Package ‘iscream’

February 2, 2026

Title Make fast and memory efficient BED file queries, summaries and
matrices

Version 1.1.1

Description BED files store ranged genomic data that can be queried even when
the files are compressed. iscream can query data from BED files and return them
in muliple formats: parsed records or their summary statistics as data frames
or GenomicRanges objects, and matrices as matrix, GenomicRanges, or
SummarizedExperiment objects. iscream also provides specialized
support for importing methylation data.

URL https://huishenlab.github.io/iscream/,

https://github.com/huishenlab/iscream/

BugReports https://github.com/huishenlab/iscream/issues/
License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Depends R (>=4.5)

LinkingTo Rcpp, ReppArmadillo, ReppProgress, ReppSpdlog, Rhtslib,
stringfish

Imports Rcpp, Matrix, data.table, methods, pbapply, parallelly,
stringfish,

Suggests BiocFileCache, BiocStyle, bsseq, ggplot2, ggridges, knitr,
microbenchmark, rmarkdown, GenomicRanges, IRanges, Rsamtools,
SummarizedExperiment, S4 Vectors, testthat (>= 3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes

SystemRequirements htslib: htslib-devel (rpm) or libhts-dev (deb) &
tabix: htslib-tools (rpm) or tabix (deb) & GNU make

biocViews Datalmport, Software, Sequencing, SingleCell, DNAMethylation

1

https://huishenlab.github.io/iscream/
https://github.com/huishenlab/iscream/
https://github.com/huishenlab/iscream/issues/

git_url https://git.bioconductor.org/packages/iscream
git_branch devel

git_last_commit blbdalc

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author James Eapen [aut, cre] (ORCID: <https://orcid.org/0000-0001-6016-3598>),
Jacob Morrison [aut] (ORCID: <https://orcid.org/0000-0001-8592-4744>),
Nathan Spix [ctb],

Hui Shen [aut, ths, fnd] (ORCID:
<https://orcid.org/0000-0001-9767-4084>)

Maintainer James Eapen <james.eapen@vai.org>

Contents

check files_exist
check_thread_count
Cpp_query_all. e
Cpp_set_log_level
Cpp_summarize_regions oo viu e e e e e
get_df_string e
get_granges_String e
get_threads L
htslib_version e
make_mat e e e
make_mat_bsseq
query_chroms
set_log level e
set_threads L
summarize_meth_regions
SUMMATIZE_TEZIONS v v v v v v et e e e et e e e e e e e
tabiX . . . e e e e e
validate log_level
verify_aligner_or_stop
verify_files_or_stop e
verify_filetype

Index

Contents

https://orcid.org/0000-0001-6016-3598
https://orcid.org/0000-0001-8592-4744
https://orcid.org/0000-0001-9767-4084

check_files_exist 3

check_files_exist Check that files exist

Description

Check that files exist

Usage

check_files_exist(files_vec, error_file_prefix = "Bedfile")
Arguments

files_vec A vector of file paths

error_file_prefix
Error message prefix for ’Bedfile’ vs *Tabix file’

Value

TRUE if all input BED files have an associated tabix index file. FALSE if not

check_thread_count Check that the required threads are available

Description

Check that the required threads are available

Usage

check_thread_count(
n_threads,
avail_threads = availableCores(),
opt_set = FALSE

)

Arguments

n_threads The number of threads to check availability for
avail_threads The number of threads that are available on the system. Defaults to parallelly: :availableCores()

opt_set Whether the iscream. threads options is set

Value

n_threads if the requested number of threads are available and stops if not

4 Cpp_set_log_level

Cpp_query_all Query all methylation info into M and coverage matrices

Description

Query all methylation info into M and coverage matrices

Usage
Cpp_query_all(
bedfiles,
regions,
aligner,
vallnd,
merged,
sparse,
prealloc,
nthreads
)
Arguments
bedfiles A vector of BED files
regions A vector of regions
aligner The aligner used to make the WGBS BED files, only for make_mat_bsseq
valInd The index of the data column needed for the matrix, for make_mat
merged Whether the input strands have been merged/collapsed
prealloc The number of rows to initialize the matrices with
nthreads Set number of threads to use overriding the "iscream.threads” option. See
?set_threads for more information.
Value

A list of one or two matrices, chromosome, position, and filename vectors

Cpp_set_log_level spdlog Logging Lever Setter

Description

A helper function to turn a logging level given as string into the current logging level

Cpp_summarize_regions 5

Usage
Cpp_set_log_level (name)

Arguments
name A string with the logging level. Value understood are, in decreasing verbosity
‘trace’, ‘debug’, ‘info’, ‘warning’, ‘error’, ‘critical’, and ‘off’. Unrecognised
names are equivalent to ‘off’.
Value

Nothing is returned.

Cpp_summarize_regions Apply a function over BED file records within genomic features

Description

This function should be called from summarize_regions() since there are few sanity checks on
the C++ side.

Usage

Cpp_summarize_regions(
bedfiles,
regions,
fun_vec,
col_indices,
col_names,
aligner,
mval = FALSE,
region_rownames = FALSE,
nthreads = 1L

)
Arguments

bedfiles A vector of BED file paths

regions A vector of genomic regions

fun_vec Vector of the armadillo-supported stats functions to apply over the CpGs in the
regions: "sum”, "mean”, "median”, "stddev"”, "variance” "count", "min”,"max",
and "range”.

col_indices A vector of genomic regions

col_names A vector of genomic regions

mval Calculates M values when TRUE, use beta values when FALSE

6 get_df_string

region_rownames
Whether to set rownames to the regions strings. Not necessary if your regions
vector 1s unnamed. If its names, then the "feature" column is set to the names
and the rownames are set to the regions string

nthreads Number of cores to use. See details.

Details

The optimal number of threads depends on the number of bedfiles, but is set to half the available
OpenMP cores. See ?get_threads for more details. It can be manaully set with set_threads().

Value

A summary data.frame

get_df_string DataFrame to region strings

Description

Convert DataFrame to a vector of strings. Set feature names in a "name" column

Usage

get_df_string(regions_df, feature_col = NULL)

Arguments

regions_df A data frame with "chr", "start" and "end" columns

feature_col The data frame column to use as the names of the output string vector
Value

A character vector

Examples

(df <- data.frame(chr = c("chr1”, "chr2"), start = c(1, 5), end = c(4, 10)))
get_df_string(df)

get_granges_string 7

get_granges_string GRanges to region strings

Description

Coerces GenomicRanges to chr:start-end strings with as.character. If any regions have the
same start and end, as.character returns chr:start strings which are invalid for the htslib API.
These are corrected to chr:start-start.

Usage

get_granges_string(gr)

Arguments

gr A GRanges object

Value

A character vector

Examples

if (requireNamespace("GenomicRanges"”, quietly = TRUE)) {
get_granges_string(GenomicRanges: :GRanges(c("chr1:1-10", "chr2:15-20")))
3

get_threads Get the number of available threads

Description

Gets the number of threads iscream is currently set to use, whether the "iscream. threads” option
is set and how many threads are available for use. To set the number of threads use set_threads()
or set the iscream. threads option in your ~/.Rprofile. See ?set_threads for more informa-
tion.

Usage
get_threads()

Value
A named vector:

* use_threads = the number of threads iscream will use
* opt_set = whether the option was set by the user
* avail_threads =The number of available threads as reported by parallelly: :availableCores

8 make_mat

Examples

get_threads()

htslib_version Get htslib version and available features

Description

Returns the version of htslib being used by iscream and whether features such as libdeflate sup-
port are available. This information may not always correspond to the htslib version used during
iscream’s installation if a different htslib version is available for linking at runtime.

Usage

htslib_version()

Value

None

Examples

htslib_version()

make_mat Make a matrix from a numeric column of BED files

Description

Queries the provided regions and produces a matrix along with genomic positions as a named list
(make_mat()), a RangedSummarizedExperiment (make_mat_se()), GRanges (make_mat_gr()).
Parallelized across files using threads from the "iscream. threads” option.

Usage

make_mat (
bedfiles,
regions,
column,
mat_name = "value”,
sparse = FALSE,
prealloc = 10000,
nthreads = NULL

make_mat

make_mat_se(

bedfiles,
regions,
column,
mat_name = "value”,
sparse = FALSE,
prealloc = 10000,
nthreads = NULL
)
make_mat_gr(
bedfiles,
regions,
column,
mat_name = "value"”,
prealloc = 10000,
nthreads = NULL
)
Arguments
bedfiles A vector of BED file paths
regions A vector, data frame or GenomicRanges of genomic regions. See details.
column The index of the data column needed for the matrix
mat_name What to name the matrix in the returned object
sparse Whether to return a sparse matrix
prealloc The number of rows to initialize the matrices with. If the number of loci are
approximately known, this can reduce runtime as fewer resizes need to be made.
nthreads Set the number of threads to use. Overrides the "iscream.threads” option.
See ?set_threads for more information.
Details

The input regions may be string vector in the form "chr:start-end" or a GRanges object. If a data

frame is provided, they must have "chr", "start", and "end" columns.

Value

e make_mat(): A named list of

— the matrix with the value of interest

— a character vector of chromosomes and numeric vector of base positions

— acharacter vector of the input sample BED file names

* make_mat_gr(): if GenomicRanges is available, a GRanges

e make_mat_se(): if SummarizedExperiment is available, a RangedSummarizedExperiment

10 make_mat_bsseq
Examples
bedfiles <- system.file("extdata”, package = "iscream") |>
list.files(pattern = "[a|b|c|d].bed.gz$", full.names = TRUE)
examine the bedfiles

colnames <- c(”"chr”, "start”, "end", "beta", "coverage")
lapply(bedfiles, function(i) knitr::kable(read.table(i, col.names = colnames)))

make a vector of regions

regions <- c("chr1:1-6", "chr1:7-10", "chr1:11-14")
make matrix of beta values

make_mat (bedfiles, regions, column = 4)

make_mat_bsseq Make M/beta and coverage matrices from WGBS BED files

Description

Queries the CpG/CpH loci from provided regions and produces M/beta and coverage matrices with
their genomic positions. Parallelized across files using threads from the "iscream. threads” op-
tion. The output of make_mat_bsseq may be used to create a BSseq object: do.call(BSseq,

make_mat_

Usage

make_mat_

bsseq(...)).

bsseq(

bedfiles,
regions,
aligner = "biscuit”,

mval =
merged
sparse

TRUE,
= TRUE,
= FALSE,

prealloc = 10000,
nthreads = NULL

Arguments

bedfiles
regions
aligner
mval

merged
sparse
prealloc

nthreads

A vector of BED file paths
A vector, data frame or GenomicRanges of genomic regions. See details.
The aligner used to produce the BED files - one of "biscuit", "bismark", "bsbolt".

Whether to return M-values or beta-values with the coverage matrix. Defaults
to M-value. Set mval=FALSE to get beta value matrix.

Whether the input strands have been merged/collapsed

Whether to return a sparse matrix

The number of rows to initialize the matrices with. If the number of loci are
approximately known, this can reduce runtime as fewer resizes need to be made.
Set the number of threads to use. Overrides the "iscream.threads” option.
See ?set_threads for more information

query_chroms 11

Details

The input regions may be string vector in the form "chr:start-end" or a GRanges object. If a data
frame is provided, they must have "chr", "start", and "end" columns.

Value
A named list of

* coverage and either a beta- or M-value matrix
* acharacter vector of chromosomes and numeric vector of corresponding CpG base positions

* a character vector of the input sample names

Bitpacking limits

make_mat_bsseq() makes two matrices: M-value (or beta-value) and coverage. For speed and
memory efficiency these two values are bitpacked during matrix creation so that only one matrix
needs to be populated and resized. This matrix is unpacked into the two required matrices only after
the matrix dimensions are known after querying all input files. The two values are packed using
the INT16 type, which has an upper limit of 32,767, into one INT32. If the coverage values exceed
32,767, the upper limit of a 16-bit signed integer, it will be capped at the limit. Beta values will also
be capped similarly, but any such beta values would indicate a bug in the aligner that produced the
data.

Examples

bedfiles <- system.file("extdata"”, package = "iscream"”) |>
list.files(pattern = "[a|b|c|d].bed.gz$", full.names = TRUE)
examine the BED files
colnames <- c("chr”, "start”, "end", "beta", "coverage")
lapply(bedfiles, function(i) knitr::kable(read.table(i, col.names = colnames)))

make a vector of regions

regions <- c("chr1:1-6", "chr1:7-10", "chr1:11-14")

mat <- make_mat_bsseq(bedfiles, regions)

for BSseq object run

if (requireNamespace("bsseq”, quietly = TRUE)) {
do.call(bsseq: :BSseq, mat)

3

query_chroms Query the chromosomes or seqnames from a vector of BED files

Description

Query the chromosomes or seqnames from a vector of BED files

Usage

query_chroms(bedfiles, nthreads = NULL)

12 set_log_level

Arguments
bedfiles The vector of BED file paths
nthreads Set number of threads to use overriding the "iscream. threads” option. See
?set_threads for more information.
Value

A vector of seqnames

Examples

bedfiles <- system.file("extdata", package = "iscream") |>
list.files(pattern = "[a|b|c|d].bed.gz$", full.names = TRUE)
query_chroms(bedfiles)

set_log_level Set and get logging level

Description

Set and get logging level

Usage

set_log_level(level = "info")

get_log_level()

Arguments

level The logging verbosity level to use

e "info": the default that gives provides basic information about the number
of files and regions used in a function

* "debug": more verbose about row allocations, how many CpGs were found
in a region, filename parsing etc. This mode cannot be used on more than
one thread as R cannot output messages from multiple threads without
crashing.

* "off": no logging

Value

* set_log_level(): None; sets the log level to the provided level
* get_log_level(): The current logging level as a string

Examples

set_log_level("info")
get_log_level()

set_threads 13

set_threads Set the number of available threads

Description

Sets the "iscream. threads” option to n_threads. To see how many threads you have available
see ?get_threads().

Usage

set_threads(n_threads)

Arguments

n_threads The number of threads to use

Details

iscream uses OpenMP to parallelize certain functions. You can use as many threads as are available
to you on your system to varying degrees of performance improvements. The get_threads() func-
tion uses parallelly::availableCores() to report the number of available threads. Although
OpenMP can detect the number of available cores, on high performance computers (HPCs) with
resource allocating job schedulers like SLURM, OpenMP may detect all available threads across
the HPC and not limit itself to the cores that were allocated to you by the scheduler. If your sys-
tem administrator has not set up any limits, this may result in your job taking resources from other
jobs. If there are limits, trying to use more threads that those available will reduce iscream’s perfor-
mance. Job schedulers will typically have an environment variable (e.g. SLURM_CPUS_ON_NODE with
SLURM) that gives you the actual number of available cores. Further, on hyperthreaded systems,
this count may be double that of the available processors. Using hyperthreading does not guarantee
any performance improvement - it may be better to set the number of threads to half the reported
number. parallelly::availableCores() takes HPC scheduler/CRAN/Bioconductor limits into
account when reporting the number of available threads but it may not reliably report hyperthread-
ing (’system’ or 'nproc’). To set the number of threads without having to call set_threads() in
every session, put

options(iscream.threads = [n_threads])

in your .Rprofile See help('Rprofile') for information on startup options.

Functions currently using multithreading:

e tabix (), tabix_gr(), tabix_raw()
e query_chroms()
* make_mat (), make_mat_se(), make_mat_gr(), make_mat_bsseq()

e summarize_regions(), summarize_meth_regions()

14

Value

summarize_meth_regions

None. Sets the iscream. threads option to the requested number of threads if available

Examples

(ncores <- parallelly::availableCores())

set_threads(ncores)

summarize_meth_regions

Summarize methylation information over genomic regions

Description

Run summarizing functions on the CpG/CpH loci in BED files across genomic regions. Parallelized
across files using threads from the "iscream. threads” option.

Usage

summarize_meth_regions(

bedfiles,
regions,

fun = "all”,
aligner = "biscuit”,
feature_col = NULL,
mval = TRUE,

set_region_rownames = FALSE,
nthreads = NULL

)
Arguments
bedfiles A vector of BED file paths
regions A vector, data frame or GenomicRanges of genomic regions. See details.
fun Function(s) to apply over the region. See details.
aligner The aligner used to produce the BED files - one of "biscuit", "bismark", "bsbolt".

feature_col

mval

Column name of the input regions data frame containing a name for each ge-
nomic region. Set only if the using a data frame as the input regions format. See
details.

Whether to calculate the M value (coverage x[3) or use the beta value when
applying the function.

summarize_meth_regions 15

set_region_rownames
Use the region strings as the returned data frame’s rownames. Can be useful if
you have a named regions and want both the regions strings rownames and the
feature names. See details.

nthreads Set number of threads to use overriding the "iscream. threads” option. See
?set_threads for more information.

Value

A data.frame

Supported functions

n n

e Sum: "sum
e Mean: "mean”

¢ Median: "median”

¢ Standard deviation: "stddev”

e Variance: "variance”

¢ Minimum: "min"

¢ Maximum: "max”

* Range: "range”

* No. of records in the region: "count”

The summarizing computations are backed by the Armadillo library. See https://arma.sourceforge.
net/docs.html#stats_fns for futher details on the supported functions

Using feature identifiers

regions may be string vector in the form "chr:start-end", a GRanges object or a data frame with
"chr", "start", and "end" columns. The feature column of the output will contain a "chr:start-end"
identifier for each summarized region. To use other identifiers, like a gene name for a region instead
of the coordinates, set the names of the vector or GRanges to those identifiers. These names will
be used instead of the genomic region string to describe each feature in the output dataframe. If
regions is a data frame make an additional column with the identifiers and pass that column name
to feature_col. See examples.

Examples

also see examples from ?summarize_regions

bedfiles <- system.file("extdata”, package = "iscream”) |>
list.files(pattern = "[a|b|c|d].bed.gz$", full.names = TRUE)

make a vector of regions

regions <- c("chr1:1-6", "chr1:7-10", "chr1:11-14")
summarize_meth_regions(bedfiles, regions)

names(regions) <- c("A", "B", "C")

summarize_meth_regions(bedfiles, regions, fun = c("mean”, "stddev"), mval = FALSE)
summarize_meth_regions(bedfiles, regions, fun = "sum")

https://arma.sourceforge.net/docs.html#stats_fns
https://arma.sourceforge.net/docs.html#stats_fns

16 summarize_regions

summarize_regions Summarize information over genomic regions from any BED file

Description

Run summarizing functions on BED file records across genomic regions. Parallelized across files
using threads from the "iscream. threads” option.

Usage

summarize_regions(
bedfiles,
regions,
columns,
col_names = NULL,
fun = "all"”,
feature_col = NULL,
set_region_rownames = FALSE,
nthreads = NULL

)
Arguments

bedfiles A vector of BED file paths

regions A vector, data frame or GenomicRanges of genomic regions. See details.

columns A vector of indices of the numeric columns to be summarized

col_names A vector of names to use for columns in the output

fun Function(s) to apply over the region. See details.

feature_col Column name of the input regions data frame containing a name for each ge-
nomic region. Set only if the using a data frame as the input regions format. See
details.

set_region_rownames
Use the region strings as the returned data frame’s rownames. Can be useful if
you have a named regions and want both the regions strings rownames and the
feature names. See details.

nthreads Set number of threads to use overriding the "iscream. threads” option. See
?set_threads for more information.

Value

A data.frame

summarize_regions 17

Supported functions

e Sum: "sum

* Mean: "mean”

e Median: "median”

¢ Standard deviation: "stddev"”
e Variance: "variance”

e Minimum: "min”

n

* Maximum: "max
* Range: "range”
* No. of records in the region: "count”

The summarizing computations are backed by the Armadillo library. See https://arma.sourceforge.
net/docs.html#stats_fns for futher details on the supported functions

Using feature identifiers

regions may be string vector in the form "chr:start-end", a GRanges object or a data frame with
"chr", "start", and "end" columns. The feature column of the output will contain a "chr:start-end"
identifier for each summarized region. To use other identifiers, like a gene name for a region instead
of the coordinates, set the names of the vector or GRanges to those identifiers. These names will
be used instead of the genomic region string to describe each feature in the output dataframe. If
regions is a data frame make an additional column with the identifiers and pass that column name
to feature_col. See examples.

Examples

bedfiles <- system.file("extdata”, package = "iscream") |>
list.files(pattern = "[a|b|c|d].bed.gz$", full.names = TRUE)
examine the bedfiles
colnames <- c("chr”, "start”, "end"”, "beta"”, "coverage")
lapply(bedfiles, function(i) knitr::kable(read.table(i, col.names = colnames)))

make a vector of regions
regions <- c("chr1:1-6", "chr1:7-10", "chr1:11-14")
summarize_regions(bedfiles, regions, columns = c(4, 5), col_names = c("beta”, "cov"))

select functions
summarize_regions(

bedfiles,

regions,

fun = c("mean”, "stddev"),

columns = c(4, 5),

col_names = c("beta”, "cov")
)

add names to the regions
names(regions) <- c("A", "B", "C")
summarize_regions(

bedfiles,

https://arma.sourceforge.net/docs.html#stats_fns
https://arma.sourceforge.net/docs.html#stats_fns

18 tabix
regions,
fun = "sum”,
columns = 5,
col_names = "coverage"
)
using ~feature_col”
library(data.table)
convert string vector to a data.table
regions_df <- data.table::as.data.table(regions) |>
_[, tstrsplit(regions, ":|-", fixed = FALSE, names = c("chr”, "start”, "end”))] |>
_[, start := as.integer(start)] |>
_[, feature := LETTERS[.IJI[]
regions_df
summarize_regions(
bedfiles,
regions_df,
fun = "sum”,
columns = 5,
col_names = "coverage",
feature_col = "feature”
)
tabix Query records from tabixed BED files
Description
Query records from tabixed BED files
Usage
tabix(bedfiles, regions, aligner = NULL, col.names = NULL, nthreads = NULL)
tabix_gr(
bedfiles,
regions,
aligner = NULL,
col.names = NULL,
zero_based = TRUE,
nthreads = NULL
)
tabix_raw(bedfiles, regions, nthreads = NULL)

tabix 19

Arguments
bedfiles The BED files to be queried
regions A vector, data frame or GenomicRanges of genomic regions. See details.
aligner The aligner used to produce the BED files - one of "biscuit", "bismark", "bsbolt".
Will set the result data.table’s column names based on this argument.
col.names A vector of column names for the data columns of the result.table, not including
"chr", "start", and "end". Set if your BED file is not from the supported aligners
or is a general BED file.
nthreads Set number of threads to use overriding the "iscream.threads” option. See
?set_threads for more information.
zero_based Whether the input BED file has a zero-based start column - used when coverting
the result data frame to GenomicRanges.
Details
Query method:

’iscream has two methods to query records from BED files:

* the tabix shell executable: fast since its output can be redirected to a file (which data. table: : fread()
can then read) instead of having to allocate memory and store it during the query

* iscream’s tabix implementation, based on the fabix executable using htslib, but slower on
large queries since it stores the records as they are found instead of writing to a file. However
it’s able to store each region’s records independently instead of in a single file and is used in
make_mat (), make_mat_bsseq(), and summarize_regions().

When iscream is attached, it checks that the fabix executable is available with Sys.which() and,
if available, sets options(”tabix.method” = "shell"”). tabix () then uses the tabix executable
to make queries, except for tabix_raw(). If tabix is not found, iscream uses its tabix implemen-
tation. To use only iscream’s tabix implementation, set options("”tabix.method” = "htslib").

Input region formats:

The input regions format may be string vector in the form "chr:start-end", a dataframe with
"chr", "start" and "end" columns or a GRanges object. Input regions must be 1-based. When
using "htslib” as the query method, if the input GRanges object of regions contains any sin-
gle locus regions where the start and end positions are the same, iscream will notify that such
regions were found and fixed as chr:start format strings are invalid for the htslib API (see
?get_granges_string).

Value

e tabix(): A data frame

* tabix_gr(): A GRanges object for single files and GRangesList for multiple files. When
making GRanges, the 0-based records from BED-files will be converted to 1-based with
GenomicRanges: :makeGRangesFromDataFrame(). Bismark’s coverage files will not be con-
verted as they are already 1-based and the ranges slot will be only one position.

e tabix_raw(): A named list of raw strings from the regions in the style of Rsamtools: : scanTabix

20 verify_aligner_or._stop

Examples

bedfiles <- system.file("extdata"”, package = "iscream”) |>
list.files(pattern = "[a|b|c|d].bed.gz$", full.names = TRUE)
regions <- c("chr1:1-6", "chr1:7-10", "chr1:11-14")

tabix(bedfiles, regions, col.names = c("beta”, "coverage"))

if (require("”GenomicRanges"”, quietly = TRUE)) {
tabix_gr(bedfiles, regions, col.names = c("beta”, "coverage"))

3

tabix_raw(bedfiles, regions)

validate_log_level Validate provided logging level

Description

Only "info" and "debug" are currently supported, with "debug" only supported when using 1 thread

Usage
validate_log_level(level = get_log_level(), n_threads)

Arguments

level The logging level to validate

n_threads The number of threads that the next iscream function call will use
Value

None; sets the log level to the provide level

Examples

set_log_level("info")

verify_aligner_or_stop
Validate provided aligner

Description

Only "biscuit", "bismark"”, and "bsbolt" are currently supported

Usage

verify_aligner_or_stop(aligner)

verify_files_or_stop 21

Arguments

aligner The input alinger

Value

true; quits if the input is not among supported_aligners

verify_files_or_stop Verify that BED files are tabixed

Description

Verify that BED files are tabixed

Usage
verify_files_or_stop(bedfiles, verify_tabix = TRUE)

Arguments

bedfiles A vector of BED file paths
verify_tabix Whether to verify the presence of tabix files

Value

TRUE if all input BED files have an associated tabix index file. FALSE if not

verify_filetype Verify that the input BED files are of the type specified by the input
aligner

Description

Verify that the input BED files are of the type specified by the input aligner

Usage

verify_filetype(bedfiles, aligner, stop_on_error = FALSE)

Arguments
bedfiles A vector of BED file paths
aligner The aligner chosen

stop_on_error Whether to warn or stop on aligner-filename mismatch

Value

TRUE if all input BED files have an associated tabix index file. FALSE if not

Index

* internal verify_aligner_or_stop, 20
check_files_exist, 3 verify_files_or_stop, 21
check_thread_count, 3 verify_filetype, 21

Cpp_query_all, 4
Cpp_set_log_level, 4
Cpp_summarize_regions, 5
validate_log_level, 20
verify_aligner_or_stop, 20
verify_files_or_stop, 21
verify_filetype, 21

check_files_exist, 3
check_thread_count, 3
Cpp_query_all, 4
Cpp_set_log_level, 4
Cpp_summarize_regions, 5

get_df_string, 6
get_granges_string, 7
get_log_level (set_log_level), 12
get_threads, 7

htslib_version, 8

make_mat, 8
make_mat_bsseq, 10
make_mat_gr (make_mat), 8
make_mat_se (make_mat), 8

query_chroms, 11

set_log_level, 12
set_threads, 13
summarize_meth_regions, 14
summarize_regions, 16

tabix, 18
tabix_gr (tabix), 18
tabix_raw (tabix), 18

validate_log_level, 20

22

	check_files_exist
	check_thread_count
	Cpp_query_all
	Cpp_set_log_level
	Cpp_summarize_regions
	get_df_string
	get_granges_string
	get_threads
	htslib_version
	make_mat
	make_mat_bsseq
	query_chroms
	set_log_level
	set_threads
	summarize_meth_regions
	summarize_regions
	tabix
	validate_log_level
	verify_aligner_or_stop
	verify_files_or_stop
	verify_filetype
	Index

