
Package ‘methylInheritance’
February 2, 2026

Version 1.35.0

Date 2021-11-21

Title Permutation-Based Analysis associating Conserved Differentially
Methylated Elements Across Multiple Generations to a Treatment
Effect

Description Permutation analysis, based on Monte Carlo sampling, for
testing the hypothesis that the number of conserved
differentially methylated elements, between several
generations, is associated to an effect inherited from a
treatment and that stochastic effect can be dismissed.

Depends R (>= 3.5)

Imports methylKit, BiocParallel, GenomicRanges, IRanges, S4Vectors,
methods, parallel, ggplot2, gridExtra, rebus

Suggests BiocStyle, BiocGenerics, knitr, rmarkdown, RUnit,
methInheritSim, testthat (>= 3.0.0)

Encoding UTF-8

License Artistic-2.0

URL https://github.com/adeschen/methylInheritance

BugReports https://github.com/adeschen/methylInheritance/issues

VignetteBuilder knitr

biocViews BiologicalQuestion, Epigenetics, DNAMethylation,
DifferentialMethylation, MethylSeq, Software, ImmunoOncology,
StatisticalMethod, WholeGenome, Sequencing

RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/methylInheritance

git_branch devel

git_last_commit ffbee45

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

https://github.com/adeschen/methylInheritance
https://github.com/adeschen/methylInheritance/issues


2 methylInheritance-package

Author Astrid Deschênes [cre, aut] (ORCID:
<https://orcid.org/0000-0001-7846-6749>),

Pascal Belleau [aut] (ORCID: <https://orcid.org/0000-0002-0802-1071>),
Arnaud Droit [aut]

Maintainer Astrid Deschênes <adeschen@hotmail.com>

Contents
methylInheritance-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
calculateSignificantLevel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
createDataStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
createOutputDir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
demoForTransgenerationalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
extractInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
formatInputMethylData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
getGRangesFromMethylDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
interGeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
isInterGenerationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
loadAllRDSResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
loadConvergenceData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
mergePermutationAndObservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
methylInheritanceResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
plotConvergenceGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
plotGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
print.methylInheritanceAllResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
readInterGenerationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
runObservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
runOnePermutationOnAllGenerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
runPermutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
samplesForTransgenerationalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
saveInterGenerationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
validateExtractInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
validateLoadConvergenceData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
validateMergePermutationAndObservation . . . . . . . . . . . . . . . . . . . . . . . . 40
validateRunObservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
validateRunPermutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Index 47

methylInheritance-package

methylInheritance: Permutation-Based Analysis associating Con-
served Differentially Methylated Elements from One Generation to the
Next to a Treatment Effect

https://orcid.org/0000-0001-7846-6749
https://orcid.org/0000-0002-0802-1071


calculateSignificantLevel 3

Description

This package does a permutation analysis, based on Monte Carlo sampling, for testing the hypothe-
sis that the number of conserved differentially methylated elements (sites or tiles), between several
generations, is associated to an effect inherited from a treatment and that stochastic effect can be
dismissed.

Value

methylInheritance

Author(s)

Astrid Deschênes, Pascal Belleau and Arnaud Droit

Maintainer: Astrid Deschenes <adeschen@hotmail.com>

See Also

runPermutation for running a permutation analysis, and optionally an observation analysis, on a
specified multi-generational dataset

runObservation for running an observation analysis on a specified multi-generational dataset

calculateSignificantLevel

Calculate significant level for hypo and hyper conserved elements

Description

Calculate significant level for hypo and hyper conserved elements using permutation results as well
as observed results

Usage

calculateSignificantLevel(formatForGraphDataFrame)

Arguments

formatForGraphDataFrame

a data.frame containing the observation results (using real data) and the permu-
tation results (using shuffled data). Both hyper and hypo differentially conserved
methylation results must be present. The data.frame must have 3 columns :
"TYPE", "RESULT" and "SOURCE". The "TYPE" can be either "HYPER" or
"HYPO". The "RESULT" is the number of conserved differentially elements.
The "SOURCE" can be either "OBSERVATION" or "PERMUTATION".



4 createDataStructure

Value

a list containing two elements:

• HYPER a double, the significant level for the hyper differentially methylated conserved ele-
ments

• HYPO a double, the significant level for the hypo differentially methylated conserved elements

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Loading dataset containing all results
data(methylInheritanceResults)

## Extract information for the intersection between conserved differentially
## methylated sites (type = sites) between the intersection of 2
## generations (inter = i2): F2 and F3 (position = 2)
info <- extractInfo(allResults = methylInheritanceResults,

type = "sites", inter="i2", 2)

## Create graph
methylInheritance:::calculateSignificantLevel(info)

createDataStructure Extract the number of conserved differentially methylated elements in
GRanges.

Description

Extract the number of conserved differentially methylated elements in GRanges. Each GRanges is
the result of one intersection between two or more consecutive generations for one analysis done
on all generations. The hypo and hyper differentially methylated elements are counted separatly.

Usage

createDataStructure(interGenerationGR)

Arguments

interGenerationGR

a list that contains the information for all differentially methylated analysis
done on each generation present in the initial dataset. The list must contain
the following elements:



createDataStructure 5

• i2 a list of GRanges Each GRanges represents the intersection of analysis
results between two consecutive generations. The first element represents
the intersection of the first and second generations; the second element, the
intersection of the second and third generations; etc.. The number of entries
depends of the number of generations.

• iAll a list of GRanges. Each GRanges represents the intersection fo the
analysis results between three or more consecutive generations. The first
element represents the intersection of the first three generations; the second
element, the intersection of the first fourth generations; etc..The number of
entries depends of the number of generations.

Value

a list containing the following elements:

• i2 a list containing:
– HYPER a list of integer, the number of conserved hyper differentially methylated sites

between two consecutive generations. The first element represents the intersection of the
first and second generations; the second element, the intersection of the second and third
generations; etc..

– HYPO a list of integer, the number of conserved hypo differentially methylated sites
between two consecutive generations.The first element represents the intersection of the
first and second generations; the second element, the intersection of the second and third
generations; etc..

• iAll a list containing:
– HYPER a list of integer, the number of conserved hyper differentially methylated sites

between three or more consecutive generations. The first element represents the intersec-
tion of the first three generations; the second element, the intersection of the first fourth
generations; etc..The number of entries depends of the number of generations.

– HYPO a list of integer, the number of conserved hypo differentially methylated sites
between three or more consecutive generations. The first element represents the intersec-
tion of the first three generations; the second element, the intersection of the first fourth
generations; etc..The number of entries depends of the number of generations.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Get the name of the directory where the file is stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Load file containing results from a observation analysis
obsResults <- readRDS(file = paste0(filesDir,

"/SITES/SITES_observed_results.RDS"))

## Create data structure using information form the observation analysis
formatedResults <- methylInheritance:::createDataStructure(obsResults)



6 createOutputDir

createOutputDir Create directories that will contained the results of the permutations
in RDS format

Description

Create directories that will contained the results of the permutations in RDS format.

Usage

createOutputDir(
outputDir,
doingSites = TRUE,
doingTiles = FALSE,
saveInfoByGeneration

)

Arguments

outputDir a string of character, the name of the main directory to be created.

doingSites a logical, a directory consecrated to contain the results of the permutation
analysis for sites is created when doingSites = TRUE. Default: TRUE.

doingTiles a logical, a directory consecrated to contain the results of the permutation
analysis for tiles is created when doingTiles = TRUE. Default: FALSE.

saveInfoByGeneration

a logical, when TRUE, the information about differentially methylated sites and
tiles for each generation is saved in a RDS file. The information is saved in a
different file for each permutation.

Value

0 when all directories are created without problem.

Author(s)

Astrid Deschenes

Examples

## Create an output directory for SITES only
methylInheritance:::createOutputDir(outputDir = "testSites",

doingSites = TRUE, doingTiles = FALSE, saveInfoByGeneration = TRUE)



demoForTransgenerationalAnalysis 7

demoForTransgenerationalAnalysis

The methylation information from samples over three generations. In-
formation for each generation is stored in a methylRawList format
(for demo purpose).

Description

The object is a list with 3 entries. Each entry corresponds to the information for one generation
(first entry = first generation, etc..) stored in a methylRawList object. There are 12 samples (6
controls and 6 cases) for each generation. Each sample information is stored in a methylRaw object.

Usage

data(demoForTransgenerationalAnalysis)

Format

A list containing three methylRawList objects. Each methylRawList contains the information
for one generation (first entry = first generation, etc..). Each sample information is stored in a
methylRaw object. There is methylRaw objects (6 controls and 6 cases) in each generation.

Details

This dataset can be used to test runPermutation and runObservation functions.

Value

A list containing three methylRawList objects. Each methylRawList contains the information
for one generation (first entry = first generation, etc..). Each sample information is stored in a
methylRaw object. There is methylRaw objects (6 controls and 6 cases) in each generation.

See Also

runPermutation for running a permutation analysis, and optionally an observation analysis, using
a multi-generational dataset

runObservation for running an observation analysis using methylKit info entry

Examples

## Loading dataset
data(demoForTransgenerationalAnalysis)

## Run a permutation analysis
runObservation(methylKitData = demoForTransgenerationalAnalysis,

outputDir = "test_demo", type = "tiles", vSeed = 2001)

## Get results



8 extractInfo

result <- loadAllRDSResults(analysisResultsDir = "test_demo",
permutationResultsDir = NULL, doingSites = FALSE,
doingTiles = TRUE)

## Remove result directory
if (dir.exists("test_demo")) {

unlink("test_demo", recursive = TRUE)
}

extractInfo Extract the information specific to a subsection of the permutation
analysis

Description

Extract the information specific to a subsection of the permutation analysis. The extracted informa-
tion will be specific to one type of differential methylation analysis (tiles or sites), to one type of
intersection (two consecutive generation or more) and to one specific group of generations.

Usage

extractInfo(
allResults,
type = c("sites", "tiles"),
inter = c("i2", "iAll"),
position = 1

)

Arguments

allResults a list of class methylInheritanceAllResults as created by the runPermutation
function. The list must contain two entries : "PERMUTATION" and "OBSERVATION".
The "PERMUTATION" list must contain all results from all permutations while
the "OBSERVATION" list must contain the result obtained with the observed
dataset (not shuffled).

type One of the "sites" or "tiles" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type = "sites"; for differentially methylated regions type = "tiles".
Default: "sites".

inter One of the "i2" or "iAll" strings. Specifies the type of intersection should
be returned. For retrieving intersection results between two consecutive gener-
ations inter = "i2"; for intersection results between three generations or more
inter = "iAll". Default: "i2".

position a positive integer, the position in the list where the information will be ex-
tracted. Default=1.



formatInputMethylData 9

Value

a data.frame containing the observation results (using real data) and the permutation results (using
shuffled data). Both hyper and hypo differentially conserved methylation results are present.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Get the name of the directory where files are stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Load information from files
results <- loadAllRDSResults(analysisResultsDir = filesDir,

permutationResultsDir = filesDir, doingSites = TRUE, doingTiles = TRUE)

## Extract information for the intersection between conserved differentially
## methylated sites (type = sites) between the intersection of 2
## generations (inter = i2): F1 and F2 (position = 1)
info <- extractInfo(allResults = results, type = "sites", inter="i2", 1)

formatInputMethylData Permute dataset

Description

Permute dataset and format it to be ready for an analysis

Usage

formatInputMethylData(methylKitData)

Arguments

methylKitData a list of methylRawList entries. Each methylRawList entry must contain all
the methylRaw entries related to one generation (first entry = first generation,
second entry = second generation, etc..). The number of generations must cor-
respond to the number of entries in the methylKitData. At least 2 generations
must be present to make a permutation analysis. More information can be found
in the methylKit package.

Value

a list of methylRawList entries.



10 getGRangesFromMethylDiff

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Load dataset
data("samplesForTransgenerationalAnalysis")

methylInheritance:::formatInputMethylData(samplesForTransgenerationalAnalysis)

getGRangesFromMethylDiff

Transform results from a CpG site or region analysis done on mutliple
generations into a list of GRanges objects

Description

Transform a list of methylDiff objects into a list of GRanges objects. Each methylDiff object
represent a CpG site or region analysis done on one generation.

Usage

getGRangesFromMethylDiff(
methDiff,
pDiff,
qvalue,
type = c("all", "hyper", "hypo")

)

Arguments

methDiff a list of S4 methylDiff class objects, each entry of the list represents the
differentially methylated results for one generation (first entry = first generta-
tion, second entry = second generation, etc..). Each methylDiff object holds
statistics and locations for differentially methylated regions/bases.

pDiff a positive double between 0 and 100, the cutoff for absolute value of methyla-
tion percentage change between test and control.

qvalue a positive double inferior to 1, the cutoff for qvalue of differential methylation
statistic.

type One of the "hyper","hypo" or "all" strings, the string specifies what type
of differentially methylated bases/tiles should be treated For retrieving hyper-
methylated tiles/sites type = "hyper"; for hypo-methylated type = "hypo".
Default: "all".



interGeneration 11

Value

a list of GRanges objects, each entry of the list represents the differentially methylated results
for one generation (first entry = first genertation, second entry = second generation, etc..). Each
GRanges object holds statistics for differentially methylated regions/bases.

Author(s)

Pascal Belleau

Examples

## Load permutation results on sites
permutationResultsFile <- system.file("extdata",

"permutationResultsForSites.RDS", package="methylInheritance")
permutationResults <- readRDS(permutationResultsFile)

## Transform result to GRanges
resultsGR <- methylInheritance:::getGRangesFromMethylDiff(methDiff =

permutationResults, pDiff = 10, qvalue = 0.01, type = "hyper")

interGeneration Calculate the intersection of the differentially methylated results for
two or more consercutive generations

Description

Calculate the intersection of the differentially methylated results for two or more consercutive gen-
erations using a list of GRanges where each entry represents the results for one generation.

Usage

interGeneration(resultAllGenGR)

Arguments

resultAllGenGR a list of GRanges as created by the getGRangesFromMethylDiff function.
Each entry of the list represents the differentially methylated results for one
generation (first entry = first genertation, second entry = second generation,
etc..). Each GRanges object holds statistics for differentially methylated re-
gions/bases.

Value

a list containing the following elements:



12 isInterGenerationResults

• i2 a list of GRanges Each GRanges represents the intersection of analysis results between
two consecutive generations. The first element represents the intersection of the first and
second generations; the second element, the intersection of the second and third generations;
etc.. The number of entries depends of the number of generations.

• iAll a list of GRanges. Each GRanges represents the intersection fo the analysis results
between three or more consecutive generations. The first element represents the intersection of
the first three generations; the second element, the intersection of the first fourth generations;
etc..The number of entries depends of the number of generations.

Author(s)

Pascal Belleau, Astrid Deschenes

Examples

## Load permutation results on sites
permutationResultsFile <- system.file("extdata",

"permutationResultsForSites.RDS", package="methylInheritance")
permutationResults <- readRDS(permutationResultsFile)

## Transform result to GRanges
resultsGR <- methylInheritance:::getGRangesFromMethylDiff(methDiff =

permutationResults, pDiff = 10, qvalue = 0.01, type = "hyper")

## Extract inter generational conserved sites
conservedSitesGR <- methylInheritance:::interGeneration(resultsGR)

isInterGenerationResults

Verify if a specific file containing intergenerational results exists or
not.

Description

Verify if a specific file containing intergenerational results exists or not.

Usage

isInterGenerationResults(outputDir, permutationID, type = c("sites", "tiles"))

Arguments

outputDir a string of character, the name of the directory that will contain the results
of the permutation. The name should end with a slash. The directory should
already exists.



loadAllRDSResults 13

permutationID an integer, the identifier of the permutation. When the permutationID = 0,
the results are considered as the observed results and are saved in a file with the
"_observed_results.RDS" extension. When the permutationID != 0, the results
are considered as permutation results and are saved in a file with the "_permu-
tation_permutationID.RDS" extension where permutationID is the identifier of
the permutation.

type One of the "sites" or "tiles" strings. Specifies the type of differentially
methylated elements should be saved. Default: "sites".

Value

TRUE when file present; otherwise FALSE.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Get the name of the directory where the file is stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Verify that DMS intergenerational results for the observed data exists
methylInheritance:::isInterGenerationResults(outputDir =

paste0(filesDir, "/"), 0, "sites")

loadAllRDSResults Load all RDS files created by the permutation and observation analy-
sis

Description

Load all RDS files created by the permutation and observation analysis. The function returns an
object of class "methylInheritanceAllResults" that holds all the pertinent information.

Usage

loadAllRDSResults(
analysisResultsDir,
permutationResultsDir,
doingSites = TRUE,
doingTiles = FALSE,
maxID = NA

)



14 loadAllRDSResults

Arguments

analysisResultsDir

a character string, the path to the directory that contains the analysis results.
The path can be the same as for the permutationResultsDir parameter. When
NULL, the observation results are not loaded. Default = NULL.

permutationResultsDir

a character string, the path to the directory that contains the permutation re-
sults. The path can be the same as for the analysisResultsDir parameter.
When NULL, the permutation results are not loaded. Default = NULL.

doingSites a logical, the data related to differentially methylated sites are loaded when
doingSites = TRUE. Default: TRUE.

doingTiles a logical, the data related to differentially methylated tiles are loaded when
doingTiles = TRUE. Default: TRUE.

maxID NA or a positive integer, the maximum identification number of the permutation
files to be loaded. When NA, all files present in the directory are loaded. Default:
NA.

Value

a list of class methylInheritanceAllResults containing the result of the observation analysis
as well as the results of all the permutations.

Author(s)

Astrid Deschenes, Pascal Belleau

See Also

mergePermutationAndObservation for detail description, in the Value section, of the methylInheritanceAllResults
object.

Examples

## Get the name of the directory where files are stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Load information from files
results <- loadAllRDSResults(analysisResultsDir = filesDir,

permutationResultsDir = filesDir, doingSites = TRUE, doingTiles = TRUE)

## Print the observation results
results

## Access the results for the first permutation only for sites
results$PERMUTATION[[1]]$SITES



loadConvergenceData 15

loadConvergenceData Load convergence information from RDS files

Description

Load convergence information from RDS files.

Usage

loadConvergenceData(
analysisResultsDir,
permutationResultsDir,
type = c("sites", "tiles"),
inter = c("i2", "iAll"),
position,
by = 100

)

Arguments

analysisResultsDir

a character string, the path to the directory that contains the analysis results.
The path can be the same as for the permutatioNResultsDir parameter.

permutationResultsDir

a character string, the path to the directory that contains the permutation re-
sults. The path can be the same as for the analysisResultsDir parameter.

type One of the "sites" or "tiles" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type = "sites"; for differentially methylated regions type = "tiles".
Default: "sites".

inter One of the "i2" or "iAll" strings. Specifies the type of intersection should
be returned. For retrieving intersection results between two consecutive gener-
ations inter = "i2"; for intersection results between three generations or more
inter = "iAll". Default: "i2".

position a positive integer, the position in the list where the information will be ex-
tracted.

by a integer, the increment of the number of permutations where the significant
level is tested. Default: 100.

Value

a graph showing the evolution of the significant level with the number of permutations

Author(s)

Astrid Deschenes, Pascal Belleau



16 mergePermutationAndObservation

Examples

## Get the name of the directory where files are stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Load convergence information
results <- loadConvergenceData(analysisResultsDir = filesDir,

permutationResultsDir = filesDir, type="sites", inter="i2", position=1,
by=1)

mergePermutationAndObservation

Merge the permutation results with the observation results.

Description

Merge the permutation results with the observation results. The merging is only needed when per-
mutation and observation have been processed separately. The returned value is a methylInheritanceAllResults
object that can be used by the extractInfo function.

Usage

mergePermutationAndObservation(permutationResults, observationResults)

Arguments

permutationResults

a list with 1 entry called PERMUTATION. The PERMUTATION entry is a list with
a number of entries corresponding to the number of permutations that have been
processed. Each entry contains the result of one permutation.

observationResults

a list with 1 entry called OBSERVATION. The OBSERVATION entry is a list
containing the result obtained with the observed dataset (not shuffled).

Value

a list of class methylInheritanceAllResults with 2 entries. The 2 entries are:

• PERMUTATION list with a number of entries corresponding to the number of permutations
that have been processed. Each entry contains the result of one permutation.The elements in
each entry are:

– SITES Only present when a sites analysis has been achieved, a list containing:

* i2 a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methylated

sites between two consecutive generations. The first element represents the inter-
section of the first and second generations; the second element, the intersection of
the second and third generations; etc.



mergePermutationAndObservation 17

· HYPO a list of integer, the number of conserved hypo differentially methylated
sites between two consecutive generations.The first element represents the inter-
section of the first and second generations; the second element, the intersection of
the second and third generations; etc.

* iAll a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methylated

sites between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection
of the first fourth generations; etc.The number of entries depends on the number
of generations.

· HYPO a list of integer, the number of conserved hypo differentially methylated
sites between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection
of the first fourth generations; etc. The number of entries depends on the number
of generations.

– TILES Only present when a tiles analysis has been achieved, a list containing:

* i2 a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methy-

lated positions between two consecutive generations. The first element represents
the intersection of the first and second generations; the second element, the inter-
section of the second and third generations; etc.

· HYPO a list of integer, the number of conserved hypo differentially methylated
positions between two consecutive generations.The first element represents the in-
tersection of the first and second generations; the second element, the intersection
of the second and third generations; etc.

* iAll a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methy-

lated positions between three or more consecutive generations. The first element
represents the intersection of the first three generations; the second element, the
intersection of the first fourth generations; etc. The number of entries depends on
the number of generations.

· HYPO a list of integer, the number of conserved hypo differentially methylated
positions between three or more consecutive generations. The first element repre-
sents the intersection of the first three generations; the second element, the inter-
section of the first fourth generations; etc.The number of entries depends on the
number of generations.

• OBSERVATION a list containing the result obtained with the observed dataset (not shuffled).
The elements are:

– SITES Only present when a sites analysis has been achieved, a list containing:

* i2 a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methylated

sites between two consecutive generations. The first element represents the inter-
section of the first and second generations; the second element, the intersection of
the second and third generations; etc.

· HYPO a list of integer, the number of conserved hypo differentially methylated
sites between two consecutive generations.The first element represents the inter-



18 mergePermutationAndObservation

section of the first and second generations; the second element, the intersection of
the second and third generations; etc.

* iAll a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methylated

sites between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection
of the first fourth generations; etc.The number of entries depends on the number
of generations.

· HYPO a list of integer, the number of conserved hypo differentially methylated
sites between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection
of the first fourth generations; etc. The number of entries depends on the number
of generations.

– TILES Only present when a tiles analysis has been achieved, a list containing:

* i2 a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methy-

lated positions between two consecutive generations. The first element represents
the intersection of the first and second generations; the second element, the inter-
section of the second and third generations; etc.

· HYPO a list of integer, the number of conserved hypo differentially methylated
positions between two consecutive generations.The first element represents the in-
tersection of the first and second generations; the second element, the intersection
of the second and third generations; etc.

* iAll a list containing:
· HYPER a list of integer, the number of conserved hyper differentially methy-

lated positions between three or more consecutive generations. The first element
represents the intersection of the first three generations; the second element, the
intersection of the first fourth generations; etc. The number of entries depends on
the number of generations.

· HYPO a list of integer, the number of conserved hypo differentially methylated
positions between three or more consecutive generations. The first element repre-
sents the intersection of the first three generations; the second element, the inter-
section of the first fourth generations; etc.The number of entries depends on the
number of generations.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Create a observation result
observed <- list()
observed[["OBSERVATION"]] <- list()
observed[["OBSERVATION"]][["SITES"]] <- list()
observed[["OBSERVATION"]][["SITES"]][["i2"]] <- list(HYPER = list(11, 10),

HYPO = list(13, 12))
observed[["OBSERVATION"]][["SITES"]][["iAll"]] <- list(HYPER = list(1),



methylInheritanceResults 19

HYPO = list(3))

## Create a permutation result containing only 1 permutation result
## Real perumtations results would have more entries
permutated <- list()
permutated[["PERMUTATION"]] <- list()
permutated[["PERMUTATION"]][[1]] <- list()
permutated[["PERMUTATION"]][[1]][["SITES"]] <- list()
permutated[["PERMUTATION"]][[1]][["SITES"]][["i2"]] <- list(HYPER =

list(11, 12), HYPO = list(8, 11))
permutated[["PERMUTATION"]][[1]][["SITES"]][["iAll"]] <- list(HYPER =

list(0), HYPO = list(1))

## Merge permutation and observation results
mergePermutationAndObservation(permutationResults = permutated,

observationResults = observed)

methylInheritanceResults

All observed and permutation results formatted in a
methylInheritanceResults class (for demo purpose).

Description

The object is a list with 2 entries: "OBSERVATION" and "PERMUTATION".

Usage

data(methylInheritanceResults)

Format

a list of class methylInheritanceAllResults containing the following elements:

• OBSERVATION a list containing:

– SITES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differ-

entially methylated sites between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differen-
tially methylated sites between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

* iAll a list containing:



20 methylInheritanceResults

· HYPER a list of integer with 1 entry, the number of conserved hyper differen-
tially methylated sites between the three consecutive generations.

· HYPO a list of integer with 1 entry, the number of conserved hypo differentially
methylated sites between the three consecutive generations.

– TILES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differen-

tially methylated positions between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differen-
tially methylated positions between two consecutive generations.The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

* iAll a list containing:
· HYPER a list of integer with 1 entry, the number of conserved hyper differen-

tially methylated positions between the three consecutive generations.
· HYPO a list of integer with 1 entry, the number of conserved hypo differentially

methylated positions between the three consecutive generations.

• PERMUTATION a list containing nbrPermutations entries. Each entry is a list containing:

– SITES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differ-

entially methylated sites between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differ-
entially methylated sites between two consecutive generations.The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

* iAll a list containing:
· HYPER a list of integer with 1 entry, the number of conserved hyper differen-

tially methylated sites between the three consecutive generations.
· HYPO a list of integer with 1 entry, the number of conserved hypo differentially

methylated sites between the three consecutive generations.
– TILES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differen-

tially methylated positions between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differen-
tially methylated positions between two consecutive generations.The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.



methylInheritanceResults 21

* iAll a list containing:
· HYPER a list of integer with 1 entry, the number of conserved hyper differen-

tially methylated positions between the three consecutive generations.
· HYPO a list of integer with 1 entry, the number of conserved hypo differentially

methylated positions between the three consecutive generations.

Details

This dataset can be used to test the extractInfo function.The extracted information can be used to
calculate the significant level or to create a graph.

Value

a list of class methylInheritanceAllResults containing the following elements:

• OBSERVATION a list containing:

– SITES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differ-

entially methylated sites between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differen-
tially methylated sites between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

* iAll a list containing:
· HYPER a list of integer with 1 entry, the number of conserved hyper differen-

tially methylated sites between the three consecutive generations.
· HYPO a list of integer with 1 entry, the number of conserved hypo differentially

methylated sites between the three consecutive generations.
– TILES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differen-

tially methylated positions between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differen-
tially methylated positions between two consecutive generations.The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

* iAll a list containing:
· HYPER a list of integer with 1 entry, the number of conserved hyper differen-

tially methylated positions between the three consecutive generations.
· HYPO a list of integer with 1 entry, the number of conserved hypo differentially

methylated positions between the three consecutive generations.



22 methylInheritanceResults

• PERMUTATION a list containing a number of entries corresponding to the number of permu-
tations that have been produced. Each entry is a list containing:

– SITES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differ-

entially methylated sites between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differ-
entially methylated sites between two consecutive generations.The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

* iAll a list containing:
· HYPER a list of integer with 1 entry, the number of conserved hyper differen-

tially methylated sites between the three consecutive generations.
· HYPO a list of integer with 1 entry, the number of conserved hypo differentially

methylated sites between the three consecutive generations.
– TILES a list containing:

* i2 a list containing:
· HYPER a list of integer with 2 entries, the number of conserved hyper differen-

tially methylated positions between two consecutive generations. The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

· HYPO a list of integer with 2 entries, the number of conserved hypo differen-
tially methylated positions between two consecutive generations.The first element
represents the intersection of the first and second generations; the second element,
the intersection of the second and third generations.

* iAll a list containing:
· HYPER a list of integer with 1 entry, the number of conserved hyper differen-

tially methylated positions between the three consecutive generations.
· HYPO a list of integer with 1 entry, the number of conserved hypo differentially

methylated positions between the three consecutive generations.

See Also

extractInfo for extracting the information specific to a subsection of the permutation analysis

Examples

## Loading dataset containing all results
data(methylInheritanceResults)

## Extract information for the intersection between conserved differentially
## methylated sites (type = sites) between the intersection of 2
## generations (inter = i2): F1 and F2 (position = 1)
extractInfo(allResults = methylInheritanceResults,

type = "sites", inter="i2", 1)



plotConvergenceGraph 23

plotConvergenceGraph Generate a graph showing the convergence for a permutation analysis

Description

Generate a graph showing the convergence for a permutation analysis using observed and permuted
results.

Usage

plotConvergenceGraph(dataFrameConvergence)

Arguments

dataFrameConvergence

a data.frame containing the significant levels at different number of cycles (to-
tal number of permuted data analysed). The data.frame must have 6 columns :
"NBR_PERMUTATIONS", "ELEMENT". "ANALYSIS", "POSITION", "TYPE"
and "SIGNIFICANT_LEVEL". The "ELEMENT" can be either "SITES" or
"TILES". The "TYPE" can be either "HYPER" or "HYPO".

Value

a ggplot object.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Get the name of the directory where files are stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Extract convergenc information for F1 and F2 and F3
data <- loadConvergenceData(analysisResultsDir = filesDir,

permutationResultsDir = filesDir, type = "sites", inter = "iAll",
position = 1, by = 1)

## Create convergence graph
plotConvergenceGraph(data)



24 plotGraph

plotGraph Generate a graph for a permutation analysis

Description

Generate a graph for a permutation analysis using observed and shuffled results.

Usage

plotGraph(formatForGraphDataFrame)

Arguments

formatForGraphDataFrame

a data.frame containing the observation results (using real data) and the permu-
tation results (using shuffled data). Both hyper and hypo differentially conserved
methylation results must be present. The data.frame must have 3 columns :
"TYPE", "RESULT" and "SOURCE". The "TYPE" can be either "HYPER" or
"HYPO". The "RESULT" is the number of conserved differentially elements.
The "SOURCE" can be either "OBSERVATION" or "PERMUTATION".

Value

a graph showing the permutation analysis results

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Loading dataset containing all results
data(methylInheritanceResults)

## Extract information for the intersection between conserved differentially
## methylated sites (type = sites) between the intersection of 2
## generations (inter = i2): F2 and F3 (position = 2)
info <- extractInfo(allResults = methylInheritanceResults,

type = "sites", inter="i2", 2)

## Create graph
plotGraph(info)



print.methylInheritanceAllResults 25

print.methylInheritanceAllResults

Print a methylInheritanceAllResults object

Description

Print a methylInheritanceAllResults object

Usage

## S3 method for class 'methylInheritanceAllResults'
print(x, ...)

Arguments

x the output object from mergePermutationAndObservation function, runPermutationUsingRDSFile
function (when runObservationAnalysis = TRUE and runPermutationUsingMethylKitInfo
function (when runObservationAnalysis = TRUE to be printed

... arguments passed to or from other methods

Value

an object of class methylInheritanceAllResults

Examples

## Load dataset
data("methylInheritanceResults")

## Print dataset
print(methylInheritanceResults)

readInterGenerationResults

Read and return intergenerational results contained in a RDS file

Description

Read and return intergenerational results contained in a RDS file

Usage

readInterGenerationResults(
outputDir,
permutationID,
type = c("sites", "tiles")

)



26 runObservation

Arguments

outputDir a string of character, the name of the directory that will contain the results
of the permutation. The name should end with a slash. The directory should
already exists.

permutationID an integer, the identifier of the permutation. When the permutationID = 0,
the results are considered as the observed results and are saved in a file with the
"_observed_results.RDS" extension. When the permutationID != 0, the results
are considered as permutation results and are saved in a file with the "_permuta-
tion_permutationID.RDS" extension. Where permutationID is the identifier of
the permutation.

type One of the "sites" or "tiles" strings. Specifies the type of differentially
methylated elements should be saved. Default: "sites".

Value

a list containing the intergenerational results for the specified permutation.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Get the name of the directory where the file is stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Read DMS intergenerational results for the observed data
methylInheritance:::readInterGenerationResults(outputDir =

paste0(filesDir, "/"), 0, "sites")

runObservation Run a differential methylation analysis on multi-generational dataset

Description

Run a differential methylation analysis on each generation present in a dataset. The number of
conserved differentially methylated elements (sites, tile or both) between generations is them cal-
culated. The methylKit package is used to identify the differentially methylated elements.

The multi-generational dataset or the name of the RDS file that contains the dataset can be used as
input.

The results can also be saved in RDS file (optional).



runObservation 27

Usage

runObservation(
methylKitData,
type = c("both", "sites", "tiles"),
outputDir = "output",
nbrCoresDiffMeth = 1,
minReads = 10,
minMethDiff = 10,
qvalue = 0.01,
maxPercReads = 99.9,
destrand = FALSE,
minCovBasesForTiles = 0,
tileSize = 1000,
stepSize = 1000,
vSeed = -1,
restartCalculation = FALSE,
saveInfoByGeneration = FALSE

)

Arguments

methylKitData a list of methylRawList entries or the name of the RDS file containing the list.
Each methylRawList contains all the methylRaw entries related to one gener-
ation (first entry = first generation, second entry = second generation, etc..).
The number of generations must correspond to the number of entries in the
methylKitData.At least 2 generations must be present to calculate the con-
served elements. More information can be found in the methylKit package.

type One of the "sites","tiles" or "both" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type="sites"; for differentially methylated regions type="tiles". Default:
"both".

outputDir a string, the name of the directory that will contain the results of the analysis. If
the directory does not exist, it will be created. Default: "output".

nbrCoresDiffMeth

a positive integer, the number of cores to use for parallel differential methy-
lation calculations.The parameter is used for both sites and tiles analysis. The
parameter corresponds to the num.cores parameter in the package methylKit.
Default: 1 and always 1 for Windows.

minReads a positive integer Bases and regions having lower coverage than this count are
discarded. The parameter correspond to the lo.count parameter in the package
methylKit.

minMethDiff a positive double between [0,100], the absolute value of methylation percent-
age change between cases and controls. The parameter corresponds to the
difference parameter in the methylKit package. Default: 10.

qvalue a positive double between [0,1], the cutoff for qvalue of differential methylation
statistics. Default: 0.01.



28 runObservation

maxPercReads a double between [0,100], the percentile of read counts that is going to be used
as an upper cutoff. Bases or regions having higher coverage than this percentile
are discarded. The parameter is used for both CpG sites and tiles analysis. The
parameter corresponds to the hi.perc parameter in the package methylKit.
Default: 99.9.

destrand a logical, when TRUE will merge reads on both strands of a CpG dinucleotide
to provide better coverage. Only advised when looking at CpG methylation.
Parameter used for both CpG sites and tiles analysis. Default: FALSE.

minCovBasesForTiles

a non-negative integer, the minimum number of bases to be covered in a given
tiling window. The parameter corresponds to the cov.bases parameter in the
package methylKit. Only used when doingTiles = TRUE. Default: 0.

tileSize a positive integer, the size of the tiling window. The parameter corresponds to
the win.size parameter in the package methylKit. Only used when doingTiles
= TRUE. Default: 1000.

stepSize a positive integer, the step size of tiling windows. The parameter corresponds
to the stepSize parameter in the package methylKit. Only used when doingTiles
= TRUE. Default: 1000.

vSeed a integer, a seed used when reproducible results are needed. When a value
inferior or equal to zero is given, a random integer is used. Default: -1.

restartCalculation

a logical, when TRUE, only permutations that don’t have a RDS result final are
run. Useful to restart a permutation analysis that has been interrupted. Beware
that the parameters have to be identical except for this one.

saveInfoByGeneration

a logical, when TRUE, the information about differentially methylated sites
and tiles for each generation is saved in a RDS file. The files are saved in the
directory specified by the outputDir parameter.

Value

0.

Author(s)

Astrid Deschenes, Pascal Belleau

See Also

mergePermutationAndObservation for detail description, in the Value section, of the OBSERVATION
section of the methylInheritanceAllResults object.

Examples

## Load methylation information
data(samplesForTransgenerationalAnalysis)

## Run an observation analysis



runOnePermutationOnAllGenerations 29

runObservation(methylKitData = samplesForTransgenerationalAnalysis,
outputDir = "test", type = "sites", vSeed = 221)

## Load the results
results <- loadAllRDSResults(analysisResultsDir = "test",

permutationResultsDir = NULL, doingSites = TRUE, doingTiles = FALSE)

## Print the results
results

## Remove directory
if (dir.exists("test")) {

unlink("test", recursive = TRUE, force = FALSE)
}

runOnePermutationOnAllGenerations

Run the analysis on one permutation dataset, including all genera-
tions, using methylKit package

Description

Run CpG site or region analysis using the methylKit package for each generation present in the
dataset. The intersection of conserved elements is obtained for each group of two consecutive
generations, as well as, for larger group subset. The output of the analysis is saved in a RDS file
when an directory is specified.

Usage

runOnePermutationOnAllGenerations(
id,
methylInfoForAllGenerations,
type = c("both", "sites", "tiles"),
outputDir = NULL,
nbrCoresDiffMeth = 1,
minReads = 10,
minMethDiff = 10,
qvalue = 0.01,
maxPercReads = 99.9,
destrand = FALSE,
minCovBasesForTiles = 0,
tileSize = 1000,
stepSize = 1000,
restartCalculation,
saveInfoByGeneration

)



30 runOnePermutationOnAllGenerations

Arguments

id an integer, the unique identification of the permutation. When id is 0, the
analysis is done on the real dataset.

methylInfoForAllGenerations

a list of methylRawList entries. Each methylRawList entry must contain all
the methylRaw entries related to one generation (first entry = first generation,
second entry = second generation, etc..). The number of generations must cor-
respond to the number of entries in the methylKitData. At least 2 generations
must be present to make a permutation analysis. More information can be found
in the methylKit package.

type One of the "sites","tiles" or "both" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type="sites"; for differentially methylated regions type="tiles". Default:
"both".

outputDir a string, the name of the directory that will contain the results of the permutation.
If the directory does not exist, it will be created.

nbrCoresDiffMeth

a positive integer, the number of cores to use for parallel differential methyla-
tion calculations.Parameter used for both sites and tiles analysis. The parameter
corresponds to the num.cores parameter in the package methylKit. Default: 1
and always 1 for Windows.

minReads a positive integer Bases and regions having lower coverage than this count
are discarded. The parameter correspond to the lo.count parameter in the
methylKit package.

minMethDiff a positive integer betwwen [0,100], the absolute value of methylation percentage
change between cases and controls. The parameter correspond to the difference
parameter in the package methylKit. Default: 10.

qvalue a positive double inferior to 1, the cutoff for qvalue of differential methylation
statistic. Default: 0.01.

maxPercReads a double between [0-100], the percentile of read counts that is going to be used as
upper cutoff. Bases ore regions having higher coverage than this percentile are
discarded. Parameter used for both CpG sites and tiles analysis. The parameter
correspond to the hi.perc parameter in the methylKit package. Default: 99.9.

destrand a logical, when TRUE will merge reads on both strands of a CpG dinucleotide
to provide better coverage. Only advised when looking at CpG methylation.
Parameter used for both sites and tiles analysis. Default: FALSE.

minCovBasesForTiles

a non-negative integer, the minimum number of bases to be covered in a given
tiling window. The parameter corresponds to the cov.bases parameter in the
package methylKit. Only used when doingTiles = TRUE. Default: 0.

tileSize a positive integer, the size of the tiling window. The parameter corresponds to
the win.size parameter in the methylKit package. Only used when doingTiles
= TRUE. Default: 1000.

stepSize a positive integer, the step size of tiling windows. The parameter corresponds to
the stepSize parameter in the methylKit package. Only used when doingTiles
= TRUE. Default: 1000.



runOnePermutationOnAllGenerations 31

restartCalculation

a logical, when TRUE, only permutations that don’t have a RDS result final are
run.

saveInfoByGeneration

a logical, when TRUE, the information about differentially methylated sites and
tiles for each generation is saved in a RDS file. The information is saved in a
different file for each permutation. The files are = saved in the outputDir.

Value

a list containing the following elements:

• SITES Only present when type = "sites" or "both", a list containing:

– i2 a list containing:

* HYPER a list of integer, the number of conserved hyper differentially methylated
sites between two consecutive generations. The first element represents the intersec-
tion of the first and second generations; the second element, the intersection of the
second and third generations; etc..

* HYPO a list of integer, the number of conserved hypo differentially methylated
sites between two consecutive generations.The first element represents the intersec-
tion of the first and second generations; the second element, the intersection of the
second and third generations; etc..

– iAll a list containing:

* HYPER a list of integer, the number of conserved hyper differentially methylated
sites between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection
of the first fourth generations; etc..The number of entries depends of the number of
generations.

* HYPO a list of integer, the number of conserved hypo differentially methylated
sites between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection
of the first fourth generations; etc..The number of entries depends of the number of
generations.

• TILES Only present when type = "tiles" or "both", a list containing:

– i2 a list containing:

* HYPER a list of integer, the number of conserved hyper differentially methylated
positions between two consecutive generations. The first element represents the in-
tersection of the first and second generations; the second element, the intersection of
the second and third generations; etc..

* HYPO a list of integer, the number of conserved hypo differentially methylated
positions between two consecutive generations.The first element represents the inter-
section of the first and second generations; the second element, the intersection of the
second and third generations; etc..

– iAll a list containing:

* HYPER a list of integer, the number of conserved hyper differentially methylated
positions between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection of



32 runPermutation

the first fourth generations; etc..The number of entries depends of the number of
generations.

* HYPO a list of integer, the number of conserved hypo differentially methylated
positions between three or more consecutive generations. The first element represents
the intersection of the first three generations; the second element, the intersection of
the first fourth generations; etc..The number of entries depends of the number of
generations.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Load methyl information
data(samplesForTransgenerationalAnalysis)

## Run a permutation analysis
methylInheritance:::runOnePermutationOnAllGenerations(id = 2,

methylInfoForAllGenerations = samplesForTransgenerationalAnalysis,
type = "tiles", outputDir = NULL,
nbrCoresDiffMeth = 1, minReads = 10, minMethDiff = 10, qvalue = 0.01,
maxPercReads = 99.9, destrand = FALSE, minCovBasesForTiles = 0,
tileSize = 1000, stepSize = 1000, restartCalculation = FALSE)

runPermutation Run all permutations on the specified multi-generational dataset

Description

Run a permutation analysis, based on Monte Carlo sampling, for testing the hypothesis that the
number of conserved differentially methylated elements (sites, tiles or both), between several gen-
erations, is associated to an effect inherited from a treatment and that stochastic effect can be dis-
missed.

The multi-generational dataset or the name of the RDS file that contains the dataset can be used as
input.

The observation analysis can also be run (optional). All permutation results are saved in RDS files.

Usage

runPermutation(
methylKitData,
type = c("both", "sites", "tiles"),
outputDir = "output",
runObservationAnalysis = TRUE,
nbrPermutations = 1000,



runPermutation 33

nbrCores = 1,
nbrCoresDiffMeth = 1,
minReads = 10,
minMethDiff = 10,
qvalue = 0.01,
maxPercReads = 99.9,
destrand = FALSE,
minCovBasesForTiles = 0,
tileSize = 1000,
stepSize = 1000,
vSeed = -1,
restartCalculation = FALSE,
saveInfoByGeneration = FALSE

)

Arguments

methylKitData a list of methylRawList entries or the name of the RDS file containing the
list. Each methylRawList entry must contain all the methylRaw entries re-
lated to one generation (first entry = first generation, second entry = second
generation, etc..). The number of generations must correspond to the number of
entries in the methylKitData. At least 2 generations must be present to make a
permutation analysis. More information can be found in the methylKit package.

type One of the "sites","tiles" or "both" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type="sites"; for differentially methylated regions type="tiles". Default:
"both".

outputDir a string, the name of the directory that will contain the results of the permutation.
If the directory does not exist, it will be created. Default: "output".

runObservationAnalysis

a logical, when runObservationAnalysis = TRUE, a CpG analysis on the
observed dataset is done. Default: TRUE.

nbrPermutations

a positive integer, the total number of permutations that is going to be done.
Default: 1000.

nbrCores a positive integer, the number of cores to use when processing the analysis.
Default: 1 and always 1 for Windows.

nbrCoresDiffMeth

a positive integer, the number of cores to use for parallel differential methy-
lation calculations. The parameter is used for both sites and tiles analysis. The
parameter corresponds to the num.cores parameter in the package methylKit.
Default: 1 and always 1 for Windows.

minReads a positive integer Bases and regions having lower coverage than this count are
discarded. The parameter corresponds to the lo.count parameter in the package
methylKit.

minMethDiff a positive double between [0,100], the absolute value of methylation percent-
age change between cases and controls. The parameter corresponds to the
difference parameter in the methylKit package. Default: 10.



34 runPermutation

qvalue a positive double between [0,1], the cutoff for qvalue of differential methylation
statistics. Default: 0.01.

maxPercReads a double between [0,100], the percentile of read counts that is going to be used
as an upper cutoff. Bases or regions having higher coverage than this percentile
are discarded. The parameter is used for both CpG sites and tiles analysis. The
parameter corresponds to the hi.perc parameter in the package methylKit.
Default: 99.9.

destrand a logical, when TRUE will merge reads on both strands of a CpG dinucleotide
to provide better coverage. Only advised when looking at CpG methylation.
The parameter is used for both CpG sites and tiles analysis. Default: FALSE.

minCovBasesForTiles

a non-negative integer, the minimum number of bases to be covered in a given
tiling window. The parameter corresponds to the cov.bases parameter in the
package methylKit. Only used when doingTiles = TRUE. Default: 0.

tileSize a positive integer, the size of the tiling window. The parameter corresponds to
the win.size parameter in the package methylKit. Only used when doingTiles
= TRUE. Default: 1000.

stepSize a positive integer, the step size of tiling windows. The parameter corresponds
to the stepSize parameter in the package methylKit. Only used when doingTiles
= TRUE. Default: 1000.

vSeed a integer, a seed used when reproducible results are needed. When a value
inferior or equal to zero is given, a random integer is used. Default: -1.

restartCalculation

a logical, when TRUE, only permutations that don’t have an associated RDS
result file are run. Useful to restart a permutation analysis that has been inter-
rupted. Beware that the parameters have to be identical except for this one.

saveInfoByGeneration

a logical, when TRUE, the information about differentially methylated sites and
tiles for each generation is saved in a RDS file. The information is saved in a
different file for each permutation. The files are saved in the directory specified
by the outputDir parameter.

Value

0.

Author(s)

Astrid Deschenes, Pascal Belleau

See Also

mergePermutationAndObservation for detail description, in the Value section, of the methylInheritanceAllResults
object as well as its PERMUTATION section.



samplesForTransgenerationalAnalysis 35

Examples

## Load methylKit information
data(samplesForTransgenerationalAnalysis)

## Run a permutation analysis using the methylKit dataset
## A real analysis would require a much higher number of permutations
runPermutation(methylKitData = samplesForTransgenerationalAnalysis,

outputDir = "test_01", runObservationAnalysis = FALSE, type = "sites",
nbrPermutations = 2, vSeed = 221)

## Get results
results_01 <- loadAllRDSResults(analysisResultsDir = NULL,

permutationResultsDir = "test_01", doingSites = TRUE,
doingTiles = FALSE)

## Remove results directory
if (dir.exists("test_01")) {

unlink("test_01", recursive = TRUE, force = TRUE)
}

## Path to a methylKit RDS file
methylFile <- system.file("extdata", "methylObj_001.RDS",

package = "methylInheritance")

## Run a permutation analysis using RDS file name
## A real analysis would require a much higher number of permutations
runPermutation(methylKitData = methylFile, type = "tiles",

outputDir = "test_02", nbrPermutations = 2, minCovBasesForTiles = 10,
vSeed = 2001)

## Get results
results_02 <- loadAllRDSResults(analysisResultsDir = NULL,

permutationResultsDir = "test_02", doingSites = FALSE,
doingTiles = TRUE)

## Remove results directory
if (dir.exists("test_02")) {

unlink("test_02", recursive = TRUE, force = TRUE)
}

samplesForTransgenerationalAnalysis

All samples information, formated by methylKit, in a
methylRawList format (for demo purpose).

Description

The object is a list with 3 entries. Each entry corresponds to the information for one generation
(first entry = first generation, etc..) stored in a methylRawList. There are 12 samples (6 controls
and 6 cases) for each generation. Each sample information is stored in a methylRaw object.



36 saveInterGenerationResults

Usage

data(samplesForTransgenerationalAnalysis)

Format

A list containing three methylRawList objects. Each methylRawList contains the information
for one generation (first entry = first generation, etc..). Each sample information is stored in a
methylRaw object. There is methylRaw objects (6 controls and 6 cases) in each generation.

Details

This dataset can be used to test the runPermutation function.

Value

A list containing three methylRawList objects. Each methylRawList contains the information
for one generation (first entry = first generation, etc..). Each sample information is stored in a
methylRaw object. There is methylRaw objects (6 controls and 6 cases) in each generation.

See Also

runPermutation for running a permutation analysis, and optionally an observation analysis, using
multi-generational dataset

Examples

## Loading dataset
data(samplesForTransgenerationalAnalysis)

## Run a permutation analysis
runPermutation(methylKitData = samplesForTransgenerationalAnalysis,

type = "tiles", nbrPermutations = 2, vSeed = 2332)

saveInterGenerationResults

Save the result of on CpG site or tile analysis on all generations. The
anaysis can come from observed or shuffled dataset. Each case is
saved with a different extension.

Description

Save the result of on CpG site or tile analysis on all generations. The results are saved in a RDS
file. The anaysis can have been done on the observed or shuffled dataset. Each permutation is saved
using its identifiant in the file name.



saveInterGenerationResults 37

Usage

saveInterGenerationResults(
outputDir,
permutationID,
type = c("sites", "tiles"),
interGenerationResult

)

Arguments

outputDir a string of character, the name of the directory that will contain the results
of the permutation. The name should end with a slash. The directory should
already exists.

permutationID an integer, the identifier of the permutation. When the permutationID = 0,
the results are considered as the observed results and are saved in a file with the
"_observed_results.RDS" extension. When the permutationID != 0, the results
are considered as permutation results and are saved in a file with the "_permuta-
tion_permutationID.RDS" extension. Where permutationID is the identifier of
the permutation.

type One of the "sites" or "tiles" strings. Specifies the type of differentially
methylated elements should be saved. Default: "sites".

interGenerationResult

a list that corresponds to the output of the interGeneration function, the
result of on CpG site or tile analysis on all generations.

Value

0 indicating that all parameters validations have been successful.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Load permutation results on sites

permutationResultsFile <- system.file("extdata",
"permutationResultsForSites.RDS", package="methylInheritance")

permutationResults <- readRDS(permutationResultsFile)

## Transform result to GRanges
resultsGR <- methylInheritance:::getGRangesFromMethylDiff(methDiff =

permutationResults, pDiff = 10, qvalue = 0.01, type = "hyper")

## Extract inter-generationally conserved sites
interGenerationResult <- methylInheritance:::interGeneration(resultsGR)

## Create directories



38 validateExtractInfo

dir.create("TEST", showWarnings = TRUE)
dir.create("TEST/SITES", showWarnings = TRUE)

## Save results
methylInheritance:::saveInterGenerationResults(

outputDir = "TEST/", permutationID=100, type = "sites",
interGenerationResult = interGenerationResult)

validateExtractInfo Validation of some parameters of the extractInfo function

Description

Validation of some parameters needed by the public extractInfo function.

Usage

validateExtractInfo(allResults, type, inter, position)

Arguments

allResults a list as created by the runPermutation or the loadAllRDSResults func-
tions.

type One of the "sites" or "tiles" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type = "sites"; for differentially methylated regions type = "tiles".

inter One of the "i2" or "iAll" strings. Specifies the type of intersection should
be returned. For retrieving intersection results between two consecutive gener-
ations inter = "i2"; for intersection results between three generations or more
inter = "iAll".

position a positive integer, the position in the list where the information will be ex-
tracted. The position must be an existing position inside allResults

Value

0 indicating that all parameters validations have been successful.

Author(s)

Astrid Deschenes



validateLoadConvergenceData 39

Examples

## Load dataset
data(methylInheritanceResults)

## The function returns 0 when all paramaters are valid
methylInheritance:::validateExtractInfo(

allResults = methylInheritanceResults, type = "sites",
inter = "i2", 2)

## The function raises an error when at least one paramater is not valid
## Not run: methylInheritance:::validateExtractInfo(

allResults = methylInheritanceResults, type = "sites",
inter = "i2", 12)

## End(Not run)

validateLoadConvergenceData

Validation of some parameters of the loadConvergenceData function

Description

Validation of some parameters needed by the public loadConvergenceData function.

Usage

validateLoadConvergenceData(
analysisResultsDir,
permutationResultsDir,
position,
by

)

Arguments

analysisResultsDir

a character string, the path to the directory that contains the analysis results.
The path can be the same as for the permutatioNResultsDir parameter.

permutationResultsDir

a character string, the path to the directory that contains the permutation re-
sults. The path can be the same as for the analysisResultsDir parameter.

position a positive integer, the position in the list where the information will be ex-
tracted.

by a integer, the increment of the number of permutations where the significant
level is tested. Default: 100.



40 validateMergePermutationAndObservation

Value

0 indicating that all parameters validations have been successful.

Author(s)

Astrid Deschenes, Pascal Belleau

Examples

## Get the name of the directory where files are stored
filesDir <- system.file("extdata", "TEST", package="methylInheritance")

## Merge permutation and observation results
methylInheritance:::validateLoadConvergenceData(analysisResultsDir =

filesDir, permutationResults = filesDir, position = 1, by = 1)

## The function raises an error when at least one paramater is not valid
## Not run: methylInheritance:::validateLoadConvergenceData(

analysisResultsDir = filesDir, permutationResults = filesDir,
position = "hello", by = 1))

## End(Not run)

validateMergePermutationAndObservation

Validation of some parameters of the
mergePermutationAndObservation function

Description

Validation of some parameters needed by the public mergePermutationAndObservation function.

Usage

validateMergePermutationAndObservation(permutationResults, observationResults)

Arguments

permutationResults

a list with 1 entry called PERMUTATION. The PERMUTATION entry is a list with
a number of entries corresponding to the number of permutations that have been
processed. Each entry contains the result of one permutation.

observationResults

a list with 1 entry called OBSERVATION. The OBSERVATION entry is a list
containing the result obtained with the observed dataset (not shuffled).

Value

0 indicating that all parameters validations have been successful.



validateRunObservation 41

Author(s)

Astrid Deschenes

Examples

## Create a observation result
observed <- list()
observed[["OBSERVATION"]] <- list()
observed[["OBSERVATION"]][["SITES"]] <- list()
observed[["OBSERVATION"]][["SITES"]][["i2"]] <- list(HYPER = list(11, 10),

HYPO = list(13, 12))
observed[["OBSERVATION"]][["SITES"]][["iAll"]] <- list(HYPER = list(1),

HYPO = list(3))

## Create a permutation result containing only 1 permutation result
## Real perumtations results would have more entries
permutated <- list()
permutated[["PERMUTATION"]] <- list()
permutated[["PERMUTATION"]][[1]] <- list()
permutated[["PERMUTATION"]][[1]][["SITES"]] <- list()
permutated[["PERMUTATION"]][[1]][["SITES"]][["i2"]] <- list(HYPER =

list(11, 12), HYPO = list(8, 11))
permutated[["PERMUTATION"]][[1]][["SITES"]][["iAll"]] <- list(HYPER =

list(0), HYPO = list(1))

## Merge permutation and observation results
methylInheritance:::validateMergePermutationAndObservation(

permutationResults = permutated, observationResults = observed)

## The function raises an error when at least one paramater is not valid
## Not run: methylInheritance:::validateMergePermutationAndObservation(

permutationResults = permutated, observationResults = NULL)
## End(Not run)

validateRunObservation

Validation of some parameters of the runObservation function

Description

Validation of some parameters needed by the public runObservation function.

Usage

validateRunObservation(
methylKitData,
type,
outputDir,



42 validateRunObservation

nbrCoresDiffMeth,
minReads,
minMethDiff,
qvalue,
maxPercReads,
destrand,
minCovBasesForTiles,
tileSize,
stepSize,
vSeed,
restartCalculation,
saveInfoByGeneration

)

Arguments

methylKitData a list of methylRawList entries or the name of the RDS file containing the list.
Each methylRawList contains all the methylRaw entries related to one gener-
ation (first entry = first generation, second entry = second generation, etc..).
The number of generations must correspond to the number of entries in the
methylKitData. At least 2 generations must be present to calculate the con-
served elements. More information can be found in the methylKit package.

type One of the "sites","tiles" or "both" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type="sites"; for differentially methylated regions type="tiles". Default:
"both".

outputDir a string, the name of the directory that will contain the results of the permutation.
If the directory does not exist, it will be created.

nbrCoresDiffMeth

a positive integer, the number of cores to use for parallel differential methyla-
tion calculations.Parameter used for both sites and tiles analysis. The parameter
corresponds to the num.cores parameter in the methylKit package.

minReads a positive integer Bases and regions having lower coverage than this count
are discarded. The parameter correspond to the lo.count parameter in the
methylKit package.

minMethDiff a positive double betwwen [0,100], the absolute value of methylation percent-
age change between cases and controls. The parameter correspond to the difference
parameter in the methylKit package.

qvalue a positive double betwwen [0,1], the cutoff for qvalue of differential methyla-
tion statistic.

maxPercReads a double between [0,100], the percentile of read counts that is going to be used
as upper cutoff. Bases ore regions having higher coverage than this percentile
are discarded. Parameter used for both CpG sites and tiles analysis. The param-
eter correspond to the hi.perc parameter in the methylKit package.

destrand a logical, when TRUE will merge reads on both strands of a CpG dinucleotide
to provide better coverage. Only advised when looking at CpG methylation.
Parameter used for both CpG sites and tiles analysis.



validateRunObservation 43

minCovBasesForTiles

a non-negative integer, the minimum number of bases to be covered in a given
tiling window. The parameter corresponds to the cov.bases parameter in the
package methylKit. Only used when doingTiles = TRUE. Default: 0.

tileSize a positive integer, the size of the tiling window. The parameter corresponds to
the win.size parameter in the methylKit package. Only used when doingTiles
= TRUE.

stepSize a positive integer, the step size of tiling windows. The parameter corresponds
to the stepSize parameter in the methylKit package. Only used when doingTiles
= TRUE.

vSeed a integer, a seed used when reproducible results are needed. When a value
inferior or equal to zero is given, a random integer is used.

restartCalculation

a logical, when TRUE, only permutations that don’t have an associated RDS
result file are run. Useful to restart a permutation analysis that has been inter-
rupted.

saveInfoByGeneration

a logical, when TRUE, the information about differentially methylated sites and
tiles for each generation is saved in a RDS file. The information is saved in a
different file for each permutation. The files are only saved when the outputDir
is not NULL.

Value

0 indicating that all parameters validations have been successful.

Author(s)

Astrid Deschenes

Examples

## Load dataset
data(samplesForTransgenerationalAnalysis)

## The function returns 0 when all paramaters are valid
methylInheritance:::validateRunObservation(

methylKitData = samplesForTransgenerationalAnalysis, type = "sites",
outputDir = "test", nbrCoresDiffMeth = 1, minReads = 10,
minMethDiff = 25, qvalue = 0.01,
maxPercReads = 99.9, destrand = TRUE, minCovBasesForTiles = 10,
tileSize = 1000, stepSize = 500, vSeed = 12, restartCalculation = TRUE,
saveInfoByGeneration = FALSE)

## The function raises an error when at least one paramater is not valid
## Not run: methylInheritance:::validateRunObservation(

methylKitData = samplesForTransgenerationalAnalysis,
type = "tiles", outputDir = "test_02", nbrCoresDiffMeth = 1,
minReads = "HI", minMethDiff = 25, qvalue = 0.01,



44 validateRunPermutation

maxPercReads = 99.9, destrand = TRUE, minCovBasesForTiles = 10,
tileSize = 1000, stepSize = 500, vSeed = 12, restartCalculation = FALSE,
saveInfoByGeneration = FALSE)

## End(Not run)

validateRunPermutation

Parameters validation for the runPermutation function

Description

Validation of all parameters needed by the public runPermutation function.

Usage

validateRunPermutation(
methylKitData,
type,
outputDir,
runObservedAnalysis,
nbrPermutations,
nbrCores,
nbrCoresDiffMeth,
minReads,
minMethDiff,
qvalue,
maxPercReads,
destrand,
minCovBasesForTiles,
tileSize,
stepSize,
vSeed,
restartCalculation,
saveInfoByGeneration

)

Arguments

methylKitData a list of methylRawList entries or the name of the RDS file containing the
list. Each methylRawList entry must contain all the methylRaw entries re-
lated to one generation (first entry = first generation, second entry = second
generation, etc..). The number of generations must correspond to the number of
entries in the methylKitData. At least 2 generations must be present to do a
permutation analysis. More information can be found in the methylKit package.



validateRunPermutation 45

type One of the "sites","tiles" or "both" strings. Specifies the type of differentially
methylated elements should be returned. For retrieving differentially methylated
bases type="sites"; for differentially methylated regions type="tiles". Default:
"both".

outputDir a string, the name of the directory that will contain the results of the permutation.
If the directory does not exist, it will be created.

runObservedAnalysis

a logical, when runObservedAnalysis = TRUE, a CpG analysis on the ob-
served dataset is done.

nbrPermutations

a positive integer, the total number of permutations that is going to be done.

nbrCores a positive integer, the number of cores to use when processing the analysis.

nbrCoresDiffMeth

a positive integer, the number of cores to use for parallel differential methyla-
tion calculations.Parameter used for both sites and tiles analysis. The parameter
corresponds to the num.cores parameter in the methylKit package.

minReads a positive integer Bases and regions having lower coverage than this count
are discarded. The parameter corresponds to the lo.count parameter in the
methylKit package.

minMethDiff a positive double betwwen [0,100], the absolute value of methylation percent-
age change between cases and controls. The parameter corresponds to the
difference parameter in the methylKit package.

qvalue a positive double betwwen [0,1], the cutoff for qvalue of differential methyla-
tion statistic. TODO

maxPercReads a double between [0,100], the percentile of read counts that is going to be used
as upper cutoff. Bases ore regions having higher coverage than this percentile
are discarded. Parameter used for both CpG sites and tiles analysis. The param-
eter correspond to the hi.perc parameter in the methylKit package.

destrand a logical, when TRUE will merge reads on both strands of a CpG dinucleotide
to provide better coverage. Only advised when looking at CpG methylation.
Parameter used for both CpG sites and tiles analysis.

minCovBasesForTiles

a non-negative integer, the minimum number of bases to be covered in a given
tiling window. The parameter corresponds to the cov.bases parameter in the
package methylKit. Only used when doingTiles = TRUE. Default: 0.

tileSize a positive integer, the size of the tiling window. The parameter corresponds to
the win.size parameter in the methylKit package. Only used when doingTiles
= TRUE.

stepSize a positive integer, the step size of tiling windows. The parameter corresponds
to the stepSize parameter in the methylKit package. Only used when doingTiles
= TRUE.

vSeed a integer, a seed used when reproducible results are needed. When a value
inferior or equal to zero is given, a random integer is used.



46 validateRunPermutation

restartCalculation

a logical, when TRUE, only permutations that don’t have an associated RDS
result file are run. Useful to restart a permutation analysis that has been inter-
rupted.

saveInfoByGeneration

a logical, when TRUE, the information about differentially methylated sites and
tiles for each generation is saved in a RDS file. The information is saved in a
different file for each permutation. The files are only saved when the outputDir
is not NULL.

Value

0 indicating that all parameters validations have been successful.

Author(s)

Astrid Deschenes

Examples

## Load dataset
data(samplesForTransgenerationalAnalysis)

## The function returns 0 when all paramaters are valid
methylInheritance:::validateRunPermutation(

methylKitData = samplesForTransgenerationalAnalysis, type = "sites",
outputDir = "test", runObservedAnalysis = TRUE,
nbrPermutations = 10000, nbrCores = 1,
nbrCoresDiffMeth = 1, minReads = 10, minMethDiff = 25, qvalue = 0.01,
maxPercReads = 99.9, destrand = TRUE, minCovBasesForTiles = 10,
tileSize = 1000, stepSize = 500, vSeed = 12, restartCalculation = FALSE,
saveInfoByGeneration = FALSE)

## The function raises an error when at least one paramater is not valid
## Not run: methylInheritance:::validateRunPermutation(

methylKitData = "HI", type = "tiles", outputDir = "test",
runObservedAnalysis = FALSE, nbrPermutations = 10000, nbrCores = 1,
nbrCoresDiffMeth = 1, minReads = 10, minMethDiff = 25, qvalue = 0.01,
maxPercReads = 99.9, destrand = TRUE, minCovBasesForTiles = 10,
tileSize = 1000, stepSize = 500, vSeed = 12, restartCalculation = FALSE,
saveInfoByGeneration = FALSE)

## End(Not run)



Index

∗ datasets
demoForTransgenerationalAnalysis,

7
methylInheritanceResults, 19
samplesForTransgenerationalAnalysis,

35
∗ internal

createDataStructure, 4
createOutputDir, 6
formatInputMethylData, 9
getGRangesFromMethylDiff, 10
interGeneration, 11
isInterGenerationResults, 12
methylInheritance-package, 2
readInterGenerationResults, 25
runOnePermutationOnAllGenerations,

29
saveInterGenerationResults, 36
validateExtractInfo, 38
validateLoadConvergenceData, 39
validateMergePermutationAndObservation,

40
validateRunObservation, 41
validateRunPermutation, 44

∗ package
methylInheritance-package, 2

calculateSignificantLevel, 3
createDataStructure, 4
createOutputDir, 6

demoForTransgenerationalAnalysis, 7

extractInfo, 8, 22, 38

formatInputMethylData, 9

getGRangesFromMethylDiff, 10

interGeneration, 11
isInterGenerationResults, 12

loadAllRDSResults, 13
loadConvergenceData, 15, 39

mergePermutationAndObservation, 14, 16,
28, 34, 40

methylInheritance
(methylInheritance-package), 2

methylInheritance-package, 2
methylInheritanceResults, 19

plotConvergenceGraph, 23
plotGraph, 24
print.methylInheritanceAllResults, 25

readInterGenerationResults, 25
runObservation, 3, 7, 26, 41
runOnePermutationOnAllGenerations, 29
runPermutation, 3, 7, 32, 36, 44

samplesForTransgenerationalAnalysis,
35

saveInterGenerationResults, 36

validateExtractInfo, 38
validateLoadConvergenceData, 39
validateMergePermutationAndObservation,

40
validateRunObservation, 41
validateRunPermutation, 44

47


	methylInheritance-package
	calculateSignificantLevel
	createDataStructure
	createOutputDir
	demoForTransgenerationalAnalysis
	extractInfo
	formatInputMethylData
	getGRangesFromMethylDiff
	interGeneration
	isInterGenerationResults
	loadAllRDSResults
	loadConvergenceData
	mergePermutationAndObservation
	methylInheritanceResults
	plotConvergenceGraph
	plotGraph
	print.methylInheritanceAllResults
	readInterGenerationResults
	runObservation
	runOnePermutationOnAllGenerations
	runPermutation
	samplesForTransgenerationalAnalysis
	saveInterGenerationResults
	validateExtractInfo
	validateLoadConvergenceData
	validateMergePermutationAndObservation
	validateRunObservation
	validateRunPermutation
	Index

