
Package ‘metagene2’
February 2, 2026

Version 1.27.0

Date 2022-03-03

Title A package to produce metagene plots

Description This package produces metagene plots to compare coverages
of sequencing experiments at selected groups of genomic regions. It can
be used for such analyses as assessing the binding of DNA-interacting
proteins at promoter regions or surveying antisense transcription over the
length of a gene. The metagene2 package can manage all aspects of the
analysis, from normalization of coverages to plot facetting according to
experimental metadata. Bootstraping analysis is used to provide confidence
intervals of per-sample mean coverages.

biocViews ChIPSeq, Genetics, MultipleComparison, Coverage, Alignment,
Sequencing

License Artistic-2.0

LazyData true

BugReports https://github.com/ArnaudDroitLab/metagene2/issues

URL https://github.com/ArnaudDroitLab/metagene2

VignetteBuilder knitr

Depends R (>= 4.0), R6 (>= 2.0), GenomicRanges, BiocParallel

Imports rtracklayer, tools, GenomicAlignments, GenomeInfoDb, IRanges,
ggplot2, Rsamtools, purrr, data.table, methods, dplyr,
magrittr, reshape2

Suggests BiocGenerics, RUnit, knitr, BiocStyle, rmarkdown

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/metagene2

git_branch devel

git_last_commit a49814f

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

https://github.com/ArnaudDroitLab/metagene2/issues
https://github.com/ArnaudDroitLab/metagene2

2 as_is_region_order

Author Eric Fournier [cre, aut],
Charles Joly Beauparlant [aut],
Cedric Lippens [aut],
Arnaud Droit [aut]

Maintainer Eric Fournier <ericfournier2@yahoo.ca>

Contents
as_is_region_order . 2
Bam_Handler . 3
coverage_order . 6
get_demo_bam_files . 6
get_demo_design . 7
get_demo_metagene . 7
get_demo_regions . 8
get_demo_region_filenames . 8
get_demo_rna_bam_files . 9
get_demo_rna_regions . 9
metagene2 . 10
metagene2_heatmap . 20
plot_metagene . 21

Index 23

as_is_region_order Returns an "as-is" ordering of regions.

Description

This function creates an ordering of regions to be used with the metagene2_heatmap function. The
regions are not actually reordered, but returned as-is.

Usage

as_is_region_order(metagene)

Arguments

metagene The metagene object whose grouped regions should be ordered.

Value

A list, with as many elements as there are region groups in the metagene object. Each element of
that list is an ordering of the regions of that group based on their original ordering in the metagene2
object.

Bam_Handler 3

Examples

demo_metagene = get_demo_metagene()
as_is_region_order(demo_metagene)

Bam_Handler A class to manage BAM files.

Description

This class will allow to load, convert and normalize alignments and regions files/data.

Format

A BAM manager

Value

Bam_Handler$new returns a Bam_Handler object which contains coverage related information for
every BAM files.

Constructor

bh <- Bam_Handler$new(bam_files, cores = SerialParam())

bam_files A vector of BAM filenames. The BAM files must be indexed. i.e.: if a file is named
file.bam, there must be a file named file.bam.bai or file.bai in the same directory.

cores The number of cores available to parallelize the analysis. Either a positive integer or a
BiocParallelParam. Default: SerialParam().

paired_end If TRUE, metagene will deal with paired-end data. If FALSE, single-end data are ex-
pected

Bam_Handler$new returns a Bam_Handler object that contains and manages BAM files. Coverage
related information as alignment count can be obtain by using this object.

Methods

bh$get_aligned_count(bam_file)

bam_file The name of the BAM file.

bg$get_bam_name(bam_file)

bam_file The name of the BAM file.

bh$get_rpm_coefficient(bam_file)

bam_file The name of the BAM file.

bh$index_bam_files(bam_files)

bam_files A vector of BAM filenames.

4 Bam_Handler

bh$get_bam_files()

bh$get_coverage(bam_file, regions) force_seqlevels = FALSE)

bam_file The name of the BAM file.

regions A not empty GRanges object.

force_seqlevels If TRUE, Remove regions that are not found in bam file header. Default: FALSE.
TRUE and FALSE respectively correspond to pruning.mode = "coarse" and "error" in ?se-
qinfo.

bh$get_normalized_coverage(bam_file, regions) force_seqlevels = FALSE)

bam_file The name of the BAM file.

regions A not empty GRanges object.

force_seqlevels If TRUE, Remove regions that are not found in bam file header. Default: FALSE.
TRUE and FALSE respectively correspond to pruning.mode = "coarse" and "error" in ?se-
qinfo.

chip_bam_file The path to the chip bam file.

input_bam_file The path to the input (control) bam file.

Methods

Public methods:
• Bam_Handler$new()

• Bam_Handler$get_bam_name()

• Bam_Handler$get_aligned_count()

• Bam_Handler$get_rpm_coefficient()

• Bam_Handler$index_bam_files()

• Bam_Handler$get_bam_files()

• Bam_Handler$get_coverage()

• Bam_Handler$get_normalized_coverage()

• Bam_Handler$clone()

Method new():
Usage:
Bam_Handler$new(
bam_files,
cores = SerialParam(),
paired_end = FALSE,
strand_specific = FALSE,
paired_end_strand_mode = 2,
extend_reads = 0,
invert_strand = FALSE

)

Method get_bam_name():

Bam_Handler 5

Usage:
Bam_Handler$get_bam_name(bam_file)

Method get_aligned_count():
Usage:
Bam_Handler$get_aligned_count(bam_file)

Method get_rpm_coefficient():
Usage:
Bam_Handler$get_rpm_coefficient(bam_file)

Method index_bam_files():
Usage:
Bam_Handler$index_bam_files(bam_files)

Method get_bam_files():
Usage:
Bam_Handler$get_bam_files()

Method get_coverage():
Usage:
Bam_Handler$get_coverage(
bam_file,
regions,
force_seqlevels = FALSE,
simplify = TRUE

)

Method get_normalized_coverage():
Usage:
Bam_Handler$get_normalized_coverage(
bam_file,
regions,
force_seqlevels = FALSE,
simplify = TRUE

)

Method clone(): The objects of this class are cloneable with this method.
Usage:
Bam_Handler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

bam_file <- get_demo_bam_files()[1]
bh <- metagene2:::Bam_Handler$new(bam_files = bam_file)
bh$get_aligned_count(bam_file)

6 get_demo_bam_files

coverage_order Determines ordering of regions as a function of coverage.

Description

This function creates an ordering of regions within region groups based on ascending or descending
mean coverage. This is used with the metagene2_heatmap function.

Usage

coverage_order(metagene, design_groups = NULL, decreasing = TRUE)

Arguments

metagene The metagene object whose grouped regions should be ordered.
design_groups A vector of design groups to be used for determining the ordering. If NULL, all

design groups are used.
decreasing If TRUE, regions are ordered from the highest mean coverage to the lowest mean

coverage, and vice versa.

Value

A list, with as many elements as there are region groups in the metagene object. Each element of
that list is an ordering of the regions of that group based on their mean coverage.

Examples

demo_metagene = get_demo_metagene()
coverage_order(demo_metagene)

get_demo_bam_files Get BAM filenames for demo

Description

Get BAM filenames for demo

Usage

get_demo_bam_files()

Value

A vector of BAM filenames

Examples

bam_files <- get_demo_bam_files()

get_demo_design 7

get_demo_design Get a demo design object

Description

Get a demo design object

Usage

get_demo_design()

Value

A data.frame corresponding to a valid design.

Examples

mg <- get_demo_design()

get_demo_metagene Get a demo metagene object

Description

Get a demo metagene object

Usage

get_demo_metagene()

Value

A metagene object

Examples

mg <- get_demo_metagene()

8 get_demo_region_filenames

get_demo_regions Get demo regions

Description

Get demo regions

Usage

get_demo_regions()

Value

A vector of regions filenames

Examples

regions <- get_demo_regions()

get_demo_region_filenames

Get regions filenames for demo

Description

Get regions filenames for demo

Usage

get_demo_region_filenames()

Value

A vector of regions filenames

Examples

regions <- get_demo_regions()

get_demo_rna_bam_files 9

get_demo_rna_bam_files

Get BAM filenames for demo

Description

Get BAM filenames for demo

Usage

get_demo_rna_bam_files()

Value

A vector of BAM filenames

Examples

bam_files <- get_demo_rna_bam_files()

get_demo_rna_regions Get demo regions

Description

Get demo regions

Usage

get_demo_rna_regions()

Value

A GRangesList with two genes

Examples

regions <- get_demo_rna_regions()

10 metagene2

metagene2 A class to manage metagene analysis.

Description

This metagene2 class encapsulates all of the steps necessary to perform metagene analyses, which
are aggregations of coverages over multiple regions (genes) to reveal patterns that might not be
apparent from looking at individual regions. It will allow to load, convert and normalize bam
alignments and regions files/data. Once the data is ready, the user can then choose to produce
metagene plots on the data or some subset of it.

Format

A metagene experiment manager

Details

Most metagene analyses are a two-step affair:

1. Initialize the object using mg = metagene2$new(), specifying which regions and bam files
should be used for the analysis.

2. Generate a metagene plot using mg$produce_metagene, specifying any additional parameter
(Number of bins, facetting variables, etc).

The metagene2 object will then internally chain all 6 required processing steps, updating its internal
caches along the way:

1. Coverages are inferred from bam files (metagene2$new).
2. Coverages from multiple bam files are grouped and normalized (mg$group_coverages).
3. Coverages are binned together (mg$bin_coverages)
4. Binned coverages are split according to the type of region they belong to (mg$split_coverages_by_regions).
5. Coverage means and confidence intervals are calculated for each region * group combination

(mg$calculate_ci).
6. Metadata is added to the calculated coverages (mg$add_metadata).
7. The metagene is plotted (mg$plot).

Each of these steps has an associated function, which takes as input certain parameters of the meta-
gene analysis and returns an intermediary structure of interest (coverages, binned coverages, long-
form data frame of confidence intervals, etc). Those are described below, in the "Processing meth-
ods" section.
All processing methods automatically call previous processing steps if those have not already been
run. For example, there is no need to call mg$group_coverages() before calling mg$bin_coverages():
the metagene2 object will automatically detect that certain prerequisite steps have not yet been per-
formed, and run them.
Additionally, when calling produce_metagene a second time to change certain analysis parameters
after generating an initial metagene plot, only the required caches are reset: all non-impacted aspects
of the analysis are left untouched, decreasing processing time.
For further examples, see the metagene2 vignette.

metagene2 11

Value

metagene2$new returns a metagene2 object which contains the normalized coverage values for
every regions in all specified BAM files.

Constructor

Usage:
mg <- metagene2$new(regions, bam_files, padding_size = 0, cores = SerialParam(), verbose
= FALSE, force_seqlevels = FALSE, paired_end = FALSE, assay = 'chipseq', strand_specific=FALSE,
paired_end_strand_mode=2, region_mode="auto", region_metadata=NULL, extend_reads=0,
invert_strand=FALSE, ...)

Description:
This method returns a new metagene2 object. Upon initialization, a metagene2 object calculates
coverages over all given regions in the provided bam files. Any and all parameter associated with
any of the processing steps can be initialized upon object construction. All analysis parameters that
are not explicitly specified in the constructor call are initialized to sensible defaults.

Parameters:

regions A description of all regions over which metagenes will be calculated.
When region_mode is "separate", those should be provided using a GRanges object represent-
ing all individual, contiguous regions to be examined.
When region_mode is "stitch", those should be provided using a GRangesList object where
each individual GRanges element represents a set of regions to be stitched together.
As a convenience, in "separate" mode, metagene2 will convert any passed in GRangesList
into an unlisted GRanges with an additional region_name metadata column containing the
name of the GRangesList element it was extracted from.
Also as a convenience, regions can also be a character vector of filenames, which are then
imported into a GRangesList. Supported file formats are BED, narrowPeak, broadPeak, gff
and gtf.

bam_files A vector of BAM filenames. The BAM files must be indexed. i.e.: if a file is named
file.bam, there must be a file named file.bam.bai or file.bai in the same directory. If bam_files
is a named vector, then the provided names can be used downstream to refer to those bam files.
If no names are provided, metagene2 will try to infer appropriate ones.

assay 'chipseq', 'rnaseq' or NULL. If non-NULL, metagene will set other parameters, such as
region_mode and strand_specific, to logical values for the given assay. Default: 'chipseq'

region_mode Set the way the regions parameter is interpreted. Can be 'separate', 'stitch'
or 'auto'. In separate mode, regions is expected to be a GRanges defining individual,
contiguous regions. In 'stitch' mode, regions is expected to be a GRangesList where each
GRanges element represents a set of regions to be stitched together and treated as a single
logical region. If 'auto' then a logical value is inferred from the assay parameter. Default:
'auto'

region_metadata A data-frame of metadata to be associated with the elements of regions. It must
contain has many rows as there are elements in regions. If region_metadata is NULL but
regions has an mcols element, then it is used.

padding_size The provided regions will be extended on each side by the value of this parameter.
The padding_size must be a non-negative integer. Default = 0.

12 metagene2

cores The number of cores available to parallelize the analysis. Either a positive integer or a
BiocParallelParam. Default: SerialParam().

verbose Print progression of the analysis. A logical constant. Default: FALSE.

force_seqlevels If TRUE, remove regions that are not found in bam file header. Default: FALSE.
TRUE and FALSE respectively correspond to pruning.mode = "coarse" and "error" in ?seqinfo.

paired_end Set this to TRUE if the provided bam files describe paired-end reads. If FALSE, single-
ended data are expected. Default: FALSE

strand_specific If TRUE, only reads which align to the same strand as those specified in regions
will count toward coverage for that region. Useful for RNA-seq profiles generated from strand-
specific libraries, such as Illumina TruSeq. Default: 'FALSE'

paired_end_strand_mode '1' or '2'. In paired-end mode, indicates which read in a pair sets the
pair’s strand. If 1, this is the first read (This should be used with directional protocols such as
Directional Illumina (Ligation) or Standard SOLiD). If 2, this is the second read (This should
be used with directional protocols such as dUTP, NSR, NNSR, or Illumina stranded TruSeq
PE). Ignored if either paired_end or strand_specific is FALSE. Default: '2'

extend_reads Extend individual reads to have a minimum length equal to this parameter. When
set to 0, no read extension occurs. This is useful for single-end chip-seq experiments, where
the length of the captured fragment is usually longer than the sequenced read.

invert_strand If TRUE, coverages for the given regions will be inferred from the coverage on the
strand opposite theirs. Useful for single-end stranded experiments which use cDNA. This
parameter is ignored if strand-specific is FALSE.

... Additional parameters for the metagene analysis. See produce_metagene for a list of possible
parameters.

metagene2$new returns a metagene2 object that contains the coverages for every BAM files in the
regions from the regions parameter.

produce_metagene()

Usage:
mg$produce_metagene(...)

Description:
produce_metagene is the workhorse method of the metagene2 object. This method performs all
of the necessary analysis steps for the production of the metagene plot, and returns that plot. Any
and all parameters of the metagene analysis, as documented in the individual processing steps, can
be passed to produce_metagene. The metagene2 object will then determines which intermediate
caches would be affected by changes to those parameters, invalidate them, and rerun all steps up to
the plotting. This makes produce_metagene ideal for fast, iterative takes on the data.

Below we present those parameters and a brief description of their usage. Please refer to the affected
processing step for a more in-depth explanation of each parameter.

Parameters:

design A data.frame that describes the grouping of the bam files into design groups. By default,
each bam file is its own design group. See group_coverages.

normalization The algorithm to use to normalize coverages, NULL (no normalization) or "RPM".
By default, no normalization occurs. See group_coverages.

metagene2 13

design_filter Indices indicating which subset of design groups should be included in the analysis.
By default, all design groups/bam files are included. See group_coverages.

bin_count The number of bins regions should be split into. Defaults to 100. See bin_coverages.

region_filter The subset of regions to be kept for the analysis. By default, all regions are kept. See
bin_coverages

split_by Which metadata columns should we use to split the set of regions into subset of interests?
Defaults to "region_name", an automatically added column. See split_coverages_by_regions.

alpha The alpha level of the confidence interval estimates. Defaults to 0.05. See calculate_ci.

sample_count The number of draws to perform in the bootstrap calculations used to calculate the
confidence inteval. Defaults to 1000. See calculate_ci

resampling_strategy The resampling strategy to be used when performing the bootstrap analysis,
which can be either 'profile' or 'bin'. Defaults to 'bin'. See calculate_ci.

design_metadata A data-frame containing metadata for the design groups. By default, no meta-
data is associated. See add_metadata.

title A title to add to the graph. See plot.

x_label X-axis label for the metagene plot. See plot.

facet_by A formula to be used for facetting the metagene plot. By default, no facetting occurs. See
plot.

group_by The metadata column used to build the color scale. By default, the combination of
design and region name is used. See plot.

Processing methods

Each of the following methods perform one step of metagene processing. Most do not need to be
called explicitly. Instead, you can simply call produce_metagene. However, you can use them to
access intermediary results: grouped coverages, binned coverages, split coverages, and long-form
data-frame of coverages with confidence intervals.

group_coverages

Usage:
mg$group_coverages(design=NA, normalization=NA, design_filter=NA, simplify=FALSE)

Description:
This method normalizes genome-wide coverages, then groups them according to the specified de-
sign groups. It returns a list of possible read orientations (+, -, *), each element of which is either
NULL (depending on the value of the strand_specific parameter) or a list of possible design groups.
In turn, the lists of design groups contain lists of Rle objects representing coverage over a specific
chromosome or sequence.

Parameters:

design A data.frame that describes the grouping of the bam files into design groups. The first
column of the design should contain the names of bam_files passed on initialization. Each
subsequent columns represents a design group, that is to say a combination of bam files whose
coverages should be grouped together into a logical unit. These columns should contain inte-
ger values indicating whether the bam files on that row should be excluded (0), included as an‘

14 metagene2

"input" (1) or included as a "control" (2) within the specified design group. Control samples
are used for "log2_ratio" normalization, but are ignored for no or "RPM" normalization. NA
can be used keep previous design value. Default: NA.

normalization The algorithm to use to normalize coverages. Possible values are NULL (no nor-
malization), "RPM" and "log2_ratio". "RPM" transforms raw counts into Reads-Per-Million.
"log2_ratio" uses the formula log2((input RPM + 1) / (control RPM + 1)) to calculate a log-
ratio between input and control. NA can be used keep the previous value. Default: NA

design_filter A logical vector specifying which of the design groups specified within the design
parameter should be included in the metagene. Useful for quickly reprocessing a subset of
samples. NA can be used keep previous design value. Default: NA

simplify In single strand mode, set simplify to TRUE to return only the ’*’ coverage and omit the
empty ’+’ and ’-’ components. Default: FALSE

bin_coverages

Usage:

mg$bin_coverages(bin_count=NA, region_filter=NA)

Description:

This method summarizes the coverage over regions of interests into a specified number of bins. For
each design group, it produces a matrix of binned coverages where each row represents a region,
and each column represents a bin. Those are returned in a named list where each element contains
the resulting matrix for a specific design group.

Parameters:

bin_count The number of bins regions should be split into. The specified bin_count must always
be equal or higher than the minimum size of the specified regions. NA can be used to keep the
previous value. Default: NA.

region_filter This parameter defines the subset of regions within the regions parameter passed
on initialization on which the metagene should be generated. region_filter can be (1) a
quosure, to be evaluated in the context of the region_metadata data-frame, (2) a character
vector containing the names of the regions to be used or (3) a logical or numeric vector to be
used for subsetting. NA can be used to keep the previous value. Default: NA

split_coverages_by_regions

Usage:

mg$split_coverages_by_regions(split_by=NA)

Description:

This methods splits the matrices generated by mg$bin_coverages into groups of regions where the
values of the metadata columns specified by split_by are homogeneous. It returns a list where
each element represents a design group: each of those element is in turn a list representing groups
of regions for which all metadata values specified by "split_by" are equal. The leaf elements of this
list hierarchy are coverage matrices where each row represents a region, and each column represents
a bin.

Parameters:

metagene2 15

split_by A vector of column names from the region_metadata parameter, as specified on metagene
initialization. The selected columns must allow conversion into a factor. By default, this is set
to region_name, a metadata column which is automatically generated by metagene. NA can be
used to keep the previous value. Default: NA

calculate_ci

Usage:

mg$calculate_ci(alpha = NA, sample_count = NA, resampling_strategy=NA)

Description:

This method calculates coverage means and confidence intervals for all design_group * region * bin
combination. These are returned as a long-form data-frame.

Parameters:

alpha The alpha level of the confidence interval estimate. NA can be used to keep the previous
value. Default: NA

sample_count The number of draws to perform in the bootstrap calculations used to calculate the
confidence inteval. NA can be used to keep the previous value. Default: NA

resampling_strategy The resampling strategy to be used when performing the bootstrap analysis,
which can be either 'profile' or 'bin'. In 'profile' mode, whole profiles across all bins
are resampled. In 'bin' mode, each bin is resampled individually and independantly from all
others. NA can be used to keep the previous value. Default: NA

add_metadata

Usage:

mg$add_metadata(design_metadata=NA)

Description:

This method adds design group and region metadata to the data-frame produced by mg$calculate_ci
for easier plotting.

Parameters:

design_metadata A data-frame containing metadata for the design groups. It must contain as
many rows as there are design groups, and must contain at least one column named ’design’
which is used to match the rows to design groups.

plot

Usage:

mg$plot(region_names = NULL, design_names = NULL, title = NA, x_label = NA, facet_by=NA,
group_by=NA)

Description:

This method produces a ggplot object giving a graphical representation of the metagene analysis.

Parameters:

16 metagene2

region_names The names of the regions to be plotted. If NULL, all the regions are plotted. Default:
NULL.

design_names The names of the design groups to be plotted. If NULL, all the design groups are
plotted. Default: NULL.

title A title to add to the graph. NA can be used to keep the previous value. Default: NA

x_label X-axis label for the metagene plot. NA can be used to keep the previous value. Default: NA.

facet_by A formula to be used for facetting the metagene plot. This formula can include any design
metadata, or region_metadata NA can be used to keep the previous value. Default: NA.

group_by A string representing a single column from design_metadata or region_metadata which
will be used to group observations together into lines and which will be used to generate the
color scale. NA can be used to keep the previous value. Default: NA.

Getter methods

The following methods return various informations about the metagene object.

mg$get_params()

Returns a list of all parameters used to perform this metagene analysis.

mg$get_design()

Returns the design used to perform this metagene analysis.

mg$get_regions()

Returns the regions used for this metagene analysis.

mg$get_data_frame(region_names = NULL, design_names = NULL)

Returns full data-frame of results.

region_names The names of the regions to extract. If NULL, all the regions are returned. Default:
NULL.

design_names The names of the design groups to extract. If NULL, design groups are returned.
Default: NULL.

mg$get_plot()

Returns the ggplot object generated by the metagene2$plot function.

mg$get_raw_coverages()

Returns raw coverages over the regions specified on initialization.

mg$get_normalized_coverages()

Returns normalized coverages over the regions specified on initialization.

metagene2 17

Methods

Public methods:
• metagene2$new()

• metagene2$get_bam_count()

• metagene2$get_params()

• metagene2$get_design()

• metagene2$get_design_group_names()

• metagene2$get_regions()

• metagene2$get_regions_metadata()

• metagene2$get_split_regions()

• metagene2$get_data_frame()

• metagene2$get_plot()

• metagene2$get_raw_coverages()

• metagene2$get_normalized_coverages()

• metagene2$set_cores()

• metagene2$group_coverages()

• metagene2$bin_coverages()

• metagene2$split_coverages_by_regions()

• metagene2$calculate_ci()

• metagene2$add_metadata()

• metagene2$plot()

• metagene2$produce_metagene()

• metagene2$plot_single_region()

• metagene2$replace_region_metadata()

• metagene2$clone()

Method new():
Usage:
metagene2$new(
regions,
bam_files,
padding_size = 0,
cores = SerialParam(),
verbose = FALSE,
force_seqlevels = FALSE,
paired_end = FALSE,
assay = "chipseq",
strand_specific = FALSE,
paired_end_strand_mode = 2,
region_mode = "auto",
region_metadata = NULL,
extend_reads = 0,
invert_strand = FALSE,
...

)

18 metagene2

Method get_bam_count():
Usage:
metagene2$get_bam_count(filename)

Method get_params():
Usage:
metagene2$get_params()

Method get_design():
Usage:
metagene2$get_design()

Method get_design_group_names():
Usage:
metagene2$get_design_group_names()

Method get_regions():
Usage:
metagene2$get_regions()

Method get_regions_metadata():
Usage:
metagene2$get_regions_metadata()

Method get_split_regions():
Usage:
metagene2$get_split_regions()

Method get_data_frame():
Usage:
metagene2$get_data_frame(region_names = NULL, design_names = NULL)

Method get_plot():
Usage:
metagene2$get_plot()

Method get_raw_coverages():
Usage:
metagene2$get_raw_coverages()

Method get_normalized_coverages():
Usage:
metagene2$get_normalized_coverages()

Method set_cores():

metagene2 19

Usage:
metagene2$set_cores(cores)

Method group_coverages():

Usage:
metagene2$group_coverages(
design = NA,
normalization = NA,
design_filter = NA,
simplify = TRUE

)

Method bin_coverages():

Usage:
metagene2$bin_coverages(bin_count = NA, region_filter = NA)

Method split_coverages_by_regions():

Usage:
metagene2$split_coverages_by_regions(split_by = NA)

Method calculate_ci():

Usage:
metagene2$calculate_ci(alpha = NA, sample_count = NA, resampling_strategy = NA)

Method add_metadata():

Usage:
metagene2$add_metadata(design_metadata = NA)

Method plot():

Usage:
metagene2$plot(
region_names = NULL,
design_names = NULL,
title = NA,
x_label = NA,
facet_by = NA,
group_by = NA

)

Method produce_metagene():

Usage:
metagene2$produce_metagene(...)

Method plot_single_region():

Usage:

20 metagene2_heatmap

metagene2$plot_single_region(
region,
facet_by = NA,
group_by = NA,
no_binning = FALSE

)

Method replace_region_metadata():

Usage:

metagene2$replace_region_metadata(region_metadata)

Method clone(): The objects of this class are cloneable with this method.

Usage:

metagene2$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

mg <- metagene2$new(regions = get_demo_regions(), bam_files = get_demo_bam_files())
Not run:

mg$plot()

End(Not run)

metagene2_heatmap Plots a heatmap of coverages from a metagene2 object.

Description

This function creates an ordering of regions within region groups based on ascending or descending
mean coverage. This is used with the metagene2_heatmap function.

Usage

metagene2_heatmap(
metagene,
region_order = as_is_region_order(metagene),
scale_trans = "identity"

)

plot_metagene 21

Arguments

metagene The metagene object to be plotted as a heatmap.

region_order A named list with as many elements as there are region groups, with each ele-
ment containing an ordering for the regions within that group. The as_is_region_order
and coverage_order functions can be used to generate a valid ordering. By de-
fault, as_is_region_order is used.

scale_trans A character string giving the transformation that should be applied to the cover-
age values. Common values are "identity" and "log1p". See the ggplot2 docu-
mentation for scale_continuous for more details.

Value

A ggplot object containing a heatmap representation of the metagene2 object.

Examples

demo_metagene = get_demo_metagene()
metagene2_heatmap(demo_metagene)

plot_metagene Produce a metagene plot

Description

Produce a metagene plot

Usage

plot_metagene(df, facet_by = NULL, group_by = NULL)

Arguments

df a data.frame obtained with the get_data_frame function. Must have the fol-
lowing columns: "region", "design", "bin", "value", "qinf" and "qsup".

facet_by A formula to be used for facetting the metagene plot. This formula can include
any design metadata, or region_metadata NA can be used to keep the previous
value. Default: NA.

group_by A string representing a single column from design_metadata or region_metadata
which will be used to group observations together into lines and which will be
used to generate the color scale. NA can be used to keep the previous value.
Default: NA.

Value

A ‘ggplot‘ object.

22 plot_metagene

Examples

mg <- get_demo_metagene()
df <- mg$add_metadata()
p <- metagene2::plot_metagene(df)

Index

as_is_region_order, 2, 21

Bam_Handler, 3

coverage_order, 6, 21

get_demo_bam_files, 6
get_demo_design, 7
get_demo_metagene, 7
get_demo_region_filenames, 8
get_demo_regions, 8
get_demo_rna_bam_files, 9
get_demo_rna_regions, 9

metagene2, 10
metagene2_heatmap, 2, 6, 20, 20

plot_metagene, 21

23

	as_is_region_order
	Bam_Handler
	coverage_order
	get_demo_bam_files
	get_demo_design
	get_demo_metagene
	get_demo_regions
	get_demo_region_filenames
	get_demo_rna_bam_files
	get_demo_rna_regions
	metagene2
	metagene2_heatmap
	plot_metagene
	Index

