Package ‘dreamlet’

February 1, 2026
Type Package

Title Scalable differential expression analysis of single cell
transcriptomics datasets with complex study designs

Version 1.9.1
Date 2026-01-25

Description Recent advances in single cell/nucleus transcriptomic technology has enabled collec-
tion of cohort-scale datasets to study cell type specific gene expression differences associ-
ated disease state, stimulus, and genetic regulation. The scale of these data, complex study de-
signs, and low read count per cell mean that characterizing cell type specific molecular mecha-
nisms requires a user-frieldly, purpose-build analytical framework. We have devel-
oped the dreamlet package that applies a pseudobulk approach and fits a regres-
sion model for each gene and cell cluster to test differential expression across individuals associ-
ated with a trait of interest. Use of precision-weighted linear mixed models enables account-
ing for repeated measures study designs, high dimensional batch effects, and varying sequenc-
ing depth or observed cells per biosample.

VignetteBuilder knitr
License Artistic-2.0

Encoding UTF-8
URL https://DiseaseNeurogenomics.github.io/dreamlet

BugReports https://github.com/DiseaseNeurogenomics/dreamlet/issues

Suggests BiocStyle, knitr, pander, rmarkdown, muscat, ExperimentHub,
RUnit, muscData, scater, scuttle

biocViews RNASeq, GeneExpression, DifferentialExpression, BatchEffect,
QualityControl, Regression, GeneSetEnrichment, GeneRegulation,
Epigenetics, FunctionalGenomics, Transcriptomics,
Normalization, SingleCell, Preprocessing, Sequencing,
ImmunoOncology, Software

Depends R (>=4.3.0), variancePartition (>= 1.36.1),
SingleCellExperiment, ggplot2

Imports edgeR, SummarizedExperiment, DelayedMatrixStats,
sparseMatrixStats, MatrixGenerics, Matrix, methods, purrr,

1

https://DiseaseNeurogenomics.github.io/dreamlet
https://github.com/DiseaseNeurogenomics/dreamlet/issues

2 Contents

GSEABase, data.table, zenith (>= 1.1.2), mashr (>= 0.2.52),
ashr, dplyr, reformulas, BiocParallel, ggbeeswarm, S4Vectors,
IRanges, irlba, limma, metafor, remaCor, broom, tidyr, rlang,
BiocGenerics, S4Arrays, SparseArray, DelayedArray, gtools,
reshape2, ggrepel, scattermore, Rcpp, Ime4 (>= 1.1-33), MASS,
Rdpack, utils, stats

RoxygenNote 7.3.3

RdMacros Rdpack

SystemRequirements C++11

LinkingTo Rcpp, beachmat

git_url https://git.bioconductor.org/packages/dreamlet
git_branch devel

git_last_commit f1b2d0b

git_last_commit_date 2026-01-25

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Gabriel Hoffman [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0957-0224>)

Maintainer Gabriel Hoffman <gabriel.hoffman@mssm. edu>

Contents
aggregateNonCountSignal 4
aggregateToPseudoBulk 5
aggregateVar L. e 7
as.dreamletResult 9
assay,dreamletResult, ANY-method L. 10
assayNames,dreamletResult-method L. 11
buildClusterTreeFromPB 11
cellCounts e e 12
cellSpecificityValues-class 13
cellTypeSpecificity e 14
checkFormula 15
coefNames e 16
colData,dreamletProcessedData-method 17
colData<-,dreamletProcessedData, ANY-method 17
compositePosteriorTest 18
computeCellCounts 19
computeLogCPM 20
computeNormCounts e e 21
details e 22
diffVar,dreamletResult-method 23
dreamlet e e 25

dreamletCompareClusters e 27

https://orcid.org/0000-0002-0957-0224

Contents

Index

3
dreamletProcessedData-class 30
dreamletResult-class 31
dreamlet_mash_result-class e 31
dropRedundantTerms L 32
equalFormulas 32
extractData e e e e e 33
fitVarPart e e e 34
getTreat,dreamletResult-method oL 36
metadata,dreamletProcessedData-method 37
meta_analysis e e e e 37
outlier e e e 39
outlierByAssay e e 40
plotBeeswarm L. e e e e e e 41
plotCellComposition 42
plotForest L 43
plotGeneHeatmap e 44
plotHeatmap e 46
PlotPCA . . . e 47
plotPercentBars,vpDF-method 49
plotProjection e e e e e 50
plotVarPart,DataFrame-method oo 51
plotViolin e 53
plotVolcano e e e e e 54
plotVoom oL e 56
print,dreamletResult-method L 57
PIOCESSASSAYS . . v v v o o e e e e e e e e e e e e e e 58
ProcessONEASSAY v v v v e e e e e e e e e e e e e e e e 60
removeConstantTerms 61
residuals,dreamletResult-method 62
run_mash L e 63
SEEEITOTS e e e 65
show,dreamletResult-method 67
sortCols,vpDF-method 67
StACKASSAYS .« . v v o e e e e e e e e e e e e 68
tabTOMatriX o e e e e e e 70
topTable,dreamletResult-method 71
vpDF-class e 72
zenith_gsa,dreamletResult,GeneSetCollection-method 73
[,dreamletResult, ANY,ANY,ANY-method 75

4 aggregateNonCountSignal
aggregateNonCountSignal
Aggregation of single-cell signals
Description
Aggregation of single-cell to pseudobulk data for non-count data.
Usage
aggregateNonCountSignal(
sce,
assay = NULL,
sample_id = NULL,
cluster_id = NULL,
min.cells 10,
min.signal = 0.01,
min.samples = 4,
min.prop = 0.4,
verbose = TRUE,
BPPARAM = SerialParam(progressbar = verbose)
)
Arguments
sce aSingleCellExperiment.
assay character string specifying the assay slot to use as input data. Defaults to the 1st
available (assayNames(x)[11]).
sample_id character string specifying which variable to use as sample id
cluster_id character string specifying which variable to use as cluster id
min.cells minimum number of observed cells for a sample to be included in the analysis
min.signal minimum signal value for a gene to be considered expressed in a sample. Proper
value for this cutoff depends on the type of signal value
min.samples minimum number of samples passing cutoffs for cell cluster to be retained
min.prop minimum proportion of retained samples with non-zero counts for a gene to be
verbose logical. Should information on progress be reported?
BPPARAM aBiocParallelParam object specifying how aggregation should be parallelized.
Details

The dreamlet workflow can also be applied to non-count data. In this case, a signal is averaged
across all cells from a given sample and cell type. Here aggregateNonCountSignal() performs
the roles of aggregateToPseudoBulk() followed by processAssays() but using non-count data.

aggregateToPseudoBulk 5

For each cell cluster, samples with at least min.cells are retained. Only clusters with at least
min.samples retained samples are kept. Features are retained if they have at least min.signal in
at least min.prop fraction of the samples.

The precision of a measurement is the inverse of its sampling variance. The precision weights
are computed as 1/sem”2, where sem = sd(signal) / sqrt(n), signal stores the values averaged
across cells, and n is the number of cells.

Value

a dreamletProcessedData object

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
using non-count signal
pb.signal <- aggregateNonCountSignal(example_sce,
assay = "logcounts”,
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(pb.signal, ~group_id)

aggregateToPseudoBulk Aggregation of single-cell to pseudobulk data

Description

Aggregation of single-cell to pseudobulk data. Adapted from muscat::aggregateData and has
same syntax and results. But can be much faster for SingleCellExperiment backed by HSAD
files using on-disk storage.

Usage
aggregateToPseudoBulk(
X)
assay = NULL,

sample_id = NULL,
cluster_id = NULL,
fun = c(”"sum”, "mean”, "median"”, "prop.detected”, "num.detected”, "sem

n

, "number"),

6 aggregateToPseudoBulk

scale = FALSE,

verbose = TRUE,

BPPARAM = SerialParam(progressbar = verbose),
checkValues = TRUE,

h5adBlockSizes = 1e+@9

)
Arguments

X a SingleCellExperiment.

assay character string specifying the assay slot to use as input data. Defaults to the 1st
available (assayNames(x)[1]).

sample_id character string specifying which variable to use as sample id

cluster_id character string specifying which variable to use as cluster id

fun a character string. Specifies the function to use as summary statistic. Passed to
summarizeAssayByGroup?2.

scale logical. Should pseudo-bulks be scaled with the effective library size & multi-
plied by 1M?

verbose logical. Should information on progress be reported?

BPPARAM aBiocParallelParam object specifying how aggregation should be parallelized.

checkValues logical. Should we check that signal values are positive integers?

h5adBlockSizes set the automatic block size block size (in bytes) for DelayedArray to read an
HS5AD file. Larger values use more memory but are faster.

Details

Adapted from muscat: :aggregateData and has similar syntax and same results. This is much

faster for SingleCellExperiment backed by H5AD files using DelayedMatrix because this sum-
marizes counts using DelayedMatrixStats. But this function also includes optmizations for sparseMatrix
used by Seurat by using sparseMatrixStats.

Keeps variables from colData() that are constant within sample_id. For example, sex will be
constant for all cells from the same sample_id, so it is retained as a variable in the pseudobulk
result. But number of expressed genes varies across cells within each sample_id, so it is dropped
from colData(). Instead the mean value per cell type is stored in metadata(pb) $aggr_means, and
these can be included in regression formulas downstream. In that case, the value of the covariates
used per sample will depend on the cell type analyzed.

Value

a SingleCellExperiment.
Aggregation parameters (assay, by, fun, scaled) are stored in metadata()$agg_pars, where
by = c(cluster_id, sample_id). The number of cells that were aggregated are accessible in
int_colData()$n_cells.

Author(s)

Gabriel Hoffman, Helena L Crowell & Mark D Robinson

aggregate Var 7

References

Crowell, HL, Soneson, C, Germain, P-L, Calini, D, Collin, L, Raposo, C, Malhotra, D & Robin-
son, MD: Muscat detects subpopulation-specific state transitions from multi-sample multi-condition
single-cell transcriptomics data. Nature Communications 11(1):6077 (2020). doi: https://doi.
org/10.1038/s41467-020-19894-4

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

pseudobulk data from each cell type
is stored as its own assay
pb

aggregate by cluster only,

collapsing all samples into the same pseudobulk
pb2 <- aggregateToPseudoBulk(example_sce,
cluster_id = "cluster_id",

verbose = FALSE)

pb2
#

aggregateVar Per-sample variance of single-cell counts

Description

Aggregation function for single-cell log-normalized counts to calculate per-sample variance for

dreamlet.
Usage
aggregateVar(
sce,
assay = NULL,

cluster_id = NULL,
sample_id = NULL,

https://doi.org/10.1038/s41467-020-19894-4
https://doi.org/10.1038/s41467-020-19894-4

min.cells

aggregateVar

10,

min.var = 0.01,

min.samples
min.prop =
verbose =

:4’

0.4,
TRUE,

BPPARAM = SerialParam(progressbar = verbose)

Arguments

sce

assay

cluster_id
sample_id
min.cells
min.var
min.samples
min.prop
verbose

BPPARAM

Details

a SingleCellExperiment.

character string specifying the assay slot to use as input data. Defaults to the 1st
available (assayNames(x)[1]).

character string specifying which variable to use as cluster id

character string specifying which variable to use as sample id

minimum number of observed cells for a sample to be included in the analysis
minimum variance for a gene to be considered expressed in a sample
minimum number of samples passing cutoffs for cell cluster to be retained
minimum proportion of retained samples with non-zero counts for a gene to be
logical. Should information on progress be reported?

aBiocParallelParamobject specifying how aggregation should be parallelized.

The dreamlet workflow can also be applied to model gene expression variance. In this case, a
per-sample per-gene variance is calculated across all cells from a given sample and cell type. Here
aggregateVar () performs the roles of aggregateToPseudoBulk() followed by processAssays()
but using log-normalized count data.

For each cell cluster, samples with at least min.cells are retained. Only clusters with at least
min.samples retained samples are kept. Features are retained if they have at least min.var in at
least min.prop fraction of the samples.

The precision of a measurement is the inverse of its sampling variance. The precision weights are
computed as 1/sem”2, where sem = sd / sqrt(n) and n is the number of cells.

Value

adreamletProcessedData object

Examples

library(muscat)

library(SingleCellExperiment)

data(example_sce)

Compute variance for each sample and cell cluster

as.dreamletResult 9

pbVar <- aggregateVar(example_sce,
assay = "counts”,
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE

as.dreamletResult Convert list of regression fits to dreamletResult

Description

Convert list of regression fits to dreamletResult for downstream analysis

Usage
as.dreamletResult(fitList, df_details = NULL)

Arguments
fitList list of regression fit with dream()
df_details data. frame storing assay details
Details

Useful for combining multiple runs of dreamletCompareClusters() into a single dreamletResult
for downstream analysis

Value

object of class dreamletResult

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

first comparison
ct.pairs <- c("B cells”, "CD14+ Monocytes")

10 assay,dreamletResult, AN Y-method

fit <- dreamletCompareClusters(pb, ct.pairs, method = "fixed")

second comparison
ct.pairs2 <- c("B cells”, "CD8 T cells")
fit2 <- dreamletCompareClusters(pb, ct.pairs2, method = "fixed")

Make a list storing each result with a meaningful name
fitList <- list()

id <- paste@("["”, ct.pairs[1], "I_vs_[", ct.pairs[2], "1")
fitList[[id]] <- fit

id <- paste@("[”, ct.pairs2[1], "J_vs_[", ct.pairs2[2], "1")
fitList[[id]] <- fit2

create a dreamletResult form this list
res.compare <- as.dreamletResult(fitList)
res.compare

assay,dreamletResult,ANY-method
Get assay

Description

Get assay
Get assay

Get assays by name

Usage

S4 method for signature 'dreamletResult,ANY'
assay(x, i, withDimnames = TRUE, ...)

S4 method for signature 'dreamletProcessedData,ANY'
assay(x, i, withDimnames = TRUE, ...)

S4 method for signature 'vpDF,ANY'

assay(x, i, withDimnames = TRUE, ...)
Arguments
X vpDF object
i number indicating index, or string indicating assay

withDimnames not used

other arguments

assayNames,dreamletResult-method 11

Value

return ith assay

assayNames,dreamletResult-method
Get assayNames

Description

Get assayNames
Get assayNames

Get assayNames

Usage

S4 method for signature 'dreamletResult'
assayNames(x, ...)

S4 method for signature 'dreamletProcessedData
assayNames(x, ...)

S4 method for signature 'vpDF'

assayNames(x, ...)
Arguments
X vpDF object

additional arguments

Value

array of assay names

buildClusterTreeFromPB
Hierarchical clustering on cell types from pseudobulk

Description

Perform hierarchical clustering on cell types from pseudobulk by aggregating read counts from each
cell type.

12 cellCounts

Usage

buildClusterTreeFromPB(
pb,
method = c("complete”, "ward.D", "single"”, "average”, "mcquitty”, "median”, "centroid”,
"ward.D2"),
dist.method = c("euclidean”, "maximum”, "manhattan”, "canberra”, "binary", "minkowski"),
assays = assayNames(pb)

)
Arguments
pb SingleCellObject storing pseudobulk for each cell type in in assay () field
method clustering method for hclust()
dist.method distance metric
assays which assays to include
Value

hierarchical clustering object of class hclust

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

Hierarchical clustering of cell types
hcl <- buildClusterTreeFromPB(pb)

plot(hcl)

cellCounts Extract cell counts

Description

Extract matrix of cell counts from SingleCellExperiment

cellSpecificity Values-class

Usage

cellCounts(x)

Arguments

X a SingleCellExperiment

Value

matrix of cell counts with samples as rows and cell types as columns

See Also

computeCellCounts()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

get matrix of cell counts for each sample
cellCounts(pb)

13

cellSpecificityValues-class
Class cellSpecificityValues

Description

Class cellSpecificityValues cell type specificity values for each gene and cell type

Value

none

14 cellTypeSpecificity

cellTypeSpecificity Get cell type specificity of gene expression

Description

For each gene, compute fraction of overall expression attributable to each cell type

Usage
cellTypeSpecificity(pb, ...)
Arguments
pb SingleCellExperiment of pseudobulk data where easy assay is a cell type.
other arguments passed to edgeR: : calcNormFactors()
Details

Sum counts for each cell type, and compute the fraction of counts-per-million attributable to each
cell type for each gene

Value

matrix of the fraction of expression attributable to each cell type for each gene.

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

Violin plot of specificity scores for each cell type
Dashed line indicates genes that are equally expressed
across all cell types. For K cell types, this is 1/K
plotViolin(df)

Compute the maximum specificity score for each gene

checkFormula 15

scoreMax <- apply(df, 1, max)
head(scoreMax)

For each cell type, get most specific gene
genes <- rownames(df)[apply(df, 2, which.max)]

Barplot of 5 genes
plotPercentBars(df, genes = genes)

heatmap of 5 genes that are most cell type specific
dreamlet: :plotHeatmap(df, genes = genes)

checkFormula Check variables in a formula

Description

Check that variables in formula are present in the data

Usage

checkFormula(formula, data)

Arguments

formula formula of variables to check

data data.frame storing variables in the formula
Value

If formula is valid, return TRUE. Else throw error

Examples

Valid formula
dreamlet:::checkFormula(~speed, cars)

Not valid formula
dreamlet:::checkFormula(~ speed + a, cars)

16

coefNames

coefNames Get coefficient names

Description

Get coefficient names

Usage

coefNames (obj)

S4 method for signature 'dreamletResult'
coefNames(obj)

Arguments

obj A dreamletResult object

Value

array storing names of coefficients

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

colData,dreamletProcessedData-method 17

colData,dreamletProcessedData-method
Extract colData from dreamletProcessedData

Description

Extract colData from dreamletProcessedData

Usage
S4 method for signature 'dreamletProcessedData’
colData(x, ...)

Arguments
X A dreamletProcessedData object

other arguments

Value

object from colData field

colData<-,dreamletProcessedData, ANY-method
Set colData

Description

Set colData of dreamletProcessedData, and check for same dimensions and rownames

Usage
S4 replacement method for signature 'dreamletProcessedData,ANY'
colData(x, ...) <- value

Arguments
X dreamletProcessedData object

other arguments

value data. frame or object that can be coerced to it

Value

none

18 compositePosteriorTest

compositePosteriorTest
Perform composite test on results from mashr

Description

The posterior probabilities for all genes and conditions is obtained as 1-1FSR. Let prob be an array
storing results for one gene. The probability that _no_ conditions in the exclusion set are non-zero
is prod(1 - prob[exclude]). The probability that _all_ conditions in the inclusion set are non-
zero is prod(prob[include]). The probability that _at least one_ condition in the inclusion set
is non-zero is 1 - prod(1 - prob[include]). The composite test is the product of the probabilties
computed from the inclusion and exclusion sets.

Usage

compositePosteriorTest(
X,
include,
exclude = NULL,
test = c("at least 1", "all")

)
Arguments
X "dreamlet_mash_result” from run_mash()
include array of conditions in the inclusion set
exclude array of conditions in the exclusion set. Defaults to NULL for no exclusion
test evaluate the posterior probability of a non-zero effect in "at least 1" or "all”
conditions
Details

Perform composite test evaluating the specificity of an effect. Evalute the posterior probability
that an a non-zero effect present in _all_ or _at least one_ condition in the inclusion set, but _no
conditions__ in the exclusion set.

See Also

run_mash()

Examples

library(muscat)
library(mashr)
library(SingleCellExperiment)

data(example_sce)

computeCellCounts 19

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce[1:100,],
assay = "counts”,
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

run MASH model

This can take 10s of minutes on real data
This small datasets should take ~30s
res_mash <- run_mash(res.dl, "group_idstim")

Composite test based on posterior probabilities

to identify effect present in *at least 1* monocyte type
and *NO* T-cell type.

include <- c("CD14+ Monocytes”, "FCGR3A+ Monocytes")
exclude <- c("CD4 T cells”, "CD8 T cells")

Perform composite test
prob <- compositePosteriorTest(res_mash, include, exclude)

examine the 1FSR for top gene
get_lfsr(res_mash$model)[which.max(prob), , drop = FALSE]

Test if *allx cell types have non-zero effect
prob <- compositePosteriorTest(res_mash, assayNames(res.dl))

computeCellCounts Get cell counts with metadata

Description

Get cell counts with metadata for each sample

Usage

computeCellCounts(sce, annotation, samplelDs)

Arguments

sce SingleCellExperiment

20 computeLogCPM

annotation string indicating column in colData(sce) storing cell type annotations
samplelIDs string indicating column in colData(sce) storing sample identifers
Value

matrix storing cell counts

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)
counts <- computeCellCounts(example_sce, "cluster_id", "sample_id")

counts[1:4, 1:4]

computeLogCPM Compute log normalized counts

Description

Compute normalized counts as log2 counts per million

Usage

computelLogCPM(
sce,
lib.size = colSums2(counts(sce)),
prior.count = 2,
scaledByLib = FALSE

)
Arguments
sce SingleCellExperiment with counts stored as counts(sce)
lib.size library size for each cell
prior.count average count to be added to each observation to avoid taking log of zero
scaledByLib if TRUE, scale pseudocount by 1ib.size. Else do standard constant pseudocount
addition
Details

This function gives same result as edgeR: : cpm(counts(sce), log=TRUE)

computeNormCounts

Value

matrix of log CPM values

See Also

also edgeR: : cpm()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

logcounts(example_sce) <- computeLogCPM(example_sce)

computeNormCounts Compute normalized counts

Description

Compute normalized counts as counts per million

Usage

computeNormCounts(sce)

Arguments

sce SingleCellExperiment with counts stored as counts(sce)

Details

This function gives same result as edgeR: : cpm(counts(sce), log=FALSE)

Value

matrix of CPM values

See Also

also edgeR: : cpm()

22

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

normcounts(example_sce) <- computeNormCounts(example_sce)

details

details Extract details from dreamletProcessedData

Description

Extract details from dreamletProcessedData

Usage

details(object)

S4 method for signature 'dreamletProcessedData’
details(object)

S4 method for signature 'dreamletResult'
details(object)

S4 method for signature 'vpDF'
details(object)

Arguments

object A dreamletProcessedData object

Value

Extract detailed information from some classes

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

diff Var,dreamletResult-method 23

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

For each cell type, number of samples retained,
and variables retained
details(res.proc)

diffVar,dreamletResult-method
Test differential variance

Description

Test the association between a covariate of interest and the response’s deviation from expectation.

Usage
S4 method for signature 'dreamletResult'
diffVvar(
fit,
method = c("AD", "SQ"),
scale = c("leverage”, "none"),
BPPARAM = SerialParam(),
)
Arguments
fit model fit from dream()
method transform the residuals using absolute deviation ("AD") or squared deviation
(HSQH)‘
scale scale each observation by "leverage", or no scaling ("none")
BPPARAM parameters for parallel evaluation
other parameters passed to dream()
Details

This method performs a test of differential variance between two subsets of the data, in a way
that generalizes to multiple categories, continuous variables and metrics of spread beyond vari-
ance. For the two category test, this method is simular to Levene’s test. This model was adapted
from Phipson, et al (2014), extended to linear mixed models, and adapted to be compatible with
variancePartition::dream() and dreamlet: :dreamlet().

24

diff Var,dreamletResult-method

This method is composed of multiple steps where 1) a typical linear (mixed) model is fit with
dreamlet(), 2) residuals are computed and transformed based on an absolute value or squaring
transform, 3) a second regression is performed with dreamlet() to test if a variable is associated
with increased deviation from expectation. Both regression take advantage of the dreamlet () linear
(mixed) modelling framework followed by empirical Bayes shrinkage that extends the 1imma: : voom()
framework.

Note that diffVar() takes the results of the first regression as a parameter to use as a starting point.

References

Phipson B, Oshlack A (2014). “DiffVar: a new method for detecting differential variability with
application to methylation in cancer and aging.” Genome biology, 15(9), 1-16.

See Also

variancePartition::diffVar()

variancePartition: :diffVar(), missMethyl::diffVar()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Differential variance analysis
result is a dreamlet fit

res.dvar <- diffVar(res.dl)

Examine results
res.dvar

Examine details for each assay
details(res.dvar)

show coefficients estimated for each cell type

dreamlet 25

coefNames(res.dvar)

extract results using limma-style syntax

combines all cell types together

adj.P.Val gives study-wide FDR

topTable(res.dvar, coef = "group_idstim”, number = 3)

Plot top hit to see differential variance

Note that this is a toy example with only 4 samples
cellType <- "CD4 T cells”

gene <- "DYNLRB1"

y <- res.proc[[cellType]]l$E[gene, 1]
x <- colData(res.proc)$group_id

boxplot(y ~ x,

xlab = "Stimulation status”,
ylab = "Gene expression”,
main = paste(cellType, gene)
)
#
dreamlet Differential expression for each assay
Description

Perform differential expression for each assay using linear (mixed) models

Usage

dreamlet(
X,
formula,
data = colData(x),
assays = assayNames(x),
contrasts = NULL,
min.cells = 10,
robust = FALSE,
quiet = FALSE,
BPPARAM = SerialParam(),
use.eBayes = TRUE,

S4 method for signature 'dreamletProcessedData'
dreamlet(

X,

formula,

26 dreamlet

data = colData(x),
assays = assayNames(x),
contrasts = NULL,
min.cells = 10,

robust = FALSE,

quiet = FALSE,

BPPARAM = SerialParam(),
use.eBayes = TRUE,

)
Arguments
X SingleCellExperiment or dreamletProcessedData object
formula regression formula for differential expression analysis
data metadata used in regression formula
assays array of assay names to include in analysis. Defaults to assayNames (x)
contrasts character vector specifying contrasts specifying linear combinations of fixed ef-
fects to test. This is fed into makeContrastsDream(formula, data, contrasts=contrasts)
min.cells minimum number of observed cells for a sample to be included in the analysis
robust logical, use eBayes method that is robust to outlier genes
quiet show messages
BPPARAM parameters for parallel evaluation
use.eBayes should eBayes be used on result? (defualt: TRUE)
other arguments passed to dream
Details

Fit linear (mixed) model on each cell type separately. For advanced use of contrasts see variancePartition: :makeContras:
and vignette https://gabrielhoffman.github.io/variancePartition/articles/dream.html#
advanced-hypothesis-testing-1.

Value

Object of class dreamletResult storing results for each cell type

See Also

variancePartition: :dream(), variancePartition: :makeContrastsDream()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

https://gabrielhoffman.github.io/variancePartition/articles/dream.html#advanced-hypothesis-testing-1
https://gabrielhoffman.github.io/variancePartition/articles/dream.html#advanced-hypothesis-testing-1

dreamletCompareClusters 27

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Examine results
res.dl

Examine details for each assay
details(res.dl)

show coefficients estimated for each cell type
coefNames(res.dl)

extract results using limma-style syntax

combines all cell types together

adj.P.val gives study-wide FDR

topTable(res.dl, coef = "group_idstim”, number = 3)

dreamletCompareClusters
Differential expression between pair of assays

Description

Perform differential expression between a pair of assays using linear (mixed) models

Usage
dreamletCompareClusters(
pb,
assays,
method = c("fixed"”, "random”, "none"),

formula = ~0,

collapse = TRUE,
min.cells = 10,
min.count = 10,
min.samples = 4,

28 dreamletCompareClusters

isCounts = TRUE,

normalize.method = "TMM",

robust = FALSE,

quiet = FALSE,

contrasts = c(compare = paste("”cellClustertest - cellClusterbaseline”)),
BPPARAM = SerialParam(),

errorsAsWarnings = FALSE,

)
Arguments

pb pseudobulk data as SingleCellExperiment object

assays array of two entries specifying assays (i.e. cell clusters) to compare, or a list of
two sets of assays.

method account for repeated measures from donors using a "random" effect, a "fixed"
effect, or "none"

formula covariates to include in the analysis.

collapse if TRUE (default), combine all cell clusters within the test set, and separately the
baseline set. If FALSE, estimate coefficient for each cell cluster and then iden-
tify differential expression using linear contrasts with variancePartition: :makeContrastsDream()

min.cells minimum number of observed cells for a sample to be included in the analysis

min.count minimum number of reads for a gene to be consider expressed in a sample.
Passed to edgeR: : filterByExpr

min.samples minimum number of samples passing cutoffs for cell cluster to be retained

isCounts logical, indicating if data is raw counts

normalize.method
normalization method to be used by calcNormFactors

robust logical, use eBayes method that is robust to outlier genes
quiet show messages
contrasts cell type is encoded in variable cel1Cluster with levels test and baseline.

contrasts specifies contrasts passed to variancePartition: :makeContrastsDream().
Note, advanced users only.

BPPARAM parameters for parallel evaluation

errorsAsWarnings
if TRUE, convert error to a warning and return NULL

other arguments passed to dream

Details

Analyze pseudobulk data to identify differential gene expression between two cell clusters or sets of
clusters while modeling the cross-donor expression variation and other aspects of the study design.

dreamletCompareClusters() is useful for finding genes that are differentially expressed betweeen
cell clusters and estimating their fold change. However, the p-values and number of differentially
expressed genes are problematic for two reasons, so users must be careful not to overinterpret them:

dreamletCompareClusters 29

1. Cell clusters are typically identified with the same gene expression data used for this differen-
tial expression analysis between clusters. The same data is used both for discovery and testing,
and this means that the p-values from the differential expression analysis will not be uniform
under the null. This will produce a lot of findings with small p-values even in the absence of
true biological differences.

2. The dreamlet package is designed for large datasets with many subjects. The sample sizes
from cohort studies are an order of magnitude larger than typical single cell studies. This
means that these analyses have huge power to detect even subtle difference in expression be-
tween cell clusters. While cluster-specific marker genes are often discovered from an handful
of samples, the dreamlet package is applicable to 100s or 1000s of subjects.

method indicates the regression method used to test differential expression between sets of cell
clusters. Since the same biosample will usually be represented in both sets of cell clusters, method
determines how the paired design is modeled. For method = "mixed”, the sample is modeled as
a random effect: ~ (1|Sample) + For method = "fixed", the sample is modeled as a fixed
effect: ~ Sample + For method = "none"”, the pairing is ignored.

When collapse=TRUE (default) combine all cell clusters within the test set, and separately the
baseline set, and estimate a coefficient indicating the differential expression between sets for a given
gene. If collapse=FALSE, estimate a coefficient for each cell type and then identify differential
expression using linear contrasts with variancePartition: :makeContrastsDream().

Value

Object of class dreamletResult storing results for each comparison

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

Evaluate the specificity of each gene for each cluster
df_cts <- cellTypeSpecificity(pb)

compare first two assays (i.e. cell types)
ct.pairs <- c("B cells”, "CD14+ Monocytes")

run comparison
use method = 'fixed' here since it is faster

fit <- dreamletCompareClusters(pb, ct.pairs, method = "fixed")

Extract top 10 differentially expressed genes

30 dreamletProcessedData-class

The coefficient 'compare' is the value logFC between test and baseline:
compare = cellClustertest - cellClusterbaseline
res <- topTable(fit, coef = "compare”, number = 10)

genes with highest logFC are most highly expressed in
B cells compared to CD14+ Monocytes
head(res)

dreamlet::plotHeatmap(df_cts, genes = rownames(res)[1:5])

compare B cells versus the rest of the cell types
'rest' is a keyword indicating all other assays
fit <- dreamletCompareClusters(pb, c("B cells”, "rest"), method = "fixed")

res <- topTable(fit, coef = "compare”, number = 10)

genes with highest logFC are most highly expressed in
B cells compared to all others
head(res)

Get genes upregulated in B cells
idx <- with(res, which(logFC > @))[1:5]
dreamlet::plotHeatmap(df_cts, genes = rownames(res)[idx])

1st <- list(
test = c("CD14+ Monocytes”, "FCGR3A+ Monocytes"),
baseline = c("CD4 T cells”, "CD8 T cells")

compare 2 monocyte clusters to two T cell clusters
fit <- dreamletCompareClusters(pb, lst, method = "fixed")

res <- topTable(fit, coef = "compare”, number = 10)

genes with highest logFC are most highly expressed in
monocytes compared to T cells
head(res)

Get genes upregulated in monocytes
idx <- with(res, which(logFC > @))[1:5]
dreamlet::plotHeatmap(df_cts, genes = rownames(res)[idx])

dreamletProcessedData-class
Class dreamletProcessedData

Description

Class dreamletProcessedData

dreamletResult-class 31

Value

none

none

dreamletResult-class Class dreamletResult

Description

Class dreamletResult stores results produced by dreamlet() to give a standard interface for
downstream analysis

Class dreamletResult stores results produced by dreamlet() to give a standard interface for
downstream analysis

Value

none

none

dreamlet_mash_result-class
Class dreamlet_mash_result

Description

Class dreamlet_mash_result

Value

dreamlet_mash_result class

32 equalFormulas

dropRedundantTerms Drop redundant terms from the model

Description

Detect co-linear fixed effects and drop the last one

Usage
dropRedundantTerms(formula, data, tol = 0.001)

Arguments

formula original formula

data data.frame

tol tolerance to test difference of correlation from 1 or -1
Value

a formula, possibly with terms omitted.

Examples

Valid formula
dropRedundantTerms(~ group + extra, sleep)

equalFormulas Check if two formulas are equal

Description

Check if two formulas are equal by evaluating the formulas and extracting terms

Usage

equalFormulas(formulal, formula2)

Arguments
formulal first formula
formula2 second formula
Value

boolean value indciating of formulas are equivalent

extractData

Examples

These formulas are equivalent
formulal <- ~ Size + 1
formula2 <- ~ 1 + Size

dreamlet:::equalFormulas(formulal, formula2)

extractData Extract normalized expression and colData

Description

Extract normalized expression and colData

Extract normalized (i.e. log2 CPM) expression and colData from dreamletProcessedData

Usage

extractData(x, assay, cols = colnames(colData(x)), genes = rownames(x))

S4 method for signature 'dreamletProcessedData,character'
extractData(

X,

assay,

cols = colnames(colData(x)),

genes = rownames(assay(x, assay))

)
Arguments
X dreamletProcessedData object
assay assay to extract
cols columns in colData(x) to extract. defaults to all columns as colnames(colData(x))
genes genes to extract from assay (x, assay) $E. defaults to all genes as rownames (x)
Value

data. frame or DataFrame of merged expression and colData

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster

34 fitVarPart

pb <- aggregateToPseudoBulk(example_sce,
assay = "counts”,
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Extract all:

Extract tibble of colData merged with expression.

variables and genes are stored as columns, samples as rows
df_merge <- extractData(res.proc, "B cells”)

first few columns
df_merge[, 1:6]

Extract subset:
df_merge <- extractData(res.proc, "B cells”, cols = "group_id"”, genes = c("SSU72", "U2AF1"))

df_merge
Boxplot of expression

boxplot (SSU72 ~ group_id, df_merge)
#

fitvarPart Variance Partition analysis for each assay

Description

Perform Variance Partition analysis for each assay

Usage

fitVarPart(
X,
formula,
data = colData(x),
assays = assayNames(x),
quiet = FALSE,
BPPARAM = SerialParam(),

S4 method for signature 'dreamletProcessedData’
fitVarPart(
X,

fitVarPart 35

formula,

data = colData(x),
assays = assayNames(x),
quiet = FALSE,

BPPARAM = SerialParam(),

)
Arguments
X SingleCellExperiment or dreamletProcessedData object
formula regression formula for differential expression analysis
data metadata used in regression formula
assays array of assay names to include in analysis. Defaults to assayNames (x)
quiet show messages
BPPARAM parameters for parallel evaluation
other arguments passed to dream
Value

Object of class vpDF inheriting from DataFrame storing the variance fractions for each gene and
cell type.

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Show variance fractions at the gene-level for each cell type
genes <- vp$gene[2:4]
plotPercentBars(vp[vp$gene %in% genes, 1)

Summarize variance fractions genome-wide for each cell type

36 getTreat,dreamletResult-method

plotVarPart(vp)

getTreat,dreamletResult-method
Test if coefficient is different from a specified value

Description

Test if coefficient is different from a specified value

Usage

S4 method for signature 'dreamletResult'
getTreat(fit, 1fc = log2(1.2), coef = NULL, number = 10, sort.by = "p")

Arguments
fit dreamletResult object
1fc a minimum log2-fold-change below which changes not considered scientifically
meaningful
coef which coefficient to test
number number of genes to return
sort.by column to sort by
Value

DataFrame storing hypothesis test for each gene and cell type

See Also

limma: : topTreat(), variancePartition: :getTreat()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,
cluster_id = "cluster_id",
sample_id = "sample_id",

verbose = FALSE

metadata,dreamletProcessedData-method 37

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

extract results using limma-style syntax

combines all cell types together

adj.P.Val gives study-wide FDR

getTreat(res.dl, coef = "group_idstim”, number = 3)

metadata,dreamletProcessedData-method
Extract metadata from dreamletProcessedData

Description

Extract metadata from dreamletProcessedData

Usage
S4 method for signature 'dreamletProcessedData’
metadata(x)

Arguments

X A dreamletProcessedData object

Value

object from metadata field

meta_analysis Meta-analysis across multiple studies

Description

Meta-analysis across multiple studies

38 meta_analysis

Usage
meta_analysis(
X,
method = "FE",

group = c("ID", "assay"),
control = list(maxiter = 2000)

)
Arguments
X data. frame rbind’ing results across genes, cell types and datasets
method meta-analysis method. Values are fed into metafor::rma(), except for 'RE2C'
which calls remaCor: :RE2C().
group colums in x to group by. For results from dreamlet: : topTable(), results are
aggregrated by gene and cell type (i.e. 'ID' and 'assay'). If x is not from this
function, this argument allows the function to group results properly
control passed to rma(..,control)
Details

"FE’: fixed effects meta-analysis
’REML’: random effects meta-analysis

"RE2C’: joint testing of fixed and random effects

Examples

library(dreamlet)
library(muscat)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
just 'CD14+ Monocytes' for speed
res.proc <- processAssays(pb, ~group_id, assays = "CD14+ Monocytes")

dreamlet
res.dl <- dreamlet(res.proc, ~group_id)

tab1l <- topTable(res.dl, coef = "group_idstim”, number = Inf)
tab1$Dataset <- "1"

outlier 39

Results from a second cohort

Here, just a copy of the same results for simplicity
tab2 <- tabl

tab2$Dataset <- "2"

rbind
tab_combined <- rbind(tabl, tab2)

Perform fixed effects meta-analysis

res <- meta_analysis(tab_combined, method = "FE")
res(1:3,]
outlier Multivariate outlier detection
Description

Detect multivariante outliers using Mahalanobis distance using mean and covariance estimated ei-
ther with standard or robust methods.

Usage
outlier(data, robust = FALSE, ...)
Arguments
data matrix of data
robust use robust covariance method, defaults to FALSE
arguments passed to MASS: :cov.rob()
Details

The distance follow a chisq distrubtion under the null with standard method for mean and covari-
ance. It is approximate if the robust method is used. So use qchisq(p=0.999 , df =k) to get
cutoff to keep 99.9% of samples under the null for data with k=2 columns.

Value

data.frame storing chisq and z-score for each entry indicating deviation from the mean. The z-
score is computed by evaluating the p-value of chisq statistic and converting it into a z-score

Examples
data <- matrix(rnorm(200), 100, 2)
res <- outlier(data)

res[1:4,]

40 outlierByAssay

outlierByAssay Outlier analysis for each assay

Description

Compute outlier score for each sample in each assay using outlier() run on the top principal
components. Mahalanobis distance is used for outlier detect and multivariate normal assumption is
used to compute p-values

Usage

outlierByAssay(object, assays = names(object), nPC = 2, robust = FALSE, ...)
Arguments

object dreamletProcessedData from processAssays()

assays assays / cell types to analyze

nPC number of PCs to uses for outlier score with outlier()

robust use robust covariance method, defaults to FALSE

arguments passed to MASS: :cov.rob()

Value

ID: sample identifier
assay: specify assay
PCs: principal components

chisg: mahalanobis distance that is distributed as chisq(k) k = nPC if the data is multivariate
gaussian

z: z-score corresponding to the chisq distance

See Also

outlier()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

plotBeeswarm

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Compute PCs and outlier scores

outlierByAssay(res.proc, c("B cells”, "CD14+ Monocytes"))

41

plotBeeswarm Beeswarm plot of effect sizes for each assay

Description

Beeswarm plot of effect sizes for each assay, colored by sign and FDR

Usage

plotBeeswarm(res.dl, coef, fdr.range = 4, assays =

Arguments
res.dl dreamletResult object from dreamlet()
coef coefficient name fed to topTable()
fdr.range range for coloring FDR
assays which assays to plot

Value

ggplot2 of logFC by assay

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

assayNames(res.dl))

42 plotCellComposition

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Beeswarm plot of effect sizes for each assay,
colored by sign and FDR
plotBeeswarm(res.dl, "group_idstim")

plotCellComposition Bar plot of cell compositions

Description

Bar plot of cell compositions

Usage
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'SingleCellExperiment'
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'matrix’
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'data.frame'
plotCellComposition(obj, col, width = NULL)

Arguments
obj matrix of [cells] x [samples] or SingleCellExperiment from aggregateToPseudoBulk
col array of colors. If missing, use default colors. If names(col) is the same as
arrayNames (obj), then colors will be assigned by assay name#’
width specify width of bars
Value

Barplot showing cell fractions

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster

plotForest

pb <- aggregateToPseudoBulk(example_sce,
assay = "counts”,
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

show cell composition bar plots
plotCellComposition(pb)

extract cell counts
df_cellCounts <- cellCounts(pb)

show cell composition bar plots
plotCellComposition(df_cellCounts)

plotForest Forest plot
Description
Forest plot
Usage
plotForest(x, gene, coef, ...)

S4 method for signature 'dreamletResult'
plotForest(x, gene, coef, assays = names(x), ylim = NULL)

S4 method for signature 'dreamlet_mash_result'
plotForest(x, gene, coef, assays = colnames(x$logFC.original), ylim = NULL)

Arguments
X result from dreamlet
gene gene to show results for
coef coefficient to test with topTable
other arguments
assays array of assays to plot
ylim limits for the y axis
Value

Plot showing effect sizes

44 plotGeneHeatmap

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

Show estimated log fold change with in each cell type
plotForest(res.dl, gene = "ISG20", coef = "group_idstim")

plotGeneHeatmap Heatmap of genes and assays

Description

Heatmap of genes and assays

Usage
plotGeneHeatmap(
X7
coef,
genes,
assays = assayNames(x),
zmax = NULL,

transpose = FALSE

S4 method for signature 'dreamletResult'
plotGeneHeatmap(
X,

plotGeneHeatmap 45

coef,
genes,
assays = assayNames(x),
zmax = NULL,
transpose = FALSE
)
Arguments
X A dreamletResult object
coef column number or column name specifying which coefficient or contrast of the
linear model is of interest.
genes array of genes to include in plot
assays array of assay names to include in analysis. Defaults to assayNames(x)
zmax maximum z.std value
transpose (default: FALSE) Use ‘coord_flip()‘ to flip axies
Value

Heatmap plot for specified genes and assays

Heatmap plot for specified genes and assays

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Heatmap for specified subset of genes
plotGeneHeatmap(res.dl, coef = "group_idstim”, genes = rownames(pb)[1:15])

46

plotHeatmap

plotHeatmap Plot heatmap

Description

Plot heatmap

Usage

plotHeatmap(
X,
genes = rownames(x),
color = "darkblue”,
assays = colnames(x),
useFillScale = TRUE

)

S4 method for signature 'cellSpecificityValues'
plotHeatmap(

X,

genes = rownames(x),

color = "darkblue”,

assays = colnames(x),

useFillScale = TRUE
)

S4 method for signature 'data.frame'
plotHeatmap(

X,

genes = rownames(x),

color = "darkblue",

assays = colnames(x),

useFillScale = TRUE

)

S4 method for signature 'matrix'
plotHeatmap(
X,
genes = rownames(x),
color = "darkblue”,
assays = colnames(x),
useFillScale = TRUE

Arguments

X fractions for each gene

plotPCA 47

genes name of genes to plot
color color of heatmap
assays array of assays to plot

useFillScale default TRUE. add scale_fill_gradient() to plot

Value

heatmap

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

For each cell type, get most specific gene
genes <- rownames(df)[apply(df, 2, which.max)]

heatmap of 5 genes that are most cell type specific
dreamlet: :plotHeatmap(df, genes = genes)

plotPCA Plot PCA of gene expression for an assay

Description

Compute PCA of gene expression for an assay, and plot samples coloring by outlier score

Usage
S4 method for signature 'list'
plotPCA(
object,
assays = names(object),
nPC = 2

robust = FALSE,

48 plotPCA

L

maxQutlierZ = 20,

nrow = 2,
size = 2,
fdr.cutoff = .05
)
Arguments
object dreamletProcessedData from processAssays() oralist from residuals()
assays assays / cell types to analyze
nPC number of PCs to uses for outlier score with outlier()
robust use robust covariance method, defaults to FALSE
arguments passed to MASS: : cov.rob()
maxOutlierz cap outlier z-scores at this value for plotting to maintain consistent color scale
nrow number of rows in plot
size size passed to geom_point()
fdr.cutoff FDR cutoff to determine outlier
See Also
outlierByAssay()
Examples
library(muscat)

library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

PCA to identify outliers
from normalized expression

plotPCA(res.proc, c("B cells”, "CD14+ Monocytes"))

Run on regression residuals

Regression analysis

plotPercentBars,vpDF-method

fit = dreamlet(res.proc, ~ group_id)

Extract regression residuals
residsObj = residuals(fit)

PCA on residuals
plotPCA(residsObj, c("B cells”, "CD14+ Monocytes"))

plotPercentBars, vpDF-method
Bar plot of variance fractions

Description

Bar plot of variance fractions for a subset of genes

Usage

S4 method for signature 'vpDF'
plotPercentBars(
X,
col = c(ggColorHue(ncol(x) - 3), "grey85"),
genes = unique(x$gene),
width = NULL,
ncol = 3,

)

S4 method for signature 'cellSpecificityValues
plotPercentBars(

X,

col = ggColorHue(ncol(x)),

genes = rownames(x),

width = NULL,
)
Arguments
X vpDF object returned by fitVarPart()
col color of bars for each variable
genes name of genes to plot
width specify width of bars
ncol number of columns in the plot

other arguments

50 plotProjection

Value

Bar plot showing variance fractions for each gene

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Show variance fractions at the gene-level for each cell type
plotPercentBars(vp, genes = vp$gene[2:4], ncol = 2)

plotProjection Plot 2D projection

Description

Plot 2D projection (i.e. UMAP, tSNE) for millions of cells efficiently

Usage

plotProjection(
sce,
type,
annotation,
pointsize = 0,
pixels = c(512, 512),

legend.position = "none”,
text = TRUE,
order

plotVarPart,DataFrame-method 51

Arguments
sce SingleCellExperiment
type field in reducedDims(sce) to plot
annotation column in colData(sce) to annotate each cell
pointsize Radius of rasterized point. Use @ for single pixels(fastest).
pixels Vector with X and Y resolution of the raster, default c(512,512)

legend.position
legend.position: the position of legends ("none", "left", "right", "bottom", "top",
or two-element numeric vector)

text show annotation as text. Default TRUE
order specify order of levels for annotation
Details

Uses scattermore: :geom_scattermore() to plot millions of points efficiently

Value

ggplot2 plot of the projection

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

plotProjection(example_sce, "TSNE", "cluster_id", 1)

plotVarPart,DataFrame-method
Violin plot of variance fractions

Description

Violin plot of variance fraction for each gene and each variable

Usage

S4 method for signature 'DataFrame’

plotVarPart(
obj,
col = c(ggColorHue(base::ncol(obj) - 3), "grey85"),
label.angle = 20,

nn

main = R

52 plotVarPart,DataFrame-method
ylab = nn ,
convertToPercent = TRUE,
ncol = 3,
)
Arguments
obj varParFrac object returned by fitExtractVarPart or extractVarPart
col vector of colors
label.angle angle of labels on x-axis
main title of plot
ylab text on y-axis
convertToPercent
multiply fractions by 100 to convert to percent values
ncol number of columns in the plot
additional arguments
Value

Violin plot showing variance fractions

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Summarize variance fractions genome-wide for each cell type

plotVarPart(vp)

plotViolin

53

plotViolin Plot Violins

Description

Plot Violins

Usage
plotViolin(x, ...)

S4 method for signature 'cellSpecificityValues'
plotViolin(x, assays = colnames(x))

Arguments

X fractions for each gene

other arguments

assays array of assays to plot

Value

Violin plot

Examples

library(muscat)

library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",
verbose = FALSE
)

Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

Violin plot of specificity scores for each cell type

Dashed line indicates genes that are equally expressed

across all cell types.
plotViolin(df)

For K cell types, this is 1/K

54

plotVolcano

plotVolcano

Volcano plot for each cell type

Description

Volcano plot for each cell type

Usage

plotVolcano(

X’
coef,
nGenes
size =

)

:5,
12,

S4 method for signature 'list'
plotVolcano(

X,
coef,
nGenes
size =
minp =
cutoff
ncol =
assays

)

S4 method for signature 'MArrayLM'

:5,

12,
9.99999999999997e-311,
0.05,

’

I w I

names(x),

plotVolcano(

X,
coef,

nGenes
size =
minp =
cutoff
ncol =

)

S4 method for signature 'dreamlet_mash_result'

=5,

12,
9.99999999999997e-311,
= 0.05,

3

’

plotVolcano(

plotVolcano 55

X ’
coef,
nGenes = 5,
size = 12,
minp = le-16,
cutoff = 0.05,
ncol = 3,
assays = colnames(x$logFC.original),
)
Arguments
X result from dreamlet
coef coefficient to test with topTable
nGenes number of genes to highlight in each volcano plot
size text size
minp minimum p-value to show on the y-axis
cutoff adj.P.Val cutoff to distinguish significant from non-significant genes
ncol number of columns in the plot
arguments passed to facet_wrap(). Useful for specifying scales = "free_y"
assays which assays to plot
Value

Volcano plot for each cell type

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

56

plotVoom

show coefficients estimated for each cell type
coefNames(res.dl)

volcano plot for each cell type
plotVolcano(res.dl, coef = "group_idstim")

volcano plot for first two cell types
plotVolcano(res.dl[1:2], coef = "group_idstim")

plotVoom Plot voom curves from each cell type

Description

Plot voom curves from each cell type

Usage

plotVoom(x, ncol = 3, alpha = 0.5, ...)

S4 method for signature 'dreamletProcessedData'’
plotVoom(x, ncol = 3, alpha = 0.5, assays = names(x))

S4 method for signature 'EList'
plotVoom(x, ncol = 3, alpha = 0.5)

Arguments
X dreamletProcessedData
ncol number of columns in the plot
alpha transparency of points
other arguments
assays which assays to plot
Value

Plot of mean-variance trend

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster

print,dreamletResult-method

pb <- aggregateToPseudoBulk(example_sce,
assay = "counts”,
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Show mean-variance trend from voom
plotVoom(res.proc)

plot for first two cell types
plotVoom(res.proc[1:2])

57

print,dreamletResult-method
Print object

Description

Print object

Print object

Usage

S4 method for signature 'dreamletResult'
print(x, ...)

S4 method for signature 'dreamletProcessedData

print(x, ...)
Arguments
X dreamletProcessedData object
other arguments
Value

print data stored in object

58 processAssays

processAssays Processing SingleCellExperiment to dreamletProcessedData

Description

For raw counts, estimate precision weights using linear mixed model weighting by number of cells
observed for each sample. For normalized data, only weight by number of cells.

Usage

processAssays(
sceObj,
formula,
assays = assayNames(sceObj),
min.cells = 5,
min.count = 5,
min.samples = 4,
min.prop = 0.4,
isCounts = TRUE,
normalize.method = "TMM",
span = "auto",
quiet = FALSE,
weightsList = NULL,
BPPARAM = SerialParam(),

Arguments
sceObj SingleCellExperiment object
formula regression formula for differential expression analysis
assays array of assay names to include in analysis. Defaults to assayNames (sceObj)
min.cells minimum number of observed cells for a sample to be included in the analysis
min.count used to compute a CPM threshold of CPM. cutoff = min.count/median(lib.size)*1e6
Passed to edgeR: : filterByExpr()
min.samples minimum number of samples passing cutoffs for cell cluster to be retained
min.prop minimum proportion of retained samples with CPM > CPM. cutoff
isCounts logical, indicating if data is raw counts

normalize.method
normalization method to be used by calcNormFactors

span Lowess smoothing parameter using by variancePartition: :voomWithDreamWeights()
quiet show messages
weightslList list storing matrix of precision weights for each cell type. If NULL precision

weights are set to 1

processAssays 59

BPPARAM parameters for parallel evaluation

other arguments passed to dream

Details

For each cell cluster, samples with at least min.cells are retained. Only clusters with at least
min.samples retained samples are kept. Genes are retained if they have at least min.count reads
in at least min. prop fraction of the samples. Current values are reasonable defaults, since genes that
don’t pass these cutoffs are very underpowered for differential expression analysis and only increase
the multiple testing burden. But values of min.cells = 2 and min. count = 2 are also reasonable to
include more genes in the analysis.

The precision weights are estimated using the residuals fit from the specified formula. These
weights are robust to changes in the formula as long as the major variables explaining the high-
est fraction of the variance are included.

If weightsList is NULL, precision weights are set to 1 internally.

Value

Object of class dreamletProcessedData storing voom-style normalized expression data

See Also

voomWithDreamWeights()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data

res.dl <- dreamlet(res.proc, ~group_id)

#

60

processOneAssay

processOneAssay

Processing expression data from assay

Description

For raw counts, filter genes and samples, then estimate precision weights using linear mixed model
weighting by number of cells observed for each sample. For normalized data, only weight by
number of cells

Usage

processOneAssay (
Y,
formula,
data,
n.cells,
min.cells = 5,
min.count = 2,
min.samples = 4,
min.prop = 0.4,
min.total.count = 15,
isCounts = TRUE,
normalize.method = "TMM",
span = "auto",
quiet = TRUE,

weights = NULL,
rescaleWeightsAfter = FALSE,
BPPARAM = SerialParam(),

Arguments

Yy
formul

data
n.cell
min.ce

min.co

a

s
11s

unt

min.samples

min.prop

matrix of counts or log2 CPM

regression formula for differential expression analysis

metadata used in regression formula

array of cell count for each sample

minimum number of observed cells for a sample to be included in the analysis

used to compute a CPM threshold of CPM. cutoff =min.count/median(lib.size)*1e6
Passed to edgeR: : filterByExpr()

minimum number of samples passing cutoffs for cell cluster to be retained

minimum proportion of retained samples with CPM > CPM. cutoff

min.total.count

minimum total count required per gene for inclusion

removeConstantTerms 61

isCounts logical, indicating if data is raw counts

normalize.method
normalization method to be used by calcNormFactors

span Lowess smoothing parameter using by variancePartition: :voomWithDreamWeights()
quiet show messages

weights matrix of precision weights

rescaleWeightsAfter

default = FALSE, should the output weights be scaled by the input weights
BPPARAM parameters for parallel evaluation

other arguments passed to dream

Value

EList object storing log2 CPM and precision weights

See Also

processAssays()

removeConstantTerms Remove constant terms from formula

Description

Remove constant terms from formula. Also remove categorical variables with a max of one example
per category

Usage

removeConstantTerms(formula, data)

Arguments
formula original formula
data data.frame
Details

Adapted from MoEClust: :drop_constants

Value

a formula, possibly with terms omitted.

62 residuals,dreamletResult-method

Examples

Valid formula
removeConstantTerms(~ group + extra, sleep)

there is no variation in 'group' in this dataset
removeConstantTerms(~ group + extra, sleep[1:3, 1)

residuals,dreamletResult-method
Extract residuals from dreamletResult

Description

Extract residuals from dreamletResult

Usage
S4 method for signature 'dreamletResult'
residuals(object, y, ..., type = c("response”, "pearson"))
Arguments
object dreamletResult object
y dreamletProcessedData object

other arguments

type compute either "response” residuals or "pearson” residuals.

Details
"response” residuals are the typical residuals returned from 1m(). "pearson” residuals divides
each residual value by its estimated standard error. This requires specifying y

Value

residuals from model fit

Examples
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
assay = "counts”,

run_mash 63

cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE

)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

extract typical residuals for each assay (i.e. cell type)
Return list with entry for each assay with for retained samples and genes
resid.lst <- residuals(res.dl)

Get Pearson residuals:
typical residuals scaled by the standard deviation

residPearson.lst <- residuals(res.dl, res.proc, type = "pearson”)
run_mash Run mash analysis on dreamlet results
Description

Run mash analysis on dreamlet results

Usage

run_mash(fit, coeflist)

Arguments
fit result from dreamlet ()
coeflist coefficient to be analyzed. Assumes 1) the null distribution of the two coeffi-
cients is simular, 2) the effects sizes are on the same scale, and 3) the effect
estimates should be shrunk towards each other. If these are not satisfied, run
separately on each coefficient
Details

Apply mashr analysis (Urbut et al. 2019) on the joint set of coefficients for each gene and cell type.
mashr is a Bayesian statistical method that borrows strength across tests (i.e. genes and cell types)
by learning the distribution of non-zero effects based the obesrved logFC and standard errors. The
method then estimates the posterior distributions of each coefficient based on the observed value
and the genome-wide emprical distribution.

mashr has been previously applied to differential expression in GTEx data using multiple tissues
from the same set of donors (Oliva et al. 2020).

https://cran.r-project.org/web/packages/mashr/index.html
https://www.gtexportal.org

64

run_mash

In single cell data, a given gene is often not sufficiently expressed in all cell types. So it is not
evaluated in a subsets of cell types, and its coefficient value is NA. Since mashr assumes coefficients
and standard errors for every gene and cell type pair, entries with these missing values are set to
have coef = 0, and se = 1e6. The output of mashr is then modified to set the corresponding values
to NA, to avoid nonsensical results downstream.

Value

a list storing the mashr model as model and the original coefficients as logFC.original

References

Oliva M, Munoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz AD, Cotter DJ, Parsana P, Kasela
S, Balliu B, Vinuela A, others (2020). “The impact of sex on gene expression across human tissues.”
Science, 369(6509), eaba3066. https://doi.org/10.1126/science.aba3066.

Urbut SM, Wang G, Carbonetto P, Stephens M (2019). “Flexible statistical methods for estimating
and testing effects in genomic studies with multiple conditions.” Nature genetics, 51(1), 187-195.
https://doi.org/10.1038/s41588-018-0268-8.

See Also

mashr: :mash_estimate_corr_em(), mashr::cov_canonical, mashr::mash_set_data

Examples

library(muscat)
library(mashr)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce[1:100, 1,
assay = "counts”,
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

run MASH model

This can take 10s of minutes on real data
This small datasets should take ~30s
res_mash <- run_mash(res.dl, "group_idstim")

https://doi.org/10.1126/science.aba3066
https://doi.org/10.1038/s41588-018-0268-8

seeErrors

extract statistics from mashr model
NA values indicate genes not sufficiently expressed
in a given cell type

original logFC
head(res_mash$logFC.original)

posterior mean for logFC
head(get_pm(res_mash$model))

how many gene-by-celltype tests are significant
i.e. if a gene is significant in 2 celltypes, it is counted twice
table(get_lfsr(res_mash$model) < 0.05, useNA = "ifany")

how many genes are significant in at least one cell type
table(apply(get_lfsr(res_mash$model), 1, min, na.rm = TRUE) < 0.05)

how many genes are significant in each cell type
apply(get_lfsr(res_mash$model), 2, function(x) sum(x < ©@.05, na.rm = TRUE))

examine top set of genes
which genes are significant in at least 1 cell type
sort(names(get_significant_results(res_mash$model)))[1:10]

Lets examine ENO1
There is a lot of variation in the raw logFC
res_mash$logFC.original["ENO1",]

posterior mean after borrowing across cell type and genes
get_pm(res_mash$model) ["ENO1",]

forest plot based on mashr results
plotForest(res_mash, "ENO1")

volcano plot based on mashr results
yaxis uses local false sign rate (1fsr)
plotVolcano(res_mash)

Comment out to reduce package runtime

gene set analysis using mashr results
library(zenith)

go.gs = get_GeneOntology("CC", to="SYMBOL")
df_gs = zenith_gsa(res_mash, go.gs)

T

ETS

Heatmap of results
plotZenithResults(df_gs, 2, 1)

65

seeErrors Get error text

66 seeErrors

Description

Get error text

Usage
seeErrors(obj)

S4 method for signature 'dreamletResult'
seeErrors(obj)

S4 method for signature 'dreamletProcessedData’
seeErrors(obj)

S4 method for signature 'vpDF'
seeErrors(obj)

Arguments

obj A dreamletResult object

Value

tibble storing error text

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show errors
but none are reported
res.err = seeErrors(res.dl)

show,dreamletResult-method

67

show, dreamletResult-method
Show object

Description

Show object
Show object

Usage

S4 method for signature 'dreamletResult'
show(object)

S4 method for signature 'dreamletProcessedData
show(object)

Arguments

object dreamletProcessedData object

Value

show data stored in object

sortCols,vpDF-method Sort variance partition statistics

Description

Sort variance partition statistics

Usage
S4 method for signature 'vpDF'
sortCols(
X,
FUN = sum,
decreasing = TRUE,
last = c("Residuals”, "Measurement.error”),

68

stackAssays

Arguments

X object returned by fitVarPart()

FUN function giving summary statistic to sort by. Defaults to sum
decreasing logical. Should the sorting be increasing or decreasing?

last columns to be placed on the right, regardless of values in these columns

other arguments to sort

Value

data.frame with columns sorted by mean value, with Residuals in last column

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Summarize variance fractions genome-wide for each cell type
plotVarPart(sortCols(vp))

stackAssays Stack assays from pseudobulk

Description

Stack assays from pseudobulk to perform analysis across cell types

Usage

stackAssays(pb, assays = assayNames(pb))

stackAssays 69

Arguments
pb pseudobulk SingleCellExperiment from aggregateToPseudoBulk()
assays array of assay names to include in analysis. Defaults to assayNames (pb)
Value

pseudobulk SingleCellExperiment cbind’ing expression values and rbind’ing colData. The col-
umn stackedAssay in colData() stores the assay information of the stacked data.

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

Replace space with underscore, and remove "+" to avoid issue downstream
example_sce$cluster_id <- gsub(” ", "_", example_sce$cluster_id)
, example_sce$cluster_id)

example_sce$cluster_id <- gsub("\\+",

nn

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

Stack assays for joint analysis
pb.stack <- stackAssays(pb)

voom-style normalization
stackedAssay (i.e. cell type) can now be included as a covariate
res.proc <- processAssays(pb.stack, ~ group_id + stackedAssay)

Examine coding of covariates
colData:
head(colData(res.proc))

Examine coding of covariates
metadata:
head(metadata(res.proc))

Variance partitioning analysis

Model contribution of Donor (id), stimulation status (group_id), and cell type (stackedAssay)
form <- ~ (1]id) + (1|group_id) + (1|stackedAssay)

vp <- fitVarPart(res.proc, form)

Summarize variance fractions across cell types
plotVarPart(sortCols(vp))

70 tabToMatrix

Interaction analysis allows group_id

to have a different effect within each stackedAssay

form <- ~ (1]id) + (1|group_id) + (1|stackedAssay) + (1]|group_id:stackedAssay)
vp2 <- fitVarPart(res.proc, form)

plotVarPart(sortCols(vp2))
plotVarPart(sortCols(vp2))

Differential expression analysis
Testing differences between cell types

In a real data you want to test the full model,
but this dataset is too small
form <- ~ (1]id) + (1|group_id) + (1|stackedAssay) + group_id:stackedAssay + 0

In this small dataset, just test simulation-by-celltype interaction term

Here, test if the effect of stimulation (i.e. difference between stimulated and

controls) is different between B cells and monocytes

contrasts <- c(Diff = "(group_idstim:stackedAssayB_cells - group_idctrl:stackedAssayB_cells) -
(group_idstim:stackedAssayCD14_Monocytes - group_idstim:stackedAssayCD14_Monocytes)"”)

form <- ~ group_id:stackedAssay + @

fit <- dreamlet(res.proc, form, contrasts = contrasts)

Top genes
topTable(fit, coef='Diff', number=3)

Plot example
df <- extractData(res.proc, assay = "stacked”, genes = c("ISG20"))

df <- df[df$stackedAssay %in% c("B_cells"”, "CD14_Monocytes"),]

ggplot(df, aes(group_id, ISG20)) +
geom_boxplot() +
theme_bw() +
theme(aspect.ratio=1) +
facet_wrap(~ stackedAssay)

tabToMatrix Convert results table to matrix

Description

Convert results table to matrix

Usage

tabToMatrix(tab, col, rn = "ID", cn = "assay")

topTable,dreamletResult-method

Arguments
tab results table from topTable()
col which column to extract
rn column id storing rownames
cn column id storing colnames
Value

matrix storing values of column col in rows defind by rn and columns defined by cn

71

topTable,dreamletResult-method

Table of Top Genes from dreamlet fit

Description

Extract a table of the top-ranked genes from a dreamlet fit.

Usage

S4 method for signature 'dreamletResult'

topTable(
fit,
coef = NULL,
number = 10,
genelist = NULL,
adjust.method = "BH",
sort.by = "P",
resort.by = NULL,
p.value = 1,

1fc = o,

confint = FALSE
)

Arguments

fit dreamletResult object
coef coef
number number
genelist genelist
adjust.method adjust.method
sort.by sort.by
resort.by resort.by
p.value p-value
1fc Ifc

confint confint

72 vpDF-class

Value

data. frame storing hypothesis test for each gene and cell type

See Also

limma: : topTable(), variancePartition: :topTable()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

extract results using limma-style syntax

combines all cell types together

adj.P.Val gives study-wide FDR

topTable(res.dl, coef = "group_idstim”, number = 3)

vpDF-class Class vpDF

Description

Class vpDF stores results for each gene for each assay

Value

none

none

zenith_gsa,dreamletResult,GeneSetCollection-method

zenith_gsa,dreamletResult,GeneSetCollection-method
Perform gene set analysis using zenith

Description

Perform a competitive gene set analysis accounting for correlation between genes.

Usage

S4 method for signature 'dreamletResult,GeneSetCollection'
zenith_gsa(

fit,

geneSets,

coefs,

use.ranks = FALSE,

n_genes_min = 10,

inter.gene.cor = 0.01,

progressbar = TRUE,

S4 method for signature 'dreamlet_mash_result,GeneSetCollection'
zenith_gsa(

fit,

geneSets,

coefs,

use.ranks = FALSE,

n_genes_min = 10,

inter.gene.cor = 0.01,

progressbar = TRUE,

)

Arguments
fit results from dreamlet ()
geneSets GeneSetCollection
coef's coefficients to test using topTable(fit, coef=coefs[i])
use.ranks do a rank-based test TRUE or a parametric test FALSE? default: FALSE
n_genes_min minimum number of genes in a geneset

inter.gene.cor if NA, estimate correlation from data. Otherwise, use specified value
progressbar if TRUE, show progress bar

other arguments

74 zenith_gsa,dreamletResult,GeneSetCollection-method

Details

This code adapts the widely used camera() analysis (Wu and Smyth 2012) in the 1imma package
(Ritchie et al. 2015) to the case of linear (mixed) models used by variancePartition: :dream().

Value

data. frame of results for each gene set and cell type

data. frame of results for each gene set and cell type

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,

assay = "counts”,

cluster_id = "cluster_id",

sample_id = "sample_id",

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Load Gene Ontology database

use gene 'SYMBOL', or 'ENSEMBL' id

use get_MSigbB() to load MSigDB
library(zenith)

go.gs <- get_GeneOntology("CC", to = "SYMBOL")

Run zenith gene set analysis on result of dreamlet
res_zenith <- zenith_gsa(res.dl, go.gs, "group_idstim", progressbar = FALSE)

for each cell type select 3 genesets with largest t-statistic
and 1 geneset with the lowest

Grey boxes indicate the gene set could not be evaluted because
to few genes were represented

plotZenithResults(res_zenith, 3, 1)

[,dreamletResult, ANY,ANY,ANY-method 75

[,dreamletResult,ANY,ANY,ANY-method
Subset with brackets

Description

Subset with brackets
Subset with brackets

Usage
S4 method for signature 'dreamletResult,ANY,ANY,ANY'
x[i]

S4 method for signature 'dreamletProcessedData,ANY,ANY,ANY'
x[i]

Arguments
X dreamletProcessedData object
i indeces to extract

Value

entries stored at specified index

Index

[,dreamletProcessedData, ANY,ANY, ANY-method 11
([,dreamletResult,ANY,ANY, ANY-method),assayNames,dreamletResult-method, 11
75 assayNames, vpDF , vpDF-method
[,dreamletProcessedData,dreamletProcessedData-method (assayNames,dreamletResult-method),
([,dreamletResult,ANY,ANY,ANY-method), 11
75 assayNames, vpDF-method
[,dreamletResult,ANY,ANY,ANY-method, (assayNames,dreamletResult-method),
75 11

[,dreamletResult,dreamletResult-method
([,dreamletResult,ANY,ANY,ANY-method),BiocParallelParam, 4, 6, 8

75 buildClusterTreeFromPB, 11
aggregateNonCountSignal, 4 cellCounts, 12
aggregateToPseudoBulk, 5 cellSpecificityValues-class, 13
aggregateVar, 7 cellTypeSpecificity, 14
as.dreamletResult, 9 checkFormula, 15
assay,dreamletProcessedData, ANY-method coefNames, 16

(assay,dreamletResult,ANY-method), coefNames,dreamletResult-method

10 (coefNames), 16
assay,dreamletProcessedData,dreamletProcessedbatbatettiodamletProcessedData-method,

(assay,dreamletResult,ANY-method), 17

10 colData<-,dreamletProcessedData,ANY-method,
assay,dreamletResult,ANY-method, 10 17

assay,dreamletResult,dreamletResult-method compositePosteriorTest, 18
(assay,dreamletResult,ANY-method), computeCellCounts, 19

10 computeLogCPM, 20
assay, vpDF ,ANY-method computeNormCounts, 21
(assay,dreamletResult, ANY-method),
10 DelayedMatrixStats, 6
assay, vpDF, vpDF-method details, 22
(assay,dreamletResult,ANY-method), details,dreamletProcessedData-method
10 (details), 22
assayNames,dreamletProcessedData,dreamletProcdsteilDatdraathetResul t-method
(assayNames,dreamletResult-method), (details), 22
11 details, vpDF-method (details), 22
assayNames,dreamletProcessedData-method diffVar,dreamletResult,dreamletResult-method
(assayNames,dreamletResult-method), (diffVar,dreamletResult-method),
11 23

assayNames,dreamletResult,dreamletResul t-methdiif fVar,dreamletResult-method, 23
(assayNames,dreamletResult-method), dreamlet, 25

76

INDEX 77

dreamlet,dreamletProcessedData-method plotGeneHeatmap,dreamletResult-method
(dreamlet), 25 (plotGeneHeatmap), 44
dreamlet_mash_result-class, 31 plotHeatmap, 46
dreamletCompareClusters, 27 plotHeatmap,cellSpecificityValues,cellSpecificityValues-me
dreamletProcessedData-class, 30 (plotHeatmap), 46
dreamletResult-class, 31 plotHeatmap,cellSpecificityValues-method
dropRedundantTerms, 32 (plotHeatmap), 46
plotHeatmap,data.frame,data. frame-method
equalFormulas, 32 (plotHeatmap), 46

extractData, 33 plotHeatmap,data.frame-method
extractData,dreamletProcessedData, character-method (plotHeatmap), 46

(eXthCtDiFa)’33 q hod plotHeatmap,matrix,matrix-method
extractData,dreamletProcessedData-metho (plotHeatmap), 46

(extractData), 33 plotHeatmap,matrix-method

fitvarPart, 34 (plotHeatmap), 46
fitVarPart,dreamletProcessedData-method PLotPCA, 47
(fitvarPart), 34 plotPCA,list-method (plotPCA), 47
plotPercentBars,cellSpecificityValues,cellSpecificityValue
getTreat,dreamletResult,dreamletResult-method (plotPercentBars, vpDF-method),
(getTreat,dreamletResult-method), 49
36 plotPercentBars,cellSpecificityValues-method
getTreat,dreamletResult-method, 36 (plotPercentBars, vpDF-method),
49
meta_analysis, 37 plotPercentBars, vpDF, vpDF-method
metadata,dreamletProcessedData,dreamletProcessedData-msldwaeb rcentBars, vpDF-method),
(metadata,dreamletProcessedData-method), 49
37 plotPercentBars, vpDF-method, 49
metadata,dreamletProcessedData-method, plotProjection, 50
37 plotVarPart,DataFrame,DataFrame-method
outl%er,39 gzlotVarPart,DataFrame—methodL
outlierByAssay, 40 plotVarPart,DataFrame-method, 51
plotBeeswarm, 41 plotviolin, 53
plotCellComposition, 42 plotViolin,cellSpecificityValues,cellSpecificityValues-met
plotCellComposition,data.frame-method (plotViolin), 53
(plotCellComposition), 42 plotViolin,cellSpecificityValues-method
plotCellComposition,matrix-method (plotViolin), 53
(plotCellComposition), 42 plotVolcano, 54
plotCellComposition,SingleCellExperiment-methelotVolcano,dreamlet_mash_result,dreamlet_mash_result-meth
(plotCellComposition), 42 (plotVolcano), 54
plotForest, 43 plotVolcano,dreamlet_mash_result-method
plotForest,dreamlet_mash_result-method (plotVolcano), 54
(plotForest), 43 plotVolcano,list,list-method
plotForest,dreamletResult-method (plotVolcano), 54
(plotForest), 43 plotVolcano,list-method (plotVolcano),
plotGeneHeatmap, 44 54

plotGeneHeatmap,dreamletResult,dreamletResul tphetYioticano,MArrayLM,MArrayLM-method
(plotGeneHeatmap), 44 (plotVolcano), 54

78 INDEX

plotVolcano,MArrayLM-method tabToMatrix, 70

(plotVolcano), 54 topTable,dreamletResult,dreamletResult-method
plotVoom, 56 (topTable,dreamletResult-method),
plotVoom,dreamletProcessedData,dreamletProcessedData-thethod

(plotVoom), 56 topTable,dreamletResult-method, 71
plotVoom,dreamletProcessedData-method

(plotVoom), 56 vpDF-class, 72
plotVoom,EList-method (plotVoom), 56)]
plotVoom,list,list-method (plotVoom), 56 zenith_gsa,dreamlet_mash_result,GeneSetCollection, ANY-meth

print,dreamletProcessedData,dreamletProcessedData—meﬂﬁﬁflth—gsa’dreamletReSUIt’GenesetCOIIeCtlon_methm

(print,dreamletResult-method), . 73 .

57 zenith_gsa,dreamlet_mash_result,GeneSetCollection-method
print,dreamletProcessedData-method (zenith_gsa,dreamletResult,GeneSetCollection-metho

(print,dreamletResult-method),) 73 .

57 zenith_gsa,dreamletResult,GeneSetCollection, ANY-method
print,dreamletResult,dreamletResul t-method (zenith_gsa,dreamletResult,GeneSetCollection-metho

(print,dreamletResult-method), . 73 .

57 zenith_gsa,dreamletResult,GeneSetCollection-method,

73

print,dreamletResult-method, 57
processAssays, 58
processOneAssay, 60

removeConstantTerms, 61
residuals,dreamletResult,dreamletResult-method
(residuals,dreamletResult-method),
62
residuals,dreamletResult-method, 62
run_mash, 63

seeErrors, 65
seeErrors,dreamletProcessedData-method
(seeErrors), 65
seeErrors,dreamletResult-method
(seeErrors), 65
seeErrors, vpDF-method (seeErrors), 65
Seurat, 6
show,dreamletProcessedData,dreamletProcessedData-method
(show,dreamletResult-method),
67
show, dreamletProcessedData-method
(show,dreamletResult-method),
67
show,dreamletResult,dreamletResult-method
(show,dreamletResult-method),
67
show,dreamletResult-method, 67
SingleCellExperiment, 4, 6, 8
sortCols, vpDF-method, 67
stackAssays, 68

	aggregateNonCountSignal
	aggregateToPseudoBulk
	aggregateVar
	as.dreamletResult
	assay,dreamletResult,ANY-method
	assayNames,dreamletResult-method
	buildClusterTreeFromPB
	cellCounts
	cellSpecificityValues-class
	cellTypeSpecificity
	checkFormula
	coefNames
	colData,dreamletProcessedData-method
	colData<-,dreamletProcessedData,ANY-method
	compositePosteriorTest
	computeCellCounts
	computeLogCPM
	computeNormCounts
	details
	diffVar,dreamletResult-method
	dreamlet
	dreamletCompareClusters
	dreamletProcessedData-class
	dreamletResult-class
	dreamlet_mash_result-class
	dropRedundantTerms
	equalFormulas
	extractData
	fitVarPart
	getTreat,dreamletResult-method
	metadata,dreamletProcessedData-method
	meta_analysis
	outlier
	outlierByAssay
	plotBeeswarm
	plotCellComposition
	plotForest
	plotGeneHeatmap
	plotHeatmap
	plotPCA
	plotPercentBars,vpDF-method
	plotProjection
	plotVarPart,DataFrame-method
	plotViolin
	plotVolcano
	plotVoom
	print,dreamletResult-method
	processAssays
	processOneAssay
	removeConstantTerms
	residuals,dreamletResult-method
	run_mash
	seeErrors
	show,dreamletResult-method
	sortCols,vpDF-method
	stackAssays
	tabToMatrix
	topTable,dreamletResult-method
	vpDF-class
	zenith_gsa,dreamletResult,GeneSetCollection-method
	[,dreamletResult,ANY,ANY,ANY-method
	Index

