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calcActivation

Calculate Activation Matrix

Description

Calculate the activation matrix assuming that the signaling is deterministically propagated along
the network. For a given network and perturbation experiment the theoretical states of the genes
are computed. So, if a gene has been silenced in an experiment, then the state of this gene is
assumed to be inactive, otherwise if its inflow (coming from parent nodes) is activating, it is active.
Cycles within a network are not resolved, therefore this function can be used only for networks
without cycles. This function is also used to generate the network states for time-series data (by
generateTimeSeriesNetStates), in which case flag_gen_data is set to true, and the activation matrix
is calculated without taking the edges sign into account.

Usage

calcActivation(T_nw, b, n, K, flag_gen_data = FALSE)

Arguments

T_nw

n

K

flag_gen_data

Value

Adjacency matrix: the network which is used to compute the activities and in-
activities.

Vector of 0/1 values describing the experiments (entry is 0 if gene is inactivated
in the respetive experiment and 1 otherwise). The measurements of the genes of
each experiment are appended as a long vector.

Integer: number of genes.
Integer: number of perturbation experiments.

Logical: if set to TRUE the edges sign will not be taken into account. It should
be TRUE if the function is used to generate the network states for time-series
data.

Matrix of 0/1 values; rows corresponding to genes, columns to experiments. If an entry is 1, it
means that the corresponding gene is active in the corresponing experiment and inactive otherwise.

Examples

n <- 5 # number of genes
K <- 7 # number of perturbations experiments

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise
b <- c(0,1,1,1,1, # perturbation expl: gene 1 perturbed, gene 2-5 unperturbed

0
1
1
1

’

)

’

’

1
0
1
1

’

’

’

1
1
0
1

’

’

’

1
1
1
4

)

’

’

# perturbation exp2: gene 2 perturbed, gene 1,3,4,5 unperturbed

,1,1, # perturbation exp3....
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# example network
T_nw <- matrix(c(e,1,1,0,0,

0,0,0,-1,0,
0,0,0,1,0,
0,0,0,0,1,
0,0,0,0,0), nrow=n,ncol=n,byrow=TRUE)

# compute theoretical activation of genes from example network with given perturbations
act_mat <- calcActivation(T_nw, b, n, K)

calcPrediction Calculate Predicted Observation.

Description

Calculate the predicted observation of a perturbation experiment. If observations of an experiment
are missing this function can be used to determine for a given network the predicted outcome. The
missing measurement is predicted from two normal distributions, one for observations coming from
active and one coming from inactive genes. The state of the gene is predicted based on the states of
its parents.

Usage

calcPredictionLO0CV(obs, delta, b, n ,K, adja, baseline, rem_gene,
rem_k, rem_t=NULL, active_mu, active_sd, inactive_mu,
inactive_sd, mu_type, flag_time_series=FALSE)
calcPredictionKfoldCV(obs, delta, b, n, K, adja, baseline, rem_entries=NULL,
rem_entries_vec=NULL, active_mu, active_sd, inactive_mu,
inactive_sd, mu_type, flag_time_series=FALSE)

Arguments

obs Numeric matrix/array: the observation matrix/array. It can have up to 3 dimen-
sions, where dimension 1 are the network nodes, dimension 2 are the perturba-
tion experiments, and dimension 3 are the time points (if considered).

delta Numeric vector defining the thresholds for each gene to determine its observa-
tion to be active or inactive.

b Binary vector representing the perturbation experiments (entry is O if gene is
inactive in the respective experiment and 1 otherwise).

n Number of genes in the observation matrix.

K Number of perturbation experiments.

adja Numeric matrix: the adjacency matrix of the given network.

baseline Vector containing the inferred baseline vectors of each gene.
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rem_gene Integer: the index of the gene that is missing.

rem_k Integer: the index of the perturbation experiment that is missing.

rem_t Integer: the index of the time point that is missing.

rem_entries Numeric matrix: each row represents an entry that was removed from the obser-

vation matrix, while the 3 columns represent the gene, perturbation experiment
and time point, respectively.

rem_entries_vec
Numeric vector: contains the entries that were removed in an "absolute form",
i.e., if entry (2,1,2) was removed, it will appear in this vector as simply 5.

active_mu Numeric: the average value assumed for observations coming from active nodes.
The parameter active_mu and active_sd are used for predicting the observations
of the normal distribution of activate genes. This parameter can be either a
numeric, a vector, a matrix, or a 3D array, depending on the specified mu_type.

active_sd Numeric: the variation assumed for observations coming from active nodes.
The parameter active_mu and active_sd are used for predicting the observations
of the normal distribution of activate genes. This parameter can be either a
numeric, a vector, a matrix, or a 3D array, depending on the specified mu_type.

inactive_mu Numeric: the average value assumed for observations coming from inactive
nodes. The parameter inactive_mu and inactive_sd are used for predicting the
observations of the normal distribution of inactivate genes. This parameter can
be either a numeric, a vector, a matrix, or a 3D array, depending on the specified
mu_type.

inactive_sd Numeric: the variation assumed for observations coming from inactive nodes.
The parameter inactive_mu and inactive_sd are used for predicting the observa-
tions of the normal distribution of inactivate genes. This parameter can be either
a numeric, a vector, a matrix, or a 3D array, depending on the specified mu_type.

mu_type Character: can have the following values and meanings:
* "simple" - the value of active_mu/sd and inactive_mu/sd is independent of
the gene/perturbation experiment/time point;
* "perGene" - the value of active_mu/sd and inactive_mu/sd depends on the
gene;
* perGeneExp" - the value of active_mu/sd and inactive_mu/sd depends on
the gene and perturbation experiment;

* perGeneTime" - the value of active_mu/sd and inactive_mu/sd depends on
the gene and time point;

* "perGeneExpTime" - the value of active_mu/sd and inactive_mu/sd de-
pends on the gene, perturbation experiment, and time point;

flag_time_series
Logical: specifies whether steady-state (FALSE) or time series data (TRUE) is
used.

See Also

loocv, kfoldCV
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Examples

n <- 3 # number of genes
K <- 4 # number of experiments
T_ <= 4 # number of time points

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise
b <- c(0,1,1, # perturbation expl: gene 1 perturbed, gene 2,3 unperturbed
1,0,1, # perturbation exp2: gene 2 perturbed, gene 1,3 unperturbed
1,1,0, # perturbation exp3....
1,1,1)

# adjacency matrix
adja <- matrix(c(o,1,0,
0,0,1,
0,0,0), nrow=n, ncol=n, byrow=TRUE)

# define node baseline values
baseline <- c(0.75, @, @)

# define delta value
delta <- rep(0.75, n)

# define the parameters for the observation generated from the normal distributions
mu_type <- "single"

active_mu <- 0.9

inactive_mu <- 9.5

active_sd <- inactive_sd <- 0.01

#### kfoldCV

# generate random observation matrix
obs <- array(rnorm(n*KxT_), c(n,K,T_))

# define the observationd to be removed, whose values will be predicted
obs[2,4,2] <- NA
obs[3,4,3] <- NA

rem_entries <- which(is.na(obs), arr.ind=TRUE)
rem_entries_vec <- which(is.na(obs))

# compute the predicted observation matrix for the "kfoldCV"

calcPredictionKfoldCV(obs=obs, delta=delta, b=b, n=n, K=K, adja=adja, baseline=baseline,
rem_entries=rem_entries, rem_entries_vec=rem_entries_vec,
active_mu=active_mu, active_sd=active_sd, inactive_mu=inactive_mu,
inactive_sd=inactive_sd, mu_type=mu_type, flag_time_series=TRUE)

#### LOOCV
# generate random observation matrix
obs <- matrix(rnorm(nxK), nrow=n, ncol=K)

# define the observationd to be removed
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rem_k <- 3
rem_gene <- 2
obs[rem_gene, rem_k] <- NA

# compute the predicted value
calcPredictionLOOCV(obs=obs, delta=delta,b=b, n=n ,K=K, adja=adja, baseline=baseline,
rem_gene=rem_gene, rem_k=rem_k, active_mu=active_mu, active_sd=active_sd,
inactive_mu=inactive_mu, inactive_sd=inactive_sd, mu_type=mu_type)

calcRangelLambda Compute Range Of Penalty Parameter Lambda.

Description

The penalty parameter lambda can range from zero to infinity and it controls the introduction of
slack variables in the network inference lp model. To limit the introduction of slack variables we
restrict lambda to be not larger than lambdaMax (=the number of slack variables times the variance
of all measurements given). This function computes the range from zero to lambdaMax with a given
stepsize that increases exponentially.

Usage
calcRangelLambda(obs, delta, delta_type, flag_time_series=FALSE)

Arguments

obs Numeric matrix/array: the observation matrix/array. It can have up to 3 dimen-
sions, where dimension 1 are the network nodes, dimension 2 are the perturba-
tion experiments, and dimension 3 are the time points (if considered).

delta Numeric: defines the thresholds for each gene to determine its observation to be
active or inactive. This parameter can be either a numeric vector, a matrix, or a
3D array, depending on the specified delta_type.

delta_type Character: can have the following values and meanings:

» "perGene" - the value of delta depends on the gene;
» "perGeneExp" - the value of delta depends on the gene and perturbation
experiment;
» "perGeneTime" - the value of delta depends on the gene and time point;
* "perGeneExpTime" - the value of delta depends on the gene, perturbation
experiment, and time point;
flag_time_series
Logical: specifies whether steady-state (FALSE) or time series data (TRUE) is
used.

Value

Numeric vector of possible values for lambda.
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cv

# generate random observation matrix with 5 experiments and 5 genes
obs <- matrix(rnorm(5%5, 1, @.1), nrow=5, ncol=5)

# define delta to be 1 for each gene
delta <- rep(1, 5)
delta_type <- "perGene"

lambda_values <- calcRangelLambda(obs, delta, delta_type)

cv

Cross-validation

Description

Performs a stratified k-fold cross-validation or a Leave-One-Out cross-validation.

Usage

loocv(kfold=NULL, times, obs, delta, lambda, b, n, K, T_=NULL,

annot, annot_node, active_mu, active_sd, inactive_mu,
inactive_sd, mu_type, delta_type, prior=NULL, sourceNode=NULL,
sinkNode=NULL, allint=FALSE, allpos=FALSE, flag_time_series=FALSE)

kfoldCV(kfold, times, obs, delta, lambda, b, n, K, T_=NULL,

annot, annot_node, active_mu, active_sd, inactive_mu,
inactive_sd, mu_type, delta_type, prior=NULL,

sourceNode=NULL, sinkNode=NULL, allint=FALSE,

Arguments

kfold
times
obs

delta

lambda

allpos=FALSE, flag_time_series=FALSE)

Integer value of the number "k" in the k-fold cross-calidation.
Integer: the number of times the cross-validation shall be performed.

Numeric matrix/array: the measured observation matrix/array. It can have up to
3 dimensions, where dimension 1 are the network nodes, dimension 2 are the
perturbation experiments, and dimension 3 are the time points (if considered).

Numeric vector, matrix, or array defining the thresholds to determine an obser-
vation active or inactive.

Numeric value defining the penalty parameter lambda. It can range from zero to
infinity and it controls the introduction of slack variables in the network infer-
ence Ip model.

Integer: number of genes.

Vector of 0/1 values describing the experiments (entry is 0 if gene is inactivated
in the respetive experiment and 1 otherwise). The measurements of the genes of
each experiment are appended as a long vector.
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K
T

annot

annot_node

active_mu

active_sd

inactive_mu

inactive_sd

mu_type

delta_type

prior

Integer: number of perturbation experiments.
Integer: number of time points in time-series data.

Vector of character strings: the annotation of the edges as returned by "get-
EdgeAnnot".

Vector of character strings: the annoation of the nodes.

Numeric: the average value assumed for observations coming from activated
nodes. The parameter active_mu and active_sd are used for predicting the ob-
servations of the normal distribution of activate genes. This parameter can be
either a numeric, a vector, a matrix, or a 3D array, depending on the specified
mu_type.

Numeric: the variation assumed for observations coming from activated nodes.
The parameter active_mu and active_sd are used for predicting the observations
of the normal distribution of activate genes. This parameter can be either a
numeric, a vector, a matrix, or a 3D array, depending on the specified mu_type.

Numeric: the average value assumed for observations coming from inactivated
nodes. The parameter inactive_mu and inactive_sd are used for predicting the
observations of the normal distribution of inactivate genes. This parameter can
be either a numeric, a vector, a matrix, or a 3D array, depending on the specified
mu_type.

Numeric: the variation assumed for observations coming from inactivated nodes.
The parameter inactive_mu and inactive_sd are used for predicting the observa-
tions of the normal distribution of inactivate genes. This parameter can be either
a numeric, a vector, a matrix, or a 3D array, depending on the specified mu_type.

Character: can have the following values and meanings:
* "simple" - the value of active_mu/sd and inactive_mu/sd is independent of
the gene/perturbation experiment/time point;
* "perGene" - the value of active_mu/sd and inactive_mu/sd depends on the
gene;
* perGeneExp" - the value of active_mu/sd and inactive_mu/sd depends on
the gene and perturbation experiment;

* perGeneTime" - the value of active_mu/sd and inactive_mu/sd depends on
the gene and time point;

* "perGeneExpTime" - the value of active_mu/sd and inactive_mu/sd de-
pends on the gene, perturbation experiment, and time point;
Character: can have the following values and meanings:

* "perGene" - the value of delta depends on the gene;

* "perGeneExp" - the value of delta depends on the gene and perturbation
experiment;

* "perGeneTime" - the value of delta depends on the gene and time point;

* "perGeneExpTime" - the value of delta depends on the gene, perturbation
experiment, and time point;

Prior knowledge, given as a list of constraints. Each constraint consists of a vec-
tor with four entries describing the prior knowledge of one edge. For example
the edge between node 1 and 2, called w+_1_2, is defined to be bigger than 1
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sourceNode
sinkNode

allint

allpos

cv

with constraint c("w+_1_2",1,">",2). The first entry specifies the annotation of
the edge (see function "getEdgeAnnot") and the second defines the coefficient
of the objective function (see parameter "objective.in" in the "lp" function of
the package "lpSolve"). Furthermore, the third, respectively the fourth elements
give the direction, respectively the right-hand side of the constraint (see the pa-
rameters "const.dir", respectively "const.rhs" in the "lp" function of the package
"IpSolve").

Integer vector: indices of the known source nodes.
Integer vector: indices of the known sink nodes.

Logical: should all variables be integer? Corresponds to an Integer Linear Pro-
gram (see "lp" function in package "IpSolve"). Default: FALSE.

Logical: should all variables be positive? Corresponds to learning only activat-
ing edges. Default: FALSE.

flag_time_series

Value

A list of

MSE

edges_all

baseline_all

Examples

Logical: specifies whether steady-state (FALSE) or time series data (TRUE) is
used.

The mean squared error (MSE) of predicted and observed measurements of the
corresponding cross-validation step.

The learned edge weights for each cross-validation step.

The learned baseline weights for each cross-validation step.

n <- 3 # number of genes
K <- 4 # number of experiments
T_ <= 4 # number of time points

annot_node <- seq(1, n)
annot <- getEdgeAnnot(n)

# generate random observation matrix
obs <- array(rnorm(n*KxT_), c(n,K,T_))

baseline <- c(0.75, @, 0)

# define delta

delta <- apply(obs, 1, mean, na.rm=TRUE)

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise

b <- c(0,1,1, # perturbation expl: gene 1 perturbed, gene 2,3 unperturbed
1,0,1, # perturbation exp2: gene 2 perturbed, gene 1,3 unperturbed
1,1,0, # perturbation exp3....

1,1,
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T_nw <- matrix(c(0,1,0,

9,0,1,

0,0,0), nrow=n, ncol=n, byrow=TRUE)
colnames(T_nw) <- rownames(T_nw) <- annot_node

## calculate observation matrix with given parameters for the
# Gaussian distributions for activation and deactivation
active_mu <- 0.95

inactive_mu <- 0.56

active_sd <- inactive_sd <- 0.1

times <- kfold <- 10 # can be increased i.e. to 1000 to produce stable results

mu_type <- "single"
delta_type <- "perGene"

lambda <- 1/10

#### LOOCV
loocv(kfold=NULL, times=times, obs=obs, delta=delta, lambda=lambda, b=b, n=n, K=K, T_=T_, annot=annot,
annot_node=annot_node, active_mu=active_mu, active_sd=active_sd, inactive_mu=inactive_mu,
inactive_sd=inactive_sd, mu_type=mu_type, delta_type=delta_type, prior=NULL, sourceNode=NULL,
sinkNode=NULL, allint=FALSE, allpos=FALSE, flag_time_series=TRUE)

#i##H# K-fold CV
kfoldCV(kfold=kfold, times=times, obs=obs, delta=delta, lambda=lambda, b=b, n=n, K=K, T_=T_, annot=annot,
annot_node=annot_node, active_mu=active_mu, active_sd=active_sd, inactive_mu=inactive_mu,
inactive_sd=inactive_sd, mu_type=mu_type, delta_type=delta_type, prior=NULL, sourceNode=NULL,
sinkNode=NULL, allint=FALSE, allpos=FALSE, flag_time_series=TRUE)

doILP Do The Network Inference With The Linear Programming Approach.

Description

This function converts observation data into a linear programming problem.

Usage

doILP(obs, delta, lambda, b, n, K, T_=NULL, annot, delta_type,
prior=NULL, sourceNode=NULL, sinkNode=NULL, all.int=FALSE,
all.pos=FALSE, flag_time_series=FALSE)

Arguments

obs Numeric matrix/array: the given observation matrix/array. It can have up to
3 dimensions, where dimension 1 are the network nodes, dimension 2 are the
perturbation experiments, and dimension 3 are the time points (if considered).
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delta

lambda

n
K
T

annot

delta_type

prior

sourceNode
sinkNode

all.int

all.pos

doILP

Numeric: defining the thresholds for each gene to determine its observation to
be active or inactive. This parameter can be either a numeric vector, a matrix, or
a 3D array, depending on the specified delta_type.

Numeric value defining the penalty parameter lambda. It can range from zero to
infinity and it controls the introduction of slack variables in the network infer-
ence Ip model.

Vector of 0/1 values describing the experiments (entry is O if gene is inactivated
in the respetive experiment and 1 otherwise). The measurements of the genes of
each experiment are appended as a long vector.

Integer: number of genes.
Integer: number of perturbation experiments.
Integer: number of time points.

Vector of character strings: the annotation of the edges as returned by "get-
EdgeAnnot".

Character: can have the following values and meanings: - "perGene" - the value
of delta depends on the gene; - "perGeneExp" - the value of delta depends on the
gene and perturbation experiment; - "perGeneTime" - the value of delta depends
on the gene and time point; - "perGeneExpTime" - the value of delta depends on
the gene, perturbation experiment, and time point;

Prior knowledge, given as a list of constraints. Each constraint consists of a vec-
tor with four entries describing the prior knowledge of one edge. For example
the edge between node 1 and 2, called w+_1_2, is defined to be bigger than 1
with constraint c("w+_1_2",1,">",2). The first entry specifies the annotation of
the edge (see function "getEdgeAnnot") and the second defines the coefficient
of the objective function (see parameter "objective.in" in the "lp" function of
the package "lpSolve"). Furthermore, the third, respectively the fourth elements
give the direction, respectively the right-hand side of the constraint (see the pa-
rameters "const.dir", respectively "const.rhs" in the "lp" function of the package
"IpSolve").

Integer vector: indices of the known source nodes.
Integer vector: indices of the known sink nodes.

Logical: should all variables be integer? Corresponds to an Integer Linear Pro-
gram (see "lp" function in package "IpSolve"). Default: FALSE.

Logical: should all variables be positive? Corresponds to learning only activat-
ing edges. Default: FALSE.

flag_time_series

Value

Logical: specifies whether steady-state (FALSE) or time series data (TRUE) is
used.

An Ip object. See "lp.object" in package "IpSolve" for details.



generateTimeSeriesNetStates 13

Examples

n <- 3 # number of genes
K <= 4 # number of experiments
T_ <= 4 # number of time points

# generate random observation matrix
obs <- array(rnorm(n*KxT_), c(n,K,T_))

baseline <- ¢c(0.75, @, 0)
delta <- rep(0.75, n)

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise
b <- c(0,1,1, # perturbation expl: gene 1 perturbed, gene 2,3 unperturbed
1,0,1, # perturbation exp2: gene 2 perturbed, gene 1,3 unperturbed
1,1,0, # perturbation exp3....
1,1,1)

delta_type <- "perGene"
lambda <- 1/10
annot <- getEdgeAnnot(n)

res <- doILP(obs, delta, lambda, b, n, K, T_, annot, delta_type, prior=NULL,
sourceNode=NULL, sinkNode=NULL, all.int=FALSE, all.pos=FALSE, flag_time_series=TRUE)

generateTimeSeriesNetStates
Generate Time Series Network States

Description

The function returns all gene states for each network state in time-series data. The signalling propa-
gates downstream one edge per time-point. The stopping criteria is when all edges have been active
at least once, so that infinite loops are avoided. The number of time points for the data can be de-
fined by the user or not, if not the number of time points will be the same as the number of different
network states. If the number of time points is defined by the user, network states will be either
repeated or removed, so that there are as many network states as time points.

Usage

generateTimeSeriesNetStates(nw_und, b, n, K, T_user=NULL)

Arguments
nw_und Numeric matrix: the adjacency matrix representing the underlying network.
b Vector of 0/1 values describing the experiments (entry is 0 if gene is inactivated

in the respetive experiment and 1 otherwise). The measurements of the genes of
each experiment are appended as a long vector.
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n Integer: number of genes.

K Integer: number of perturbation experiments.

T_user Integer definining the number of time points in the network.
Value

List containing an array with all nodes states and the number of time points.

Examples

n <- 3 # number of genes
K <- 4 # number of experiments

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise
b <- c(0,1,1, # perturbation expl: gene 1 perturbed, gene 2,3 unperturbed
1,0,1, # perturbation exp2: gene 2 perturbed, gene 1,3 unperturbed
1,1,0, # perturbation exp3....
1,1,1)

# adjacency matrix
nw_und <- matrix(c(o,1,0,
0,0,1,
0,0,0), nrow=n, ncol=n, byrow=TRUE)

generateTimeSeriesNetStates(nw_und,b, n, K, T_user=5)

getAdja Get Adjacency Matrix.

Description

The function returns the adjacency matrix of the network computed with the "doILP" function.

Usage
getAdja(res, n, annot=NULL)

Arguments
res Result returned by the "doILP" function.
n Integer: the number of nodes of the inferred network.
annot Vector of character strings: the annotation of the edges as returned by "get-
EdgeAnnot".
Value

Numeric matrix: the adjacency matrix of the network.
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See Also

doILP

Examples

n <- 3 # number of genes
K <- 4 # number of experiments
T_ <= 4 # number of time points

# generate random observation matrix
obs <- array(rnorm(n*KxT_), c(n,K,T_))

baseline <- c(0.75, @, @)
delta <- rep(@.75, n)

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise
b <- c(0,1,1, # perturbation expl: gene 1 perturbed, gene 2,3 unperturbed
1,0,1, # perturbation exp2: gene 2 perturbed, gene 1,3 unperturbed
1,1,0, # perturbation exp3....
1,1,1)

delta_type <- "perGene"
lambda <- 1/10
annot <- getEdgeAnnot(n)

#infer the network
res <- doILP(obs, delta, lambda, b, n, K, T_, annot, delta_type, prior=NULL,
sourceNode=NULL, sinkNode=NULL, all.int=FALSE, all.pos=FALSE, flag_time_series=TRUE)

# make the adjacency matrix
adja <- getAdja(res, n)

getBaseline Get Baseline Vector.

Description

The function returns a vector with the baseline values of each node in the network computed with
the "doILP" function.

Usage

getBaseline(res, n, allpos=FALSE)
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Arguments
res Result returned by the "doILP" or "doILP_timeSeries" function.
n Integer: the number of nodes of the inferred network.
allpos Logical: should all variables be positive? Corresponds to learning only activat-
ing edges. Default: FALSE.
Value

Numeric matrix: the adjacency matrix of the network.

See Also

doILP

Examples

n <- 3 # number of genes
K <= 4 # number of experiments
T_ <= 4 # number of time points

# generate random observation matrix
obs <- array(rnorm(n*KxT_), c(n,K,T_))

baseline <- c(0.75, @, @)
delta <- rep(@.75, n)

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise
b <- c(0,1,1, # perturbation expl: gene 1 perturbed, gene 2,3 unperturbed
1,0,1, # perturbation exp2: gene 2 perturbed, gene 1,3 unperturbed
1,1,0, # perturbation exp3....
1,1,1)

delta_type <- "perGene"
lambda <- 1/10
annot <- getEdgeAnnot(n)

#infer the network
res <- doILP(obs, delta, lambda, b, n, K, T_, annot, delta_type, prior=NULL, sourceNode=NULL,
sinkNode=NULL, all.int=FALSE, all.pos=FALSE, flag_time_series=TRUE)

# make the adjacency matrix
adja <- getBaseline(res, n)
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getEdgeAnnot Get the annotation of the edges.

Description

The function returns the annotation of the edges needed for the LP. Positive edges are annotated
with "w+" and negative with "w-". The given nodes are just enumerated from 1 to n and the edge
between node i and j is given by "w+_i_j" for the positive, respectively by "w-_i_j" for the negative
edges. The annotation "w_i_”_0" defines the baseline activity of gene i.

Usage

getEdgeAnnot(n, allpos)

Arguments
n Integer: number of genes.
allpos Logical: should all edges be positive? Corresponds to learning only activating
edges. Default: FALSE.
Examples
n<-5

annot <- getEdgeAnnot(n)

getObsMat Get Observation Matrix.

Description

The function generates the observation matrix where active/inactive observations are generated from
a normal distribution with the average and variation as given in the parameters. This matrix can
either be generated from the activation matrix calculated with calcActivation or from the network
states caculated with generateTimeSeriesNetStates.

Usage

getObsMat (act_mat=NULL, net_states=NULL, active_mu, active_sd,
inactive_mu, inactive_sd, mu_type)
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Arguments

act_mat

net_states

active_mu

active_sd

inactive_mu

inactive_sd

mu_type

Value

getObsMat

Matrix of 0/1 values called the activation matrix. Rows correspond to genes,
columns to experiments. If an entry is 1, it means that the corresponding gene is
active in the corresponing experiment and inactive otherwise.

Array of 0/1 values called the network states. Rows correspond to genes, columns
to experiments, and the third dimension corresponds to time points. If an entry is

1, it means that the corresponding gene is active in the corresponing experiment

and inactive otherwise.

Numeric: the average value assumed for observations coming from activated
nodes. The parameter active_mu and active_sd are used for predicting the ob-
servations of the normal distribution of activate genes. This parameter can be
either a numeric, a vector, a matrix, or a 3D array, depending on the specified
mu_type.

Numeric: the variation assumed for observations coming from activated nodes.
The parameter active_mu and active_sd are used for predicting the observations
of the normal distribution of activate genes. This parameter can be either a
numeric, a vector, a matrix, or a 3D array, depending on the specified mu_type.

Numeric: the average value assumed for observations coming from inactivated
nodes. The parameter inactive_mu and inactive_sd are used for predicting the
observations of the normal distribution of inactivate genes. This parameter can
be either a numeric, a vector, a matrix, or a 3D array, depending on the specified
mu_type.
Numeric: the variation assumed for observations coming from inactivated nodes.
The parameter inactive_mu and inactive_sd are used for predicting the observa-
tions of the normal distribution of inactivate genes. This parameter can be either
anumeric, a vector, a matrix, or a 3D array, depending on the specified mu_type.
Character: can have the following values and meanings:
* "simple" - the value of active_mu/sd and inactive_mu/sd is independent of
the gene/perturbation experiment/time point;
* "perGene" - the value of active_mu/sd and inactive_mu/sd depends on the
gene;
* perGeneExp" - the value of active_mu/sd and inactive_mu/sd depends on
the gene and perturbation experiment;
* perGeneTime" - the value of active_mu/sd and inactive_mu/sd depends on
the gene and time point;
* "perGeneExpTime" - the value of active_mu/sd and inactive_mu/sd de-
pends on the gene, perturbation experiment, and time point;

Numeric matrix/array: the observation matrix/array. It can have up to 3 dimensions, where dimen-
sion 1 are the network nodes, dimension 2 are the perturbation experiments, and dimension 3 are
the time points (if considered).

See Also

calcActivation
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Examples

n <- 5 # number of genes
K <= 7 # number of knockdowns

# perturbation vector, entry is @ if gene is inactivated and 1 otherwise

b <- c(0,1,1,1,1, # perturbation expl: gene 1 perturbed, gene 2-5 unperturbed
,1,1, # perturbation exp2: gene 2 perturbed, gene 1,3,4,5 unperturbed
, # perturbation exp3....

)

1Yy by

y Ly

1Yy by

1,0,1,1,1
1,1,0,1,1

1,1,1,0,1,
1,1,1,1,0,
1,0,0,1,1,
1,1,1,1,1)

»

T_nw <- matrix(c(e,1,1,0,0,
0,0,0,-1,0,

0,0,0,1,0,

0,0,0,0,1,

0,0,0,0,0), nrow=n, ncol=n, byrow=TRUE)

act_mat <- calcActivation(T_nw, b, n, K)

# define the parameters for the observation generated from the normal distribution
active_mu <- 0.9

inactive_mu <- 0.5

active_sd <- inactive_sd <- 0.1

mu_type <- "single"

# compute the observations matrix
getObsMat(act_mat=act_mat, active_mu=active_mu, active_sd=active_sd, inactive_mu=inactive_mu, inactive_sd=inact

getSampleAdja Get The Sample Adjacency.

Description

The function computes the adjacency of the edges computed in each step of the "loocv" or the
"kfoldCV" function. If the variance of each edge shall be taken into account use "getSampleAdja-
MAD", otherwise "getSampleAdja".

Usage

getSampleAdjaMAD(edges_all, n, annot_node, method = median,
method2 = mad, septype = "->")
getSampleAdja(edges_all, n, annot_node, method = median, septype = "->")

Arguments

edges_all The inferred edges using the "loocv" or the "kfoldCV" function.

n Integer: the number of nodes.
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annot_node Vector of character strings: the annoation of the nodes.

method Character string: the method used to summarize the edges of the individual
steps. Default: "median".

method2 Character string: the method used for the computation of the variation of the
edges of the individual steps. Default: "mad".

septype Character string: the type of separation of two nodes in the annot string vector.
Default: "->".
Value

Numeric matrix: the adjacency matrix.

See Also

loocv, kfoldCV

Examples

# compute random edge weights
edges_all <- matrix(rnorm(5%6), nrow=5, ncol=6)

# annotation of the edges as returned by "loocv” and kfoldCV
colnames(edges_all) <- c("1->2", "1->3", "2->1", "2->3", "3->1", "3->2")

# annotation of the nodes
annot_node <- c(1,2,3)
getSampleAdjaMAD(edges_all, n=3, annot_node, method = "median”, method2 = "mad", septype = "->")

getSampleAdja(edges_all, n=3, annot_node, method = "median"”, septype = "->")
summarizeRepl Summarize Replicate Measurements
Description

The function returns the the summarized replicate measuremenst.

Usage

summarizeRepl (data, type=median)

Arguments

data The data matrix.

type The summarization type which shall be used. Default: median.



summarizeRepl

Value

Numeric matrix: the summarized data.

Examples

data("SahinRNAi2008")
## process data
dataStim <- dat.normalized[dat.normalized[ ,17] ==

# summarize replicates
dataSt <- t(summarizeRepl(dataStim, type=mean))

, 171
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