Package ‘jazzPanda’

February 2, 2026
Type Package

Title Finding spatially relevant marker genes in image based spatial
transcriptomics data

Version 1.3.0

Date 2025-10-14
LazyData FALSE
Depends R (>=4.5.0)

Imports spatstat.geom, dplyr, glmnet, caret, foreach, stats, magrittr,
doParallel, BiocParallel, methods,
BumpyMatrix,SpatialExperiment

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, spatstat, Seurat, statmod,
corrplot, ggplot2, ggraph, ggrepel, gridExtra, reshape2,
igraph, jsonlite, vdiffr, patchwork, ggpubr, tidyr,
SpatialFeatureExperiment, ExperimentHub, TENxXeniumData,
SingleCellExperiment, SFEData, Matrix, data.table, scran,
scater, grid, GenomelnfoDb, testthat (>= 3.0.0)

Description This package contains the function to find marker genes for image-based spatial tran-
scriptomics data. There are functions to create spatial vectors from the cell and transcript coor-
diantes, which are passed as inputs to find marker genes. Marker genes are detected for every clus-
ter by two approaches. The first approach is by permtuation testing, which is implmented in par-
allel for finding marker genes for one sample study. The other approach is to build a lin-
ear model for every gene. This approach can account for multiple samples and backgound noise.

License GPL-3

URL https://github.com/phipsonlab/jazzPanda,
https://bhuvad.github.io/jazzPanda/

BugReports https://github.com/phipsonlab/jazzPanda/issues

biocViews Spatial, GeneExpression, DifferentialExpression,
StatisticalMethod, Transcriptomics

RoxygenNote 7.3.2

https://github.com/phipsonlab/jazzPanda
https://bhuvad.github.io/jazzPanda/
https://github.com/phipsonlab/jazzPanda/issues

2 Contents

Encoding UTF-8

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/jazzPanda

git_branch devel

git_last_commit f913a8b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Melody Jin [aut, cre] (ORCID: <https://orcid.org/0000-0002-2222-0958>)

Maintainer Melody Jin <jin.m@wehi.edu.au>

Contents
jazzPanda-package L 3
.check_binning oL e 3
.check_valid_input 4
.check_valid_names e 5
compute_obServation oL L e e e e 5
.compute_permutation L. 6
cconvert_data L L L e e e 8
.create_cor_mg_result L. L L 8
create_Im_mg result L. 9
.get_cluster_vectors L. oL L e e e e 9
L GENE_VECIOTS_CIM .« . v v v v v v e e i e e e e e e e e e e e 10
gL ZENE_VECIOTS_LT ot i v vttt e e e e e e e e e e 12
.get_lasso_coef .. L e 13
COMPULE_PETINP .« « .« ¢ v v e e e e e et e e e e e e e e e e e e e 14
CrEAte_ZENESELS . . .« « v v v v v e e e e e e e e e e e e e e e e e e 16
GELLCOT . o v v it e e e e e e e e e e e 18
get_full_mg 19
get_perm_adjp e 21
GELPEITILD . v v v v v o e 22
GELLOP_IME . . ¢ o v e e e e e e e e e e e e e 24
GELLVECIOTS . o v v v v i e e i e e e e e e e e e e e e e e e e e e 25
lasso_markers e e 28
repl_ClUSters e e e 31
repl_neg e e 32
repl_sub . . . Lo e 32
ep2_ClUSIEerS o e e 33
TEP2_NEE . o v v e e e e e e e e e e e e e e e e e 34
rep2_Sub . . .o 34

Index 36

https://orcid.org/0000-0002-2222-0958

JjazzPanda-package

jazzPanda-package jazzPanda: A hybrid approach to find spatially relevant marker genes

in image-based spatial transcriptomics data

Description

jazzPanda pacakge provides hybrid approaches to prioritize marker genes that uses the spatial
coordinates of gene detections and cells making up clusters. We propose a binning approach
get_vectors that summarises the number of genes and cells within a cluster as spatial vectors.
We have developed two approaches to detect and prioritize marker genes. The first approach
compute_permp is based on correlation coefficients between genes and cluster spatial vectors,
where significance of the marker genes are assessed through permutation. The second approach
lasso_markers is based on lasso regularisation and linear modeling of our defined spatial vectors.
This second approach is more flexible and can account for multiple samples and background noise.

Author(s)

Melody Jin <jin.m@wehi.edu.au>

.check_binning

helper function to check the input of binning

Description

helper function to check the input of binning

Usage

.check_binning(bin_param, bin_type, range_list)

Arguments

bin_param

bin_type

range_list

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

For example:

* c(3, 4) means 3 bins along the x-axis and 4 bins along the y-axis (a 3 x 4
grid).
e c(5, 5) means 5 bins along the x-axis and 5 bins along the y-axis (a5 x 5
grid).
A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle", or "hexagon".

A named list of spatial ranges for each sample. Each element should be a list
with two components: w_x and w_y, which are numeric vectors of length 2 spec-
ifying the x- and y-axis ranges (e.g., from cell or transcript coordinates). The
range is calculated with 5 within the window.

Value

.check_valid_input

the length of total bins

.check_valid_input helper function to check the inputs passed to marker detection function

Description

helper function to check the inputs passed to marker detection function

Usage

.check_valid_input(

gene_mt,
cluster_mt,
sample_names,
n_fold = 10,
background =

Arguments

gene_mt

cluster_mt

sample_names
n_fold

background

Value

NULL

A matrix contains the transcript count in each grid. Each row refers to a grid,
and each column refers to a gene. The column names must be specified and refer
to the genes. This can be the output from the function get_vectors.

A matrix contains the number of cells in a specific cluster in each grid. Each row
refers to a grid, and each column refers to a cluster. The column names must
be specified and refer to the clusters. Please do not assign integers as column
names. This can be the output from the function get_vectors.

A vector specifying the names for the samples.

Optional. A positive number giving the number of folds used for cross valida-
tion. This parameter will pass to cv. glmnet to calculate a penalty term for every
gene.

Optional. A matrix providing the background information. Each row refers to a
grid, and each column refers to one category of background information. Num-
ber of rows must equal to the number of rows in gene_mt and cluster_mt. Can
be obtained by only providing coordinates matrices cluster_info. to function
get_vectors.

a list of two matrices with the following components

n_clusters

cluster_names

Number of clusters

a vector of strings giving the name of the clusters

.check valid names

.check_valid_names helper function to check the names of gene/cluster/sample

Description

helper function to check the names of gene/cluster/sample

Usage

.check_valid_names(x, x_name)

Arguments

X A character vector to check naming

X_name A name specifying the type of x, for message purpose only
Value

A character vector of same length with valid names

.compute_observation Compute observation statistic for permutation framework

Description

Compute observation statistic for permutation framework

Usage

.compute_observation(
X!
cluster_info,
correlation_method,
n_cores,
test_genes,
bin_type,
bin_param,
use_cm

Arguments

X

cluster_info

.compute_permutation

a named list (of transcript detection coordinates) or SingleCellExperiment or
SpatialExperiment or SpatialFeatureExperiment object. If a named list is pro-
vided, every list element is a dataframe containing the transcript detection co-
ordinates and column names must include "feature_name" (gene name), "X" (x
coordinate), "y" (y coordinate). The list names must match samples in clus-
ter_info.

A dataframe/matrix containing the centroid coordinates, cluster label and sam-
ple for each cell.The column names must include "x" (x coordinate), "y" (y
coordinate), "cluster" (cluster label) and "sample" (sample). It is strongly rec-
ommended to use syntactically valid names for columns clusters and samples.
If invalid names are detected, the function make.names will be employed to
generate valid names. A message will also be displayed to indicate this change.

correlation_method

n_cores

test_genes

bin_type

bin_param

use_cm

Value

A parameter pass to cor, indicating which correlation coefficient is to be com-
puted. One of "pearson” (default), "kendall", or "spearman": can be abbreviated.

A positive number specifying number of cores used for parallelizing permuta-
tion testing. Default is one core (sequential processing).

A vector of strings giving the name of the genes you want to test correlation for.

A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle”, or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

A boolean value that specifies whether to create spatial vectors for genes using
the count matrix and cell coordinates instead of the transcript coordinates when
both types of information are available. The default setting is FALSE.

A named list with the following components

obs.stat

gene_mt

A matrix contains the observation statistic for every gene and every cluster. Each
row refers to a gene, and each column refers to a cluster

contains the transcript count in each grid. Each row refers to a grid, and each
column refers to a gene.

.compute_permutation Compute permutation statistics for permutation framework

Description

Compute permutation statistics for permutation framework

.compute_permutation

Usage

.compute_permutation(
cluster_info,
perm.size = 1000,

correlation_method = "pearson”,

bin_type,
bin_param,

n_cores = 1,

gene_mt,

cluster_names,

window_range

Arguments

cluster_info

perm.size

A dataframe/matrix containing the centroid coordinates and cluster label for
each cell.The column names should include "x" (x coordinate), "y" (y coor-
dinate), and "cluster” (cluster label).

A positive number specifying permutation times

correlation_method

bin_type

bin_param

n_cores

gene_mt

cluster_names

window_range

Value

A parameter pass to cor, indicating which correlation coefficient is to be com-
puted. One of "pearson” (default), "kendall", or "spearman": can be abbreviated.

A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle”, or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

A positive number specifying number of cores used for parallelizing permuta-
tion testing. Default is one core (sequential processing).

A matrix contains the transcript count in each grid. Each row refers to a grid,
and each column refers to a gene.

A list of strings giving the name and order of the clusters

A list of spatial ranges for x and y. This list contains two components: w_x and
w_y, which are numeric vectors of length 2 specifying the x- and y-axis ranges
(e.g., from cell or transcript coordinates).

A matrix with permutation statistics

8 .create_cor_mg_result

.convert_data Convert SingleCellExperiment/Spatial Experiment/Spatial Feature Experiment
objects to list object for jazzPanda.

Description

This function takes an object of class SingleCellExperiment, SpatialExperiment or SpatialFeature-
Experimentreturns and returns a list object that is expected for the get_vector functions.

Usage

.convert_data(x, sample_names, test_genes)

Arguments

X a SingleCellExperiment or SpatialExperiment or SpatialFeatureExperiment ob-
ject

sample_names a vector of strings giving the sample names

test_genes A vector of strings giving the name of the genes you want to create gene vector.

Value

outputs a list object with the following components

trans_lst A list of named dataframes. Each dataframe refers to one sample and shows
the transcript detection coordinates for each gene. The name matches the input
sample_names

cm_lst A list of named dataframes containing the count matrix for each sample. The
name matches the input sample_names

.create_cor_mg_result Create a marker gene result object for correlation approach

Description

This function creates a structured output object named ’cor_mg_result’ for storing the permutation
results. The object contains three matrices:

Usage

.create_cor_mg_result(obs.stat, perm.pval, perm.pval.adj)

.create_Im_mg_result 9

Arguments
obs.stat A matrix containing the correlation coefficients for each pair of genes and cluster
vectors.
perm.pval A matrix containing the raw permutation p-value for each pair of genes and
cluster.

perm.pval.adj A matrix containing the adjusted permutation p-value for each pair of genes and
cluster.

Value

An S3 object of class ’cor_mg_result’ which includes three matrices.

.create_lm_mg_result Create a marker gene result object for linear modelling approach

Description

This function creates a structured output object named *glm_mg_result’ for storing the marker gene
results. The object contains two data frames: top results and full results.

Usage

.create_lm_mg_result(top_result, full_result)

Arguments
top_result A data frame containing top results.
full_result A data frame containing full results.
Value

An S3 object of class ’glm_mg_result’ which includes both results data frames.

.get_cluster_vectors Create spatial vectors for clusters

Description

Create spatial vectors for clusters

10

Usage

.get_gene_vectors_cm

.get_cluster_vectors(

cluster_info,
bin_length,

bin_type,
bin_param,

range_list,
sample_names

Arguments

cluster_info

bin_length
bin_type

bin_param

range_list

sample_names

Value

A dataframe/matrix containing the centroid coordinates, cluster label and sam-

ple for each cell.The column names must include "x" (x coordinate), "y" (y
coordinate), "cluster" (cluster label) and "sample" (sample).

A positive integer giving the length of total bins

A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle”, or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

For example:

* c(3, 4) means 3 bins along the x-axis and 4 bins along the y-axis (a3 x 4
grid).

* c(5, 5) means 5 bins along the x-axis and 5 bins along the y-axis (a 5 x 5
grid).

A named list of spatial ranges for each sample. Each element should be a list
with two components: w_x and w_y, which are numeric vectors of length 2 spec-
ifying the x- and y-axis ranges (e.g., from cell or transcript coordinates). The
range is calculated with 5 within the window.

a vector of strings giving the sample names

a matrix contains the cell count in each grid. Each row refers to a grid, and each column refers to a

cluster.

.get_gene_vectors_cm Create spatial vectors for genes from count matrix and cell coordi-

nates

Description

This function will build gene vectors with count matrix and cell locations

.get_gene_vectors_cm

Usage

11

.get_gene_vectors_cm(

cluster_info,
cm_lst,
bin_type,
bin_param,
test_genes,
range_list

Arguments

cluster_info

cm_lst

bin_type

bin_param

test_genes

range_list

Value

A dataframe/matrix containing the centroid coordinates, cluster label and sam-

ple for each cell.The column names must include "x" (x coordinate), "y" (y
coordinate), "cluster" (cluster label) and "sample" (sample).

A list of named matrices containing the count matrix for each sample The name
must match the sample column in cluster_info. If this input is provided, the
cluster_info must be specified and contain an additional column "cell_id" to
link cell location and count matrix. Default is NULL.

A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle", or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

For example:

* c(3, 4) means 3 bins along the x-axis and 4 bins along the y-axis (a3 x 4
grid).

* c(5, 5) means 5 bins along the x-axis and 5 bins along the y-axis (a5 x 5
grid).

A vector of strings giving the name of the genes you want to test. This will be
used as column names for one of the result matrix gene_mt.

A named list of spatial ranges for each sample. Each element should be a list
with two components: w_x and w_y, which are numeric vectors of length 2 spec-
ifying the x- and y-axis ranges (e.g., from cell or transcript coordinates). The
range is calculated with 5 within the window.

a matrix contains the transcript count in each grid. Each row refers to a grid, and each column refers

to a gene.

12

.get_gene_vectors_tr

.get_gene_vectors_tr Create spatial vectors for genes from transcript coordinates

Description

This function will build gene vectors based on the transcript coordinates of every gene

Usage

.get_gene_vectors_tr(

trans_lst,
test_genes,
bin_type,
bin_param,
bin_length,
range_list

Arguments

trans_1st

test_genes
bin_type

bin_param

bin_length
range_list

Value

If specified, it is a list of named dataframes. Each dataframe refers to one sample
and shows the transcript detection coordinates for each gene. Optional parame-
ter.

A vector of strings giving the name of the genes you want to test. This will be
used as column names for one of the result matrix gene_mt.

A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle”, or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

For example:

* c(3, 4) means 3 bins along the x-axis and 4 bins along the y-axis (a3 x 4
grid).
* c(5, 5) means 5 bins along the x-axis and 5 bins along the y-axis (a5 x 5
grid).
A positive integer giving the length of total bins

A named list of spatial ranges for each sample. Each element should be a list
with two components: w_x and w_y, which are numeric vectors of length 2 spec-
ifying the x- and y-axis ranges (e.g., from cell or transcript coordinates). The
range is calculated with 5 within the window.

a matrix contains the transcript count in each grid. Each row refers to a grid, and each column refers

to a gene.

.get_lasso_coef

13

.get_lasso_coef

help function to get lasso coefficient for every cluster for a given model

Description

help function to get lasso coefficient for every cluster for a given model

Usage

.get_lasso_coef/(

i_gene,
gene_mt,
vec_cluster,

cluster_names,

n_fold = 10,
n_samples,
sample_names

Arguments
i_gene

gene_mt

vec_cluster
cluster_names

n_fold

n_samples

sample_names

Value

Name of the current gene

A matrix contains the transcript count in each grid. Each row refers to a grid,
and each column refers to a gene. The column names must be specified and refer
to the genes. This can be the output from the function get_vectors.

A matrix of the spatial vectors for clusters.
A vector of strings giving the name of clusters

Optional. A positive number giving the number of folds used for cross valida-
tion. This parameter will pass to cv.glmnet to calculate a penalty term for every
gene.

A positive number giving the number samples

A vector specifying the names for the sample

a list of two matrices with the following components

coef_df

lambda. 1se

A matrix giving the lasso coefficient of each cluster

the lambda.1se value of best fitted model

14

compute_permp

compute_permp

Calculate a p-value for correlation with permutation.

Description

This function will run permutation framework to compute a p-value for the correlation between the
vectorised genes and clusters each cluster for one sample.

Usage

compute_permp(

X’

cluster_info,

perm.size,
bin_type,
bin_param,

test_genes,

correlation_method = "pearson”,

n_cores = 1,
correction_method = "BH",

use_cm = FALSE

Arguments

X

cluster_info

perm.size

bin_type

bin_param

test_genes

a named list (of transcript detection coordinates) or named SingleCellExperi-
ment or named SpatialExperiment or named SpatialFeatureExperiment object.
If a named list is provided, the list element is a dataframe containing the tran-
script detection coordinates and column names must include "feature_name"
(gene name), "X" (x coordinate), "y" (y coordinate). The list name must match
samples in cluster_info.

A dataframe/matrix containing the centroid coordinates and cluster label for
each cell.The column names should include "x" (x coordinate), "y" (y coor-
dinate), and "cluster" (cluster label).

A positive number specifying permutation times
A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle”, or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

A vector of strings giving the name of the genes you want to test correlation for.
gene_mt.

correlation_method

A parameter pass to cor indicating which correlation coefficient is to be com-
puted. One of "pearson” (default), "kendall", or "spearman": can be abbreviated.

compute_permp 15

n_cores A positive number specifying number of cores used for parallelizing permuta-
tion testing. Default is one core (sequential processing).

correction_method
A character string pass to p.adjust specifying the correction method for mul-
tiple testing .

use_cm A boolean value that specifies whether to create spatial vectors for genes using
the count matrix and cell coordinates instead of the transcript coordinates when
both types of information are available. The default setting is FALSE.

Details

To get a permutation p-value for the correlation between a gene and a cluster, this function will
permute the cluster label for each cell randomly, and calculate correlation between the genes and
permuted clusters. This process will be repeated for perm. size times, and permutation p-value is
calculated as the probability of permuted correlations larger than the observation correlation.

Value

An object of class cor_mg_result’. To access specific components of the returned object:

¢ Use get_cor to retrieve the matrix of observed correlation coefficients.
» Use get_perm_p to access the matrix of raw permutation p-values.

* Use get_perm_adjp to obtain the matrix of adjusted permutation p-values.

Examples

library(SpatialExperiment)
library(BumpyMatrix)
set.seed(100)
simulate coordinates for clusters
df_clA <- data.frame(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5), cluster="A")
df_clB <- data.frame(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5), cluster="B")
clusters <- rbind(df_clA, df_clB)
clusters$sample="samplel”
simulate coordinates for genes
trans_info <- data.frame(rbind(cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A1"),
cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A2"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B1"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B2")))
trans_info$x<-as.numeric(trans_info$x)

16 create_genesets

trans_info$y<-as.numeric(trans_info$y)
trans_info$cell = rep(paste(”cell”,1:20, sep=""), times=2)
mol <- BumpyMatrix::splitAsBumpyMatrix(
trans_infol[, c("x", "y"™)1,
row = trans_info$feature_name, col = trans_info$cell)
spe_samplel <- SpatialExperiment(
assays = list(molecules = mol),sample_id ="samplel"”)
set.seed(100)
corr_res <- compute_permp(x=spe_samplel,
cluster_info=clusters,
perm.size=10,
bin_type="square”,
bin_param=c(2,2),
test_genes=unique(trans_info$feature_name),
correlation_method = "pearson”,
n_cores=1,
correction_method="BH")

raw permutation p-value

perm_p <- get_perm_p(corr_res)

adjusted permutation p-value
adjusted_perm_p <- get_perm_adjp(corr_res)
observed correlation

obs_corr <- get_cor(corr_res)

create_genesets Convert the coordinates of set of genes into vectors

Description

Convert the coordinates of set of genes into vectors.

Usage

create_genesets(
X,
name_lst,
cluster_info,
sample_names,
bin_type,
bin_param,
use_cm = FALSE,
n_cores = 1

create_genesets

Arguments

X

name_lst

cluster_info

sample_names

bin_type

bin_param

use_cm

n_cores

Value

17

a named list (of transcript detection coordinates) or SingleCellExperiment or
SpatialExperiment or SpatialFeatureExperiment object. If a named list is pro-
vided, every list element is a dataframe containing the transcript detection co-
ordinates and column names must include "feature_name" (nagative control
name), "x" (x coordinate) and "y" (y coordinate). The list names must match
samples in cluster_info.

A named list of strings giving the name of features that are treated as back-
ground.
A dataframe/matrix containing the centroid coordinates, cluster and sample la-

bel for each cell.The column names must include "x" (x coordinate), "y" (y
coordinate), "cluster" (cluster label) and "sample" (sample).

a vector of strings giving the sample names

A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle”, or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

A boolean value that specifies whether to create spatial vectors for genes using
the count matrix and cell coordinates instead of the transcript coordinates when
both types of information are available. The default setting is FALSE.

A positive number specifying number of cores used for parallelizing permuta-
tion testing. Default is one core (sequential processing).

a list of two matrices with the following components

gene_mt

cluster_mt

contains the transcript count in each grid. Each row refers to a grid, and each
column refers to a gene.

contains the number of cells in a specific cluster in each grid. Each row refers
to a grid, and each column refers to a cluster.

The row order of gene_mt matches the row order of cluster_mt.

A matrix contains the sum count in each grid. Each row refers to a grid, each column refers to a set
in name_lst. The column name will match the names in name_lst.

Examples

library(SpatialExperiment)

set.seed(15)

trans = as.data.frame(rbind(cbind(x = runif (10, min=1, max=10),

y = runif (10, min=1, max=10),
feature_name="A"),

cbind(x = runif(5, min=10, max=24),
y = runif(5, min=1, max=10),

18 get_cor

feature_name="B"),
cbind(x = runif(10, min=10, max=24),
y = runif(10, min=10, max=24),
feature_name="C")))
trans$x = as.numeric(trans$x)
trans$y = as.numeric(transs$y)
trans$cell = sample(c(”celll”,"cell2","cell2"),replace=TRUE,
size=nrow(trans))
create SpatialExperiment object
trans_mol <- BumpyMatrix::splitAsBumpyMatrix(
trans[, c("x", "y")1,
row = trans$feature_name, col = trans$cell)
repl_spe<- SpatialExperiment(
assays = list(molecules = trans_mol),sample_id ="samplel”)
geneset_res <- create_genesets(x=repl_spe, sample=c("samplel”),
name_lst=1ist(dummy_A=c("A","C"),
dummy_B=c("A","B","C")),
bin_type="square”,
bin_param=c(2,2),cluster_info=NULL)

get_cor Get observed correlation cor_mg_result

Description

Accessor function to retrieve the observed correlation from an ’cor_mg_result’ object.

Usage

get_cor(obj)

Arguments

obj An ’cor_mg_result’ object.

Value

A matrix contains the observation statistic for every gene and every cluster. Each row refers to a
gene, and each column refers to a cluster

Examples

library(SpatialExperiment)
library(BumpyMatrix)
set.seed(100)
simulate coordinates for clusters
df_clA <- data.frame(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5), cluster="A")
df_clB <- data.frame(x = rnorm(n=10, mean=100, sd=5),

get_full_mg

y = rnorm(n=10, mean=100, sd=5), cluster="B")
clusters <- rbind(df_clA, df_clB)
clusters$sample="samplel”
simulate coordinates for genes
trans_info <- data.frame(rbind(cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A1"),
cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A2"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B1"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B2")))
trans_info$x<-as.numeric(trans_info$x)
trans_info$y<-as.numeric(trans_info$y)
trans_info$cell = rep(paste(”cell”,1:20, sep=""), times=2)
mol <- BumpyMatrix::splitAsBumpyMatrix(
trans_infol[, c("x", "y"™)1,
row = trans_info$feature_name, col = trans_info$cell)
spe_samplel <- SpatialExperiment(
assays = list(molecules = mol),sample_id ="samplel”)
set.seed(100)
corr_res <- compute_permp(x=spe_samplel,
cluster_info=clusters,
perm.size=10,
bin_type="square",
bin_param=c(2,2),
test_genes=unique(trans_info$feature_name),
correlation_method = "pearson”,
n_cores=1,
correction_method="BH")
observed correlation
obs_corr <- get_cor(corr_res)

19

get_full_mg Get full lasso result from glm_mg_result

Description

Accessor function to retrieve the *full_result’ dataframe from an ’glm_mg_result’ object.

Usage

get_full_mg(obj, coef_cutoff = @)

20 get_full_mg
Arguments
obj An ’glm_mg_result’ object.
coef_cutoff A positive number giving the coefficient cutoff value. Genes whose cluster
showing a coefficient value smaller than the cutoff will be removed. Default
is 0.
Value

A data frame with detailed information for each gene and the most relevant cluster label.

¢ gene Gene name

e cluster The name of the significant cluster after

* glm_coef The coefficient of the selected cluster in the generalised linear model.

* pearson Pearson correlation between the gene vector and the selected cluster vector.

* max_gg_corr A number showing the maximum pearson correlation for this gene vector and
all other gene vectors in the input gene_mt

* max_gc_corr A number showing the maximum pearson correlation for this gene vector and
every cluster vectors in the input cluster_mt

Examples

library(SpatialExperiment)
set.seed(100)
simulate coordinates for clusters
df_clA <- data.frame(x = rnorm(n=100, mean=20, sd=5),
y = rnorm(n=100, mean=20, sd=5), cluster="A")
df_clB <- data.frame(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5), cluster="B")

clusters <- rbind(df_clA, df_clB)
clusters$sample<-"samplel”

simulate coordinates for genes
trans_info <- data.frame(rbind(cbind(x = rnorm(n=100, mean=20,sd=5),
y = rnorm(n=100, mean=20, sd=5),
feature_name="gene_A1"),
cbind(x = rnorm(n=100, mean=20, sd=5),
y = rnorm(n=100, mean=20, sd=5),
feature_name="gene_A2"),
cbind(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5),
feature_name="gene_B1"),
cbind(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5),
feature_name="gene_B2")))
trans_info$x<-as.numeric(trans_info$x)
trans_info$y<-as.numeric(trans_info$y)
trans_info$cell<-sample(c("celll”,"cell2"”,"cell2"),replace=TRUE,
size=nrow(trans_info))

get_perm_adjp 21

trans_mol <- BumpyMatrix::splitAsBumpyMatrix(
trans_infol[, c("x", "y")1,
row = trans_info$feature_name, col = trans_info$cell)
spe<- SpatialExperiment(
assays = list(molecules = trans_mol),sample_id ="samplel”)
vecs_lst <- get_vectors(x=spe,sample_names=c("samplel”),
cluster_info = clusters,
bin_type = "square”,
bin_param = c(20,20),
test_genes =c("gene_A1","gene_A2","gene_B1","gene_B2"))
lasso_res <- lasso_markers(gene_mt=vecs_lst$gene_mt,
cluster_mt = vecs_lst$cluster_mt,
sample_names=c("samplel”),
keep_positive=TRUE,
background=NULL)
the full result
full_result <- get_full_mg(lasso_res, coef_cutoff=0.05)

get_perm_adjp Get permutation adjusted p value from cor_mg_result

Description

Accessor function to retrieve the permutation adjusted p-value from an ’cor_mg_result’ object.

Usage
get_perm_adjp(obj)

Arguments

obj An ’cor_mg_result’ object.

Value

A matrix contains the adjusted permutation p-value. Each row refers to a gene, and each column
refers to a cluster.

Examples

library(SpatialExperiment)
library(BumpyMatrix)
set.seed(100)
simulate coordinates for clusters
df_clA <- data.frame(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5), cluster="A")
df_clB <- data.frame(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5), cluster="B")
clusters <- rbind(df_clA, df_clB)
clusters$sample="samplel”

22

simulate coordinates for genes
trans_info <- data.frame(rbind(cbind(x = rnorm(n=10, mean=20, sd=5),

y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A1"),

cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A2"),

cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B1"),

cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B2")))

trans_info$x<-as.numeric(trans_info$x)
trans_info$y<-as.numeric(trans_info$y)

trans_info$cell =

rep(paste("cell”,1:20, sep=""), times=2)

mol <- BumpyMatrix::splitAsBumpyMatrix(

trans_info[,

c("x", "y™1,

row = trans_info$feature_name, col = trans_info$cell)
spe_samplel <- SpatialExperiment(
assays = list(molecules = mol),sample_id ="samplel”)

set.seed(100)

corr_res <- compute_permp(x=spe_samplel,
cluster_info=clusters,

perm

.size=10,

bin_type="square",
bin_param=c(2,2),

test

_genes=unique(trans_info$feature_name),

correlation_method = "pearson”,
n_cores=1,
correction_method="BH")
adjusted permutation p-value
adjusted_perm_p <- get_perm_adjp(corr_res)

get_perm_p

get_perm_p

Get permutation p value from cor_mg_result

Description

Accessor function to retrieve the raw permutation p-value from an ’cor_mg_result’ object.

Usage

get_perm_p(obj)

Arguments

obj

An ’cor_mg_result’ object.

get_perm_p 23

Value

A matrix contains the raw permutation p-value. Each row refers to a gene, and each column refers
to a cluster.

Examples

library(SpatialExperiment)
library(BumpyMatrix)
set.seed(100)
simulate coordinates for clusters
df_clA <- data.frame(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5), cluster="A")
df_clB <- data.frame(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5), cluster="B")
clusters <- rbind(df_clA, df_clB)
clusters$sample<-"samplel”
simulate coordinates for genes
trans_info <- data.frame(rbind(cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A1"),
cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A2"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B1"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=1@, mean=100, sd=5),
feature_name="gene_B2")))
trans_info$x<-as.numeric(trans_info$x)
trans_info$y<-as.numeric(trans_info$y)
trans_info$cell = rep(paste(”cell”,1:20, sep=""), times=2)
mol <- BumpyMatrix::splitAsBumpyMatrix(
trans_info[, c("x", "y"™)1,
row = trans_info$feature_name, col = trans_info$cell)
spe_samplel <- SpatialExperiment(
assays = list(molecules = mol),sample_id ="samplel"”)
set.seed(100)
corr_res <- compute_permp(x=spe_samplel,
cluster_info=clusters,
perm.size=10,
bin_type="square”,
bin_param=c(2,2),
test_genes=unique(trans_info$feature_name),
correlation_method = "pearson”,
n_cores=1,
correction_method="BH")

raw permutation p-value
perm_p <- get_perm_p(corr_res)

get_top_mg

get_top_mg Get top lasso result from glm_mg_result

Description

Accessor function to retrieve the "top_result’ dataframe from an *glm_mg_result’ object.

Usage

get_top_mg(obj, coef_cutoff = 0.05)

Arguments
obj An ’glm_mg_result’ object.
coef_cutoff A positive number giving the coefficient cutoff value. Genes whose top cluster
showing a coefficient value smaller than the cutoff will be marked as non-marker
genes ("NoSig"). Default is 0.05.
Value

A data frame with detailed information for each gene and the most relevant cluster label.

¢ gene Gene name

* top_cluster The name of the most relevant cluster after thresholding the coefficients.
* glm_coef The coefficient of the selected cluster in the generalised linear model.

* pearson Pearson correlation between the gene vector and the selected cluster vector.

* max_gg_corr A number showing the maximum pearson correlation for this gene vector and
all other gene vectors in the input gene_mt

* max_gc_corr A number showing the maximum pearson correlation for this gene vector and
every cluster vectors in the input cluster_mt

Examples

library(SpatialExperiment)
set.seed(100)
simulate coordinates for clusters
df_clA <- data.frame(x = rnorm(n=100, mean=20, sd=5),
y = rnorm(n=100, mean=20, sd=5), cluster="A")
df_clB <- data.frame(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5), cluster="B")

clusters <- rbind(df_clA, df_clB)
clusters$sample<-"samplel”

simulate coordinates for genes
trans_info <- data.frame(rbind(cbind(x = rnorm(n=100, mean=20,sd=5),
y = rnorm(n=100, mean=20, sd=5),

get_vectors

feature_name="gene_A1"),
cbind(x = rnorm(n=100, mean=20, sd=5),
y = rnorm(n=100, mean=20, sd=5),
feature_name="gene_A2"),
cbind(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5),
feature_name="gene_B1"),
cbind(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5),
feature_name="gene_B2")))
trans_info$x<-as.numeric(trans_info$x)
trans_info$y<-as.numeric(trans_info$y)
trans_info$cell<-sample(c("celll”,"cell2"”,"cell2"),replace=TRUE,
size=nrow(trans_info))
trans_mol <- BumpyMatrix::splitAsBumpyMatrix(
trans_infol[, c("x", "y")1,
row = trans_info$feature_name, col = trans_info$cell)
spe<- SpatialExperiment(
assays = list(molecules = trans_mol),sample_id ="samplel”)
vecs_lst <- get_vectors(x=spe, sample_names=c("samplel”),
cluster_info = clusters,
bin_type = "square”,
bin_param = c(20,20),
test_genes =c("gene_A1","gene_A2","gene_B1","gene_B2"))
lasso_res <- lasso_markers(gene_mt=vecs_lst$gene_mt,
cluster_mt = vecs_lst$cluster_mt,
sample_names=c("samplel”),
keep_positive=TRUE,
background=NULL)
the top result
top_result<- get_top_mg(lasso_res, coef_cutoff=0.05)

get_vectors Vectorise the spatial coordinates

Description

This function will convert the coordinates into a numeric vector for genes and clusters.

Usage

get_vectors(
X,
cluster_info,
sample_names,
bin_type,
bin_param,
test_genes,
use_cm = FALSE,

26

n_cores = 1,

get_vectors

return_boundary = FALSE

)

Arguments

X

cluster_info

sample_names

bin_type

bin_param

test_genes

use_cm

n_cores

return_boundary

a named list (of transcript detection coordinates) or SingleCellExperiment or
SpatialExperiment or SpatialFeatureExperiment object. If a named list is pro-
vided, every list element is a dataframe containing the transcript detection co-
ordinates and column names must include "feature_name" (gene name), "x" (x
coordinate), "y" (y coordinate). The list names must match samples in clus-
ter_info.

A dataframe/matrix containing the centroid coordinates, cluster label and sam-
ple for each cell.The column names must include "x" (x coordinate), "y" (y
coordinate), "cluster” (cluster label) and "sample" (sample). It is strongly rec-
ommended to use syntactically valid names for columns clusters and samples.
If invalid names are detected, the function make.names will be employed to
generate valid names. A message will also be displayed to indicate this change.

a vector of strings giving the sample names. It is strongly recommended to use
syntactically valid names for columns clusters and samples. If invalid names are
detected, the function make . names will be employed to generate valid names. A
message will also be displayed to indicate this change.

A string indicating which bin shape is to be used for vectorization. One of
"square" (default), "rectangle”, or "hexagon".

A numeric vector indicating the size of the bin. If the bin_type is "square" or
"rectangle", this will be a vector of length two giving the numbers of rectangular
quadrats in the x and y directions. If the bin_type is "hexagonal", this will be a
number giving the side length of hexagons. Positive numbers only.

For example:

* c(3, 4) means 3 bins along the x-axis and 4 bins along the y-axis (a3 x 4
grid).

* c(5, 5) means 5 bins along the x-axis and 5 bins along the y-axis (a5 x 5
grid).

A vector of strings giving the name of the genes you want to create gene vector.
This will be used as column names for one of the result matrix gene_mt.

A boolean value that specifies whether to create spatial vectors for genes using
the count matrix and cell coordinates instead of the transcript coordinates when
both types of information are available. The default setting is FALSE.

A positive number specifying number of cores used for parallelizing permuta-
tion testing. Default is one core (sequential processing).

Logical. If TRUE, return the x- and y-coordinate limits (‘xrange‘, ‘yrange‘) of
the enclosing box for each sample in addition to the main result. The default
setting is FALSE.

get_vectors 27

Details

This function can be used to generate input for lasso_markers by specifying all the parameters.

Suppose the input data contains n genes, c clusters, and k samples, we want to use a X a square bin
to convert the coordinates of genes and clusters into 1d vectors.

If k = 1, the returned list will contain one matrix for gene vectors (gene_mt) of dimension a?

and one matrix for cluster vectors (cluster_mt) of dimension a? X c.

xXn

If £ > 1, gene and cluster vectors are constructed for each sample separately and concat together.
There will be additional k columns on the returned cluster_mt, which is the one-hot encoding of
the sample information.

Moreover, this function can vectorise genes and clusters separately based on the input. If x is NULL,
this function will return vectorised clusters based on cluster_info. If cluster_info is NULL,
this function will return vectorised genes based on x.

Value
a list of two matrices with the following components

gene_mt contains the transcript count in each grid. Each row refers to a grid, and each
column refers to a gene.

cluster_mt contains the number of cells in a specific cluster in each grid. Each row refers
to a grid, and each column refers to a cluster.

The row order of gene_mt matches the row order of cluster_mt.

boundary (optional)
Returned only if return_boundary = TRUE. A list containing the x- and y-coordinate
limits of the enclosing box for each sample.

Examples

library(SpatialExperiment)
set.seed(100)
simulate coordinates for clusters
df_clA = data.frame(x = rnorm(n=100, mean=20, sd=5),
y = rnorm(n=100, mean=20, sd=5), cluster="A")
df_clB = data.frame(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5), cluster="B")

clusters = rbind(df_clA, df_clB)
clusters$sample="samplel”

simulate coordinates for genes
trans_info = data.frame(rbind(cbind(x = rnorm(n=10, mean=20,sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A1"),
cbind(x = rnorm(n=10, mean=20, sd=5),
y = rnorm(n=10, mean=20, sd=5),
feature_name="gene_A2"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),

28

feature_name="gene_B1"),
cbind(x = rnorm(n=10, mean=100, sd=5),
y = rnorm(n=10, mean=100, sd=5),
feature_name="gene_B2")))
trans_info$x=as.numeric(trans_info$x)
trans_info$y=as.numeric(trans_info$y)
trans_info$cell = sample(c("celll”,"cell2"”,"cell2"),replace=TRUE,
size=nrow(trans_info))
use named list as input
vecs_lst = get_vectors(x= list("samplel” = trans_info),
sample_names=c("samplel”),
cluster_info = clusters,
bin_type = "square”,
bin_param = c(5,5),
test_genes =c("gene_A1","gene_A2","gene_B1","gene_B2"))
use SpatialExperiment object as input
trans_mol <- BumpyMatrix::splitAsBumpyMatrix(
trans_info[, c("x", "y")1,
row = trans_info$feature_name, col = trans_info$cell)
spe<- SpatialExperiment(
assays = list(molecules = trans_mol),sample_id ="samplel”)
vecs_lst_spe = get_vectors(x=spe,sample_names=c("samplel”),
cluster_info = clusters,
bin_type = "square”,
bin_param = c(5,5),
test_genes =c("gene_A1","gene_A2","gene_B1","gene_B2"))

lasso_markers

lasso_markers Find marker genes with spatial coordinates

Description

This function will find the most spatially relevant cluster label for each gene.

Usage

lasso_markers(
gene_mt,
cluster_mt,
sample_names,
keep_positive = TRUE,
background = NULL,
n_fold = 10

lasso_markers 29

Arguments
gene_mt A matrix contains the transcript count in each grid. Each row refers to a grid,
and each column refers to a gene. The column names must be specified and refer
to the genes. This can be the output from the function get_vectors.
cluster_mt A matrix contains the number of cells in a specific cluster in each grid. Each row

refers to a grid, and each column refers to a cluster. The column names must
be specified and refer to the clusters. Please do not assign integers as column
names. This can be the output from the function get_vectors.

sample_names A vector specifying the names for the samples.
keep_positive A logical flag indicating whether to return positively correlated clusters or not.

background Optional. A matrix providing the background information. Each row refers to a
grid, and each column refers to one category of background information. Num-
ber of rows must equal to the number of rows in gene_mt and cluster_mt. Can
be obtained by only providing coordinates matrices cluster_info. to function
get_vectors.

n_fold Optional. A positive number giving the number of folds used for cross valida-
tion. This parameter will pass to cv. glmnet to calculate a penalty term for every
gene.
Details

This function will take the converted gene and cluster vectors from function get_vectors, and
return the most relevant cluster label for each gene. If there are multiple samples in the dataset, this
function will find shared markers across different samples by including additional sample vectors
in the input cluster_mt.

This function treats all input cluster vectors as features, and create a penalized linear model for one
gene vector with lasso regularization. Clusters with non-zero coefficient will be selected, and these
clusters will be used to formulate a generalised linear model for this gene vector.

* If the input keep_positive is TRUE, the clusters with positive coefficient and significant
p-value will be saved in the output matrix lasso_full_result. The cluster with a positive
coefficient and the minimum p-value will be regarded as the most relevant cluster to this gene
and be saved in the output matrix lasso_result.

o If the input keep_positive is FALSE, the clusters with negative coefficient and significant
p-value will be saved in the output matrix lasso_full_result. The cluster with a negative
coefficient and the minimum p-value will be regarded as the most relevant cluster to this gene
and be saved in the output matrix lasso_result.

If there is no clusters with significant p-value, the a string "NoSig" will be returned for this gene.

The parameter background can be used to capture unwanted noise pattern in the dataset. For
example, we can include negative control genes as a background cluster in the model. If the most
relevant cluster selected by one gene matches the background "clusters"”, we will return "NoSig" for
this gene.

30 lasso_markers

Value
An object of class glm_mg_result’ To access specific components of the returned object:

» Use get_top_mg to retrieve the top result data frame

e Use get_full_mg to retrieve full result data frame

See Also

get_vectors

Examples

library(SpatialExperiment)
set.seed(100)
simulate coordinates for clusters
df_clA <- data.frame(x = rnorm(n=100, mean=20, sd=5),
y = rnorm(n=100, mean=20, sd=5), cluster="A")
df_clB <- data.frame(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5), cluster="B")

clusters <- rbind(df_clA, df_clB)
clusters$sample<-"samplel”

simulate coordinates for genes
trans_info <- data.frame(rbind(cbind(x = rnorm(n=100, mean=20,sd=5),
y = rnorm(n=100, mean=20, sd=5),
feature_name="gene_A1"),
cbind(x = rnorm(n=100, mean=20, sd=5),
y = rnorm(n=100, mean=20, sd=5),
feature_name="gene_A2"),
cbind(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5),
feature_name="gene_B1"),
cbind(x = rnorm(n=100, mean=100, sd=5),
y = rnorm(n=100, mean=100, sd=5),
feature_name="gene_B2")))
trans_info$x<-as.numeric(trans_info$x)
trans_info$y<-as.numeric(trans_info$y)
trans_info$cell<-sample(c("celll”,"cell2"”,"cell2"),replace=TRUE,
size=nrow(trans_info))
trans_mol <- BumpyMatrix::splitAsBumpyMatrix(
trans_infol[, c("x", "y")1,
row = trans_info$feature_name, col = trans_info$cell)
spe<- SpatialExperiment(
assays = list(molecules = trans_mol),sample_id ="samplel”)
vecs_lst <- get_vectors(x=spe,sample_names=c("samplel”),
cluster_info = clusters,
bin_type = "square”,
bin_param = c(20,20),
test_genes =c("gene_A1","gene_A2","gene_B1","gene_B2"))
lasso_res <- lasso_markers(gene_mt=vecs_lst$gene_mt,
cluster_mt = vecs_lst$cluster_mt,

repl_clusters 31

sample_names=c("samplel”),
keep_positive=TRUE,
background=NULL)

the top result

top_result <- get_top_mg(lasso_res, coef_cutoff=0.05)

the full result

full_result <- get_full_mg(lasso_res, coef_cutoff=0.05)

repl_clusters Repl selected cells

Description
A data frame file containing the coordinates and cluster label for each cell of the selected subset of
repl.

Usage

data(repl_clusters)

Format
A data frame with 1705 rows and 6 variables:
anno the provided cell type annotation
cluster cluster label
X X coordinates
y y coordiantes
cells cell id

sample sample id

Value

data frame

Source

<https://cf.10xgenomics.com/samples/xenium/1.0.1/ Xenium_FFPE_Human_Breast_Cancer_Repl/
Xenium_FFPE_Human_Breast_Cancer_Repl_outs.zip>

32 repl_sub

repl_neg Repl negative control genes within the selected region.

Description
A SpatialExperiment object containing the coordinates for every negative control detection for
repl_sub

Usage

data(repl_neg)

Format

A SpatialExperiment object. The molecules assay slot is a BumpyDataFrameMatrix obejct. Can re-
trieve DataFrame version by calling ‘BumpyMatrix::unsplitAsDataFrame(molecules(repl_neg))‘.
The molecules slot contains:

X X coordinates
y y coordiantes
feature_name negative control probe name

category negative control category

Value

SpatialExperiment

Source

<https://cf.10xgenomics.com/samples/xenium/1.0.1/ Xenium_FFPE_Human_Breast_Cancer_Rep1/Xenium_FFPE_Human_
Cancer_Repl_outs.zip>

repl_sub A small section of Xenium human breast cancer repl.

Description

A SpatialExperiment object containing the coordinates for every transcript

Usage

data(repl1_sub)

rep2_clusters 33

Format

A SpatialExperiment object with 20 genes and 1713 cells. The molecules assay slot is a Bumpy-
DataFrameMatrix obejct. Can retrieve DataFrame version by calling ‘BumpyMatrix::unsplitAsDataFrame(molecules(rep2_si
The molecules assay contains 79576 rows and 3 variables:

X X coordinates
y y coordiantes
feature_name transcript name

Value

SpatialExperiment

Source

<https://cf.10xgenomics.com/samples/xenium/1.0.1/ Xenium_FFPE_Human_Breast_Cancer_Repl/
Xenium_FFPE_Human_Breast_Cancer_Repl_outs.zip>

rep2_clusters Rep?2 selected cells

Description

A csv file containing the coordinates and cluster label for each cell of the selected subset of rep2.

Usage

data(rep2_clusters)

Format
A data frame with 1815 rows and and 6 variables:

anno the provided cell type annotation
cluster cluster label

X X coordinates

y y coordiantes

cells cell id

sample sample id

Value

data frame

Source

<https://cf.10xgenomics.com/samples/xenium/1.0.1/ Xenium_FFPE_Human_Breast_Cancer_Rep2/
Xenium_FFPE_Human_Breast_Cancer_Rep2_outs.zip>

34 rep2_sub

rep2_neg Rep?2 negative control genes within the selected region.

Description

A data frame containing the coordinates for every negative control detection for rep2

Usage

data(rep2_neg)

Format

A SpatialExperiment object. The molecules assay slot is a BumpyDataFrameMatrix obejct. Can re-
trieve DataFrame version by calling ‘BumpyMatrix::unsplitAsDataFrame(molecules(rep2_neg))‘.
The molecules slot contains:

X X coordinates
y y coordiantes
feature_name negative control probe name .

category negative control category

Value

SpatialExperiment

Source

<https://cf.10xgenomics.com/samples/xenium/1.0.1/ Xenium_FFPE_Human_Breast_Cancer_Rep2/
Xenium_FFPE_Human_Breast_Cancer_Rep2_outs.zip>

rep2_sub A small section of Xenium human breast cancer rep2.

Description
A SpatialExperiment object containing the coordinates for every negative control detection for
rep2_sub

Usage

data(rep2_sub)

rep2_sub 35

Format

A SpatialExperiment object with 20 genes and 1829 cells. The molecules assay slot is a Bumpy-
DataFrameMatrix obejct. Can retrieve DataFrame version by calling ‘BumpyMatrix::unsplitAsDataFrame(molecules(rep2_si
The molecules slot contains:

X x coordinates
y y coordiantes

feature_name transcript name

Value

SpatialExperiment

Source

<https://cf.10xgenomics.com/samples/xenium/1.0.1/ Xenium_FFPE_Human_Breast_Cancer_Rep2/
Xenium_FFPE_Human_Breast_Cancer_Rep2_outs.zip>

Index

+ datasets
repl_clusters, 31
repl_neg, 32
repl_sub, 32
rep2_clusters, 33
rep2_neg, 34
rep2_sub, 34

+ package
jazzPanda-package, 3

.check_binning, 3

.check_valid_input, 4

.check_valid_names, 5

.compute_observation, 5

.compute_permutation, 6

.convert_data, 8

.create_cor_mg_result, 8

.create_lm_mg_result, 9

.get_cluster_vectors, 9

.get_gene_vectors_cm, 10

.get_gene_vectors_tr, 12

.get_lasso_coef, 13

compute_permp, 3, 14
cor, 6, 7,14

create_genesets, 16
cv.glmnet, 4, 13,29

get_cor, 15,18
get_full_mg, 19, 30
get_perm_adjp, 15, 21
get_perm_p, 15,22
get_top_mg, 24, 30

get_vectors, 3, 4, 13,25, 29, 30

jazzPanda (jazzPanda-package), 3

jazzPanda-package, 3
lasso_markers, 3, 27, 28

make.names, 6, 26

p.adjust, 15

repl_clusters, 31
repl_neg, 32
repl_sub, 32
rep2_clusters, 33
rep2_neg, 34
rep2_sub, 34

	jazzPanda-package
	.check_binning
	.check_valid_input
	.check_valid_names
	.compute_observation
	.compute_permutation
	.convert_data
	.create_cor_mg_result
	.create_lm_mg_result
	.get_cluster_vectors
	.get_gene_vectors_cm
	.get_gene_vectors_tr
	.get_lasso_coef
	compute_permp
	create_genesets
	get_cor
	get_full_mg
	get_perm_adjp
	get_perm_p
	get_top_mg
	get_vectors
	lasso_markers
	rep1_clusters
	rep1_neg
	rep1_sub
	rep2_clusters
	rep2_neg
	rep2_sub
	Index

