxonomy in-
formation.

Examples

Generate a tree based on taxonomic rank hierarchy (a hierarchy tree).
data(GlobalPatterns)
tse <- GlobalPatterns
getHierarchyTree(tse)

Add a hierarchy tree to a TreeSummarizedExperiment.
Please note that any tree already stored in rowTree() will be overwritten.
tse <- addHierarchyTree(tse)
tse

getLDA Latent Dirichlet Allocation

Description

These functions perform Latent Dirichlet Allocation on data stored in a TreeSummarizedExperiment
object.

Usage

getLDA(x, ...)

addLDA(x, ...)

S4 method for signature 'SummarizedExperiment'
getLDA(x, k = 2, assay.type = "counts", eval.metric = "perplexity", ...)

S4 method for signature 'SummarizedExperiment'
addLDA(x, k = 2, assay.type = "counts", name = "LDA", ...)

getLDA 73

Arguments

x a TreeSummarizedExperiment object.

... optional arguments passed to LDA

k Integer vector. A number of latent vectors/topics. (Default: 2)

assay.type Character scalar. Specifies which assay to use for LDA ordination. (Default:
"counts")

eval.metric Character scalar. Specifies evaluation metric that will be used to select the
model with the best fit. Must be either "perplexity" (topicmodels::perplexity)
or "coherence" (topicdoc::topic_coherence, the best model is selected based
on mean coherence). (Default: "perplexity")

name Character scalar. The name to be used to store the result in the reducedDims
of the output. (Default: "LDA")

Details

The functions getLDA and addLDA internally use LDA to compute the ordination matrix and feature
loadings.

Value

For getLDA, the ordination matrix with feature loadings matrix as attribute "loadings".

For addLDA, a TreeSummarizedExperiment object is returned containing the ordination matrix in
reducedDim(..., name) with feature loadings matrix as attribute "loadings".

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

Reduce the number of features
tse <- agglomerateByPrevalence(tse, rank="Phylum")

Run LDA and add the result to reducedDim(tse, "LDA")
tse <- addLDA(tse)

Extract feature loadings
loadings <- getReducedDimAttribute(tse, "LDA", "loadings")
head(loadings)

Estimate models with number of topics from 2 to 10
tse <- addLDA(tse, k = c(2, 3, 4, 5, 6, 7, 8, 9, 10), name = "LDA_10")
Get the evaluation metrics
tab <- getReducedDimAttribute(tse, "LDA_10","eval_metrics")
Plot
plot(tab[["k"]], tab[["perplexity"]], xlab = "k", ylab = "perplexity")

74 getMDS

getMDS Perform multi-dimensional scaling (MDS)

Description

Perform multi-dimensional scaling (MDS) also know as Principal Coordinate Analysis (PCoA).
These functions are wrappers for scater::calculateMDS.

Usage

getMDS(x, ...)

addMDS(x, ...)

S4 method for signature 'SingleCellExperiment'
addMDS(x, name = "MDS", ...)

S4 method for signature 'SingleCellExperiment'
getMDS(x, assay.type = "counts", ...)

S4 method for signature 'TreeSummarizedExperiment'
getMDS(x, assay.type = "counts", ...)

Arguments

x a SummarizedExperiment object.

... additional arguments.

• FUN: Function. A function that is applied to calculate dissimilarity. (De-
fault: getDissimilarity)

\item \code{subset.result}: \code{Logical result}. Specifies whether to
subset \code{x} to match the result if some samples were removed during
calculation. (Default: \code{TRUE})

name Character scalar. A name for the reducedDim() where results will be stored.
(Default: "MDS")

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

Details

These functions are wrappers for scater::calculateMDS and scater::runMDS. While getMDS
returns the results, addMDS adds them to reducedDim(x). The difference is that these functions
apply microbiome-specific options such as getDissimilarity function by default.

See scater::calculateMDS for details.

getNMDS 75

Value

getMDS returns a MDS results. addMDS returns a x with MDS results added to its reducedDim(x,
name).

See Also

scater::calculateMDS and getDissimilarity

Examples

library(mia)
library(scater)
library(patchwork)

data(GlobalPatterns)
tse <- GlobalPatterns

Calculate PCoA with Bray-Curtis dissimilarity
tse <- transformAssay(tse, method = "relabundance")
tse <- addMDS(tse, assay.type = "relabundance", method = "bray")

Calculate PCoA with Unifrac and rarefaction. (Note: increase iterations)
tse <- addMDS(tse, method = "unifrac", name = "unifrac")

Calculate PCoA with Unifrac and rarefaction. (Note: increase iterations)
tse <- addMDS(tse, method = "unifrac", name = "unifrac_rare", niter = 2L)

Visualize results
p1 <- plotReducedDim(tse, "unifrac", colour_by = "SampleType") +

labs(title = "Not rarefied")
p2 <- plotReducedDim(tse, "unifrac_rare", colour_by = "SampleType") +

labs(title = "Rarefied")
p1 + p2

getNMDS Perform non-metric MDS on sample-level data

Description

Perform non-metric multi-dimensional scaling (nMDS) on samples, based on the data in a SingleCellExperiment
object.

Usage

getNMDS(x, ...)

S4 method for signature 'ANY'
getNMDS(

76 getNMDS

x,
FUN = vegdist,
nmds.fun = nmdsFUN,
nmdsFUN = c("isoMDS", "monoMDS"),
ncomponents = 2,
ntop = 500,
subset.row = subset_row,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
keep.dist = keep_dist,
keep_dist = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
getNMDS(
x,
...,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
FUN = vegdist

)

S4 method for signature 'SingleCellExperiment'
getNMDS(
x,
...,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
dimred = NULL,
ndimred = n_dimred,
n_dimred = NULL,
FUN = vegdist

)

calculateNMDS(x, ...)

addNMDS(x, ..., altexp = NULL, name = "NMDS")

runNMDS(x, ...)

Arguments

x TreeSummarizedExperiment.

... additional arguments to pass to FUN and nmds.fun.

getNMDS 77

FUN Function or Character scalar. A value with a function name returning a dist
object

nmds.fun Character scalar. A value to choose the scaling implementation, either “isoMDS”
for MASS::isoMDS or “monoMDS” for vegan::monoMDS

nmdsFUN Deprecated. Use nmds.fun instead.
ncomponents Numeric scalar. Indicates the number of DPCoA dimensions to obtain. (De-

fault: 2)
ntop Numeric scalar. Specifies the number of features with the highest variances to

use for dimensionality reduction. Alternatively NULL, if all features should be
used. (Default: NULL)

subset.row Character Vector. Specifies the subset of features to use for dimensionality
reduction. This can be a character vector of row names, an integer vector of row
indices or a logical vector. (Default: NULL)

subset_row Deprecated. Use subset.row instead.
scale Logical scalar. Should the expression values be standardized? (Default:

FALSE)
transposed Logical scalar. Specifies if x is transposed with cells in rows. (Default:

FALSE)
keep.dist Logical scalar. Indicates whether the dist object calculated by FUN should

be stored as ‘dist’ attribute of the matrix returned/stored by getNMDS/ addNMDS.
(Default: FALSE)

keep_dist Deprecated. Use keep.dist instead.
assay.type Character scalar. Specifies the name of assay used in calculation. (Default:

"counts")
assay_name Deprecated. Use assay.type instead.
exprs_values Deprecated. Use assay.type instead.
dimred Character scalar or integer scalar. Specifies the existing dimensionality

reduction results to use.
ndimred integer vector. Specifies the dimensions to use if dimred is specified.
n_dimred Deprecated. Use ndimred instead.
altexp Character scalar or integer scalar. Specifies an alternative experiment

containing the input data. (Default: NULL)
name Character scalar. A name for the column of the colData where results will

be stored. (Default: "NMDS")

Details

For addNMDS a TreeSummarizedExperiment

Either MASS::isoMDS or vegan::monoMDS are used internally to compute the NMDS components.
If you supply a custom FUN, make sure that the arguments of FUN and nmds.fun do not collide.

Value

For getNMDS, a matrix is returned containing the MDS coordinates for each sample (row) and di-
mension (column).

78 getNMF

See Also

MASS::isoMDS, vegan::monoMDS for NMDS component calculation.

plotMDS, to quickly visualize the results.

Examples

generate some example data
mat <- matrix(1:60, nrow = 6)
df <- DataFrame(n = c(1:6))
tse <- TreeSummarizedExperiment(assays = list(counts = mat),

rowData = df)
#
getNMDS(tse)

#
data(esophagus)
esophagus <- addNMDS(esophagus, FUN = vegan::vegdist, name = "BC")
esophagus <- addNMDS(esophagus, FUN = vegan::vegdist, name = "euclidean",

method = "euclidean")
reducedDims(esophagus)

getNMF Non-negative Matrix Factorization

Description

These functions perform Non-negative Matrix Factorization on data stored in a TreeSummarizedExperiment
object.

Usage

getNMF(x, ...)

addNMF(x, ...)

S4 method for signature 'SummarizedExperiment'
getNMF(x, k = 2, assay.type = "counts", eval.metric = "evar", ...)

S4 method for signature 'SummarizedExperiment'
addNMF(
x,
k = 2,
assay.type = "counts",
eval.metric = "evar",
name = "NMF",
...

)

getNMF 79

Arguments

x a TreeSummarizedExperiment object.

... optional arguments passed to nmf::NMF.

k numeric vector. A number of latent vectors/topics. (Default: 2)

assay.type Character scalar. Specifies which assay to use for NMF ordination. (Default:
"counts")

eval.metric Character scalar. Specifies the evaluation metric that will be used to select
the model with the best fit. Must be one of the following options: "evar"
(explained variance; maximized), "sparseness.basis" (degree of sparsity in
the basis matrix; maximized), "sparseness.coef" (degree of sparsity in the
coefficient matrix; maximized), "rss" (residual sum of squares; minimized),
"silhouette.coef" (quality of clustering based on the coefficient matrix; max-
imized), "silhouette.basis" (quality of clustering based on the basis matrix;
maximized), "cophenetic" (correlation between cophenetic distances and orig-
inal distances; maximized), "dispersion" (spread of data points within clus-
ters; minimized). (Default: "evar")

name Character scalar. The name to be used to store the result in the reducedDims
of the output. (Default: "NMF")

Details

The functions getNMF and addNMF internally use nmf::NMF compute the ordination matrix and
feature loadings.

If k is a vector of integers, NMF output is calculated for all the rank values contained in k, and the
best fit is selected based on eval.metric value.

Value

For getNMF, the ordination matrix with feature loadings matrix as attribute "loadings".

For addNMF, a TreeSummarizedExperiment object is returned containing the ordination matrix in
reducedDims(x, name) with the following attributes:

• "loadings" which is a matrix containing the feature loadings

• "NMF_output" which is the output of function nmf::NMF

• "best_fit" which is the result of the best fit if k is a vector of integers

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

Reduce the number of features
tse <- agglomerateByPrevalence(tse, rank = "Phylum")

Run NMF and add the result to reducedDim(tse, "NMF").
tse <- addNMF(tse, k = 2, name = "NMF")

80 getPERMANOVA

Extract feature loadings
loadings_NMF <- getReducedDimAttribute(tse, "NMF", "loadings")
head(loadings_NMF)

Estimate models with number of topics from 2 to 4. Perform 2 runs.
tse <- addNMF(tse, k = c(2, 3, 4), name = "NMF_4", nrun = 2)

Extract feature loadings
loadings_NMF_4 <- getReducedDimAttribute(tse, "NMF_4", "loadings")
head(loadings_NMF_4)

getPERMANOVA Calculate PERMANOVA (Permutational Multivariate Analysis of
Variance)

Description

These functions perform PERMANOVA to assess the significance of group differences based on a
specified dissimilarity matrix. The results can be returned directly or added to metadata in an object
of class TreeSummarizedExperiment.

Usage

getPERMANOVA(x, ...)

addPERMANOVA(x, ...)

S4 method for signature 'SingleCellExperiment'
getPERMANOVA(x, ...)

S4 method for signature 'SummarizedExperiment'
getPERMANOVA(x, assay.type = "counts", formula = NULL, col.var = NULL, ...)

S4 method for signature 'ANY'
getPERMANOVA(x, formula, data, method = "bray", test.homogeneity = TRUE, ...)

S4 method for signature 'SummarizedExperiment'
addPERMANOVA(x, name = "permanova", ...)

Arguments

x a SummarizedExperiment object.

... additional arguments passed to vegan::adonis2.

• by: Character scalar. Specifies how significance is calculated. (Default:
"margin")

• na.action: function. Action to take when missing values for any of the
variables in formula are encountered. (Default: na.fail)

getPERMANOVA 81

• full Logical scalar. should all the results from the homogeneity calcu-
lations be returned. When FALSE, only summary tables are returned. (De-
fault: FALSE)

• homogeneity.test: Character scalar. Specifies the significance test
used to analyse vegan::betadisper results. Options include ’permanova’
(vegan::permutest), ’anova’ (stats::anova) and ’tukeyhsd’ (stats::TukeyHSD).
(Default: "permanova")

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

formula formula. If x is a SummarizedExperiment a formula can be supplied. Based
on the right-hand side of the given formula colData is subset to col.var.
col.var and formula can be missing, which turns the CCA analysis into a CA
analysis and dbRDA into PCoA/MDS.

col.var Character scalar. When x is a SummarizedExperiment,col.var can be used
to specify variables from colData.

data data.frame or coarcible to one. The covariance table including covariates de-
fined by formula.

method Character scalar. A dissimilarity metric used in PERMANOVA and group
dispersion calculation. (Default: "bray")

test.homogeneity

Logical scalar. Should the homogeneity of group dispersions be evaluated?
(Default: TRUE)

name Character scalar. A name for the results that will be stored to metadata. (De-
fault: "permanova")

Details

PERMANOVA is a non-parametric method used to test whether the centroids of different groups
(as defined by the formula or covariates) are significantly different in terms of multivariate space.

PERMANOVA relies on the assumption of group homogeneity, meaning the groups should be dis-
tinct and have similar variances within each group. This assumption is essential as PERMANOVA
is sensitive to differences in within-group dispersion, which can otherwise confound results. This
is why the functions return homogeneity test results by default.

The functions utilize vegan::adonis2 to compute PERMANOVA. For homogeneity testing, vegan::betadisper
along with vegan::permutest are utilized by default, which allow testing for equal dispersion
across groups and validate the homogeneity assumption.

PERMANOVA and distance-based redundancy analysis (dbRDA) are closely related methods for
analyzing multivariate data. PERMANOVA is non-parametric, making fewer assumptions about
the data. In contrast, dbRDA assumes a linear relationship when constructing the ordination space,
although it also employs a PERMANOVA-like approach to test the significance of predictors within
this space. dbRDA offers a broader scope overall, as it provides visualization of the constrained or-
dination, which can reveal patterns and relationships. However, when the underlying data structure
is non-linear, the results from the two methods can differ significantly due to dbRDA’s reliance on
linear assumptions.

82 getPrevalence

Value

getPERMANOVA returns the PERMANOVA results or a list containing the PERMANOVA results
and homogeneity test results if test.homogeneity = TRUE. addPERMANOVA adds these results to
metadata of x.

See Also

For more details on the actual implementation see vegan::adonis2, vegan::betadisper, and
vegan::permutest. See also addCCA and addRDA

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

Apply relative transformation
tse <- transformAssay(tse, method = "relabundance")
Perform PERMANOVA
tse <- addPERMANOVA(

tse,
assay.type = "relabundance",
method = "bray",
formula = x ~ SampleType,
permutations = 99
)

The results are stored to metadata
metadata(tse)[["permanova"]]

Calculate dbRDA
rda_res <- getRDA(

tse, assay.type = "relabundance", method = "bray",
formula = x ~ SampleType, permutations = 99)

Significance results are similar to PERMANOVA
attr(rda_res, "significance")

getPrevalence Calculation prevalence information for features across samples

Description

These functions calculate the population prevalence for taxonomic ranks in a SummarizedExperiment
object.

Usage

getPrevalence(x, ...)

getPrevalent(x, ...)

getPrevalence 83

getRare(x, ...)

subsetByPrevalent(x, ...)

subsetByRare(x, ...)

getPrevalentAbundance(
x,
assay.type = assay_name,
assay_name = "relabundance",
...

)

addPrevalentAbundance(x, ...)

addPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment'
addPrevalence(x, name = "prevalence", ...)

S4 method for signature 'ANY'
getPrevalence(
x,
detection = 0,
include.lowest = include_lowest,
include_lowest = FALSE,
sort = FALSE,
na.rm = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
getPrevalence(
x,
assay.type = assay_name,
assay_name = "counts",
rank = NULL,
...

)

S4 method for signature 'ANY'
getPrevalent(
x,
prevalence = 50/100,
include.lowest = include_lowest,
include_lowest = FALSE,
...

84 getPrevalence

)

S4 method for signature 'SummarizedExperiment'
getPrevalent(
x,
rank = NULL,
prevalence = 50/100,
include.lowest = include_lowest,
include_lowest = FALSE,
...

)

S4 method for signature 'ANY'
getRare(
x,
prevalence = 50/100,
include.lowest = include_lowest,
include_lowest = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
getRare(
x,
rank = NULL,
prevalence = 50/100,
include.lowest = include_lowest,
include_lowest = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
subsetByPrevalent(x, rank = NULL, ...)

S4 method for signature 'TreeSummarizedExperiment'
subsetByPrevalent(x, update.tree = TRUE, ...)

S4 method for signature 'SummarizedExperiment'
subsetByRare(x, rank = NULL, ...)

S4 method for signature 'TreeSummarizedExperiment'
subsetByRare(x, update.tree = TRUE, ...)

S4 method for signature 'SummarizedExperiment'
addPrevalentAbundance(x, name = "prevalent_abundance", ...)

S4 method for signature 'ANY'
getPrevalentAbundance(

getPrevalence 85

x,
assay.type = assay_name,
assay_name = "relabundance",
...

)

S4 method for signature 'SummarizedExperiment'
getPrevalentAbundance(x, assay.type = assay_name, assay_name = "counts", ...)

Arguments

x TreeSummarizedExperiment.

... additional arguments

• If !is.null(rank) arguments are passed on to agglomerateByRank. See
?agglomerateByRank for more details.

• for getPrevalent, getRare, subsetByPrevalent and subsetByRare ad-
ditional parameters passed to getPrevalence

• for getPrevalentAbundance additional parameters passed to getPrevalent

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

name Character scalar. Specifies name of column in rowData where the results
will be stored. (Default: "prevalence")

detection Numeric scalar. Detection threshold for absence/presence. If as_relative
= FALSE, it sets the counts threshold for a taxon to be considered present. If
as_relative = TRUE, it sets the relative abundance threshold for a taxon to be
considered present. (Default: 0)

include.lowest Logical scalar. Should the lower boundary of the detection and prevalence
cutoffs be included? (Default: FALSE)

include_lowest Deprecated. Use include.lowest instead.

sort Logical scalar. Should the result be sorted by prevalence? (Default: FALSE)

na.rm Logical scalar. Should NA values be omitted? (Default: TRUE)

rank Character scalar. Defines a taxonomic rank. Must be a value of taxonomyRanks()
function.

prevalence Prevalence threshold (in 0 to 1). The required prevalence is strictly greater by
default. To include the limit, set include.lowest to TRUE.

update.tree Logical scalar. Should rowTree() also be agglomerated? (Default: TRUE)

Details

getPrevalence calculates the frequency of samples that exceed the detection threshold. For SummarizedExperiment
objects, the prevalence is calculated for the selected taxonomic rank, otherwise for the rows. The
absolute population prevalence can be obtained by multiplying the prevalence by the number of
samples (ncol(x)).

86 getPrevalence

The core abundance index from getPrevalentAbundance gives the relative proportion of the core
species (in between 0 and 1). The core taxa are defined as those that exceed the given population
prevalence threshold at the given detection level as set for getPrevalent.

subsetPrevalent and subsetRareFeatures return a subset of x. The subset includes the most
prevalent or rare taxa that are calculated with getPrevalent or getRare respectively.

getPrevalent returns taxa that are more prevalent with the given detection threshold for the se-
lected taxonomic rank.

getRare returns complement of getPrevalent.

Value

subsetPrevalent and subsetRareFeatures return subset of x.

All other functions return a named vectors:

• getPrevalence returns a numeric vector with the names being set to either the row names of
x or the names after agglomeration. addPrevalence adds these results to rowData(x).

• getPrevalentAbundance returns a numeric vector with the names corresponding to the col-
umn name of x and include the joint abundance of prevalent taxa.

• getPrevalent and getRare return a character vector with only the names exceeding the
threshold set by prevalence, if the rownames of x is set. Otherwise an integer vector is
returned matching the rows in x.

References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health
status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the R package, see cita-
tion(’mia’)

See Also

agglomerateByRank, getTop

Examples

data(GlobalPatterns)
tse <- GlobalPatterns
Get prevalence estimates for individual ASV/OTU
prevalence.frequency <- getPrevalence(tse,

detection = 0,
sort = TRUE)

head(prevalence.frequency)

Get prevalence estimates for phyla
- the getPrevalence function itself always returns population frequencies
prevalence.frequency <- getPrevalence(tse,

rank = "Phylum",
detection = 0,
sort = TRUE)

head(prevalence.frequency)

getPrevalence 87

- to obtain population counts, multiply frequencies with the sample size,
which answers the question "In how many samples is this phylum detectable"
prevalence.count <- prevalence.frequency * ncol(tse)
head(prevalence.count)

Detection threshold 1 (strictly greater by default);
Note that the data (GlobalPatterns) is here in absolute counts
(and not compositional, relative abundances)
Prevalence threshold 50 percent (strictly greater by default)
prevalent <- getPrevalent(

tse,
rank = "Phylum",
detection = 10,
prevalence = 50/100)

head(prevalent)

Add relative aundance data
tse <- transformAssay(tse, assay.type = "counts", method = "relabundance")

Gets a subset of object that includes prevalent taxa
altExp(tse, "prevalent") <- subsetByPrevalent(tse,

rank = "Family",
assay.type = "relabundance",
detection = 0.001,
prevalence = 0.55)

altExp(tse, "prevalent")

getRare returns the inverse
rare <- getRare(tse,

rank = "Phylum",
assay.type = "relabundance",
detection = 1/100,
prevalence = 50/100)

head(rare)

Gets a subset of object that includes rare taxa
altExp(tse, "rare") <- subsetByRare(

tse,
rank = "Class",
assay.type = "relabundance",
detection = 0.001,
prevalence = 0.001)

altExp(tse, "rare")

Names of both experiments, prevalent and rare, can be found from slot
altExpNames
tse

data(esophagus)
getPrevalentAbundance(esophagus, assay.type = "counts")

88 getReducedDimAttribute

getReducedDimAttribute

Utilization functions for TreeSummarizedExperiment objects

Description

A set of utility functions designed to facilitate operations with TreeSummarizedExperiment objects

Usage

getReducedDimAttribute(x, ...)

S4 method for signature 'SingleCellExperiment'
getReducedDimAttribute(x, dimred = 1L, name = NULL, ...)

Arguments

x a SummarizedExperiment object.

... additional arguments, not used currently.

dimred Character scalar or integer scalar. A name or index of dimension reduc-
tion results. (Default: 1L)

name Character vector. A name of values retrieved from attributes of reducedDim(x,
dimred). If NULL, all the values are retrieved. (Default: NULL)

Details

getReducedDimAttribute is a utility function that retrieves specific elements from the attributes
of reducedDim in a TreeSummarizedExperiment object. These attributes may contain loadings,
statistical test results, or other metadata, depending on the methods used to generate the results.

Value

The extracted element from the reducedDim attribute.

See Also

runCCA, addNMF, and addLDA

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

Reduce the number of features
tse <- agglomerateByPrevalence(tse, rank = "Phylum")

Run NMF and add the result to reducedDim(tse, "NMF").

GlobalPatterns 89

tse <- addNMF(tse, k = 1, name = "NMF")

Extract feature loadings
res <- getReducedDimAttribute(tse, dimred = "NMF", name = "loadings")
res |> head()

GlobalPatterns Global patterns of 16S rRNA diversity at a depth of millions of se-
quences per sample.

Description

GlobalPatterns compared the microbial communities from 25 environmental samples and three
known "mock communities" at a an average depth of 3.1 million reads per sample. Authors re-
produced diversity patterns seen in many other published studies, while investigating technical bias
by applying the same techniques to simulated microbial communities of known composition. Spe-
cial thanks are given to J. Gregory Caporaso for providing the OTU-clustered data files for inclusion
in the phyloseq package, from which this data was converted to TreeSummarizedExperiment.

Usage

data(GlobalPatterns)

Format

A TreeSummarizedExperiment with 19216 features and 26 samples. The rowData contains tax-
onomic information at Kingdom, Phylum, Class, Order, Family, Genus and Species levels. The
colData includes:

X.SampleID Sample ID taken from the corresponding study

Primer primer used for sequencing

Final_Barcode final barcode (6 nucleotides)

Barcode_truncated_plus_T truncated barcode with an added tyrosine (6 nucleotides)

Barcode_full_length complete barcode with a length of 11 nucleotides

SampleType sampling type by collection site (Soil, Feces, Skin, Tongue, Freshwater, Creek Fresh-
water, Ocean, Estuary Sediment and Mock)

Description additional information (sampling location, environmental factors and study type)

Author(s)

Caporaso, J. G., et al.

References

Caporaso, J. G., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of
sequences per sample. PNAS, 108, 4516-4522. https://doi.org/10.1073/pnas.1000080107

https://doi.org/10.1073/pnas.1000080107

90 HintikkaXOData

See Also

mia-datasets

HintikkaXOData Multiomics dataset from 40 rat samples

Description

HintikkaXO is a multiomics dataset from a rat experiment studying effect of fat and prebiotics in
diet. It contains high-throughput profiling data from 40 rat samples, including 39 biomarkers, 38
metabolites (NMR), and 12706 OTUs from 318 species, measured from Cecum. This is diet com-
parison study with High/Low fat diet and xylo-oligosaccaride supplementation. Column metadata
is common for all experiments (microbiota, metabolites, biomarkers) and is described below.

Usage

data(HintikkaXOData)

Format

A MultiAssayExperiment with 3 experiments (microbiota, metabolites and biomarkers). rowData
of the microbiota experiment contains taxonomic information at Phylum, Class, Order, Family,
Genus, Species and OTU levels. The metabolites and biomarkers experiments contain 38 NMR
metabolites and 39 biomarkers, respectively. The colData includes:

Sample Sample ID (character)

Rat Rat ID (factor)

Site Site of measurement ("Cecum"); single value

Diet Diet group (factor; combination of the Fat and XOS fields)

Fat Fat in Diet (factor; Low/High)

XOS XOS Diet Supplement (numeric; 0/1)

Author(s)

Hintikka L et al.

References

Hintikka L et al. (2021): Xylo-oligosaccharides in prevention of hepatic steatosis and adipose
tissue inflammation: associating taxonomic and metabolomic patterns in fecal microbiota with bi-
clustering. International Journal of Environmental Research and Public Health 18(8):4049. https:
//doi.org/10.3390/ijerph18084049

See Also

mia-datasets

https://doi.org/10.3390/ijerph18084049
https://doi.org/10.3390/ijerph18084049

importHUMAnN 91

importHUMAnN Import HUMAnN results to TreeSummarizedExperiment

Description

Import HUMAnN results to TreeSummarizedExperiment

Arguments

file Character scalar. Defines the file path of the HUMAnN file. The file must be
in merged HUMAnN format.

col.data a DataFrame-like object that includes sample names in rownames, or a single
character value defining the file path of the sample metadata file. The file
must be in tsv format (Default: NULL).

colData Deprecated. Use col.data instead.

... additional arguments:

• assay.type: Character scalar. Specifies the name of the assay used in
calculation. (Default: "counts")

• prefix.rm: Logical scalar. Should taxonomic prefixes be removed?
(Default: FALSE)

• remove.suffix: Logical scalar. Should suffixes of sample names be re-
moved? HUMAnN pipeline adds suffixes to sample names. Suffixes are
formed from file names. By selecting remove.suffix = TRUE, you can re-
move pattern from end of sample names that is shared by all. (Default:
FALSE)

Details

Import HUMAnN (currently version 3.0 supported) results of functional predictions based on metagenome
composition (e.g. pathways or gene families). The input must be in merged HUMAnN format. (See
the HUMAnN documentation and humann_join_tables method.)

The function parses gene/pathway information along with taxonomy information from the input
file. This information is stored to rowData. Abundances are stored to assays.

Usually the workflow includes also taxonomy data from Metaphlan. See importMetaPhlAn to load
the data to TreeSE.

Value

A TreeSummarizedExperiment object

References

Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi
P, Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C,
Franzosa EA, & Segata N (2021) Integrating taxonomic, functional, and strain-level profiling of
diverse microbial communities with bioBakery 3. eLife. 10:e65088.

https://github.com/biobakery/humann#humann_join_tables

92 importMetaPhlAn

See Also

importMetaPhlAn convertFromPhyloseq convertFromBIOM convertFromDADA2 importQIIME2
importMothur

Examples

File path
file_path <- system.file("extdata", "humann_output.tsv", package = "mia")
Import data
tse <- importHUMAnN(file_path)
tse

importMetaPhlAn Import Metaphlan results to TreeSummarizedExperiment

Description

Import Metaphlan results to TreeSummarizedExperiment

Arguments

file NULL or DataFrame-like object. Defines the file path of the Metaphlan file. The
file must be in merged Metaphlan format.

col.data a DataFrame-like object that includes sample names in rownames, or a single
character value defining the file path of the sample metadata file. The file
must be in tsv format (Default: NULL).

colData Deprecated. use col.data instead.

sample_meta Deprecated. Use col.data instead.

tree.file Character scalar. Defines the file path of the phylogenetic tree. (Default:
NULL).

phy_tree Deprecated. Use tree.file instead.

... additional arguments:

• assay.type: Character scalar. Specifies the name of the assay used in
calculation. (Default: "metaphlan")

• prefix.rm: Logical scalar. Should taxonomic prefixes be removed?
(Default: FALSE)

• remove.suffix: Logical scalar. Should suffixes of sample names be re-
moved? Metaphlan pipeline adds suffixes to sample names. Suffixes are
formed from file names. By selecting remove.suffix = TRUE, you can re-
move pattern from end of sample names that is shared by all. (Default:
FALSE)

• set.ranks: Logical scalar. Should the columns in the rowData that are
treated as taxonomy ranks be updated according to the ranks found in the
imported data? (Default: FALSE)

importMothur 93

Details

Import Metaphlan (versions 2, 3 and 4 supported) results. Input must be in merged Metaphlan
format. (See the Metaphlan documentation and merge_metaphlan_tables method.) Data is im-
ported so that data at the lowest rank is imported as a TreeSummarizedExperiment object. Data
at higher rank is imported as a SummarizedExperiment objects which are stored to altExp of
TreeSummarizedExperiment object.

Currently Metaphlan versions 2, 3, and 4 are supported.

Value

A TreeSummarizedExperiment object

References

Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi
P, Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C,
Franzosa EA, & Segata N (2021) Integrating taxonomic, functional, and strain-level profiling of
diverse microbial communities with bioBakery 3. eLife. 10:e65088. doi: 10.7554/eLife.65088

See Also

convertFromPhyloseq convertFromBIOM convertFromDADA2 importQIIME2 importMothur

Examples

(Data is from tutorial
https://github.com/biobakery/biobakery/wiki/metaphlan3#merge-outputs)

File path
file_path <- system.file(

"extdata", "merged_abundance_table.txt", package = "mia")
Import data
tse <- importMetaPhlAn(file_path)
Data at the lowest rank
tse
Data at higher rank is stored in altExp
altExps(tse)
Higher rank data is in SE format, for example, Phylum rank
altExp(tse, "phylum")

importMothur Import Mothur results as a TreeSummarizedExperiment

Description

This method creates a TreeSummarizedExperiment object from Mothur files provided as input.

https://github.com/biobakery/MetaPhlAn/wiki/MetaPhlAn-4#merging-tables

94 importMothur

Usage

importMothur(
assay.file = sharedFile,
sharedFile,
taxonomyFile = NULL,
row.file = taxonomyFile,
designFile = NULL,
col.file = designFile

)

Arguments

assay.file Character scalar. Defines the file path of the feature table to be imported.
The File has to be in shared file format as defined in Mothur documentation.

sharedFile Deprecated. Use assay.file instead.

taxonomyFile Deprecated. Use row.file instead.

row.file Character scalar. Defines the file path of the taxonomy table to be imported.
The File has to be in taxonomy file or constaxonomy file format as defined
in Mothur documentation. (Default: NULL).

designFile Deprecated. Use col.file instead.

col.file Character scalar. Defines file path of the sample metadata to be imported.
The File has to be in design file format as defined in Mothur documentation.
(Default: NULL).

Details

Results exported from Mothur can be imported as a SummarizedExperiment using importMothur.
Except for the assay.file, the other data types, row.file, and col.file, are optional, but are
highly encouraged to be provided.

Value

A TreeSummarizedExperiment object

References

https://mothur.org/ https://mothur.org/wiki/shared_file/ https://mothur.org/wiki/
taxonomy_file/ https://mothur.org/wiki/constaxonomy_file/ https://mothur.org/wiki/
design_file/

See Also

convertFromPhyloseq convertFromBIOM convertFromDADA2 importQIIME2

https://mothur.org/
https://mothur.org/wiki/shared_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/constaxonomy_file/
https://mothur.org/wiki/design_file/
https://mothur.org/wiki/design_file/

importQIIME2 95

Examples

Abundance table
counts <- system.file("extdata", "mothur_example.shared", package = "mia")
Taxa table (in "cons.taxonomy" or "taxonomy" format)
taxa <- system.file(

"extdata", "mothur_example.cons.taxonomy", package = "mia")
#taxa <- system.file("extdata", "mothur_example.taxonomy", package = "mia")
Sample meta data
meta <- system.file("extdata", "mothur_example.design", package = "mia")

Creates se object from files
se <- importMothur(assay.file = counts, row.file = taxa, col.file = meta)
Convert SE to TreeSE
tse <- as(se, "TreeSummarizedExperiment")
tse

importQIIME2 Import QIIME2 results to TreeSummarizedExperiment

Description

Results exported from QIMME2 can be imported as a TreeSummarizedExperiment using importQIIME2.
Except for the assay.file, the other data types, row.file, refseq.file and tree.file, are op-
tional, but are highly encouraged to be provided.

Import the QIIME2 artifacts to R.

Usage

importQIIME2(
assay.file = featureTableFile,
featureTableFile,
row.file = taxonomyTableFile,
taxonomyTableFile = NULL,
col.file = sampleMetaFile,
sampleMetaFile = NULL,
as.refseq = featureNamesAsRefSeq,
featureNamesAsRefSeq = TRUE,
refseq.file = refSeqFile,
refSeqFile = NULL,
tree.file = phyTreeFile,
phyTreeFile = NULL,
...

)

importQZA(file, temp.dir = temp, temp = tempdir(), ...)

96 importQIIME2

Arguments

assay.file Character scalar. Defines the file path of the feature table to be imported.

featureTableFile

Deprecated. use assay.file instead.

row.file Character scalar or NULL. Defines the file path of the taxonomy table to be
imported. (default: NULL).

taxonomyTableFile

Deprecated. use row.file instead.

col.file Character scalar or NULL. Defines the file path of the sample metadata to be
imported. The file has to be in tsv format. (Default: NULL).

sampleMetaFile Deprecated. Use col.file instead.

as.refseq Logical scalar or NULL. Should the feature names of the feature table be re-
garded as reference sequences? This setting will be disregarded, if refseq.file
is not NULL. If the feature names do not contain valid DNA characters only, the
reference sequences will not be set.

featureNamesAsRefSeq

Deprecated. Use as.refseq instead.

refseq.file Character scalar or NULL. Defines the file path of the reference sequences for
each feature. (Default: NULL).

refSeqFile Deprecated. Use refseq.file instead.

tree.file Character scalar. Defines the file path of the phylogenetic tree. (Default:
NULL).

phyTreeFile Deprecated. Use tree.file instead.

... additional arguments:

• temp.dir: the temporary directory used for decompressing the data. (de-
fault: tempdir())

• prefix.rm: TRUE or FALSE: Should taxonomic prefixes be removed? (de-
fault: prefix.rm = FALSE)

file character, path of the input qza file. Only files in format of BIOMV210DirFmt
(feature table), TSVTaxonomyDirectoryFormat (taxonomic table), NewickDirectoryFormat
(phylogenetic tree) and DNASequencesDirectoryFormat (representative se-
quences) are supported right now.

temp.dir character, a temporary directory in which the qza file will be decompressed to,
default tempdir().

temp Deprecated. Use temp.dir instead.

Details

Both arguments as.refseq and refseq.file can be used to define reference sequences of features.
as.refseq is only taken into account, if refseq.file is NULL. No reference sequences are tried to
be created, if featureNameAsRefSeq is FALSE and refseq.file is NULL.

importQIIME2 97

Value

A TreeSummarizedExperiment object

matrix object for feature table, DataFrame for taxonomic table, ape::phylo object for phyloge-
netic tree, Biostrings::DNAStringSet for representative sequences of taxa.

Author(s)

Yang Cao

References

Bolyen E et al. 2019: Reproducible, interactive, scalable and extensible microbiome data science
using QIIME 2. Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9

https://qiime2.org

See Also

convertFromPhyloseq convertFromBIOM convertFromDADA2 importMothur

Examples

assay.file <- system.file("extdata", "table.qza", package = "mia")
row.file <- system.file("extdata", "taxonomy.qza", package = "mia")
col.file <- system.file("extdata", "sample-metadata.tsv", package = "mia")
tree.file <- system.file("extdata", "tree.qza", package = "mia")
refseq.file <- system.file("extdata", "refseq.qza", package = "mia")
tse <- importQIIME2(

assay.file = assay.file,
row.file = row.file,
col.file = col.file,
refseq.file = refseq.file,
tree.file = tree.file

)

tse
Read individual files
assay.file <- system.file("extdata", "table.qza", package = "mia")
row.file <- system.file("extdata", "taxonomy.qza", package = "mia")
col.file <- system.file("extdata", "sample-metadata.tsv", package = "mia")

assay <- importQZA(assay.file)
rowdata <- importQZA(row.file, prefix.rm = TRUE)
coldata <- read.table(col.file, header = TRUE, sep = "\t", comment.char = "")

Assign rownames
rownames(coldata) <- coldata[, 1]
coldata[, 1] <- NULL

Order coldata based on assay
coldata <- coldata[match(colnames(assay), rownames(coldata)),]

https://doi.org/10.1038/s41587-019-0209-9
https://qiime2.org

98 importTaxpasta

Create SE from individual files
se <- SummarizedExperiment(

assays = list(assay), rowData = rowdata, colData = coldata)
se

importTaxpasta Import taxpasta-specific BIOM results to
TreeSummarizedExperiment

Description

Import taxpasta-specific BIOM results to TreeSummarizedExperiment

Usage

importTaxpasta(file, add.tree = TRUE, ...)

Arguments

file Character scalar. Defines the file path to a BIOM file.

add.tree Logical scalar. Specifies whether to calculate and add hierarchy tree using
addHierarchyTree. (Default: TRUE)

... additional arguments

• set.ranks: Logical scalar. Should column names of taxonomy table be
treated as taxonomy ranks? (Default: FALSE)

Details

importTaxpasta imports data that is returned from Taxonomic Profile Aggregation and Standard-
ization (taxpasta) pipeline. See more information on taxpasta from taxpasta documentation.

Value

A TreeSummarizedExperiment object.

See Also

importBIOM convertFromBIOM

https://taxpasta.readthedocs.io/en/latest/

meltSE 99

Examples

Not run:
File path to BIOM file
file_path <- system.file("extdata", "complete.biom", package = "mia")
Import BIOM as TreeSE, and set ranks.
tse <- importTaxpasta(file_path, set.ranks = TRUE)
Import BIOM as TreeSE without adding hierarchy tree
tse <- importTaxpasta(file_path, add.tree = FALSE)

End(Not run)

meltSE Converting a SummarizedExperiment object into a long data.frame

Description

meltSE Converts a SummarizedExperiment object into a long data.frame which can be used for
tidyverse-tools.

Usage

meltSE(x, ...)

S4 method for signature 'SummarizedExperiment'
meltSE(
x,
assay.type = assay_name,
assay_name = "counts",
add.row = add_row_data,
add_row_data = NULL,
add.col = add_col_data,
add_col_data = NULL,
row.name = feature_name,
feature_name = "FeatureID",
col.name = sample_name,
sample_name = "SampleID",
...

)

S4 method for signature 'SingleCellExperiment'
meltSE(x, add.dimred = NULL, ...)

Arguments

x TreeSummarizedExperiment.

... optional arguments:

100 meltSE

• check.names: Logical scalar. Passed to data.frame function’s check.name
argument. Determines if sample names are checked that they are syntacti-
cally valid variable names and are not duplicated. If they are not, sample
names are modified. (Default: TRUE)

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

add.row Logical scalar or Character vector. To select information from the rowData
to add to the molten assay data. If add.row = NULL no data will be added, if
add.row = TRUE all data will be added and if add.row is a character vector, it
will be used to subset to given column names in rowData. (Default: NULL)

add_row_data Deprecated. Use add.row instead.

add.col Logical scalar. NULL, or character vector. Used to select information from
the colData to add to the molten assay data. If add.col = NULL no data will be
added, if add.col = TRUE all data will be added and if add.col is a character
vector, it will be used to subset to given column names in colData. (Default:
NULL)

add_col_data Deprecated. Use add.col instead.

row.name Character scalar. To use as the output’s name for the feature identifier. (De-
fault: "FeatureID")

feature_name Deprecated. Use row.name instead.

col.name Character scalar. To use as the output’s name for the sample identifier. (De-
fault: "SampleID")

sample_name Deprecated. Use col.name instead.

add.dimred Logical scalar or Character vector. To select information from the reducedDim
to add to the molten assay data. If add.dimred = NULL no data will be added,
if add.dimred = TRUE all data will be added and if add.dimred is a character
vector, it will be used to subset to given names in reducedDimNames(x). (De-
fault: NULL)

Details

If the colData contains a column “SampleID” or the rowData contains a column “FeatureID”, they
will be renamed to “SampleID_col” and “FeatureID_row”, if row names or column names are set.

Value

A tibble with the molten data. The assay values are given in a column named like the selected
assay assay.type. In addition, a column “FeatureID” will contain the rownames, if set, and anal-
ogously a column “SampleID” with the colnames, if set.

Examples

data(GlobalPatterns)
molten_tse <- meltSE(

GlobalPatterns,

mergeSEs 101

assay.type = "counts",
add.row = TRUE,
add.col = TRUE
)

molten_tse

mergeSEs Merge SE objects into single SE object.

Description

Merge SE objects into single SE object.

Usage

mergeSEs(x, ...)

S4 method for signature 'SimpleList'
mergeSEs(
x,
assay.type = "counts",
assay_name = NULL,
join = "full",
missing.values = missing_values,
missing_values = NA,
collapse.cols = collapse_samples,
collapse_samples = FALSE,
collapse.rows = collapse_features,
collapse_features = TRUE,
verbose = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
mergeSEs(x, y = NULL, ...)

S4 method for signature 'list'
mergeSEs(x, ...)

Arguments

x TreeSummarizedExperiment.

... optional arguments (not used).

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

102 mergeSEs

join Character scalar. A value for selecting the joining method. Must be ’full’,
’inner’, ’left’, or ’right’. ’left’ and ’right’ are disabled when more than two
objects are being merged. (Default: "full")

missing.values NA, 0 or Character scalar. Specifies the notation of missing values. (By de-
fault: NA)

missing_values Deprecated. Use missing.values instead.

collapse.cols Logical scalar. Determines whether to collapse identically named samples to
one. (Default: FALSE)

collapse_samples

Deprecated. Use collapse.cols instead.

collapse.rows Logical scalar. Selects whether to collapse identically named features to one.
Since all taxonomy information is taken into account, this concerns rownames-
level (usually strain level) comparison. Often OTU or ASV level is just an ar-
bitrary number series from sequencing machine meaning that the OTU infor-
mation is not comparable between studies. With this option, it is possible to
specify whether these strains are combined if their taxonomy information along
with OTU number matches. (Default: TRUE)

collapse_features

Deprecated. Use collapse.rows instead.

verbose Logical scalar. Choose whether to show messages. (Default: TRUE)

y a SummarizedExperiment object when x is a SummarizedExperiment object.
Disabled when x is a list.

Details

This function merges multiple SummarizedExperiment objects. It combines rowData, assays, and
colData so that the output includes each unique row and column ones. The merging is done based
on rownames and colnames. rowTree and colTree are preserved if linkage between rows/cols and
the tree is found.

Equally named rows are interpreted as equal. Further matching based on rowData is not done. For
samples, collapsing is disabled by default meaning that equally named samples that are stored in
different objects are interpreted as unique. Collapsing can be enabled with collapse.cols = TRUE
when equally named samples describe the same sample.

If, for example, all rows are not shared with individual objects, there are missing values in assays.
The notation of missing can be specified with the missing.values argument. If input consists of
TreeSummarizedExperiment objects, also rowTree, colTree, and referenceSeq are preserved if
possible. The data is preserved if all the rows or columns can be found from it.

Compared to cbind and rbind mergeSEs allows more freely merging since cbind and rbind expect
that rows and columns are matching, respectively.

You can choose joining methods from 'full', 'inner', 'left', and 'right'. In all the methods,
all the samples are included in the result object. However, with different methods, it is possible to
choose which rows are included.

• full – all unique features

• inner – all shared features

mergeSEs 103

• left – all the features of the first object

• right – all the features of the second object

The output depends on the input. If the input contains SummarizedExperiment object, then the out-
put will be SummarizedExperiment. When all the input objects belong to TreeSummarizedExperiment,
the output will be TreeSummarizedExperiment.

Value

A single SummarizedExperiment object.

See Also

• TreeSummarizedExperiment::cbind

• TreeSummarizedExperiment::rbind

• full_join

• inner_join

• left_join

• right_join

Examples

data(GlobalPatterns)
data(esophagus)
data(enterotype)

Take only subsets so that it wont take so long
tse1 <- GlobalPatterns[1:100,]
tse2 <- esophagus
tse3 <- enterotype[1:100,]

Merge two TreeSEs
tse <- mergeSEs(tse1, tse2)

Merge a list of TreeSEs
list <- SimpleList(tse1, tse2, tse3)
tse <- mergeSEs(list, assay.type = "counts", missing.values = 0)
tse

With 'join', it is possible to specify the merging method. Subsets are used
here just to show the functionality
tse_temp <- mergeSEs(tse[1:10, 1:10], tse[5:100, 11:20], join = "left")
tse_temp

If your objects contain samples that describe one and same sample,
you can collapse equally named samples to one by specifying 'collapse.cols'
tse_temp <- mergeSEs(list(tse[1:10, 1], tse[1:20, 1], tse[1:5, 1]),

collapse.cols = TRUE,
join = "inner")

tse_temp

104 mia-datasets

Merge all available assays
tse <- transformAssay(tse, method="relabundance")
ts1 <- transformAssay(tse1, method="relabundance")
tse_temp <- mergeSEs(tse, tse1, assay.type = assayNames(tse))

mia-datasets mia datasets

Description

mia provides various datasets derived from independent experimental studies. The datasets repre-
sent instances of the TreeSummarizedExperiment and MultiAssayExperiment containers and can
serve as tools to practice the mia functionality.

Details

Currently, the following datasets are available:

• dmn_se: A SummarizedExperiment with 130 features and 278 samples

• enterotype: A TreeSummarizedExperiment with 553 features and 280 samples

• esophagus: A TreeSummarizedExperiment with 58 features and 3 samples

• GlobalPatterns: A TreeSummarizedExperiment with 19216 features and 26 samples

• HintikkaXOData: A MultiAssayExperiment with 3 experiments (microbiota, metabolites and
biomarkers)

• peerj13075: A TreeSummarizedExperiment with 674 features and 58 samples

• Tengeler2020: A TreeSummarizedExperiment with 151 features and 27 samples

• Tito2024QMP: A TreeSummarizedExperiment with 676 features and 589 samples

Examples

Load dataset from mia
library(mia)
data("GlobalPatterns", package = "mia")

In this case, the dataset is a TreeSE, so it is renamed as tse
tse <- GlobalPatterns

Print summary
tse

peerj13075 105

peerj13075 Skin microbial profiles 58 genetically unrelated individuals

Description

peerj13075 includes skin microbial profiles of 58 volunteers with multiple factors. 16S r-RNA
sequencing of V3-V4 regions was done to generate millions of read using illumina platform. A
standard bioinformatic and statistical analysis done to explore skin bacterial diversity and its asso-
ciation with age, diet, geographical locations. The authors investigated significant association of
skin microbiota with individual’s geographical location.

Usage

data(peerj13075)

Format

A TreeSummarizedExperiment with 674 features and 58 samples. The rowData contains taxonomic
information at kingdom, phylum, class, order, family and genus level. The colData includes:

Sample sample ID

Geographical_location city where participant lives (Ahmednagar, Pune and Nashik)

Gender participant’s gender (Male or Female)

Age participant’s age group (Middle_age, Adult and Elderly)

Diet participant’s diet (Veg or Mixed)

Author(s)

Potbhare, R., et al.

References

Potbhare, R., RaviKumar, A., Munukka, E., Lahti, L., & Ashma, R. (2022). Skin microbiota
diversity among genetically unrelated individuals of Indian origin. PeerJ, 10, e13075. https:
//doi.org/10.7717/peerj.13075 Supplemental information includes OTU table and taxonomy
table publicly-accessible from: https://www.doi.org/10.7717/peerj.13075/supp-1 https:
//www.doi.org/10.7717/peerj.13075/supp-2

See Also

mia-datasets

https://doi.org/10.7717/peerj.13075
https://doi.org/10.7717/peerj.13075
https://www.doi.org/10.7717/peerj.13075/supp-1
https://www.doi.org/10.7717/peerj.13075/supp-2
https://www.doi.org/10.7717/peerj.13075/supp-2

106 rarefyAssay

rarefyAssay Subsample Counts

Description

rarefyAssay randomly subsamples counts within a SummarizedExperiment object and returns a
new SummarizedExperiment containing the original assay and the new subsampled assay.

Usage

rarefyAssay(x, ...)

S4 method for signature 'SummarizedExperiment'
rarefyAssay(
x,
assay.type = assay_name,
assay_name = "counts",
sample = min_size,
min_size = min(colSums2(assay(x, assay.type))),
replace = FALSE,
name = "subsampled",
...

)

Arguments

x TreeSummarizedExperiment.

... optional arguments:

• verbose: Logical scalar. Choose whether to show messages. (Default:
TRUE)

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

sample Integer scalar. Indicates the number of counts being simulated i.e. rarefying
depth. This can equal to lowest number of total counts found in a sample or a
user specified number.

min_size Deprecated. Use sample instead.

replace Logical scalar. Whether to åperform subsampling with replacement. Ths
works similarly to sample(..., replace = TRUE). (Default: FALSE)

name Character scalar. The name for the transformed assay to be stored. (Default:
method)

rarefyAssay 107

Details

Although the subsampling approach is highly debated in microbiome research, we include the
rarefyAssay function because there may be some instances where it can be useful. Note that
the output of rarefyAssay is not the equivalent as the input and any result have to be verified with
the original dataset.

Subsampling/Rarefying may undermine downstream analyses and have unintended consequences.
Therefore, make sure this normalization is appropriate for your data.

To maintain the reproducibility, please define the seed using set.seed() before implement this func-
tion.

When replace = FALSE, the function uses internally vegan::rarefy while with replacement en-
abled the function utilizes own implementation, inspired by phyloseq::rarefy_even_depth.

Value

rarefyAssay return x with subsampled data.

References

McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible.
PLoS computational biology. 2014 Apr 3;10(4):e1003531.

Gloor GB, Macklaim JM, Pawlowsky-Glahn V & Egozcue JJ (2017) Microbiome Datasets Are
Compositional: And This Is Not Optional. Frontiers in Microbiology 8: 2224. doi: 10.3389/fmicb.2017.02224

Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-
Baeza Y, Birmingham A, Hyde ER. Normalization and microbial differential abundance strategies
depend upon data characteristics. Microbiome. 2017 Dec;5(1):1-8.

See Also

• vegan::rrarefy

• phyloseq::rarefy_even_depth

Examples

When samples in TreeSE are less than specified sample, they will be
removed. If after subsampling features are not present in any of the
samples, they will be removed.
data(GlobalPatterns)
tse <- GlobalPatterns
set.seed(123)
tse_subsampled <- rarefyAssay(tse, sample = 60000, name = "subsampled")
tse_subsampled
dim(tse)
dim(assay(tse_subsampled, "subsampled"))

108 splitOn

splitOn Split TreeSummarizedExperiment column-wise or row-wise based on
grouping variable

Description

Split TreeSummarizedExperiment column-wise or row-wise based on grouping variable

Usage

splitOn(x, ...)

unsplitOn(x, ...)

S4 method for signature 'SummarizedExperiment'
splitOn(x, group = f, f = NULL, ...)

S4 method for signature 'SingleCellExperiment'
splitOn(x, group = f, f = NULL, ...)

S4 method for signature 'TreeSummarizedExperiment'
splitOn(
x,
group = f,
f = NULL,
update.tree = update_rowTree,
update_rowTree = TRUE,
...

)

S4 method for signature 'list'
unsplitOn(x, update.tree = update_rowTree, update_rowTree = TRUE, ...)

S4 method for signature 'SimpleList'
unsplitOn(x, update.tree = update_rowTree, update_rowTree = TRUE, ...)

S4 method for signature 'SingleCellExperiment'
unsplitOn(
x,
altexp = altExpNames,
altExpNames = names(altExps(x)),
keep.dimred = keep_reducedDims,
keep_reducedDims = FALSE,
...

)

splitOn 109

Arguments

x TreeSummarizedExperiment.

... Arguments passed to agglomerateByVariable function for SummarizedExperiment
objects and other functions. See agglomerateByVariable for more details.

• use.names: Logical scalar. Specifies whether to name elements of list
by their group names. (Default: TRUE)

group Character scalar, character vector or factor vector. A column name
from rowData(x) or colData(x) or alternatively a vector specifying how the
merging is performed. If vector, the value must be the same length as nrow(x)/ncol(x).
Rows/Cols corresponding to the same level will be merged. If length(levels(group))
== nrow(x)/ncol(x), x will be returned unchanged. If group matches with
both dimensions, by must be specified. (Default: NULL)

f Deprecated. Use group instead.

update.tree Logical scalar. Should rowTree() also be merged? (Default: TRUE)

update_rowTree Deprecated. Use update.tree instead.

altexp Character vector. Specify the alternative experiments to be unsplit. (Default:
names(altExps(x)))

altExpNames Deprecated. Use altexp instead.

keep.dimred Logical scalar. Should the reducedDims(x) be transferred to the result?
Please note, that this breaks the link between the data used to calculate the re-
duced dims. (Default: FALSE)

keep_reducedDims

Deprecated. Use keep.dimred instead.

Details

splitOn split data based on grouping variable. Splitting can be done column-wise or row-wise.
The returned value is a list of SummarizedExperiment objects; each element containing members
of each group.

Value

For splitOn: SummarizedExperiment objects in a SimpleList.

For unsplitOn: x, with rowData and assay data replaced by the unsplit data. colData of x is
kept as well and any existing rowTree is dropped as well, since existing rowLinks are not valid
anymore.

See Also

agglomerateByRanks agglomerateByVariable, sumCountsAcrossFeatures, agglomerateByRank,
altExps, splitAltExps

110 summarizeDominance

Examples

data(GlobalPatterns)
tse <- GlobalPatterns
Split data based on SampleType.
se_list <- splitOn(tse, group = "SampleType")

List of SE objects is returned.
se_list

Create arbitrary groups
rowData(tse)$group <- sample(1:3, nrow(tse), replace = TRUE)
colData(tse)$group <- sample(1:3, ncol(tse), replace = TRUE)

Split based on rows
Each element is named based on their group name. If you don't want to name
elements, use use_name = FALSE. Since "group" can be found from rowdata and
colData you must use `by`.
se_list <- splitOn(tse, group = "group", use.names = FALSE, by = 1)

When column names are shared between elements, you can store the list to
altExps
altExps(tse) <- se_list

altExps(tse)

If you want to split on columns and update rowTree, you can do
se_list <- splitOn(tse, group = colData(tse)$group, update.tree = TRUE)

If you want to combine groups back together, you can use unsplitBy
unsplitOn(se_list)

summarizeDominance Summarizing microbiome data

Description

To query a SummarizedExperiment for interesting features, several functions are available.

Usage

summarizeDominance(x, group = NULL, name = "dominant_taxa", ...)

getUnique(x, ...)

getTop(
x,
top = 5L,
method = c("mean", "sum", "median"),

summarizeDominance 111

assay.type = assay_name,
assay_name = "counts",
na.rm = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
getTop(
x,
top = 5L,
method = c("mean", "sum", "median", "prevalence"),
assay.type = assay_name,
assay_name = "counts",
na.rm = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
getUnique(x, rank = NULL, ...)

S4 method for signature 'SummarizedExperiment'
summarizeDominance(x, group = NULL, name = "dominant_taxa", ...)

S4 method for signature 'SummarizedExperiment'
summary(object, assay.type = assay_name, assay_name = "counts")

Arguments

x TreeSummarizedExperiment.

group With group, it is possible to group the observations in an overview. Must be one
of the column names of colData.

name Character scalar. A name for the column of the colData where results will
be stored. (Default: "dominant_taxa")

... Additional arguments passed on to agglomerateByRank() when rank is speci-
fied for summarizeDominance.

top Numeric scalar. Determines how many top taxa to return. Default is to return
top five taxa. (Default: 5)

method Character scalar. Specify the method to determine top taxa. Either sum,
mean, median or prevalence. (Default: "mean")

assay.type Character scalar. Specifies the name of the assay used in calculation. (De-
fault: "counts")

assay_name Deprecated. Use assay.type instead.

na.rm Logical scalar. Should NA values be omitted? (Default: TRUE)

rank Character scalar. Defines a taxonomic rank. Must be a value of the output of
taxonomyRanks(). (Default: NULl)

object A SummarizedExperiment object.

112 summarizeDominance

Details

The getTop extracts the most top abundant “FeatureID”s in a SummarizedExperiment object.

The getUnique is a basic function to access different taxa at a particular taxonomic rank.

summarizeDominance returns information about most dominant taxa in a tibble. Information in-
cludes their absolute and relative abundances in whole data set.

The summary will return a summary of counts for all samples and features in SummarizedExperiment
object.

Value

The getTop returns a vector of the most top abundant “FeatureID”s

The getUnique returns a vector of unique taxa present at a particular rank

The summarizeDominance returns an overview in a tibble. It contains dominant taxa in a column
named *name* and its abundance in the data set.

The summary returns a list with two tibbles

See Also

getPrevalent

perCellQCMetrics, perFeatureQCMetrics, addPerCellQC, addPerFeatureQC, quickPerCellQC

Examples

data(GlobalPatterns)
top_taxa <- getTop(GlobalPatterns,

method = "mean",
top = 5,
assay.type = "counts")

top_taxa

Use 'detection' to select detection threshold when using prevalence method
top_taxa <- getTop(GlobalPatterns,

method = "prevalence",
top = 5,
assay_name = "counts",
detection = 100)

top_taxa

Top taxa os specific rank
getTop(agglomerateByRank(GlobalPatterns,

rank = "Genus",
na.rm = TRUE))

Gets the overview of dominant taxa
dominant_taxa <- summarizeDominance(GlobalPatterns,

rank = "Genus")
dominant_taxa

taxonomyRanks 113

With group, it is possible to group observations based on specified groups
Gets the overview of dominant taxa
dominant_taxa <- summarizeDominance(GlobalPatterns,

rank = "Genus",
group = "SampleType",
na.rm = TRUE)

dominant_taxa

Get an overview of sample and taxa counts
summary(GlobalPatterns, assay.type= "counts")

Get unique taxa at a particular taxonomic rank
sort = TRUE means that output is sorted in alphabetical order
With na.rm = TRUE, it is possible to remove NAs
sort and na.rm can also be used in function getTop
getUnique(GlobalPatterns, "Phylum", sort = TRUE)

taxonomyRanks Functions for accessing taxonomic data stored in rowData.

Description

These function work on data present in rowData and define a way to represent taxonomic data
alongside the features of a SummarizedExperiment.

Usage

taxonomyRanks(x)

taxonomyRankEmpty(
x,
rank = taxonomyRanks(x)[1L],
empty.fields = c(NA, "", " ", "\t", "-", "_")

)

checkTaxonomy(x, ...)

getTaxonomyLabels(x, ...)

mapTaxonomy(x, ...)

S4 method for signature 'SummarizedExperiment'
taxonomyRanks(x)

S4 method for signature 'SummarizedExperiment'
taxonomyRankEmpty(

114 taxonomyRanks

x,
rank = taxonomyRanks(x)[1],
empty.fields = c(NA, "", " ", "\t", "-", "_")

)

S4 method for signature 'SummarizedExperiment'
checkTaxonomy(x)

setTaxonomyRanks(ranks)

getTaxonomyRanks()

S4 method for signature 'SummarizedExperiment'
getTaxonomyLabels(
x,
empty.fields = c(NA, "", " ", "\t", "-", "_"),
with.rank = with_rank,
with_rank = FALSE,
make.unique = make_unique,
make_unique = TRUE,
resolve.loops = resolve_loops,
resolve_loops = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
mapTaxonomy(
x,
taxa = NULL,
from = NULL,
to = NULL,
use.grepl = use_grepl,
use_grepl = FALSE

)

IdTaxaToDataFrame(from)

Arguments

x TreeSummarizedExperiment.

rank Character scalar. Defines a taxonomic rank. Must be a value of taxonomyRanks()
function.

empty.fields Character vector. Defines which values should be regarded as empty. (De-
fault: c(NA, "", " ", "\t")). They will be removed if na.rm = TRUE before
agglomeration.

... additional arguments

• lowest.rank: A lowest taxonomy level to be considered in getTaxonomyLabels.
Ranks lower than this will be collapsed into rank specified by lowest.rank.

taxonomyRanks 115

For example, if genus level is specified, species will be collapsed into genus.
If NULL, the data is not collapsed. (Default: NULL)

ranks Character vector. A vector of ranks to be set.

with.rank Logical scalar. Should the level be add as a suffix? For example: "Phy-
lum:Crenarchaeota". (Default: FALSE)

with_rank Deprecated. Use with.rank instead.

make.unique Logical scalar. Should the labels be made unique, if there are any duplicates?
(Default: TRUE)

make_unique Deprecated. Use make.unique instead.

resolve.loops Logical scalar. Should resolveLoops be applied to the taxonomic data?
Please note that has only an effect, if the data is unique. (Default: TRUE)

resolve_loops Deprecated. Use resolve.loops instead.

taxa Character vector. Used for subsetting the taxonomic information. If no infor-
mation is found,NULL is returned for the individual element. (Default: NULL)

from • For mapTaxonomy: character scalar. A value which must be a valid
taxonomic rank. (Default: NULL)

• otherwise a Taxa object as returned by IdTaxa

to Character Scalar. Must be a valid taxonomic rank. (Default: NULL)

use.grepl Logical. Should pattern matching via grepl be used? Otherwise literal match-
ing is used. (Default: FALSE)

use_grepl Deprecated. Use use.grepl instead.

Details

taxonomyRanks returns, which columns of rowData(x) are regarded as columns containing taxo-
nomic information.

taxonomyRankEmpty checks, if a selected rank is empty of information.

checkTaxonomy checks, if taxonomy information is valid and whether it contains any problems.
This is a soft test, which reports some diagnostic and might mature into a data validator used upon
object creation.

getTaxonomyLabels generates a character vector per row consisting of the lowest taxonomic infor-
mation possible. If data from different levels, is to be mixed, the taxonomic level is prepended by
default.

IdTaxaToDataFrame extracts taxonomic results from results of IdTaxa.

mapTaxonomy maps the given features (taxonomic groups; taxa) to the specified taxonomic level
(to argument) in rowData of the SummarizedExperiment data object (i.e. rowData(x)[,taxonomyRanks(x)]).
If the argument to is not provided, then all matching taxonomy rows in rowData will be returned.
This function allows handy conversions between different

Taxonomic information from the IdTaxa function of DECIPHER package are returned as a special
class. With as(taxa,"DataFrame") the information can be easily converted to a DataFrame com-
patible with storing the taxonomic information a rowData. Please note that the assigned confidence
information are returned as metatdata and can be accessed using metadata(df)$confidence.

116 taxonomyRanks

Value

• taxonomyRanks: a character vector with all the taxonomic ranks found in colnames(rowData(x))

• taxonomyRankEmpty: a logical value

• mapTaxonomy: a list per element of taxa. Each element is either a DataFrame, a character
or NULL. If all character results have the length of one, a single character vector is returned.

See Also

agglomerateByRank, toTree, resolveLoop

Examples

data(GlobalPatterns)
GlobalPatterns
taxonomyRanks(GlobalPatterns)

checkTaxonomy(GlobalPatterns)

table(taxonomyRankEmpty(GlobalPatterns,"Kingdom"))
table(taxonomyRankEmpty(GlobalPatterns,"Species"))

getTaxonomyLabels(GlobalPatterns[1:20,])
Taxonomy labels represent the lowest taxonomy name that identifies each
taxa. For instance, they can represent OTUs which does no necessarily
tell much. In this case, you might want to get the labels with higher
taxonomy rank
getTaxonomyLabels(GlobalPatterns[1:20,], lowest.rank = "Class")

mapTaxonomy
returns the unique taxonomic information
mapTaxonomy(GlobalPatterns)
returns specific unique taxonomic information
mapTaxonomy(GlobalPatterns, taxa = "Escherichia")
returns information on a single output
mapTaxonomy(GlobalPatterns, taxa = "Escherichia",to="Family")

setTaxonomyRanks
tse <- GlobalPatterns
colnames(rowData(tse))[1] <- "TAXA1"

setTaxonomyRanks(colnames(rowData(tse)))
Taxonomy ranks set to: taxa1 phylum class order family genus species

getTaxonomyRanks is to get/check if the taxonomic ranks is set to "TAXA1"
getTaxonomyRanks()

Tengeler2020 117

Tengeler2020 Gut microbiota profiles of 27 individuals with ADHD and healthy con-
trols

Description

Tengeler2020 includes gut microbiota profiles of 27 persons with ADHD. A standard bioinformatic
and statistical analysis done to demonstrate that altered microbial composition could be a driver of
altered brain structure and function and concomitant changes in the animals’ behavior. This was
investigated by colonizing young, male, germ-free C57BL/6JOlaHsd mice with microbiota from
individuals with and without ADHD.

Usage

data(Tengeler2020)

Format

A TreeSummarizedExperiment with 151 features and 27 samples. The rowData contains taxonomic
information at Kingdom, Phylum, Class, Order, Family and Genus level. The colData includes:

patient_status clinical status of the patient (ADHD or Control)

cohort cohort to which the patient belongs (Cohort_1, Cohort_2 and Cohort_3)

patient_status_vs_cohort combination of patient_status and cohort

sample_name unique sample ID

Author(s)

A.C. Tengeler, et al.

References

Tengeler, A.C., Dam, S.A., Wiesmann, M. et al. Gut microbiota from persons with attention-
deficit/hyperactivity disorder affects the brain in mice. Microbiome 8, 44 (2020). https://doi.
org/10.1186/s40168-020-00816-x

Supplemental information includes Home-cage activity, methods, results and imaging parameters
and publicly-accessible from: https://static-content.springer.com/esm/art%3A10.1186%
2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM1_ESM.docx https://static-content.
springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_
MOESM2_ESM.docx https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/
MediaObjects/40168_2020_816_MOESM3_ESM.docx

See Also

mia-datasets

https://doi.org/10.1186/s40168-020-00816-x
https://doi.org/10.1186/s40168-020-00816-x
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM3_ESM.docx
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-020-00816-x/MediaObjects/40168_2020_816_MOESM3_ESM.docx

118 Tito2024QMP

Tito2024QMP Fecal microbiota samples from 589 patients across different colorectal
cancer stages

Description

The study combined Quantitative Microbiome Profiling (QMP) with extensive patient phenotyp-
ing from a group of 589 colorectal cancer (CRC) patients, advanced adenoma (AA) patients, and
healthy controls. By implementing confounder control and quantitative profiling methods, the study
was able to reveal potential misleading associations between microbial markers and colorectal can-
cer development that were driven by other factors like intestinal inflammation, rather than the cancer
diagnosis itself.

Usage

data(Tito2024QMP)

Format

A TreeSummarizedExperiment with 676 features and 589 samples. The rowData contains species.
The colData includes:

sampleID (character) Sample ID from the corresponding study

diagnosis (factor) Diagnosis type, with possible values: "ADE" (advanced adenoma), "CRC" (col-
orectal cancer), "CTL" (control)

colonoscopy (factor) Colonoscopy result, with possible values: "FIT_Positive", "familial_risk_familial_CRC_FCC",
"familial_risk_no", "abdomil_complaints"

Author(s)

Shadman Ishraq

References

Raúl Y. Tito, Sara Verbandt, Marta Aguirre Vazquez, Leo Lahti, Chloe Verspecht, Verónica Lloréns-
Rico, Sara Vieira-Silva, Janine Arts, Gwen Falony, Evelien Dekker, Joke Reumers, Sabine Tejpar
& Jeroen Raes (2024). Microbiome confounders and quantitative profiling challenge predicted
microbial targets in colorectal cancer development. Nature Medicine,30, 1339-1348. https://
doi.org/10.1038/s41591-024-02963-2

See Also

mia-datasets

https://doi.org/10.1038/s41591-024-02963-2
https://doi.org/10.1038/s41591-024-02963-2

transformAssay 119

transformAssay Transform assay

Description

Variety of transformations for abundance data, stored in assay. See details for options.

Usage

transformAssay(x, ...)

S4 method for signature 'SummarizedExperiment'
transformAssay(
x,
method,
assay.type = "counts",
assay_name = NULL,
MARGIN = "samples",
name = method,
pseudocount = FALSE,
...

)

S4 method for signature 'SingleCellExperiment'
transformAssay(x, altexp = NULL, ...)

Arguments

x TreeSummarizedExperiment.

... additional arguments passed e.g. on to vegan:decostand or philr::philr.

• reference: Character scalar. Used to to fill reference sample’s column
in returned assay when calculating alr. (Default: NA)

• ref_vals Deprecated. Use reference instead.
• percentile: Numeric scalar or NULL (css). Used to set the percentile

value that calculates the scaling factors in the css normalization. If NULL,
percentile is estimated from the data by calculating the portion of samples
that exceed the threshold. (Default: NULL)

• scaling: Numeric scalar. Adjusts the normalization scale by dividing
the calculated scaling factors, effectively changing the magnitude of the
normalized counts. (Default: 1000).

• threshold: Numeric scalar. For "css", specifies relative difference thresh-
old and determines the first point where the relative change in differences
between consecutive quantiles exceeds this threshold. (Default: 0.1) For
"cutoff", values less than or equal to the threshold are replaced with
value. (Default: 0)

120 transformAssay

• value: Numeric scalar. For "cutoff", specifies the replacement value
for counts less than or equal to the threshold. (Default: NA)

• tree: phylo. Phylogeny used in PhILR transformation. If NULL, the tree is
retrieved from x. (Default: NULL).

• node.labels: Character vector. Linkages between tree and x. Used in
PhILR transformation. (Default: NULL).

method Character scalar. Specifies the transformation method.

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

assay_name Deprecated. Use assay.type instead.

MARGIN Character scalar. Determines whether the transformation is applied sample
(column) or feature (row) wise. (Default: "samples")

name Character scalar. The name for the transformed assay to be stored. (Default:
method)

pseudocount Logical scalar or numeric scalar. When TRUE, automatically adds half of
the minimum positive value of assay.type (missing values ignored by default:
na.rm = TRUE). When FALSE, does not add any pseudocount (pseudocount =
0). Alternatively, a user-specified numeric value can be added as pseudocount.
(Default: FALSE).

altexp Character vector or NULL. Specifies the names of alternative experiments to
which the transformation should also be applied. If NULL, the transformation is
only applied to the main experiment. (Default: NULL).

Details

transformAssay function provides a variety of options for transforming abundance data. The
transformed data is calculated and stored in a new assay.

The transformAssay provides sample-wise (column-wise) or feature-wise (row-wise) transforma-
tion to the abundance table (assay) based on specified MARGIN.

The available transformation methods include:

• ’alr’, ’chi.square’, ’clr’, ’frequency’, ’hellinger’, ’log’, ’normalize’, ’pa’, ’rank’, ’rclr’, ’re-
labundance’, ’rrank’, ’standardize’, ’total’: please refer to decostand for details.

• ’philr’: please refer to philr for details.

• ’css’: Cumulative Sum Scaling (CSS) can be used to normalize count data by accounting for
differences in library sizes. By default, the function determines the normalization percentile
for summing and scaling counts. If you want to specify the percentile value, good default
value might be 0.5. The method is inspired by the CSS methods in metagenomeSeq package.

• ’log10’: log10 transformation can be used for reducing the skewness of the data.

log10 = log10 x

where x is a single value of data.

transformAssay 121

• ’log2’: log2 transformation can be used for reducing the skewness of the data.

log2 = log2 x

where x is a single value of data.

• ’difference’: Pairwise differences between features. Calculates x − y for all unique feature
pairs across samples, where x and y are entries of the specified assay.type.

• ’division’: Pairwise ratios between features. Calculates x/y for all unique feature pairs across
samples, where x and y are entries of the specified assay.type.

• ’invnorm’: Inverse rank normalisation. Ranks values per sample/feature and maps them to
standard normal quantiles.

z = Φ−1

(
r − offset

n+ 1− 2 offset

)
Controlled by offset (default 0.5; also 0.375=Blom, 0=van der Waerden) and ties.method
(passed to base::rank, default "average").

• ’pseudocount’: Adds only pseudocount.

• ’cutoff’: In some ecological studies, only strictly positive values are taken into account. This
method keeps only values greater than threshold and replaces all other values with value.

Value

transformAssay returns the input object x, with a new transformed abundance table named name
added in the assays.

References

Paulson, J., Stine, O., Bravo, H. et al. (2013) Differential abundance analysis for microbial marker-
gene surveys Nature Methods 10, 1200–1202. doi:10.1038/nmeth.2658

See Also

• vegan::decostand

• philr::philr

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

By specifying 'method', it is possible to apply different transformations,
e.g. compositional transformation.
tse <- transformAssay(tse, method = "relabundance")

The target of transformation can be specified with "assay.type"
Pseudocount can be added by specifying 'pseudocount'.

Perform CLR with half of the smallest positive value as pseudocount

122 transformAssay

tse <- transformAssay(
tse, assay.type = "counts", method = "clr",
pseudocount = TRUE
)

head(assay(tse, "clr"))

Perform CSS normalization.
tse <- transformAssay(tse, method = "css")
head(assay(tse, "css"))

With MARGIN, you can specify the if transformation is done for samples or
for features. Here Z-transformation is done feature-wise.
tse <- transformAssay(tse, method = "standardize", MARGIN = "features")
head(assay(tse, "standardize"))

Name of the stored table can be specified.
tse <- transformAssay(tse, method="hellinger", name="test")
head(assay(tse, "test"))

pa returns presence absence table.
tse <- transformAssay(tse, method = "pa")
head(assay(tse, "pa"))

rank returns ranks of taxa.
tse <- transformAssay(tse, method = "rank")
head(assay(tse, "rank"))

In order to use other ranking variants, modify the chosen assay directly:
assay(tse, "rank_average", withDimnames = FALSE) <- colRanks(

assay(tse, "counts"), ties.method = "average", preserveShape = TRUE)

Using altexp parameter. First agglomerate the data and then apply
transformation.
tse <- GlobalPatterns
tse <- agglomerateByRanks(tse)
tse <- transformAssay(

tse, method = "relabundance", altexp = altExpNames(tse))
The transformation is applied to all alternative experiments
altExp(tse, "Species")

Not run:
philr transformation can be applied if the philr package is installed.
Subset data b taking only prevalent taxa
tse <- subsetByPrevalent(tse)
Apply transformation
tse <- transformAssay(tse, method = "philr", pseudocount = 1, MARGIN = 1L)
The transformed data is added to altExp
altExp(tse, "philr")

End(Not run)

Index

∗ datasets
dmn_se, 50
enterotype, 51
esophagus, 52
GlobalPatterns, 89
HintikkaXOData, 90
mia-datasets, 104
peerj13075, 105
Tengeler2020, 117
Tito2024QMP, 118

?agglomerateByRank, 85

addAbundanceClass (getAbundant), 53
addAbundanceClass,SingleCellExperiment-method

(getAbundant), 53
addAbundanceClass,SummarizedExperiment-method

(getAbundant), 53
addAlpha, 5, 21
addAlpha,SummarizedExperiment-method

(addAlpha), 5
addCCA, 82
addCCA (getCCA), 56
addCCA,SingleCellExperiment-method

(getCCA), 56
addCluster, 12
addCluster,SummarizedExperiment-method

(addCluster), 12
addContaminantQC, 14
addContaminantQC,SummarizedExperiment-method

(addContaminantQC), 14
addDissimilarity, 16, 21
addDissimilarity,SummarizedExperiment-method

(addDissimilarity), 16
addDivergence, 20
addDivergence,SummarizedExperiment-method

(addDivergence), 20
addDominant (getDominant), 67
addDominant,SummarizedExperiment-method

(getDominant), 67
addDPCoA (getDPCoA), 69

addHierarchyTree, 98
addHierarchyTree (getHierarchyTree), 71
addHierarchyTree,SummarizedExperiment-method

(getHierarchyTree), 71
addLDA, 88
addLDA (getLDA), 72
addLDA,SummarizedExperiment-method

(getLDA), 72
addMDS (getMDS), 74
addMDS,SingleCellExperiment-method

(getMDS), 74
addMediation, 22
addMediation,SummarizedExperiment-method

(addMediation), 22
addNMDS (getNMDS), 75
addNMF, 88
addNMF (getNMF), 78
addNMF,SummarizedExperiment-method

(getNMF), 78
addNotContaminantQC (addContaminantQC),

14
addNotContaminantQC,SummarizedExperiment-method

(addContaminantQC), 14
addPerCellQC, 112
addPerFeatureQC, 112
addPERMANOVA (getPERMANOVA), 80
addPERMANOVA,SummarizedExperiment-method

(getPERMANOVA), 80
addPerSampleDominantFeatures

(deprecate), 42
addPerSampleDominantFeatures,SummarizedExperiment-method

(deprecate), 42
addPerSampleDominantTaxa (deprecate), 42
addPerSampleDominantTaxa,SummarizedExperiment-method

(deprecate), 42
addPrevalence (getPrevalence), 82
addPrevalence,SummarizedExperiment-method

(getPrevalence), 82
addPrevalentAbundance (getPrevalence),

123

124 INDEX

82
addPrevalentAbundance,SummarizedExperiment-method

(getPrevalence), 82
addRDA, 82
addRDA (getCCA), 56
addRDA,SingleCellExperiment-method

(getCCA), 56
addTaxonomyTree (deprecate), 42
addTaxonomyTree,SummarizedExperiment-method

(deprecate), 42
agglomerate-methods

(agglomerateByRank), 27
agglomerateByModule

(agglomerateByRank), 27
agglomerateByModule,SummarizedExperiment-method

(agglomerateByRank), 27
agglomerateByPrevalence, 26
agglomerateByPrevalence,SummarizedExperiment-method

(agglomerateByPrevalence), 26
agglomerateByPrevalence,TreeSummarizedExperiment-method

(agglomerateByPrevalence), 26
agglomerateByRank, 26, 27, 30, 32, 85, 86,

109, 116
agglomerateByRank,SingleCellExperiment-method

(agglomerateByRank), 27
agglomerateByRank,SummarizedExperiment-method

(agglomerateByRank), 27
agglomerateByRank,TreeSummarizedExperiment-method

(agglomerateByRank), 27
agglomerateByRanks, 109
agglomerateByRanks (agglomerateByRank),

27
agglomerateByRanks,SingleCellExperiment-method

(agglomerateByRank), 27
agglomerateByRanks,SummarizedExperiment-method

(agglomerateByRank), 27
agglomerateByRanks,TreeSummarizedExperiment-method

(agglomerateByRank), 27
agglomerateByVariable, 32, 109
agglomerateByVariable

(agglomerateByRank), 27
agglomerateByVariable,SummarizedExperiment-method

(agglomerateByRank), 27
agglomerateByVariable,TreeSummarizedExperiment-method

(agglomerateByRank), 27
altExps, 32, 109
ape::phylo, 97
assay, 28

assays, 121
avgdist, 17

bestDMNFit (calculateDMN), 34
bestDMNFit,SummarizedExperiment-method

(calculateDMN), 34
BiocParallelParam, 6, 17, 36
biom, 40
Biostrings::DNAStringSet, 97
bluster, 13
BlusterParam, 13

calculateCCA (getCCA), 56
calculateDMN, 34, 51
calculateDMN,ANY-method (calculateDMN),

34
calculateDMN,SummarizedExperiment-method

(calculateDMN), 34
calculateDMNgroup (calculateDMN), 34
calculateDMNgroup,ANY-method

(calculateDMN), 34
calculateDMNgroup,SummarizedExperiment-method

(calculateDMN), 34
calculateDPCoA (getDPCoA), 69
calculateJSD (deprecate), 42
calculateJSD,ANY-method (deprecate), 42
calculateNMDS (getNMDS), 75
calculateOverlap (deprecate), 42
calculateOverlap,ANY-method

(deprecate), 42
calculateRDA (getCCA), 56
calculateUnifrac (deprecate), 42
calculateUnifrac,ANY-method

(deprecate), 42
cca, 59
checkTaxonomy (taxonomyRanks), 113
checkTaxonomy,SummarizedExperiment-method

(taxonomyRanks), 113
cluster (deprecate), 42
cluster,SummarizedExperiment-method

(deprecate), 42
colData, 21, 68
convertFromBIOM, 40, 92–94, 97, 98
convertFromBIOM (convertToBIOM), 39
convertFromDADA2, 38, 40, 92–94, 97
convertFromPhyloseq, 40, 92–94, 97
convertFromPhyloseq

(convertToPhyloseq), 41
convertToBIOM, 39

INDEX 125

convertToBIOM,SummarizedExperiment-method
(convertToBIOM), 39

convertToPhyloseq, 41
convertToPhyloseq,SummarizedExperiment-method

(convertToPhyloseq), 41
convertToPhyloseq,TreeSummarizedExperiment-method

(convertToPhyloseq), 41
cophenetic.phylo, 70
countDominantFeatures (deprecate), 42
countDominantFeatures,SummarizedExperiment-method

(deprecate), 42
countDominantTaxa (deprecate), 42
countDominantTaxa,SummarizedExperiment-method

(deprecate), 42

dbrda, 59
decontam:isContaminant, 15
decontam:isNotContaminant, 15
decostand, 120
deprecate, 42
DirichletMultinomial, 34
dist, 77
diversity, 11
dmn, 36, 37
dmn_se, 50, 104
DMNGroup, 37
dmngroup, 37

ecodive:unweighted_unifrac(), 18
ecodive:weighted_unifrac(), 18
enterotype, 51, 104
esophagus, 52, 104
estimateDivergence (deprecate), 42
estimateDivergence,SummarizedExperiment-method

(deprecate), 42
estimateDiversity (deprecate), 42
estimateDiversity,ANY-method

(deprecate), 42
estimateDominance (deprecate), 42
estimateDominance,ANY-method

(deprecate), 42
estimateEvenness (deprecate), 42
estimateEvenness,ANY-method

(deprecate), 42
estimateFaith (deprecate), 42
estimateFaith,ANY-method (deprecate), 42
estimateR, 9–11
estimateRichness (deprecate), 42

estimateRichness,ANY-method
(deprecate), 42

full_join, 103
full_join (deprecate), 42
full_join,ANY-method (deprecate), 42

getAbundanceClass (getAbundant), 53
getAbundanceClass,ANY-method

(getAbundant), 53
getAbundanceClass,SingleCellExperiment-method

(getAbundant), 53
getAbundanceClass,SummarizedExperiment-method

(getAbundant), 53
getAbundant, 53
getAbundant,ANY-method (getAbundant), 53
getAbundant,SingleCellExperiment-method

(getAbundant), 53
getAbundant,SummarizedExperiment-method

(getAbundant), 53
getAlpha (addAlpha), 5
getAlpha,SummarizedExperiment-method

(addAlpha), 5
getBestDMNFit (calculateDMN), 34
getBestDMNFit,SummarizedExperiment-method

(calculateDMN), 34
getCCA, 56
getCCA,ANY-method (getCCA), 56
getCCA,SummarizedExperiment-method

(getCCA), 56
getConditionallyLowAbundant

(getAbundant), 53
getConditionallyLowAbundant,ANY-method

(getAbundant), 53
getConditionallyLowAbundant,SingleCellExperiment-method

(getAbundant), 53
getConditionallyLowAbundant,SummarizedExperiment-method

(getAbundant), 53
getCrossAssociation, 61
getCrossAssociation,MultiAssayExperiment-method

(getCrossAssociation), 61
getCrossAssociation,SummarizedExperiment-method

(getCrossAssociation), 61
getDissimilarity, 75
getDissimilarity (addDissimilarity), 16
getDissimilarity,ANY-method

(addDissimilarity), 16
getDissimilarity,SummarizedExperiment-method

(addDissimilarity), 16

126 INDEX

getDissimilarity,TreeSummarizedExperiment-method
(addDissimilarity), 16

getDivergence (addDivergence), 20
getDivergence,SummarizedExperiment-method

(addDivergence), 20
getDMN (calculateDMN), 34
getDMN,SummarizedExperiment-method

(calculateDMN), 34
getDominant, 67
getDominant,SummarizedExperiment-method

(getDominant), 67
getDPCoA, 69
getDPCoA,ANY,ANY-method (getDPCoA), 69
getDPCoA,TreeSummarizedExperiment,missing-method

(getDPCoA), 69
getExperimentCrossAssociation

(deprecate), 42
getExperimentCrossAssociation,MultiAssayExperiment-method

(deprecate), 42
getExperimentCrossAssociation,SummarizedExperiment-method

(deprecate), 42
getExperimentCrossCorrelation

(deprecate), 42
getExperimentCrossCorrelation,ANY-method

(deprecate), 42
getHierarchyTree, 71
getHierarchyTree,SummarizedExperiment-method

(getHierarchyTree), 71
getLDA, 72
getLDA,SummarizedExperiment-method

(getLDA), 72
getLowAbundant (getAbundant), 53
getLowAbundant,ANY-method

(getAbundant), 53
getLowAbundant,SingleCellExperiment-method

(getAbundant), 53
getLowAbundant,SummarizedExperiment-method

(getAbundant), 53
getMDS, 74
getMDS,SingleCellExperiment-method

(getMDS), 74
getMDS,TreeSummarizedExperiment-method

(getMDS), 74
getMediation (addMediation), 22
getMediation,SummarizedExperiment-method

(addMediation), 22
getNMDS, 75
getNMDS,ANY-method (getNMDS), 75

getNMDS,SingleCellExperiment-method
(getNMDS), 75

getNMDS,SummarizedExperiment-method
(getNMDS), 75

getNMF, 78
getNMF,SummarizedExperiment-method

(getNMF), 78
getPermanentlyLowAbundant

(getAbundant), 53
getPermanentlyLowAbundant,ANY-method

(getAbundant), 53
getPermanentlyLowAbundant,SingleCellExperiment-method

(getAbundant), 53
getPermanentlyLowAbundant,SummarizedExperiment-method

(getAbundant), 53
getPERMANOVA, 80
getPERMANOVA,ANY-method (getPERMANOVA),

80
getPERMANOVA,SingleCellExperiment-method

(getPERMANOVA), 80
getPERMANOVA,SummarizedExperiment-method

(getPERMANOVA), 80
getPrevalence, 82
getPrevalence,ANY-method

(getPrevalence), 82
getPrevalence,SummarizedExperiment-method

(getPrevalence), 82
getPrevalent, 53, 55, 112
getPrevalent (getPrevalence), 82
getPrevalent,ANY-method

(getPrevalence), 82
getPrevalent,SummarizedExperiment-method

(getPrevalence), 82
getPrevalentAbundance (getPrevalence),

82
getPrevalentAbundance,ANY-method

(getPrevalence), 82
getPrevalentAbundance,SummarizedExperiment-method

(getPrevalence), 82
getPrevalentFeatures (deprecate), 42
getPrevalentFeatures,ANY-method

(deprecate), 42
getPrevalentFeatures,SummarizedExperiment-method

(deprecate), 42
getPrevalentTaxa (deprecate), 42
getPrevalentTaxa,ANY-method

(deprecate), 42
getPrevalentTaxa,SummarizedExperiment-method

INDEX 127

(deprecate), 42
getRare, 53, 55
getRare (getPrevalence), 82
getRare,ANY-method (getPrevalence), 82
getRare,SummarizedExperiment-method

(getPrevalence), 82
getRareFeatures (deprecate), 42
getRareFeatures,ANY-method (deprecate),

42
getRareFeatures,SummarizedExperiment-method

(deprecate), 42
getRareTaxa (deprecate), 42
getRareTaxa,ANY-method (deprecate), 42
getRareTaxa,SummarizedExperiment-method

(deprecate), 42
getRDA (getCCA), 56
getRDA,ANY-method (getCCA), 56
getRDA,SummarizedExperiment-method

(getCCA), 56
getReducedDimAttribute, 88
getReducedDimAttribute,SingleCellExperiment-method

(getReducedDimAttribute), 88
getTaxonomyLabels (taxonomyRanks), 113
getTaxonomyLabels,SummarizedExperiment-method

(taxonomyRanks), 113
getTaxonomyRanks (taxonomyRanks), 113
getTop, 86
getTop (summarizeDominance), 110
getTop,SummarizedExperiment-method

(summarizeDominance), 110
getTopFeatures (deprecate), 42
getTopFeatures,SummarizedExperiment-method

(deprecate), 42
getTopTaxa (deprecate), 42
getTopTaxa,SummarizedExperiment-method

(deprecate), 42
getUnique (summarizeDominance), 110
getUnique,SummarizedExperiment-method

(summarizeDominance), 110
getUniqueFeatures (deprecate), 42
getUniqueFeatures,SummarizedExperiment-method

(deprecate), 42
getUniqueTaxa (deprecate), 42
getUniqueTaxa,SummarizedExperiment-method

(deprecate), 42
GlobalPatterns, 89, 104

hierarchy-tree (getHierarchyTree), 71
HintikkaXOData, 90, 104

IdTaxa, 115
IdTaxaToDataFrame (taxonomyRanks), 113
importBIOM, 98
importBIOM (convertToBIOM), 39
importHUMAnN, 40, 91
importMetaPhlAn, 40, 91, 92, 92
importMothur, 40, 92, 93, 93, 97
importQIIME2, 40, 92–94, 95
importQZA (importQIIME2), 95
importTaxpasta, 98
inner_join, 103
inner_join (deprecate), 42
inner_join,ANY-method (deprecate), 42
isContaminant (addContaminantQC), 14
isContaminant,SummarizedExperiment-method

(addContaminantQC), 14
isNotContaminant,SummarizedExperiment-method

(addContaminantQC), 14

LDA, 73
left_join, 103
left_join (deprecate), 42
left_join,ANY-method (deprecate), 42
loadFromBiom (deprecate), 42
loadFromHumann (deprecate), 42
loadFromMetaphlan (deprecate), 42
loadFromMothur (deprecate), 42
loadFromQIIME2 (deprecate), 42

makePhyloseqFromTreeSE (deprecate), 42
makePhyloseqFromTreeSE,SummarizedExperiment-method

(deprecate), 42
makePhyloseqFromTreeSE,TreeSummarizedExperiment-method

(deprecate), 42
makePhyloseqFromTreeSummarizedExperiment

(deprecate), 42
makePhyloseqFromTreeSummarizedExperiment,ANY-method

(deprecate), 42
makeTreeSEFromBiom (deprecate), 42
makeTreeSEFromDADA2 (deprecate), 42
makeTreeSEFromPhyloseq (deprecate), 42
makeTreeSummarizedExperimentFromBiom

(deprecate), 42
makeTreeSummarizedExperimentFromDADA2

(deprecate), 42
makeTreeSummarizedExperimentFromPhyloseq

(deprecate), 42
makeTreeSummarizedExperimentFromPhyloseq,ANY-method

(deprecate), 42

128 INDEX

mapTaxonomy (taxonomyRanks), 113
mapTaxonomy,SummarizedExperiment-method

(taxonomyRanks), 113
MASS::isoMDS, 77, 78
mediate, 22–24
meltAssay (deprecate), 42
meltAssay,SummarizedExperiment-method

(deprecate), 42
meltSE, 99
meltSE,SingleCellExperiment-method

(meltSE), 99
meltSE,SummarizedExperiment-method

(meltSE), 99
mergeCols (deprecate), 42
mergeCols,SummarizedExperiment-method

(deprecate), 42
mergeCols,TreeSummarizedExperiment-method

(deprecate), 42
mergeFeatures (deprecate), 42
mergeFeatures,SummarizedExperiment-method

(deprecate), 42
mergeFeatures,TreeSummarizedExperiment-method

(deprecate), 42
mergeFeaturesByPrevalence (deprecate),

42
mergeFeaturesByPrevalence,SummarizedExperiment-method

(deprecate), 42
mergeFeaturesByRank (deprecate), 42
mergeFeaturesByRank,SingleCellExperiment-method

(deprecate), 42
mergeFeaturesByRank,SummarizedExperiment-method

(deprecate), 42
mergeFeaturesByRank,TreeSummarizedExperiment-method

(deprecate), 42
mergeRows (deprecate), 42
mergeRows,SummarizedExperiment-method

(deprecate), 42
mergeRows,TreeSummarizedExperiment-method

(deprecate), 42
mergeSamples (deprecate), 42
mergeSamples,SummarizedExperiment-method

(deprecate), 42
mergeSamples,TreeSummarizedExperiment-method

(deprecate), 42
mergeSEs, 101
mergeSEs,list-method (mergeSEs), 101
mergeSEs,SimpleList-method (mergeSEs),

101

mergeSEs,SummarizedExperiment-method
(mergeSEs), 101

metadata, 13, 36
metagenomeSeq, 120
mia (mia-package), 4
mia-datasets, 104
mia-package, 4
MultiAssayExperiment, 62

name, 9

peerj13075, 104, 105
perCellQCMetrics, 112
perFeatureQCMetrics, 112
performDMNgroupCV (calculateDMN), 34
performDMNgroupCV,ANY-method

(calculateDMN), 34
performDMNgroupCV,SummarizedExperiment-method

(calculateDMN), 34
perSampleDominantFeatures (deprecate),

42
perSampleDominantFeatures,SummarizedExperiment-method

(deprecate), 42
perSampleDominantTaxa (deprecate), 42
perSampleDominantTaxa,SummarizedExperiment-method

(deprecate), 42
philr, 120
philr::philr, 121
phyloseq, 42
phyloseq::rarefy_even_depth, 107
picante::pd, 7
plotColData, 11, 21
plotMDS, 78
plotNMDS (deprecate), 42
plotReducedDim, 71

quickPerCellQC, 112

rarefyAssay, 106
rarefyAssay,SummarizedExperiment-method

(rarefyAssay), 106
readQZA (deprecate), 42
reducedDims, 71
relabundance (deprecate), 42
relabundance,SummarizedExperiment-method

(deprecate), 42
relabundance<- (deprecate), 42
relabundance<-,SummarizedExperiment-method

(deprecate), 42

INDEX 129

relAbundanceCounts (deprecate), 42
relAbundanceCounts,SummarizedExperiment-method

(deprecate), 42
resolveLoop, 72, 116
right_join, 103
right_join (deprecate), 42
right_join,ANY-method (deprecate), 42
runCCA, 88
runCCA (getCCA), 56
runDMN (calculateDMN), 34
runDPCoA (getDPCoA), 69
runJSD (deprecate), 42
runJSD,SummarizedExperiment-method

(deprecate), 42
runNMDS (getNMDS), 75
runOverlap (deprecate), 42
runOverlap,SummarizedExperiment-method

(deprecate), 42
runRDA (getCCA), 56
runUnifrac (deprecate), 42

scater::calculateMDS, 74, 75
scater::runMDS, 74
scores, 59
setTaxonomyRanks (taxonomyRanks), 113
splitAltExps, 31, 32, 109
splitByRanks (agglomerateByRank), 27
splitOn, 32, 108
splitOn,SingleCellExperiment-method

(splitOn), 108
splitOn,SummarizedExperiment-method

(splitOn), 108
splitOn,TreeSummarizedExperiment-method

(splitOn), 108
stats::anova, 58, 81
stats::TukeyHSD, 58, 81
subsampleCounts (deprecate), 42
subsampleCounts,SummarizedExperiment-method

(deprecate), 42
subsetByPrevalent (getPrevalence), 82
subsetByPrevalent,SummarizedExperiment-method

(getPrevalence), 82
subsetByPrevalent,TreeSummarizedExperiment-method

(getPrevalence), 82
subsetByPrevalentFeatures (deprecate),

42
subsetByPrevalentFeatures,ANY-method

(deprecate), 42
subsetByPrevalentTaxa (deprecate), 42

subsetByPrevalentTaxa,ANY-method
(deprecate), 42

subsetByRare (getPrevalence), 82
subsetByRare,SummarizedExperiment-method

(getPrevalence), 82
subsetByRare,TreeSummarizedExperiment-method

(getPrevalence), 82
subsetByRareFeatures (deprecate), 42
subsetByRareFeatures,ANY-method

(deprecate), 42
subsetByRareTaxa (deprecate), 42
subsetByRareTaxa,ANY-method

(deprecate), 42
subsetFeatures (deprecate), 42
subsetFeatures,SummarizedExperiment-method

(deprecate), 42
subsetSamples (deprecate), 42
subsetSamples,SummarizedExperiment-method

(deprecate), 42
subsetTaxa (deprecate), 42
subsetTaxa,SummarizedExperiment-method

(deprecate), 42
sumCountsAcrossFeatures, 31, 32, 109
SummarizedExperiment, 5, 13–15, 21–24, 36,

50, 55, 58, 62, 67, 68, 71, 74, 80–82,
88, 99, 102, 111, 112

summarizeDominance, 110
summarizeDominance,SummarizedExperiment-method

(summarizeDominance), 110
summary (summarizeDominance), 110
summary,SummarizedExperiment-method

(summarizeDominance), 110

taxonomy-methods (taxonomyRanks), 113
taxonomyRankEmpty (taxonomyRanks), 113
taxonomyRankEmpty,SummarizedExperiment-method

(taxonomyRanks), 113
taxonomyRanks, 27, 113
taxonomyRanks,SummarizedExperiment-method

(taxonomyRanks), 113
taxonomyTree (deprecate), 42
taxonomyTree,SummarizedExperiment-method

(deprecate), 42
Tengeler2020, 104, 117
testExperimentCrossAssociation

(deprecate), 42
testExperimentCrossAssociation,ANY-method

(deprecate), 42

130 INDEX

testExperimentCrossCorrelation
(deprecate), 42

testExperimentCrossCorrelation,ANY-method
(deprecate), 42

Tito2024QMP, 104, 118
toTree, 72, 116
transformAssay, 119
transformAssay,SingleCellExperiment-method

(transformAssay), 119
transformAssay,SummarizedExperiment-method

(transformAssay), 119
transformCounts (deprecate), 42
transformFeatures (deprecate), 42
transformFeatures,SummarizedExperiment-method

(deprecate), 42
transformSamples (deprecate), 42
transformSamples,SummarizedExperiment-method

(deprecate), 42
TreeSummarizedExperiment, 5, 16, 17, 26,

30, 38–42, 58, 68, 70–73, 76–79, 85,
91, 93, 94, 97–99, 101, 106, 109,
111, 114, 119

twins (dmn_se), 50

unsplitByRanks (agglomerateByRank), 27
unsplitByRanks,SingleCellExperiment-method

(agglomerateByRank), 27
unsplitByRanks,TreeSummarizedExperiment-method

(agglomerateByRank), 27
unsplitOn, 32
unsplitOn (splitOn), 108
unsplitOn,list-method (splitOn), 108
unsplitOn,SimpleList-method (splitOn),

108
unsplitOn,SingleCellExperiment-method

(splitOn), 108
utilization_functions

(getReducedDimAttribute), 88

vegan::adonis2, 81, 82
vegan::betadisper, 58, 59, 81, 82
vegan::decostand, 121
vegan::diversity, 7
vegan::fisher.alpha, 7
vegan::monoMDS, 77, 78
vegan::permutest, 58, 81, 82
vegan::rrarefy, 107
vegan:avgdist(), 18
vegdist, 16–18, 58

ZTransform (deprecate), 42
ZTransform,SummarizedExperiment-method

(deprecate), 42

	mia-package
	addAlpha
	addCluster
	addContaminantQC
	addDissimilarity
	addDivergence
	addMediation
	agglomerateByPrevalence
	agglomerateByRank
	calculateDMN
	convertFromDADA2
	convertToBIOM
	convertToPhyloseq
	deprecate
	dmn_se
	enterotype
	esophagus
	getAbundant
	getCCA
	getCrossAssociation
	getDominant
	getDPCoA
	getHierarchyTree
	getLDA
	getMDS
	getNMDS
	getNMF
	getPERMANOVA
	getPrevalence
	getReducedDimAttribute
	GlobalPatterns
	HintikkaXOData
	importHUMAnN
	importMetaPhlAn
	importMothur
	importQIIME2
	importTaxpasta
	meltSE
	mergeSEs
	mia-datasets
	peerj13075
	rarefyAssay
	splitOn
	summarizeDominance
	taxonomyRanks
	Tengeler2020
	Tito2024QMP
	transformAssay
	Index

