Package ‘gVenn’

February 2, 2026

Title Proportional Venn and UpSet Diagrams for Gene Sets and Genomic
Regions

Version 1.1.1

Description Tools to compute and visualize overlaps between gene sets or
genomic regions. Venn diagrams with proportional areas are provided,
while UpSet plots are recommended for larger numbers of sets. The package
supports GRanges and GRangesList inputs, and integrates with analysis
workflows for ChIP-seq, ATAC-seq, and other genomic interval data.
It generates clean, interpretable, and publication-ready figures.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

URL https://github.com/ckntav/gVenn, https://ckntav.github.io/gVenn/

BugReports https://github.com/ckntav/gVenn/issues
Suggests testthat (>= 3.0.0), ggplot2, withr, knitr, rmarkdown
Config/testthat/edition 3

Imports ComplexHeatmap, eulerr, GenomicRanges, IRanges, lubridate,
methods, rtracklayer, stringr, writexl

biocViews Software, Visualization, ChIPSeq, ATACSeq, Epigenetics,
DataRepresentation, Sequencing

VignetteBuilder knitr

Depends R (>=4.5.0)

LazyData false

git_url https://git.bioconductor.org/packages/gVenn
git_branch devel

git_last_commit 8bOlcda

git_last_commit_date 2025-11-02

Repository Bioconductor 3.23

https://github.com/ckntav/gVenn
https://ckntav.github.io/gVenn/
https://github.com/ckntav/gVenn/issues

2 a549_chipseq_peaks

Date/Publication 2026-02-01

Author Christophe Tav [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8808-9617>)

Maintainer Christophe Tav <christophe.tav@gmail.com>

Contents
a549_chipseq_peaks e 2
computeOverlaps e 3
exportOverlaps 5
exportOverlapsToBed e 6
extractOverlaps L L 7
gene_list L e e 7
plotUpSet e e e e 8
plotVenn 9
SaVeVIZ . . . L e e e 11
today ... e e 13

Index 14

a549_chipseq_peaks A549 ChIP-seq Consensus Peak Subsets (Dex, chr7)

Description

Example consensus peak subsets for MED1, BRD4, and GR after dexamethasone treatment in
A549 cells. Each set has been restricted to peaks on chr7 to keep the dataset small and suitable for
examples and tests.

Usage

a549_chipseq_peaks

Format
A GRangesList with 3 named elements:
MED1_Dex_chr7 Consensus MEDI1 peaks (chr7 subset).

BRD4_Dex_chr7 Consensus BRD4 peaks (chr7 subset).
GR_Dex_chr7 Consensus GR peaks (chr7 subset).

https://orcid.org/0000-0001-8808-9617

computeOverlaps 3

Details

The original full consensus peak sets are available as gzipped BED files in inst/extdata/:

e A549_MED1_Dex.stdchr.bed.gz
e A549_BRD4_Dex.stdchr.bed.gz
e A549_GR_Dex.stdchr.bed.gz

These are not trimmed, but for package efficiency the dataset here (a549_chipseq_peaks) only
includes the chr7 subsets.

Source

Internal consensus peak sets processed in A549 cells after dexamethasone stimulation.

References

Tav C, Fournier E, Fournier M, Khadangi F, Baguette A, Coté MC, Silveira MAD, Bérubé-Simard
F-A, Bourque G, Droit A, Bilodeau S (2023). "Glucocorticoid stimulation induces regionalized
gene responses within topologically associating domains." Frontiers in Genetics. doi:10.3389/
fgene.2023.1237092

Examples

Load dataset
data(a549_chipseq_peaks)
a549_chipseq_peaks

Compute overlaps and plot
ov <- computeOverlaps(a549_chipseq_peaks)
plotVenn(ov)

computeOverlaps Compute Overlaps Between Multiple Sets or Genomic Regions

Description

computeOverlaps() is the main entry point for overlap analysis. It accepts either genomic region
objects (GRanges/GRangesList) or ordinary sets (character/numeric vectors) and computes a binary
overlap matrix describing the presence or absence of each element across sets.

Usage

computeOverlaps(x)

https://doi.org/10.3389/fgene.2023.1237092
https://doi.org/10.3389/fgene.2023.1237092

4 computeOverlaps

Arguments
X Input sets. One of:
* A GRangeslList object.
* A named list of GRanges objects.
¢ A named list of atomic vectors (character, numeric, factor, etc.), all of the
same type.
Details

* When provided with genomic regions, the function merges all intervals into a non-redundant
set (reduce()), then determines which original sets each region overlaps.

* When provided with ordinary sets (e.g., gene symbols), it collects all unique elements and
records which sets contain them.

The resulting object encodes both the overlap matrix and compact category labels (e.g., "110") rep-
resenting the overlap pattern of each element. These results can be directly passed to visualization
functions such as plotVenn() or plotUpSet().

Internally, computeOverlaps() dispatches to either computeGenomicOverlaps() (for genomic in-
puts) or computeSetOverlaps() (for ordinary sets). Users are encouraged to call only computeOverlaps().

Value

An S3 object encoding the overlap result whose class depends on the input type:

GenomicOverlapResult Returned when the input is genomic (GRangesList or list of GRanges).
A list with:

* reduced_regions: A GRanges object containing the merged (non-redundant) intervals.
Each region is annotated with an intersect_category column.
* overlap_matrix: A logical matrix indicating whether each reduced region overlaps each
input set (rows = regions, columns = sets).
SetOverlapResult Returned when the input is a list of atomic vectors. A list with:

* unique_elements: Character vector of all unique elements across the sets.

* overlap_matrix: A logical matrix indicating whether each element is present in each
set (rows = elements, columns = sets).

* intersect_category: Character vector of category codes (e.g., "110") for each ele-
ment.

See Also

plotVenn, plotUpSet, GRangeslList, reduce

Examples

Example with gene sets (built-in dataset)
data(gene_list)

ov_sets <- computeOverlaps(gene_list)
head(ov_sets$overlap_matrix)

exportOverlaps 5

plotVenn(ov_sets)

Example with genomic regions (built-in dataset)
data(a549_chipseq_peaks)

ov_gr <- computeOverlaps(a549_chipseq_peaks)
head(ov_gr$overlap_matrix)

plotVenn(ov_gr)

exportOverlaps Export Overlap Groups to Excel

Description

This function exports the output of extractOverlaps() to an Excel file, creating one sheet per
overlap group. Genomic overlaps (GRanges) are converted to data frames before export.

Usage

exportOverlaps(
grouped,
output_dir = ".",
output_file = "overlap_groups”,
with_date = TRUE,
verbose = TRUE

)
Arguments
grouped Overlap groups from extractOverlaps().
output_dir A string specifying the output directory. Defaults to ". ".
output_file A string specifying the base filename (without extension). Defaults to "overlap_groups”.
with_date Logical (default TRUE). Whether to prepend the current date (from today) to the
filename.
verbose Logical. If TRUE, print a message with the saved path. Default TRUE.
Value

Overlap groups are saved to a Excel file on disk. Invisibly returns the full path to the saved file.

Examples

res <- computeOverlaps(list(A = letters[1:3], B = letters[2:4]))
grouped <- extractOverlaps(res)
exportOverlaps(grouped, output_dir = tempdir(), output_file = "overlap_groups"”)

6 exportOverlapsToBed

exportOverlapsToBed Export Overlap Groups to BED Files

Description

This function exports genomic overlap groups from extractOverlaps() to BED format files, cre-
ating one BED file per overlap group.

Usage
exportOverlapsToBed(
grouped,
output_dir = "."
output_prefix = "overlaps”,

with_date = TRUE,
verbose = TRUE

)

Arguments
grouped Genomic overlap groups from extractOverlaps() (must be GRangesList).
output_dir A string specifying the output directory. Defaults to ”. ".

output_prefix A string specifying the filename prefix. Defaults to "overlaps”.

with_date Logical (default TRUE). Whether to prepend the current date to filenames.
verbose Logical. If TRUE, print messages. Default TRUE.
Details

This function only works with genomic overlaps (i.e., when the input to extractOverlaps() was
a GenomicOverlapResult object, resulting in a GRangesList). It does not work with set overlaps
(character vectors). Each overlap group will be saved as a separate BED file with the group identifier
included in the filename.

Value

Invisibly returns a character vector of file paths created.

extractOverlaps 7

extractOverlaps Extract Overlap Groups from Genomic or Set Overlap Results

Description

This function extracts subsets of intersecting elements grouped by their overlap category (e.g.,
"110"). For genomic overlaps, it returns a GRangesList; for set overlaps, it returns a named list of
character vectors.

Usage

extractOverlaps(overlap_object)

Arguments

overlap_object A GenomicOverlapsResult or SetOverlapsResult object.

Value

A named list of grouped intersecting elements:

* Ifinput is a GenomicOverlapsResult, a GRangesList split by intersect_category.

 Ifinputisa SetOverlapsResult, anamed list of character vectors grouped by intersect_category.

Examples

Example with gene sets (built-in dataset)
data(gene_list)

res_sets <- computeOverlaps(gene_list)
group_gene <- extractOverlaps(res_sets)
group_gene

Example with genomic regions (built-in dataset)
data(a549_chipseq_peaks)

res_genomic <- computeOverlaps(a549_chipseq_peaks)
group_genomic <- extractOverlaps(res_genomic)
group_genomic

gene_list Example Gene Lists with Overlaps

Description

A synthetic dataset of three gene lists, created from the first 250 human gene symbols in org.Hs.eg.db.

8 plotUpSet

Usage

gene_list

Format
A named list of length 3. Each element is a character vector of gene symbols:

random_genes_A 125 gene symbols.
random_genes_B 115 gene symbols.

random_genes_C 70 gene symbols.

Source

Generated from org.Hs.eg.db (keys of type SYMBOL), using a reproducible random seed.

Examples

data(gene_list)

Inspect the list
str(gene_list)

Compute overlaps and plot
ov <- computeOverlaps(gene_list)
plotVenn(ov)

plotUpSet Plot an UpSet Diagram from Genomic or Set Overlap Results

Description

This function creates an UpSet plot using the ComplexHeatmap package to visualize intersections
across multiple sets. Supports both GenomicOverlapsResult and SetOverlapsResult objects.

Usage

plotUpSet(overlap_object, customSetOrder = NULL, comb_col = "black")

Arguments

overlap_object A GenomicOverlapsResult or SetOverlapsResult objectreturned by computeOverlaps.

customSetOrder Optional. A vector specifying the order of sets to display on the UpSet dia-
gram. The vector should contain either numeric indices (corresponding to the
sets in the overlap object) or character names (matching the set names). If NULL
(default), sets are displayed in decreasing order of their size (set_size()).

comb_col Optional. Color(s) for the combination matrix dots and connecting lines. Can be
a single color, a vector of colors (recycled to match the number of intersections).
Default is "black".

plotVenn 9

Value

An UpSet plot object generated by ComplexHeatmap: :UpSet.

Examples

Example with gene sets (built-in dataset)
data(gene_list)
res_sets <- computeOverlaps(gene_list)

Default order (sets sorted by size)
plotUpSet(res_sets)

Custom color
plotUpSet(res_sets, comb_col = "darkblue")

Custom order by names

plotUpSet(res_sets, customSetOrder = c("random_genes_C",
"random_genes_A",
"random_genes_B"))

Example with genomic regions (built-in dataset)
data(a549_chipseq_peaks)

res_genomic <- computeOverlaps(a549_chipseq_peaks)
plotUpSet (res_genomic)

plotVenn Plot a Venn Diagram from Genomic or Set Overlap Results

Description

This function creates a Venn diagram using the eulerr package to visualize intersections across
multiple sets. Supports both GenomicOverlapsResult and SetOverlapsResult objects.

Usage

plotVenn(
overlap_object,
fills = TRUE,
edges = TRUE,
labels = FALSE,
quantities = list(type = "counts”),
legend = "right”,
main = NULL,

10 plotVenn

Arguments

overlap_object A GenomicOverlapsResult or SetOverlapsResult objectreturned by computeOverlaps.
fills Controls the fill appearance of the diagram. Can be:

* logical: TRUE (default) shows fills, FALSE hides them

¢ character vector: Colors for the fills. Default colors are: c("#2B70AB",
"#FFB027", "#3EA742", "#CD3301", "#9370DB", "#008B8B", "#D87093")

* list: Fine control with graphical parameters including fill (colors), alpha
(transparency 0-1)
edges Controls the edge/border appearance. Can be:

* logical: TRUE (default) shows edges, FALSE hides them
* character vector: Colors for the edges
e list: Fine control with col (colors), alpha (transparency 0-1), 1ty (line
type), lwd (line width), lex (line expansion)
labels Controls set labels. Can be:

* logical: TRUE shows default labels, FALSE hides them
¢ character vector: Custom text for labels

* list: Fine control with col (text color), fontsize, font (1=plain, 2=bold,
3=italic, 4=bold italic), fontfamily, cex (character expansion), alpha (trans-
parency 0-1)
quantities Controls intersection quantities display. Can be:
* logical: TRUE shows counts, FALSE hides them
¢ character vector: Custom text labels

"non

e list: Fine control with type (c("counts",
font, fontfamily, cex, alpha

percent")), col (text color), fontsize,

legend Controls the legend. Can be:

* logical: FALSE to disable
* character: Position ("right", "top", "bottom", "left")

* list: Fine control with side (position), labels (custom labels), col, fontsize,
cex, fontfamily

main Title for the plot. Can be character, expression, or list with label (text), col,
fontsize, font, fontfamily

Additional arguments passed to plot.euler.

Value

A Venn diagram plot generated by eulerr.

Examples

Example with gene sets
data(gene_list)
res_sets <- computeOverlaps(gene_list)

saveViz 11

Basic plot
plotVenn(res_sets)

Customize fills with transparency and custom colors
plotVenn(res_sets,
fills = list(fill = c("#FF6B6B”, "#4ECDC4", "#45B7D1"),
alpha = 0.6))

Customize edges
plotVenn(res_sets,
edges = list(col = "darkgray”, lwd = 2, 1ty = 2))

Customize labels
plotVenn(res_sets,
labels = list(col = "white”, font = 2, fontsize = 14))

Show both counts and percentages
plotVenn(res_sets,
quantities = list(type = c("counts”, "percent"”),
col = "black”, fontsize = 10))

Add a title
plotVenn(res_sets,
main = list(label = "Gene Set Overlaps”,
col = "navy”, fontsize = 16, font = 2))

Transparent fills with colored borders only
plotVenn(res_sets,
fills = "transparent”,
edges = list(col = c("red”, "blue”, "green"”), lwd = 3))

Custom legend
plotVenn(res_sets,
legend = list(side = "bottom”,
labels = c("Treatment A", "Treatment B", "Control”),
fontsize = 12))

saveViz Save a Visualization to File (PDF, PNG, or SVG)

Description

This function saves a visualization object to a file in the specified format and directory. It supports
visualizations generated by plotVenn(), plotUpSet(), ggplot2, or any other plot object that can
be rendered using print() inside a graphics device. Optionally, the current date (stored in the
today variable) can be prepended to the filename.

Usage

saveViz(

12

saveViz

viz,
output_dir = "."
output_file = "figure_gVenn",
format = "pdf",
with_date = TRUE,
width = 5,
height = 5,
resolution = 300,
bg = "white”,
verbose = TRUE
)
Arguments
viz A visualization object typically created by either plotVenn() or plotUpSet(),
but can also be a ggplot2 plot or any other plot object printable with print().
output_dir A string specifying the output directory. Defaults to ".".

output_file

A string specifying the base filename (without extension). Defaults to "viz_genomicVenn".

format Output format. One of "pdf”, "png”, or "svg”. Defaults to "pdf".

with_date Logical (default TRUE). Whether to prepend the current date (from today) to the
filename.

width Width of the output file in inches. Default is 5.

height Height of the output file in inches. Default is 5.

resolution Resolution in DPI (only used for PNG). Default is 300.

bg Background color for the plot. Default is "white"”. Use "transparent” for a
transparent background. This parameter is passed to the graphics device (pdf,
png, or svg).

verbose Logical. If TRUE, print a message with the saved path. Default TRUE.

Value

The visualization is saved to a file on disk. Invisibly returns the full path to the saved file.

Examples

Example with a built-in set dataset

data(gene_list)

ov_sets <- computeOverlaps(gene_list)
venn_plot <- plotVenn(ov_sets)
saveViz(venn_plot, output_dir = tempdir(), output_file = "venn_sets")

Example with a built-in genomic dataset

data(a549_chipseq_peaks)

ov_genomic <- computeOverlaps(a549_chipseq_peaks)

upset_plot <- plotUpSet(ov_genomic)

saveViz(upset_plot, output_dir = tempdir(), output_file = "upset_genomic")

today 13
Save as PNG instead of PDF
saveViz(upset_plot, format = "png”, output_dir = tempdir(), output_file = "upset_example”)

Save as SVG
saveViz(venn_plot, format = "svg”, output_dir = tempdir(), output_file = "venn_example")

Save with transparent background

saveViz(venn_plot, format = "png"”, bg = "transparent”,
output_dir = tempdir(), output_file = "venn_transparent”)
today Today’s Date at Package Load Time
Description

This variable stores the current date (in "yyyymmdd" format) at the time the package is loaded. It is

useful for reproducible filenames (e.g., in saveViz()), and is automatically set when the package
is attached.

Usage

today

Format

A character string (e.g., "20250624").

Examples

Print the date stored at package load
library(gVenn)
today

Use it in a filename
paste@("venn_plot_", today, ".pdf")

Index

x datasets

a549_chipseq_peaks, 2

gene_list, 7
today, 13

a549_chipseq_peaks, 2
computeOverlaps, 3, 8, 10

exportOverlaps, 5
exportOverlapsToBed, 6
extractOverlaps, 7

gene_list, 7
GRangesList, 4

plot.euler, 10
plotUpSet, 4, 8
plotVenn, 4,9
reduce, 4

saveViz, 11

today, 13

14

	a549_chipseq_peaks
	computeOverlaps
	exportOverlaps
	exportOverlapsToBed
	extractOverlaps
	gene_list
	plotUpSet
	plotVenn
	saveViz
	today
	Index

