Package ‘dominatR’

February 1, 2026

Title Feature Dominance-based R Package for Genomic Data
Version 0.99.5
Date 2025-09-10

Description
dominatR is an R package for quantifying and visualizing feature dominance in datasets. domi-
natR applies concepts drawn from physics such as center of mass and shannon's entropy to effec-
tively visualize features (e.g. genes) that are present within a specific context or condi-
tion. The package integrates, dataframes, matrices and SummerizedExperiment ob-
jects and is able to perform common genomic normalization methods. The key aspect is the gen-
eration of plots that serve to highlight context-relevant feature dominance.

License MIT + file LICENSE

URL https://github.com/VanBortleLab/dominatR,
https://vanbortlelab.github.io/dominatR/

BugReports https://github.com/VanBortleLab/dominatR/issues
Encoding UTF-8

LazyData false

Depends R (>=4.5.0)

Imports scales, ggnewscale, SummarizedExperiment, dplyr, rlang,
ggforce, geomtextpath, ggplot2

Suggests BiocStyle, airway, tidyverse, knitr, rmarkdown, testthat (>=
3.0.0), dominatRData

VignetteBuilder knitr

biocViews Visualization, Normalization, Classification, GeneExpression
Config/testthat/edition 3

RoxygenNote 7.3.3

Config/Needs/website rmarkdown

git_url https://git.bioconductor.org/packages/dominatR

git_branch devel

git_last_commit 2c155d0

https://github.com/VanBortleLab/dominatR
https://vanbortlelab.github.io/dominatR/
https://github.com/VanBortleLab/dominatR/issues

2 centmass
git_last_commit_date 2025-11-18
Repository Bioconductor 3.23
Date/Publication 2026-02-01
Author Simon Lizarazo [aut, cre] (ORCID:
<https://orcid.org/0009-0001-8974-6225>),
Ethan Chen [aut],
Rajendra K C [aut],
Kevin Van Bortle [aut, cph]
Maintainer Simon Lizarazo <silizarazoch@gmail.com>
Contents
CENLIMASS . .« & v v v v e 2
cpm_normalization e e e e e e 4
ENITOPY + + v v e o e 6
minmax_normalization e e 7
plot_circle 10
plot_circle_frequency L 17
plot_rope 21
plot_triangle oL 25
Qentropy e e e e 29
quantile_normalization L 31
rpkm_normalization 33
tpm_normalization L. e e e 35
Index 38
centmass Compute the "center of mass” for rows of a data frame or Summa-
rizedExperiment
Description

For each row of the numeric data, centmass() computes a 2D center of mass with coordinates

s M

(comx, comy). The x_coord and y_coord vectors specify the location for each column’s "mass."

The original usage assumes a ternary coordinate system by default, but this can be generalized to
any scenario where columns represent discrete "masses" at known (x,y) positions.

By default, x_coord =c(@, 1, 0.5) andy_coord = c(@, @, sqrt(3)/2), which correspond to the
corners of an equilateral triangle (often used in ternary plots).

https://orcid.org/0009-0001-8974-6225

centmass 3

Usage

centmass(
X,
x_coord = c(@0, 1, 0.5),

y_coord = c(0, @, sqrt(3)/2),
assay_name = NULL
)
Arguments
X A data.frame (with numeric columns) or a SummarizedExperiment.
x_coord Numeric vector of length equal to the number of columns in x, specifying the
x-coordinates of each column’s mass.
y_coord Numeric vector of length equal to the number of columns in x, specifying the
y-coordinates of each column’s mass.
assay_name If x is a SummarizedExperiment, the name of the assay to use. Defaults to the
first assay if not specified.
Value

¢ If x is a data.frame, returns a new data. frame with columns comx and comy.

 If x is a SummarizedExperiment, returns the same object but with two new columns comx and
comy in rowData(x).

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se = airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seg_len(nrow(se)), size = min(1000, nrow(se)))
se <- se[idx, 1]

Let's subset for the first 3 columns for this example
se = se[,1:3]

1) Using a data.frame

df = assay(se) |> as.data.frame()

df = centmass(df)
head(df)

4 cpm_normalization

se2 = centmass(se)

X and Y coordinates are stored in rowData(se2)
head(rowData(se2))

cpm_normalization Counts Per Million normalization

Description

Normalizes a count matrix (or a SummarizedExperiment assay) by the counts-per-million (CPM)
method. Specifically:

1. If log_trans = TRUE, a log2(x + 1) transform is applied afterward.

Usage

cpm_normalization(
X,
log_trans = FALSE,
assay_name = NULL,
new_assay_name = NULL

)
Arguments
X A matrix, data.frame, or a SummarizedExperiment object.
log_trans Logical. If TRUE, apply log2(... + 1) transform to the CPM-normalized val-
ues.
assay_name If x is a SummarizedExperiment, name of the assay to normalize (defaults to

the first assay). Ignored otherwise.

new_assay_name If x is a SummarizedExperiment, name of a new assay where results should be
stored (defaults to NULL, meaning the existing assay is overwritten).

Value

e If x isamatrix or data.frame, returns a matrix of CPM-normalized (and optionally log2-
transformed) counts.

 If x is a SummarizedExperiment, returns the same SummarizedExperiment object with the
specified assay replaced or a new assay created containing the CPM-normalized data.

cpm_normalization

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se = airway
Only use a random subset of 1000 rows
set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))
se <- sel[idx,]

df = assay(se)

Without log transformation
df1 = cpm_normalization(df, log_trans = FALSE)

df1[1:5,1:5]

With log transformation
df1 = cpm_normalization(df, log_trans = TRUE)

df1[1:5,1:5]

2) Using a SummarizedExperiment

If now new_assay_name is provided, then overwrites existing assay
se2 = cpm_normalization(se, log_trans = FALSE)

se2
head(assay(se2))

If new new_assay_name, normalization stored in a new object
se2 = cpm_normalization(se, log_trans = FALSE, new_assay_name = 'cpm_counts')

se2
head(assay(se2, 'cpm_counts'))

A specific assay can also be selected
new_matrix = matrix(data = sample(x = seq(1, 100000),
size = nrow(se) * ncol(se),
replace = TRUE),
nrow = nrow(se),
ncol = ncol(se))
rownames(new_matrix) = rownames(se)
colnames(new_matrix) = colnames(se)

6 entropy

Creating a new assay called new counts
assay(se, 'new_counts') = new_matrix

se2 = cpm_normalization(se, new_assay_name = 'cpm_counts_new', assay_name =
"new_counts"')

se2
head(assay(se2, 'cpm_counts_new'))

entropy Compute Shannon Entropy on row-normalized data

Description

Compute Shannon Entropy on row-normalized data

Usage
entropy(x, assay_name = NULL, new_assay_name = "Entropy"”)
Arguments
X A data.frame (with numeric columns) or a SummarizedExperiment (with an as-
say of numeric data).
assay_name (SummarizedExperiment only) The name of the assay to transform and compute

Entropy on. If NULL, uses the first assay.

new_assay_name If you prefer to store Q-values in a *new* assay, provide a name. By default
’Entropy’

Value

* If x is a data.frame: returns the same data.frame in which numeric columns have been replaced
by their row-wise proportions, and an Entropy column is appended.

o If x is a SummarizedExperiment: returns the same SummarizedExperiment in with a new
assay (Default name is Entropy) and rowData(x) $Entropy is added.

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se = airway
Only use a random subset of 1000 rows

set.seed(123)
idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))

minmax_normalization

se <- se[idx,]

df = assay(se) |> as.data.frame()
df = entropy(df)

The function adds a new column called Entropy and transform all
the counts accordingly
head(df)

The function adds a new assay called 'Entropy' with the transformed
counts.

This name can be modified with the 'new_assay_name' parameter

In the rowData dataframe a new column called Entropy is added.

se2 <- entropy(se, new_assay_name = 'Entropy')

se2

In case the experiment has multiple assays, the function allows you to
choose which assay to use.
new_matrix = matrix(data = sample(x = seq(1, 100000),
size = nrow(se) * ncol(se),
replace = TRUE),
nrow = nrow(se),
ncol = ncol(se))
rownames(new_matrix) = rownames(se)
colnames(new_matrix) = colnames(se)

Creating a new assay called new counts
assay(se, 'new_counts') = new_matrix

Saving the entropy values as Entropy_newmatrix using the assay
counts'
se2 = entropy(se,

new_assay_name = 'Entropy_newmatrix',

assay_name = 'new_counts')

new

se2

minmax_normalization Min-Max Normalization

8 minmax_normalization

Description

Scales each column of a matrix (or SummarizedExperiment assay) so that the minimum value in
that column is mapped to new_min and the maximum value is mapped to new_max

Usage
minmax_normalization(
X,
new_min = @,
new_max = 1

assay_name = NULL,
new_assay_name = NULL

)
Arguments
X A numeric matrix, data.frame, or SummarizedExperiment.
new_min The lower bound of the new range (default 0).
new_max The upper bound of the new range (default 1).
assay_name If x is a SummarizedExperiment, name of the assay to normalize. Defaults to

the first assay if none is specified.

new_assay_name If x is a SummarizedExperiment, name of a new assay to store the normalized
data. If NULL, overwrites the assay specified by assay_name.

Value
e If x is a data.frame or matrix, returns a matrix of column-wise scaled values (same dimensions
as x).

e If x is a SummarizedExperiment, returns the same SummarizedExperiment object with the
chosen or new assay replaced by the scaled values.

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se <- airway
Only use a random subset of 1000 rows
set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))
se <- sel[idx, 1]

df <- assay(se)

minmax_normalization

df1 <- minmax_normalization(df)
apply(df1, 2, range)

Using a new range
df1 <- minmax_normalization(df, new_min = 5, new_max = 10)

apply(df1, 2, range)

If now new_assay_name is provided, then overwrites existing assay
se2 <- minmax_normalization(se)

apply(assay(se2), 2, range)

If new new_assay_name, normalization stored in a new object
se2 <- minmax_normalization(se, new_assay_name = 'minmax_counts')

apply(assay(se2, 'minmax_counts'), 2, range)

A specific assay can also be selected
new_matrix <- matrix(data = sample(x = seq(1, 100000),
size = nrow(se) * ncol(se),
replace = TRUE),
nrow = nrow(se),
ncol = ncol(se))
rownames(new_matrix) <- rownames(se)
colnames(new_matrix) <- colnames(se)

Creating a new assay called new counts
assay(se, 'new_counts') <- new_matrix

se2 <- minmax_normalization(se,
new_assay_name = 'minmax_counts_new',
assay_name = 'new_counts')

apply(assay(se2, 'minmax_counts_new'), 2, range)

Using a different range
se2 <- minmax_normalization(se,
new_assay_name = 'minmax_counts_new',
assay_name = 'new_counts',
new_min = 10,
new_max = 20)

apply(assay(se2, 'minmax_counts_new'), 2, range)

10 plot_circle

plot_circle Circular Dominance Plot (More than 3 variables)

Description

Produces a radial dominance plot in which each observation is located by:

* Angle (t) — the variable with the greatest value (ties broken at random).

* Radius (r) — a monotone mapping of the row-wise Shannon entropy: points with low entropy
(one variable dominates) are near the edge; points with high entropy lie toward the centre.

The circle is partitioned into n coloured slices; optional factor information can colour/jitter points
independently. Labels for each slice may be drawn as curved text on the circle or shown in a legend.

Usage

plot_circle(
X,
n,
column_variable_factor = NULL,
variables_highlight = NULL,
entropyrange = c(@, Inf),
magnituderange = c(@, Inf),
background_alpha_polygon = 0.05,
background_polygon = NULL,
background_na_polygon = "whitesmoke”,
point_size = 1,
point_fill_colors = NULL,

point_fill_na_colors = "whitesmoke",
point_line_colors = NULL,
point_line_na_colors = "whitesmoke”,

straight_points = TRUE,
line_col = "gray90",
out_line = "black”,

label = "legend”,
text_label_curve_size = 3,
assay_name = NULL,
output_table = TRUE

)
Arguments
X A numeric data.frame, matrix, or a SummarizedExperiment.
n Integer (> 3). How many numeric variables to visualise. Must match length(column_variable_factor

when supplied.

plot_circle 11

column_variable_factor
Character. Name of a column (or rowData column in a SummarizedExperiment)
holding a categorical variable whose levels will colour the points. If NULL (de-
fault) points are coloured by their dominant variable.

variables_highlight
Character vector naming which variables should receive curved text labels when

label = "curve". Defaults to all variables.
entropyrange, magnituderange

Numeric length-2 vectors. Rows falling outside either interval are excluded from
the plot/data.
background_alpha_polygon
Alpha level (0-1) for the coloured background slices.
background_polygon
Character vector of slice fill colours; defaults to scales: :hue_pal () (n). background_na_polygon
sets the colour for missing values.
background_na_polygon, point_fill_na_colors, point_line_na_colors
Sets the colour for missing values.
point_size Numeric; plotted point size.
point_fill_colors, point_line_colors
Optional colour vectors for point fill / outline.
straight_points
Logical. If TRUE points are plotted in a straight line.

line_col Colour for the inner grid / slice borders.
out_line Colour for the outermost circle.
label Either "legend” (default) to list variables in a legend or "curve” to print them

around the rim.
text_label_curve_size

Numeric font size for curved labels.
assay_name (SummarizedExperiment only) Which assay to use. Defaults to the first assay.

output_table Logical. Also return the underlying data frame?
Details

Radius mapping: A linear map is used

n—2H

n—1

r = 100
where H is the Shannon entropy of the row after log base 2, so H € [0, log, n].

Value
If output_table = TRUE a list with:

e circle_plot — a ggplot object;

* data — the augmented data frame containing entropy, radius, (x,y) coordinates, dominant
variable and optional factor.

Otherwise only the ggplot object is returned.

12 plot_circle

Examples

library(SummarizedExperiment)
library(airway)
library(tidyverse)
data('airway')

se = airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(500, nrow(se)))
se <- sel[idx,]

Normalize the data first using tpm_normalization
rowData(se)$gene_length = rowData(se)$gene_seq_end
- rowData(se)$gene_seq_start

se = tpm_normalization(se, log_trans = TRUE, new_assay_name = 'tpm_norm')

1) Using a data.frame

df <- assay(se, 'tpm_norm') |> as.data.frame()

For simplicity let's rename the columns
colnames(df) <- paste('Column_', 1:8, sep ='")

Default
plot_circle(
x = df,
n =238,
entropyrange = c(0, 3),
magnituderange = c(@, Inf),
label = 'legend', output_table = FALSE
)

Filtering by entropy, 8 variables, max entropy value is log2(8)
plot_circle(

x = df,
n =238,
entropyrange = c(2, 3),
magnituderange = c(@, Inf),
label = 'legend', output_table = FALSE
)
plot_circle(
x = df,
n =38,
entropyrange = c(o, 2),
magnituderange = c(@, Inf),
label = 'legend', output_table = FALSE

plot_circle

Aesthetics modification
plot_circle(

x = df,

n =38,

entropyrange = c(o, 2),
magnituderange = c(@, Inf),
label = 'curve',
output_table = FALSE

It is possible to highlight only a specific variable
plot_circle(

x = df,

n =238,

entropyrange = c(o, 2),
magnituderange = c(0@, Inf),

label = 'legend',
output_table = FALSE,
background_alpha_polygon = 0.2,

background_na_polygon = 'transparent',
background_polygon = c('Column_1' = 'indianred',
'Column_3"' = 'lightblue',
'Column_5"' = 'lightgreen'),
point_fill_colors = c('Column_1' = 'darkred',
'Column_3"' = 'darkblue',
'Column_5"' = 'darkgreen'),
point_line_colors = c('Column_1' = 'black',
'Column_3"' = 'black',

'Column_5" = 'black")
)

Let's create a factor column in our df
df$factor <- sample(c('A', 'B', 'C', 'D'), size = nrow(df), replace = TRUE)

It is possible to visualize things by this specific factor column using
column_variable_factor
plot_circle(

x = df,

n =38,

column_variable_factor = 'factor',
entropyrange = c(o, 2),
magnituderange = c(@, Inf),

label = 'legend',
output_table = FALSE,
background_alpha_polygon = 0.2,

background_na_polygon = 'transparent',

background_polygon = c('Column_1' = 'indianred',
'Column_3' = 'lightblue',
'Column_5"' = 'lightgreen')

)

Colors can be modified

13

14

plot_circle(

x = df,

n =238,

column_variable_factor = 'factor',
entropyrange = c(o, 2),
magnituderange = c(0@, Inf),
label = 'curve',

output_table = FALSE,
background_alpha_polygon = 0.02,

background_na_polygon = 'transparent',

point_fill_colors = c('A' = 'black',
'‘B' = 'gray',
'C' = 'white',
'D' = 'orange'),

point_line_colors = c('A' = 'black',
'B' = 'gray',
'C' = 'white',
‘D' = 'orange')

)

Size of the points can be modified too
plot_circle(
x = df,
n =238,
point_size = 2,
column_variable_factor = 'factor',
entropyrange = c(o, 2),
magnituderange = c(@, Inf),
label = 'curve',
output_table = FALSE,
background_alpha_polygon = 0.02,

background_na_polygon = 'transparent',

point_fill_colors = c('A' = 'black',
‘B' = ‘'gray’,
'C' = 'white',
'D' = 'orange'),

point_line_colors = c('A' = 'black',
‘B' = 'gray’,
'C' = 'white',
'D' = 'orange')

)

Retrieving a dataframe with the results used for plotting,
set output_table <- TRUE
plot <- plot_circle(
x = df,
n =38,
point_size = 2,
column_variable_factor = 'factor',
entropyrange = c(o, 2),
magnituderange = c(@, Inf),
label = 'curve',
output_table = TRUE,

plot_circle

plot_circle

background_alpha_polygon = 0.02,

background_na_polygon = 'transparent',

point_fill_colors = c('A' = 'black',
‘B' = ‘'gray’,
'C' = 'white',
'D' = 'orange'),

point_line_colors = c('A' = 'black',
'B' = 'gray’,
'C' = 'white',
'D' = 'orange')

The first object is the plot
plot[[1]1]

The second the dataframe with information for each row, including

Entropy and the variable that dominates that particular observation.

head(plot[[2]])

1) Using a SummarizedExperiment

Changing column names
colnames(se) <- paste('Column_', 1:8, sep ='")
Default
plot_circle(

X = se,

n =38,

entropyrange = c(0o, 3),

magnituderange = c(@, Inf),

label = 'legend',
output_table = FALSE,
assay_name = 'tpm_norm'

Filtering High Entropy genes
plot_circle(

X = se,
n =238,

entropyrange = c(0, 1.5),
magnituderange = c(@, Inf),

label = 'legend',
output_table = FALSE,
assay_name = 'tpm_norm'

Filtering Low Entropy genes

15

16

plot_circle(

X = se,
n =238,

entropyrange = c(2, 3),
magnituderange = c(@, Inf),

label = 'legend',
output_table = FALSE,
assay_name = 'tpm_norm'

Using a character column from rowData

plot_circle(

X = se,

n =38,

column_variable_factor = 'gene_biotype',
entropyrange = ¢c(2,3),
magnituderange = c(@, Inf),

label = 'legend',
output_table = FALSE,

assay_name = 'tpm_norm'
)
plot_circle(
X = se,
n =238,
column_variable_factor = 'gene_biotype',
point_size = 3,
entropyrange = ¢(0,1.5),
magnituderange = c(2, Inf),

label = 'legend',
output_table = FALSE,
assay_name = 'tpm_norm',

)

Highlighting only a class of interest

plot_circle(

X = se,

n =38,

column_variable_factor = 'gene_biotype',
point_size = 3,

entropyrange = ¢(0,1.5),
magnituderange = c(2, Inf),

label = 'legend',
output_table = FALSE,

assay_name = 'tpm_norm',
point_fill_colors = c('miRNA' = 'orange'),
point_line_colors = c('miRNA' = 'orange')

plot_circle

plot_circle_frequency 17

Retrieving a dataframe with the results used for plotting,
set output_table <- TRUE

plot <- plot_circle(

X = se,
n =238,

column_variable_factor = 'gene_biotype',
point_size = 3,

entropyrange = ¢(0,1.5),
magnituderange = c(2, Inf),

label = 'legend',
output_table = TRUE,

assay_name = 'tpm_norm',
point_fill_colors = c('miRNA' = 'orange'),
point_line_colors = c('miRNA' = 'orange')

)

It returns a list.
The first object is the plot
plot[[1]]

The second the dataframe with information for each row, including
Entropy and the variable that dominates that particular observation.
head(plot[[2]])

plot_circle_frequency Dominance—Entropy Frequency Plot

Description

Visualises how often each categorical level (‘Factor®) is dominant at a given entropy score. The
function expects the second element of the list returned by plot_circle().

Visualises how often each categorical level (‘Factor) is dominant at a given entropy score. The
function expects the second element of the list returned by plot_circle().

Usage

plot_circle_frequency(
n)
circle,
single = FALSE,
legend = TRUE,
numb_columns 1,
filter_class = NULL,
point_size = 2

plot_circle_frequency(

18 plot_circle_frequency

n,

circle,

single = FALSE,
legend = TRUE,
numb_columns = 1,

filter_class = NULL,
point_size = 2
)
Arguments
n Integer. Number of numeric variables used in plot_circle().
circle The list returned by plot_circle().
single Logical. If TRUE draw one combined panel; otherwise facet by Factor.
legend Logical. Show a legend for the plot

numb_columns Faceting columns when single = FALSE.
filter_class Character vector of levels to keep; NULL keeps all.

point_size Numeric. Size of jitter points.

Value

A list with

* plot_stat — a ggplot object.
* data — the aggregated frequency table.

Dominance—Entropy Frequency Plot

See Also

plot_circle

plot_circle

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se = airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))
se <- sel[idx, 1]

Normalize the data first using tpm_normalization
rowData(se)$gene_length = rowData(se)$gene_seq_end
- rowData(se)$gene_seq_start

plot_circle_frequency

se = tpm_normalization(se, log_trans = TRUE, new_assay_name = 'tpm_norm')

Creating a plot_circle list using the 'gene_biotype' column as factor
plot_test <- plot_circle(

X = se,

n=28,

column_variable_factor = 'gene_biotype',
entropyrange = ¢(0,Inf),
magnituderange = c(@, Inf),

label = 'legend',
output_table = TRUE,
assay_name = 'tpm_norm'

Using the plot_test object created above

Default

plot <- plot_circle_frequency(n = 8,
circle = plot_test,
single = TRUE,
legend = TRUE,
numb_columns = 1,
filter_class = NULL,
point_size = 2)

plot[[1]]

Facetting by factor is possible, adjusting the number of columns
plot <- plot_circle_frequency(n = 8,

circle = plot_test,

single = FALSE,

legend = TRUE,

numb_columns = 3,

filter_class = NULL,

point_size = 2)

plot[[1]1]

Subsetting by a specific class present in Factor
plot_circle_frequency(n = 8,

circle = plot_test,

single = FALSE,

legend = TRUE,

numb_columns = 1,

filter_class = c('protein_coding', 'snoRNA', 'miRNA'),

point_size = 2)

plot[[1]]

library(SummarizedExperiment)
library(airway)
data('airway')

se = airway

20

plot_circle_frequency

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))
se <- se[idx,]

Normalize the data first using tpm_normalization
rowData(se)$gene_length = rowData(se)$gene_seq_end
- rowData(se)$gene_seq_start

se = tpm_normalization(se, log_trans = TRUE, new_assay_name = 'tpm_norm')

Creating a plot_circle list using the 'gene_biotype' column as factor
plot_test <- plot_circle(

X = se,

n=28,

column_variable_factor = 'gene_biotype',
entropyrange = ¢(0,Inf),
magnituderange = c(@, Inf),

label = 'legend',
output_table = TRUE,
assay_name = 'tpm_norm'

Using the plot_test object created above

Default

plot <- plot_circle_frequency(n = 8,
circle = plot_test,
single = TRUE,
legend = TRUE,
numb_columns = 1,
filter_class = NULL,
point_size = 2)

plot[[1]]

Facetting by factor is possible, adjusting the number of columns
plot <- plot_circle_frequency(n = 8,

circle = plot_test,

single = FALSE,

legend = TRUE,

numb_columns = 3,

filter_class = NULL,

point_size = 2)

plot[[1]1]

Subsetting by a specific class present in Factor
plot_circle_frequency(n = 8,

circle = plot_test,

single = FALSE,

legend = TRUE,

numb_columns = 1,

filter_class = c('protein_coding', 'snoRNA', 'miRNA'),

plot_rope 21

point_size = 2)

plot[[1]]

plot_rope Rope (binary) dominance plot

Description

Creates a rope-like visualization comparing two numeric columns (e.g., "a" vs. "b"), with optional
color filtering based on maximum value range and entropy range.

The plot is useful for visualising “winner-takes-all” behaviour in two-way comparisons, e.g. gene
expression in ¥*A* and *B* conditions.

Usage

plot_rope(
X,
column_name =
push_text = 1,
rope_width = 1,
rope_color = "#CCCCCCCC",
rope_border = TRUE,
col = c("red”, "blue"),

NULL,

col_bg = "whitesmoke"”,
pch = c(21, 21),
pch_bg = 19,

cex =1,

entropyrange = c(@, Inf),
maxvaluerange = c(@, Inf),
plotAll = TRUE,

label = TRUE,

output_table = TRUE,
assay_name = NULL

)
Arguments

X A data. frame or matrix with numeric columns, or a SummarizedExperiment
containing such data in one of its assays.

column_name Character. The name of the two variables that will be used for the analysis. By
default it is NULL.

push_text Numeric. Expands or contracts text label positions along the x-axis.

rope_width Numeric. Thickness of the "rope" drawn in the center.

rope_color Character. Color for the rope’s fill.

22

rope_border
col

col_bg

pch

pch_bg

cex

entropyrange

maxvaluerange

plotAll

label
output_table

assay_name

Details

plot_rope

Logical or a color. Whether or how to draw the rope border.

Character vector of length 2. Colors assigned when a > b or b > a, respectively.
Background color (used when a row is filtered out by entropy or max value).
Integer or vector specifying point types for the main two categories.

Integer specifying the point type for the "gray" points (if plotA11=TRUE).
Numeric. Expansion factor for point size.

Numeric vector of length 2. Rows with entropy outside this range become
background color.

Numeric vector of length 2. Rows with max(a,b) outside this range become
background color.

Logical. If TRUE, also draw "filtered" points in col_bg color. If FALSE, only
highlight active points.

Logical. If TRUE, label the two columns near the rope ends.
Logical. If TRUE, return the processed data frame with added columns.

(SummarizedExperiment only) Name of the assay containing the 2-column data.
If not specified, the first assay is used.

The function expects two numeric columns. If the experiment has more than two columns, the
name of the columns of interest can be specified by using the parameter column_name. If x is a
SummarizedExperiment, it extracts the indicated assay and extracts the columns of interest

It also uses: - centmass() for computing comx. - entropy() for computing Shannon entropy,
stored in the entropy column. Between two variables, entropy rangeS between 0 and 1.

The rope is drawn in the middle of the plot (the x-axis from -1 to 1, y = 0), with thickness
rope_width. Points are scattered in comy direction for a bit of jitter within the rope.

Value

e If output_table=TRUE, returns a data frame with extra columns (comx, comy, color, maxvalue,
entropy) used in the plot.

e If output_table=FALSE, invisibly returns NULL.

Examples

library(SummarizedExperiment)

library(airway)

data('airway')
se <- airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))

se <- se[idx,]

Normalize the data first using tpm_normalization

plot_rope

rowData(se)$gene_length = rowData(se)$gene_seq_end
- rowData(se)$gene_seq_start

se <- tpm_normalization(se, log_trans = TRUE, new_assay_name = 'tpm_norm')

1) Using a data.frame

df <- assay(se, 'tpm_norm')
df <- as.data.frame(df)

Choose two columns of interest, in this case 'SRR1039508'
and SRR1039516'

Default Behaviour

plot_rope(df,
column_name = c("SRR1039508", "SRR1039516"),
output_table = FALSE)

Colors can be modified

plot_rope(df,
column_name = c(”SRR1039508", "SRR1039516"),
output_table = FALSE,
col = c('darkgreen', 'darkred'))

Emphasis can be applied to highly dominant variables by controling
entropy parameter,
values outside of that range will be colored smokewhite.
plot_rope(df,

column_name = c("SRR1039508", "SRR1039516"),

output_table = FALSE,

col = c('darkgreen', 'darkred'),

entropyrange = c(0,0.1))

Points in the center are a reflection of genes with expression levels =
This can be modified by adjusting the maxvalue range

plot_rope(df,
column_name = c("SRR1039508", "SRR1039516"),
output_table = FALSE,
col = c('darkgreen', 'darkred'),
entropyrange = c(0,0.1),
maxvaluerange = c(2, Inf))

By controling entropy range, you can observe different types of genes.
Values closer to @ represent dominance and closer to 1 shareness.

Exploring genes with high normalized expression values across different
#' entropy ranges

0.

23

24

Looking for genes with a Log2(TPM) score between 4 and 8
plot_rope(df,
column_name = c("”"SRR1039508", "SRR1039516"),
output_table = FALSE,
col = c('darkgreen', 'darkred'),
entropyrange = c(0,0.1),
maxvaluerange = c(4, 8))

plot_rope(df,
column_name = c(”SRR1039508", "SRR1039516"),
output_table = FALSE,
col = c('darkgreen', 'darkred'),
entropyrange = c(0.1,0.8),
maxvaluerange = c(4, 8))

plot_rope(df,
column_name = c("SRR1039508", "SRR1039516"),
output_table = FALSE,
col = c('darkgreen', 'darkred'),
entropyrange = c(0.8,1),
maxvaluerange = c(4, 8))

plot_rope(se,
column_name = c("”"SRR1039508", "SRR1039516"),
output_table = FALSE,
col = c('lightgreen', 'indianred'),
entropyrange = c(0,0.1),
maxvaluerange = c(4, 8))

plot_rope(se,
column_name = c(”SRR1039508", "SRR1039516"),
output_table = FALSE,
col =c('lightgreen', 'indianred'),
entropyrange = c(0.1,0.8),
maxvaluerange = c(4, 8))

plot_rope(se,
column_name = c("SRR1039508", "SRR1039516"),
output_table = FALSE,
col = c('lightgreen', 'indianred'),
entropyrange = c(0.8,1),
maxvaluerange = c(4, 8))

Obtaining the DF output for the analysis

plot_rope

plot_triangle 25

object <- plot_rope(se,
column_name = c(”SRR1039508", "SRR1039516"),
output_table = TRUE,
col = c('lightgreen', 'indianred'),
entropyrange = c(0.8,1),
maxvaluerange = c(4, 8))

head(object)

plot_triangle Triangle (ternary) dominance plot

Description

Creates a triangular (ternary) scatter plot for **three** numeric variables Each point is coloured by
the variable with the largest value and can be filtered by (i) Entropy score ranging from (0 to 1.585)
and (ii) overall score

The plot is useful for visualising “winner-takes-all” behaviour in three-way comparisons, e.g. gene
expression in *A*, *B*, *C* conditions.

Usage

plot_triangle(
X,
column_name = NULL,
entropyrange = c(@, Inf),
maxvaluerange = c(@, Inf),
col = c("darkred”, "darkgreen”, "darkblue"),
background_col = "whitesmoke",
output_table = TRUE,
plotAll = TRUE,

cex =1,
pch = 16,
assay_name = NULL,
label = TRUE,
push_text = 1
)
Arguments
X A numeric data. frame/matrix **or** a SummarizedExperiment.
column_name Character. Names (or indices) of the three columns to visualise. If NULL, the

first three numeric columns are used.
entropyrange Numeric. Keep points whose entropy lies inside this interval. Defaultis ¢ (@, Inf)

maxvaluerange Numeric. Keep points whose values lies inside this interval. Defaultis ¢ (@, Inf)

26 plot_triangle

col Character. Colors for each variable.
background_col Character. Color for the observations outside entropyrange and maxvaluerange

output_table Logical. If TRUE returns the processed data frame.

plotAll Logical. If TRUE, filtered points are shown in background_col; if FALSE, they
are omitted.
cex, pch Base-graphics point size / symbol.
assay_name (SummarizedExperiment only) Which assay to use. Default: the first assay.
label Logical. If TRUE, label the vertices of the triangle
push_text Numeric. Expands or contracts text label positions.
Details

The function expects three numeric columns. If the experiment has more than three columns, the
name of the columns of interest can be specified by using the parameter column_name. If x is a
SummarizedExperiment, it extracts the indicated assay and extracts the columns of interest

It also uses: - centmass() for computing comx and comy. - entropy() for computing Shannon
entropy, stored in the entropy column. Between three variables, entropy rangeS between O and
1.585.

The ternary vertices are fixed at (sin(0), cos(0)), (sin(27/3), cos(27/3)) and (sin(4w/3), cos(47/3)).

Value

If output_table = TRUE, a data. frame with the original three columns plus:

* comx, comy — Cartesian coordinates in the triangle;
* color — final plotting colour;
* entropy — Entropy scores for each gene;

e max_counts — Maximum score across variables

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se <- airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seg_len(nrow(se)), size = min(1000, nrow(se)))
se <- selidx,]

Normalize the data first using tpm_normalization
rowData(se)$gene_length <- rowData(se)$gene_seq_end -

rowData(se)$gene_seq_start

se <- tpm_normalization(se, log_trans = TRUE, new_assay_name = 'tpm_norm')

plot_triangle

df <- assay(se, 'tpm_norm') |> as.data.frame()

Choose three columns of interest, in this case 'SRR1039508', 'SRR1039516'
and 'SRR1039512'

Default Behaviour

plot_triangle(x = df,
column_name = c("”"SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE)

Colors can be modified

plot_triangle(x = df,
column_name = c("SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'))

Emphasis can be applied to highly dominant variables by controling
entropy parameter,
values outside of that range will be colored smokewhite.
plot_triangle(x = df,
column_name = c(”SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(@, 0.1))

Points in the center are a reflection of genes with expression levels = 0.
This can be modified by adjusting the maxvalue range

plot_triangle(x = df,
column_name = c(”SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(0, 0.1),
maxvaluerange = c(0.1, Inf))

By controling entropy range, you can observe different types of genes.
Values closer to @ represent dominance and closer to 1.6 shareness.

plot_triangle(x = df,
column_name = c("SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(@, 0.4),
maxvaluerange = c(0.1, Inf))

plot_triangle(x = df,
column_name = c("”"SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,

28

col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(0.4, 1.3),
maxvaluerange = c(0.1, Inf))

plot_triangle(x = df,
column_name = c("SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(1.3, Inf),
maxvaluerange = c(0.1, Inf))

Same analysis can be performed by filtering out genes with low expression
values

plot_triangle(x = df,
column_name = c("SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(1.2, Inf),
maxvaluerange = c(2, Inf))

plot_triangle(x = df,
column_name = c(”SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(1.2, Inf),
maxvaluerange = c(5, Inf))

plot_triangle(x = df,
column_name = c("SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(1.2, Inf),
maxvaluerange = c(10, Inf))

Background points can be removed

plot_triangle(x = df,
column_name = c(”"SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('indianred', 'lightgreen', 'lightblue'),
entropyrange = c(1.2, Inf),
maxvaluerange = c(2, Inf),
plotAll = FALSE)

plot_triangle(x = se,
column_name = c("”SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('darkred', 'darkgreen', 'darkblue'),
entropyrange = c(0, 0.4),

plot_triangle

Qentropy 29

maxvaluerange = c(0.1, Inf),
assay_name = 'tpm_norm')

plot_triangle(x = se,
column_name = c(”SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('darkred', 'darkgreen', 'darkblue'),
entropyrange = c(0.4, 1.3),
maxvaluerange = c(0.1, Inf),
assay_name = 'tpm_norm')

plot_triangle(x = se,
column_name = c("SRR1039508", "SRR1039516", 'SRR1039512'),
output_table = FALSE,
col = c('darkred', 'darkgreen', ‘'darkblue'),
entropyrange = c(1.3, Inf),
maxvaluerange = c(0.1, Inf),
assay_name = 'tpm_norm')

Obtaining the DF output for the analysis

object = plot_triangle(x = se,
column_name = c(”SRR1039508", "SRR1039516",
'SRR1039512"),
output_table = TRUE,
col = c('darkred', 'darkgreen', ‘'darkblue'),
entropyrange = c(1.3, Inf),
maxvaluerange = c(0.1, Inf),

assay_name = 'tpm_norm')
head(object)
Qentropy Compute Q-Entropy using existing row-normalized data + Entropy
Description

Transform entropy scores into categorical entropy scores);; = Entropy; — logy(x;;), or Inf if
LL'Z'j == 0.

@details For each row ¢ and column j, @;; is defined as Entropy, — log, (gcij) if @;; is positive, or
Inf otherwise.

Usage

Qentropy(x, assay_name = "Entropy", new_assay_name = "Qentropy")

30 Qentropy

Arguments
X A data.frame (already processed by ’entropy()’) or a SummarizedExperiment
(already processed by ’entropy()’).
assay_name (SummarizedExperiment only) The name of the assay whose row-normalized

data will be replaced by Q-values. If NULL, uses the first assay.

new_assay_name If you prefer to store Q-values in a *new* assay, provide a name. By default
’Qentropy’

Value

* If x is a data.frame: returns the same data.frame with numeric columns replaced by @);; values
and Entropy column removed.

o If x is a SummarizedExperiment: returns the same object with the specified assay replaced by
Q;; values (or a new assay if new_assay_name is set) and rowData(x)$Entropy removed.

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se = airway
Only use a random subset of 1000 rows
set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))
se <- sel[idx,]

df = assay(se) |> as.data.frame()

Entropy needs to be calculated first
df = entropy(df)

Then you can apply the Qentropy function
df = Qentropy(df)

head(df)

Calculate Entropy first
se2 = entropy(se, new_assay_name = 'Entropy')

Transform entropy into Qentropy. new_assay_name specify a new assay
where data is going to be stored. Assay_name must have Entropy transformed

quantile_normalization 31

values

By default, the function will look for an assay_name 'Entropy' and assign
a new assay to 'Qentropy'

se2 = Qentropy(se2, new_assay_name = 'Qentropy', assay_name = 'Entropy')

se2

quantile_normalization
Quantile Normalization

Description

Normalizes read counts by the quantile normalization method:

1. Each sample (column) is sorted, and values at each rank are averaged across columns
2. Each sample’s values are replaced with the average of their respective rank

3. If log_trans = TRUE, applies 1og2(QN + 1) transformation

Usage

quantile_normalization(
X!
log_trans = FALSE,
assay_name = NULL,
new_assay_name = NULL

)
Arguments

X A numeric matrix or data. frame of gene counts, or a SummarizedExperiment
containing such counts.
If a SummarizedExperiment, the function applies normalization to the speci-

fied assay (via assay_name).

If a data. frame/matrix, the normalization is applied directly.

log_trans Logical. If TRUE, apply log2(... + 1) transform to the quantile-normalized
values.

assay_name If x is a SummarizedExperiment, name of the assay to normalize. Defaults to

the first assay if not specified.

new_assay_name If x is a SummarizedExperiment, name of a new assay in which to store the
quantile-normalized (or log2-transformed) values. If NULL, overwrites the orig-
inal assay.

32 quantile_normalization

Details

If x is a SummarizedExperiment, the function will extract the assay using assay_name, apply quan-
tile normalization, and return a new or updated assay. If x is a matrix or data.frame, normalization
is applied directly to the input matrix.

Value

A numeric matrix of quantile-normalized (or log2-normalized) values if x is a data.frame or matrix.
If x is a SummarizedExperiment, returns the modified SummarizedExperiment with the normalized
data placed in the existing or new assay.

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se <- airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))
se <- se[idx,]

df <- assay(se)

Without log transformation
df_gn <- quantile_normalization(df, log_trans = FALSE)
df_gn[1:5, 1:5]

With log transformation
df_gn_log <- quantile_normalization(df, log_trans = TRUE)
df_gn_log[1:5, 1:5]

Overwrite existing assay
se2 <- quantile_normalization(se)
assay(se2)[1:5, 1:5]

Store result in new assay
se3 <- quantile_normalization(se, new_assay_name = "quant_norm")
assay(se3, "quant_norm”)[1:5, 1:5]

Use specific input assay (simulate new one)
new_matrix <- matrix(
data = sample(x = seq(1, 100000), size = nrow(se) * ncol(se),

rpkm_normalization 33

replace = TRUE),

nrow = nrow(se),

ncol = ncol(se)
)
rownames(new_matrix) <- rownames(se)
colnames(new_matrix) <- colnames(se)

Create a new assay in the SummarizedExperiment
assay(se, "new_counts”) <- new_matrix

Normalize the new assay and store it under a new name
se4 <- quantile_normalization(se, assay_name = "new_counts”,
new_assay_name = "quant_new")

assay(se4, "quant_new”)[1:5, 1:5]

rpkm_normalization RPKM Normalization

Description
Normalizes read counts by the RPKM (Reads Per Kilobase per Million mapped reads) method:

1. Normalize counts by library size (column sums), scaled to millions.
2. Divide each gene’s value by its length in kilobases.
3. If log_trans = TRUE, applies 1log2 (RPKM + 1).

Usage

rpkm_normalization(
X,
gene_length = NULL,
log_trans = FALSE,
assay_name = NULL,
new_assay_name = NULL

)
Arguments

X A numeric matrix or data. frame of gene counts, or a SummarizedExperiment
containing such counts.
If a SummarizedExperiment, the function retrieves gene_length from rowData(x)$gene_length.
If a data. frame/matrix, the user must provide the gene_length argument.

gene_length A numeric vector of gene lengths (one per row), used only if x is a data.frame
or matrix. Must match the number of rows in x. Ignored if x is a Summarized-
Experiment.

log_trans Logical. If TRUE, apply log2(... + 1) transform to the RPKM-normalized val-

ues.

34 rpkm_normalization

assay_name If x is a SummarizedExperiment, name of the assay to normalize. Defaults to
the first assay if not specified.

new_assay_name If x is a SummarizedExperiment, name of a new assay in which to store the
RPKM (or log2-RPKM). If NULL, overwrites the assay specified in assay_name.

Details

If x is a SummarizedExperiment, the function looks for a numeric column named "gene_length”
in rowData(x). That column must have length equal to the number of rows in the assay being
normalized.

Value

A numeric matrix of RPKM or log2(RPKM + 1) values if x is a data.frame or matrix. If x is a
SummarizedExperiment, returns the modified SummarizedExperiment with the RPKM data placed
in the existing or new assay.

Examples

library(SummarizedExperiment)
library(airway)
data('airway')

se = airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seq_len(nrow(se)), size = min(1000, nrow(se)))
se <- se[idx,]

Adding a column in rowData regarding the gene_length
rowData(se)$gene_length = rowData(se)$gene_seq_end -
rowData(se)$gene_seq_start

gene_length = rowData(se)$gene_length
df = assay(se)

Without log transformation
df = rpkm_normalization(df, gene_length = gene_length)
df[1:5, 1:5]

With log transformation
df = rpkm_normalization(df, gene_length = gene_length, log_trans = TRUE)
df[1:5, 1:5]

tpm_normalization 35

If no new_assay_name is provided, then overwrites existing assay
se2 = rpkm_normalization(se, log_trans = FALSE)
head(assay(se2))

If new_assay_name is given, normalization stored in a new assay
se2 = rpkm_normalization(se, log_trans = FALSE, new_assay_name =
'rpkm_counts"')

head(assay(se2, 'rpkm_counts'))

Creating a new assay to test specific input
new_matrix = matrix(data = sample(x = seq(1, 100000),
size = nrow(se) * ncol(se),
replace = TRUE),
nrow = nrow(se),
ncol = ncol(se))
rownames(new_matrix) = rownames(se)
colnames(new_matrix) = colnames(se)

assay(se, 'new_counts') = new_matrix

se2 = rpkm_normalization(se, new_assay_name = 'rpkm_counts_new',
assay_name = 'new_counts')

head(assay(se2, 'rpkm_counts_new'))

tpm_normalization TPM Normalization

Description
Normalizes read counts by the TPM (Transcripts Per Million) method:

1. If log_trans = TRUE, applies 1og2(TPM + 1).

Usage

tpm_normalization(
X,
gene_length = NULL,
log_trans = FALSE,
assay_name = NULL,
new_assay_name = NULL

Arguments

X A numeric matrix or data. frame of gene counts, or a SummarizedExperiment
containing such counts.

If a SummarizedExperiment, the function retrieves gene_length from rowData(x)$gene_length.

36

gene_length

log_trans

assay_name

new_assay_name

Details

tpm_normalization

If a data. frame/matrix, the user must provide the gene_length argument.

A numeric vector of gene lengths (one per row), used only if x is a data.frame
or matrix. Must match the number of rows in x. Ignored if x is a Summarized-
Experiment.

Logical. If TRUE, apply log2(... + 1) transform to the TPM-normalized val-
ues.

If x is a SummarizedExperiment, name of the assay to normalize. Defaults to
the first assay if not specified.

If x is a SummarizedExperiment, name of a new assay in which to store the TPM
(or log2-TPM). If NULL, overwrites the assay specified in assay_name.

If x is a SummarizedExperiment, this function looks for a numeric column named "gene_length”
in rowData(x). That column must have length equal to the number of rows in the assay being

normalized.

Value

A numeric matrix of TPM or log2(TPM + 1) values if x is a data.frame or matrix. If x is a Sum-
marizedExperiment, returns the modified SummarizedExperiment with the TPM data placed in the
existing or new assay.

Examples

library(SummarizedExperiment)

library(airway)
data('airway')

se = airway

Only use a random subset of 1000 rows

set.seed(123)

idx <- sample(seg_len(nrow(se)), size = min(1000, nrow(se)))

se <- sel[idx,]

Adding a column in rowData regarding the gene_length
rowData(se)$gene_length = rowData(se)$gene_seq_end
- rowData(se)$gene_seq_start

gene_length = rowData(se)$gene_length

df = assay(se)

Without log transformation
df = tpm_normalization(df, gene_length = gene_length)

tpm_normalization

df[1:5, 1:5]

With log transformation

df = tpm_normalization(df, gene_length = gene_length, log_trans = TRUE)

df[1:5, 1:5]

2) Using a SummarizedExperiment

If now new_assay_name is provided, then overwrites existing
se2 = tpm_normalization(se, log_trans = FALSE)

head(assay(se2))

If new new_assay_name, normalization stored in a new object
se2 = tpm_normalization(se, log_trans = FALSE, new_assay_name

head(assay(se2, 'tpm_counts'))

A specific assay can also be selected
new_matrix = matrix(data = sample(x = seq(1, 100000),
size = nrow(se) * ncol(se),
replace = TRUE),
nrow = nrow(se),
ncol = ncol(se))
rownames(new_matrix) = rownames(se)
colnames(new_matrix) = colnames(se)

Creating a new assay called new counts
assay(se, 'new_counts') = new_matrix

se2 = tpm_normalization(se, new_assay_name = 'tpm_counts_new',
assay_name = 'new_counts')
se2

head(assay(se2, 'tpm_counts_new'))

assay

= 'tpm_counts')

37

Index

centmass, 2
cpm_normalization, 4

entropy, 6
ggplot, 11, 18
minmax_normalization, 7

plot_circle, 10, 17, 18
plot_circle_frequency, 17
plot_rope, 21
plot_triangle, 25

Qentropy, 29
quantile_normalization, 31

rpkm_normalization, 33

tpm_normalization, 35

38

	centmass
	cpm_normalization
	entropy
	minmax_normalization
	plot_circle
	plot_circle_frequency
	plot_rope
	plot_triangle
	Qentropy
	quantile_normalization
	rpkm_normalization
	tpm_normalization
	Index

