Package ‘hSmread’

February 2, 2026
Title A fast HDF5 reader

Description The main function in the hSmread package is hSmread(), which
allows reading arbitrary data from an HDF5 dataset into R, similarly
to what the h5read() function from the rhdf5 package does.

In the case of hSmread(), the implementation has been optimized to
make it as fast and memory-efficient as possible.

biocViews Infrastructure, DataRepresentation, Datalmport
URL https://bioconductor.org/packages/h5mread

BugReports https://github.com/Bioconductor/h5mread/issues
Version 1.3.1

License Artistic-2.0

Encoding UTF-8

Depends R (>=4.5), methods, rhdf5, BiocGenerics, SparseArray
Imports stats, tools, rhdf5filters, S4Vectors, IRanges, S4Arrays
LinkingTo Rhdf5lib, S4Vectors

SystemRequirements GNU make

Suggests BiocParallel, ExperimentHub, TENxBrainData, HDF5Array,
testthat, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

Collate utils.R h5dim.R H5File-class.R h5Is.R H5DSetDescriptor-class.R
uaselection.R hSmread.R hSsummarize.R hSmread_from_reshaped.R
h5dimscales.R hSwriteDimnames.R zzz.R

git_url https://git.bioconductor.org/packages/hSmread

git_branch devel

git_last_commit 6ead8d5

git_last_commit_date 2025-11-21

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Hervé Pages [aut, cre] (ORCID: <https://orcid.org/0009-0002-8272-4522>)

Maintainer Hervé Pages <hpages.on.github@gmail.com>

1

https://bioconductor.org/packages/h5mread
https://github.com/Bioconductor/h5mread/issues
https://orcid.org/0009-0002-8272-4522

2 h5dim

Contents
hodim e e 2
HSFile-class e e e 3
haIS . . e 5
hSmread e e 6
hSmread_from_reshaped 10
hSwriteDimnames e e e 12

Index 17

h5dim Get the dimensions of an HDF5 dataset
Description

Two convenience functions to obtain the dimensions of an HDFS5 dataset as well as the dimensions
of its chunks.

Usage

h5dim(filepath, name, as.integer=TRUE)

h5chunkdim(filepath, name, adjust=FALSE)

Arguments

filepath The path (as a single string) to an HDFS file.
name The name (as a single string) of a dataset in the HDF? file.

as.integer By default h5dim() returns the dimensions of the dataset in an integer vector
and will raise an error if any dimension is greater than .Machine$integer.max
(=2731-1).
Use as. integer=FALSE to support datasets with dimensions greater than .Machine$integer.max.
In this case the dimensions are returned in a numeric vector.

adjust By default h5chunkdim() returns the dimensions of the chunks as reported by
H5Pget_chunk from the C HDF5 API. Note that the HDF5 specs allow some or
all the dimensions of the chunks to be greater than the dimensions of the dataset.
You can use adjust=TRUE to request h5chunkdim() to return adjusted chunk
dimensions, that is, dimensions that do not exceed the dimensions of the dataset.
The adjusted chunk dimensions are simply obtained by replacing those dimen-
sions in the vector of chunk dimensions that are greater than the corresponding
dataset dimension with the latter.

Value

An integer (or numeric) vector of length the number of dimensions of the HDF5 dataset.

H5File-class 3

Examples

test_h5 <- system.file("”extdata”, "test.h5", package="h5mread")
h51s(test_h5)

h5dim(test_h5, "m2")
h5chunkdim(test_h5, "m2")

h5dim(test_h5, "a3")
h5chunkdim(test_h5, "a3")

H5File-class H5File objects

Description

The HS5File class provides a formal representation of an HDFS5 file (local or remote).

Usage
##

Constructor function:

H5File(filepath, s3=FALSE, s3credentials=NULL, .no_rhdf5_h5id=FALSE)

Arguments
filepath A single string specifying the path or URL to an HDFS5 file.
s3 TRUE or FALSE. Should the filepath argument be treated as the URL to a file

stored in an Amazon S3 bucket, rather than the path to a local file?

s3credentials A list of length 3, providing the credentials for accessing files stored in a private

Amazon S3 bucket. See ?H5Pset_fapl_ros3 in the rhdf5 package for more
information.

.no_rhdf5_h5id For internal use only. Don’t use.

Details

IMPORTANT NOTE ABOUT HS5File OBJECTS AND PARALLEL EVALUATION

The short story is that H5File objects cannot be used in the context of parallel evaluation at the
moment.

Here is why:

HS5File objects contain an identifier to an open connection to the HDF?5 file. This identifier becomes
invalid in the 2 following situations:

 After serialization/deserialization, that is, after loading a serialized H5File object with readRDS ()
or load().

* In the context of parallel evaluation, when using the SnowParam parallelization backend. This
is because, unlike the MulticoreParam backend which used a system fork, the SnowParam
backend uses serialization/deserialization to transmit the object to the workers.

4 H5File-class

In both cases, the connection to the file is lost and any attempt to read data from the H5File object
will fail. Note that the above also happens to any H5File object that got serialized indirectly i.e. as
part of a bigger object. For example, if an HDF5Array object was constructed from an H5File ob-
ject, then it contains the H5File object and therefore blockApply(. .., BPPARAM=SnowParam(4))
cannot be used on it.

Furthermore, even if sometimes an H5File object seems to work fine with the MulticoreParam
parallelization backend, this is highly unreliable and must be avoided.

Value

An H5File object.

See Also

» H5Pset_fapl_ros3 in the rhdf5 package for detailed information about how to pass your S3
credentials to the s3credentials argument.

» The HDF5Array class defined in the HDF5Array package for representing and operating on
a conventional (a.k.a. dense) HDF5 dataset.

* The h5mread function in this package (hSmread) that is used internally by the on-disk array-
like objects defined in the HDF5Array package (HDF5Array, TENxMatrix, HSADMatrix,
etc...) for (almost) all their data reading needs.

* The h5read function in the rhdf5 package.
¢ h51s to list the content of an HDFS5 file.

* bplapply, MulticoreParam, and SnowParam, in the BiocParallel package.

Examples

A. BASIC USAGE
e

With a local file:

test_h5 <- system.file("extdata”, "test.h5", package="h5mread")
h5filel <- H5File(test_h5)

h51s(h5filel)

path(h5filel)

Use the H5File object with h5mread():
hSmread(h5filel, "m2", list(1:10, 1:6))
get_h5mread_returned_type(h5filel, "m2")

Note that the H5File object cannot be used directly with
rhdf5::h5read(). It first needs to be turned into an

H5IdComponent object:

h5read(as(h5filel, "H5IdComponent”), "m2", list(1:10, 1:6))

With a file stored in an Amazon S3 bucket:
if (Sys.info()[["sysname”]] != "Darwin”) {
public_S3_url <-

h5Is

"https://rhdf5-public.s3.eu-central-1.amazonaws.com/rhdf5ex_t_float_3d.h5"
h5file2 <- H5File(public_S3_url, s3=TRUE)
h51s(h5file2)

h5mread(h5file2, "al")
get_h5mread_returned_type(h5file2, "al")

B m o
B. H5File OBJECTS AND PARALLEL EVALUATION

B o o
H5File objects cannot be used in the context of parallel evaluation
at the moment!

library(BiocParallel)

FUNT <- function(i, h5file, name)
sum(h5mread: :hSmread(h5file, name, list(i, NULL)))

FUN2 <- function(i, h5file, name)
sum(h5mread: :h5mread(h5file, name, list(i, NULL, NULL)))

With the SnowParam parallelization backend, the H5File object
does NOT work on the workers:

Not run:

ERROR!

res1l <- bplapply(1:150, FUN1, h5filel, "m2", BPPARAM=SnowParam(3))
ERROR!

res2 <- bplapply(1:5, FUN2, h5file2, "al", BPPARAM=SnowParam(3))

End(Not run)

With the MulticoreParam parallelization backend, the H5File object
might seem to work on the workers. However this is highly unreliable
and must be avoided:
Not run:
if (.Platform$0S.type != "windows") {
UNRELIABLE!
res1 <- bplapply(1:150, FUN1, h5filel, "m2", BPPARAM=MulticoreParam(3))
UNRELIABLE!
res2 <- bplapply(1:5, FUN2, h5file2, "al", BPPARAM=MulticoreParam(3))
3

End(Not run)

h51s A wrapper to rhdf5::h51s() that works on H5File objects

Description

Like rhdf5: :h51s(), but works on an H5File object.

6 h5mread

Usage

h51s(file, recursive=TRUE, all=FALSE, datasetinfo=TRUE,
index_type=h5default("H5_INDEX"), order=h5default("H5_ITER"),
s3=FALSE, s3credentials=NULL, native=FALSE)

Arguments

file, recursive, all, datasetinfo, index_type, order, s3, s3credentials,

native
See ?rhdf5: :h51s in the rhdf5 package for a description of these arguments.
Note that the only difference with rhdf5: :h51s() is that, with h5mread: : h51s(),
file can be an H5File object.
Value

See ?rhdf5: :h51s in the rhdf5 package.

See Also

* h51s in the rhdf5 package.
» H5File objects.

Examples

test_h5 <- system.file("extdata”, "test.h5", package="h5mread")
h51s(test_h5)

h5file <- H5File(test_h5)
h51s(h5file)

See '?HS5File' for more examples.

h5mread An alternative to rhdf5: :h5read

Description

An efficient and flexible alternative to rhdf5: :h5read().

Usage

h5mread(filepath, name, starts=NULL, counts=NULL, noreduce=FALSE,
as.vector=NA, as.integer=FALSE, as.sparse=FALSE,
method=0L, use.H5Dread_chunk=FALSE)

get_h5mread_returned_type(filepath, name, as.integer=FALSE)

h5mread

Arguments

filepath

name

starts, counts

as.vector

as.integer

as.sparse

The path (as a single string) to the HDF5 file where the dataset to read from is
located, or an H5File object.

Note that you must create and use an H5File object if the HDFS5 file to access is
stored in an Amazon S3 bucket. See ?H5File for how to do this.

Also please note that H5File objects must NOT be used in the context of parallel
evaluation at the moment.

The name of the dataset in the HDF? file.

starts and counts are used to specify the array selection. Each argument can
be either NULL or a list with one list element per dimension in the dataset.

If starts and counts are both NULL, then the entire dataset is read.

If starts is a list, each list element in it must be a vector of valid positive
indices along the corresponding dimension in the dataset. An empty vector
(integer(@)) is accepted and indicates an empty selection along that dimen-
sion. A NULL is accepted and indicates a full selection along the dimension so
has the same meaning as a missing subscript when subsetting an array-like ob-
ject with [. (Note that for [a NULL subscript indicates an empty selection.)

Each list element in counts must be NULL or a vector of non-negative integers of
the same length as the corresponding list element in starts. Each value in the
vector indicates how many positions to select starting from the associated start
value. A NULL indicates that a single position is selected for each value along
the corresponding dimension.

If counts is NULL, then each index in each starts list element indicates a sin-
gle position selection along the corresponding dimension. Note that in this
case the starts argument is equivalent to the index argument of h5read and
extract_array (with the caveat that h5read doesn’t accept empty selections).

Finally note that when counts is not NULL then the selection described by starts
and counts must be strictly ascending along each dimension.

Should the data be returned in a vector instead of an array? By default (i.e.
when set to NA), the data is returned in an ordinary array when reading from
a multidimensional dataset, and in an ordinary vector when reading from a 1D
dataset. You can override this by setting as.vector to TRUE or FALSE.

If set to TRUE then the data is loaded in an ordinary array (or vector) of type()
"integer”. This will typically reduce the memory footprint of the returned
array or vector by half if the values in the HDF5 dataset are floating point values.

Note that, when as.integer=TRUE, the values loaded from the HDF5 dataset
get coerced to integers at the C level as early as possible so this transformation
is very efficient.

By default hSmread() returns the data in an ordinary array or vector. Use
as.sparse=TRUE to return it in a SparseArray derivative from the SparseArray
package. This will significantly reduce the memory footprint of the returned
object if the HDF5 dataset contains mostly zeros.

noreduce, method, use.H5Dread_chunk

For testing and advanced usage only. Do not use.

8 h5mread

Value

h5mread () returns an ordinary array or vector if as. sparse is FALSE (the default), and a COO_SparseArray
object if as. sparse is TRUE.

get_h5mread_returned_type() returns the type of the array or vector that will be returned by
h5mread(). Equivalent to (but more efficient than):

typeof (hbmread(filepath, name, rep(list(integer(@)), ndim)))

where ndim is the number of dimensions (a.k.a. rank in HDF5 jargon) of the dataset.

See Also
* HS5File objects.
* h5read in the rhdf5 package.
* extract_array in the S4Arrays package.
* COO_SparseArray objects in the SparseArray package.
* h5mread_from_reshaped to read data from a virtually reshaped HDFS5 dataset.

Examples

BASIC EXAMPLES

#H -
test_h5 <- system.file("extdata”, "test.h5", package="h5mread")
h51s(test_h5)

ml <- hS5mread(test_h5, "m1") # 12 x 5 integer matrix

m <- hb5mread(test_h5, "m1", starts=list(c(8, 12:7), NULL))
m

Sanity check:
stopifnot(identical(mi[c(8, 12:7), 1, m))

m <- h5mread(test_h5, "m1", starts=list(c(8, 12:7), integer(0)))
m

Sanity check:
stopifnot(identical(mi[c(8, 12:7), NULL], m))

m2 <- hSmread(test_h5, "m2") # 4000 x 90 double matrix

m2a <- h5mread(test_h5, "m2", starts=1list(31, 1), counts=list(10, 8))
m2a

Sanity check:
stopifnot(identical(m2[31:40, 1:8]1, m2a))

h5mread

m2b <- h5mread(test_h5, "m2", starts=1list(31, 1), counts=list(10, 8),
as.integer=TRUE)
m2b

Sanity check:
storage.mode(m2a) <- "integer”
stopifnot(identical(m2a, m2b))

a3 <- hbmread(test_h5, "a3") # 180 x 75 x 4 integer array

starts <- list(c(21, 101), NULL, 3:4)

counts <- list(c(5, 22), NULL, NULL)

a <- hbSmread(test_h5, "a3", starts=starts, counts=counts)
dim(a)

al1:10, 1:12, 1]

Sanity check:
stopifnot(identical(a3[c(21:25, 101:122), , 3:4, drop=FALSE], a))

s
RETURNING THE DATA AS A SPARSE ARRAY
B e

starts <- list(c(21:25, 101:122), NULL, 3:4)
coo <- h5mread(test_h5, "a3", starts=starts, as.sparse=TRUE)
coo

class(coo) # COO_SparseArray object (see ?C00_SparseArray)
dim(coo)

Sanity check:
stopifnot(is(coo, "COO_SparseArray”), identical(a, as.array(coo)))

B m o
PERFORMANCE

HHE = m o m
library(ExperimentHub)

hub <- ExperimentHub()

With the "sparse” TENxBrainData dataset
e
fname@® <- hub[["EH1039"]]

h51s(fname@) # all datasets are 1D datasets

index <- list(77 * sample(34088679, 5000, replace=TRUE))

h5mread() is about 4x faster than hb5read():

system.time(a <- h5mread::h5mread(fname@, "mm1@/data”, index))
system.time(b <- h5read(fname@, "mm1@/data”, index=index))
stopifnot(identical(a, as.vector(b)))

index <- list(sample(1306127, 7500, replace=TRUE))
h5mread() is about 14x faster than h5read():
system.time(a <- h5mread::h5mread(fname@, "mm1@/barcodes”, index))

10 h5mread_from_reshaped

system.time(b <- h5read(fname@, "mm10@/barcodes”, index=index))
stopifnot(identical(a, as.vector(b)))

With the "dense” TENxBrainData dataset
B oo
fnamel <- hub[["EH1040"1]

h51s(fnamel) # "counts” is a 2D dataset

set.seed(33)

index <- list(sample(27998, 300), sample(1306127, 450))

hbmread() is about 2x faster than h5read():
system.time(a <- h5mread::h5mread(fnamel, "counts”, index))
system.time(b <- h5read(fnamel, "counts”, index=index))
stopifnot(identical(a, b))

Alternatively 'as.sparse=TRUE' can be used to reduce memory usage:
system.time(coo <- h5mread::h5mread(fnamel, "counts”, index, as.sparse=TRUE))
stopifnot(identical(a, as.array(coo)))

The bigger the selection, the greater the speedup between
h5read() and h5mread():

index <- list(sample(27998, 1000), sample(1306127, 1000))
h5mread() about 4x faster than h5read() (12s vs 48s):
system.time(a <- h5mread::h5mread(fnamel, "counts”, index))
system.time(b <- h5read(fnamel, "counts"”, index=index))
stopifnot(identical(a, b))

With 'as.sparse=TRUE' (about the same speed as with 'as.sparse=FALSE'):
system.time(coo <- h5mread::h5mread(fnamel, "counts”, index, as.sparse=TRUE))
stopifnot(identical(a, as.array(coo)))

h5mread_from_reshaped Read data from a virtually reshaped HDF5 dataset

Description

An hbmread wrapper that reads data from a virtually reshaped HDF5 dataset.

Usage

h5mread_from_reshaped(filepath, name, dim, starts, noreduce=FALSE,
as.integer=FALSE, method=0L)

Arguments

filepath The path (as a single string) to the HDF5 file where the dataset to read from is
located, or an H5File object.

h5mread_from_reshaped 11

name

dim

starts

Note that you must create and use an H5File object if the HDFS5 file to access is
stored in an Amazon S3 bucket. See ?H5File for how to do this.

Also please note that H5File objects must NOT be used in the context of parallel
evaluation at the moment.

The name of the dataset in the HDF? file.

A vector of dimensions that describes the virtual reshaping i.e. the reshaping
that is virtually applied upfront to the HDFS5 dataset to read from.

Note that the HDF5 dataset is treated as read-only so never gets effectively re-
shaped, that is, the dataset dimensions encoded in the HDF?5 file are not mmod-
ified.

Also please note that arbitrary reshapings are not supported. Only reshapings
that reduce the number of dimensions by collapsing a group of consecutive di-
mensions into a single dimension are supported. For example, reshaping a 10
x 3 x 5 x 1000 array as a 10 x 15 x 1000 array or as a 150 x 1000 matrix is
supported.

A multidimensional subsetting index with respect to the reshaped dataset, that
is, a list with one list element per dimension in the reshaped dataset.

Each list element in starts must be a vector of valid positive indices along the
corresponding dimension in the reshaped dataset. An empty vector (integer(0))
is accepted and indicates an empty selection along that dimension. A NULL is ac-
cepted and indicates a full selection along the dimension so has the same mean-
ing as a missing subscript when subsetting an array-like object with [. (Note
that for [a NULL subscript indicates an empty selection.)

noreduce, as.integer, method

Value

An array.

See Also

See ?h5mread for a description of these arguments.

» H5File objects.

e hbmread.

Examples

temp_h5 <- tempfile(fileext=".h5")

—-mmmmmo
BASIC USAGE
R

al <- array(1:350, c(10, 5, 7))
h5write(al, temp_h5, "A1")

Collapse the first 2 dimensions:
h5mread_from_reshaped(temp_h5, "A1", dim=c(50, 7),

starts=1ist(8:11, NULL))

12 hS5writeDimnames

h5mread_from_reshaped(temp_h5, "A1", dim=c(50, 7),
starts=1ist(8:11, NULL))

Collapse the last 2 dimensions:
h5mread_from_reshaped(temp_h5, "A1", dim=c(10, 35),
starts=list(NULL, 3:11))

a2 <- array(1:150000 + ©.1xrunif(150000), c(10, 3, 5, 1000))
h5write(a2, temp_h5, name="A2")

Collapse the 2nd and 3rd dimensions:
h5mread_from_reshaped(temp_h5, "A2", dim=c(10@, 15, 1000),
starts=list(NULL, 8:11, 999:1000))

Collapse the first 3 dimensions:
h5mread_from_reshaped(temp_h5, "A2", dim=c(150, 1000),
starts=1ist(71:110, 999:1000))

h5writeDimnames Write/read the dimnames of an HDF5 dataset

Description

h5writeDimnames and h5readDimnames can be used to write/read the dimnames of an HDF5
dataset to/from the HDFS5 file.

Note that h5writeDimnames is used internally by HDF5Array: :writeHDF5Array(x, ..., with.dimnames=TRUE)
to write the dimnames of x to the HDFS file together with the array data.

set_h5dimnames and get_h5dimnames are low-level utilities that can be used to attach existing
HDFS5 datasets along the dimensions of a given HDFS5 dataset, or to retrieve the names of the HDF5
datasets that are attached along the dimensions of a given HDF5 dataset.

Usage

h5writeDimnames(dimnames, filepath, name, group=NA, h5dimnames=NULL)
h5readDimnames(filepath, name, as.character=FALSE)

set_h5dimnames(filepath, name, h5dimnames, dry.run=FALSE)
get_h5dimnames(filepath, name)

Arguments

dimnames The dimnames to write to the HDFS file. Must be supplied as a list (possibly
named) with one list element per dimension in the HDFS5 dataset specified via
the name argument. Each list element in dimnames must be an atomic vector or
a NULL. When not a NULL, its length must equal the extent of the corresponding
dimension in the HDF5 dataset.

hS5writeDimnames

filepath

name

group

h5dimnames

as.character

dry.run

Value

13

For h5writeDimnames and h5readDimnames: The path (as a single string) to
the HDFS5 file where the dimnames should be written to or read from.

For set_h5dimnames and get_h5dimnames: The path (as a single string) to the
HDFS5 file where to set or get the h5dimnames.

For h5writeDimnames and h5readDimnames: The name of the dataset in the
HDFS5 file for which the dimnames should be written or read.

For set_h5dimnames and get_h5dimnames: The name of the dataset in the
HDFS5 file for which to set or get the h5dimnames.

NA (the default) or the name of the HDF5 group where to write the dimnames.
If set to NA then the group name is automatically generated from name. If set to
the empty string ("") then no group will be used.

Except when group is set to the empty string, the names in h5dimnames (see
below) must be relative to the group.

For h5writeDimnames: NULL (the default) or a character vector containing the
names of the HDF5 datasets (one per list element in dimnames) where to write
the dimnames. Names associated with NULL list elements in dimnames are ig-
nored and should typically be NAs.

If set to NULL then the names are automatically set to numbers indicating the
associated dimensions (" 1" for the first dimension, "2" for the second, etc...)
For set_h5dimnames: A character vector containing the names of the HDFS
datasets to attach as dimnames of the dataset specified in name. The vector must
have one element per dimension in dataset name. NAs are allowed and indicate
dimensions along which nothing should be attached.

Even though the dimnames of an HDF5 dataset are usually stored as datasets
of type "character” (HS5 datatype "HS5T_STRING") in the HDFS5 file, this is
not a requirement. By default h5readDimnames will return them as-is. Set
as.character to TRUE to make sure that they are returned as character vectors.
See example below.

When set to TRUE, set_h5dimnames doesn’t make any change to the HDFS file
but will still raise errors if the operation cannot be done.

h5writeDimnames and set_h5dimnames return nothing.

h5readDimnames returns a list (possibly named) with one list element per dimension in HDF5
dataset name and containing its dimnames retrieved from the file.

get_h5dimnames returns a character vector containing the names of the HDF5 datasets that are
currently set as the dimnames of the dataset specified in name. The vector has one element per
dimension in dataset name. NAs in the vector indicate dimensions along which nothing is set.

See Also

* writeHDF5Array in the HDF5Array package for a high-level function to write an array-like
object and its dimnames to an HDFS5 file.

* h5write in the rhdf5 package that h5writeDimnames uses internally to write the dimnames
to the HDFS file.

14 hS5writeDimnames

* h5mread in this package (hSmread) that h5readDimnames uses internally to read the dim-
names from the HDFS file.

¢ h51s to list the content of an HDFS5 file.

Examples

e
BASIC EXAMPLE

B — oo
library(rhdf5) # for h5write()

mo <- matrix(1:60, ncol=5)
colnames(m@) <- LETTERS[1:5]

h5file <- tempfile(fileext=".h5")
h5write(m@, h5file, "M@") # hbwrite() ignores the dimnames
h51s(h5file)

h5writeDimnames(dimnames(m@), h5file, "M@")
h51s(h5file)

get_h5dimnames(h5file, "M0@")
h5readDimnames (h5file, "M@")

Reconstruct 'm@' from HDF5 file:

ml <- h5Smread(h5file, "M0")

dimnames(m1) <- h5readDimnames(h5file, "M@")
stopifnot(identical(mo, m1))

Create an HDF5Array object that points to HDF5 dataset Mo:
HDF5Array: :HDF5Array(h5file, "M@")

Sanity checks:
stopifnot(
identical(dimnames(m@), h5readDimnames(h5file, "M@")),
identical(dimnames(m@), dimnames(HDF5Array: :HDF5Array(h5file, "M@")))
)

HH -
SHARED DIMNAMES
e
If a collection of HDF5 datasets share the same dimnames, the

dimnames only need to be written once in the HDF5 file. Then they

can be attached to the individual datasets with set_h5dimnames():

h5write(array(runif(240), c(12, 5:4)), h5file, "A1")
set_h5dimnames(h5file, "A1", get_h5dimnames(h5file, "M@"))
get_h5dimnames(h5file, "A1")

h5readDimnames (h5file, "A1")

HDF5Array: :HDF5Array(h5file, "A1")

h5write(matrix(sample(letters, 60, replace=TRUE), ncol=5), h5file, "A2")

hS5writeDimnames 15

set_h5dimnames(h5file, "A2", get_h5dimnames(h5file, "M@"))
get_h5dimnames(h5file, "A2")

h5readDimnames (h5file, "A2")

HDF5Array: :HDF5Array(h5file, "A2")

Sanity checks:
stopifnot(identical(dimnames(m@), h5readDimnames(h5file, "A1")[1:21))
stopifnot(identical (dimnames(m@), h5readDimnames(h5file, "A2")))

e
USE h5writeDimnames() AFTER A CALL TO writeHDF5Array()
e
After calling writeHDF5Array(x, ..., with.dimnames=FALSE) the

dimnames on 'x' can still be written to the HDF5 file by doing the
following:

1. Write 'm@' to the HDF5 file and ignore the dimnames (for now):
HDF5Array: :writeHDF5Array(m@, h5file, "M2", with.dimnames=FALSE)

2. Use h5writeDimnames() to write 'dimnames(m@)' to the file and
#it associate them with the "M2" dataset:
h5writeDimnames(dimnames(m@), h5file, "M2")

3. Use the HDF5Array() constructor to make an HDF5Array object that
#i#t points to the "M2" dataset:
HDF5Array: :HDF5Array (h5file, "M2")

Note that at step 2. you can use the extra arguments of
hbSwriteDimnames() to take full control of where the dimnames
should be stored in the file:
HDF5Array: :writeHDF5Array(m@, h5file, "M3", with.dimnames=FALSE)
h5writeDimnames(dimnames(m@), h5file, "M3",

group="a_secret_place”, h5dimnames=c(”NA", "M3_dim2"))
h51s(h5file)
h5readDimnames() and HDF5Array() still "find” the dimnames:
h5readDimnames (h5file, "M3")
HDF5Array: :HDF5Array (h5file, "M3")

Sanity checks:
stopifnot(

identical (dimnames(m@), h5readDimnames(h5file, "M3")),

identical (dimnames(m@), dimnames(HDF5Array: :HDF5Array(h5file, "M3")))
)

#H -
STORE THE DIMNAMES AS NON-CHARACTER TYPES

-——————————
HDF5Array: :writeHDF5Array(m@, h5file, "M4", with.dimnames=FALSE)
dimnames <- 1ist(1001:1012, as.raw(11:15))

h5writeDimnames(dimnames, h5file, "M4")

h51s(h5file)

h5readDimnames (h5file, "M4")

16

h5readDimnames (h5file, "M4", as.character=TRUE)

Sanity checks:
stopifnot(identical(dimnames, h5readDimnames(h5file, "M4")))
dimnames(m@) <- dimnames
stopifnot(identical(
dimnames(mo),
h5readDimnames(h5file, "M4", as.character=TRUE)
)

hS5writeDimnames

Index

* classes
H5File-class, 3
+ methods
H5File-class, 3
+ utilities
h5dim, 2
h51s, 5
h5mread, 6
h5mread_from_reshaped, 10
h5writeDimnames, 12

blockApply, 4
bplapply, 4

character_OR_H5File (H5File-class), 3
character_OR_H5File-class
(H5File-class), 3
class:character_OR_H5File
(H5File-class), 3
class:H5DSetDescriptor (H5File-class), 3
class:H5File (H5File-class), 3
class:H5FilelD (H5File-class), 3
close.H5File (H5File-class), 3
close.H5FilelD (H5File-class), 3
coerce,H5File,H5IdComponent-method
(H5File-class), 3
CO0_SparseArray, 8

destroy_H5DSetDescriptor
(H5File-class), 3
dim_as_integer (h5dim), 2

extract_array, 7, 8

find_dims_to_collapse
(hSmread_from_reshaped), 10

get_h5dimnames (h5writeDimnames), 12
get_hbSmread_returned_type (h5mread), 6

H5ADMatrix, 4

17

h5chunkdim (h5dim), 2

h5dim, 2

H5DSetDescriptor (H5File-class), 3
H5DSetDescriptor-class (H5File-class), 3
h5exists (h5dim), 2
H5File, 5-8, 10, 11

H5File (H5File-class), 3
H5File-class, 3

H5FilelD (H5File-class), 3
H5FileID-class (H5File-class), 3
h5isdataset (h5dim), 2

h5isgroup (h5dim), 2

h51s,4, 5,5,6, 14
h5mread, 4, 6, 10, 11, 14
h5mread_from_reshaped, 8, 10
H5Pset_fapl_ros3, 3, 4

h5read, 4,7, 8

h5readDimnames (h5writeDimnames), 12
h5write, 13

h5writeDimnames, 12

HDF5Array, 4

load, 3
MulticoreParam, 3, 4

open.H5File (H5File-class), 3
open.H5FileID (H5File-class), 3

path,H5File-method (H5File-class), 3
readRDS, 3

set_h5dimnames (h5writeDimnames), 12

show,H5DSetDescriptor-method
(H5File-class), 3

show,H5File-method (H5File-class), 3

show,H5FileID-method (H5File-class), 3

SnowParam, 3, 4

SparseArray, 7

18

TENxMatrix, 4

validate_lengths_of_h5dimnames
(h5writeDimnames), 12

writeHDF5Array, 12, 13

INDEX

	h5dim
	H5File-class
	h5ls
	h5mread
	h5mread_from_reshaped
	h5writeDimnames
	Index

