Package ‘diffuStats’

February 1, 2026
Type Package

Title Diffusion scores on biological networks
Version 1.31.0

Description Label propagation approaches are a widely used
procedure in computational biology for giving context
to molecular entities using network data.
Node labels, which can derive from gene expression,
genome-wide association studies,
protein domains or metabolomics profiling,
are propagated to their neighbours in the network,
effectively smoothing the scores through
prior annotated knowledge and prioritising novel candidates.
The R package diffuStats contains a
collection of diffusion kernels and scoring approaches
that facilitates their computation, characterisation and benchmarking.

Depends R (>=3.4)

Imports grDevices, stats, methods, Matrix, MASS, checkmate, expm,
igraph, Repp, ReppArmadillo, ReppParallel, plyr, precrec

License GPL-3
LazyData true
Encoding UTF-8
RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown, ggplot2, ggsci, igraphdata,
BiocStyle, reshape?2, utils

LinkingTo Rcpp, ReppArmadillo, ReppParallel
SystemRequirements GNU make
VignetteBuilder knitr

biocViews Network, GeneExpression, GraphAndNetwork, Metabolomics,
Transcriptomics, Proteomics, Genetics, GenomeWideAssociation,
Normalization

git_url https://git.bioconductor.org/packages/diffuStats

1

2 Contents

git_branch devel

git_last_commit S5cda747

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Sergio Picart-Armada [aut, cre],

Alexandre Perera-Lluna [aut]

Maintainer Sergio Picart-Armada <sergi.picart@upc.edu>

Contents
.check_scores L e 3
.connect_undirected_graph 4
default_graph_param 5
CONVEITSPAISE .« & v v v v v e 5
diffuse e 6
diffuse_mc e e 11
diffuse_raw s 12
diffuStats e e 13
generate_graph L 13
generate_inpul. e e e e e e e e e e e e e 14
graph_toy e e 15
1s_ kernel L e 16
kernels e e e 16
largest_cc L e e 18
MEHIC_AUC . . . v v o v v o e e e e e e e e e e e e e e 19
MOMENTES v v v v o o e e e e e e e e e e e e e 21
named.list L e e 23
ParallelHeatrank e 23
Perf e e 24
perf_eval . . . L e e e 25
perf_WilcoxX 26
SCOres2COlOUrS e e e 27
scores2shapes 28
serialHeatrank 29
Sparsify2o 29
tO_LISt . . . e e 30
to_x_from_liSt. e 30
which_format e 31

Index 32

.check_scores

.check_scores Sanity checks for input

Description

.check_scores ensures that scores are suitable for diffusion
.available_methods is a character vector with the implemented scores
.check_method ensures that *'method’ is a valid character
.check_metric ensures that *metric’ is a valid list of metric functions
.check_graph ensures that "graph’ is a valid igraph object

.check_K ensures that ’K’ is a formally valid kernel. Does not check for spd
Usage

.check_scores(scores)

.available_methods

.check_method(method)

.check_metric(metric)

.check_graph(graph)

.check_K(K)
Arguments
scores scores to check
method object to test
metric object to test
graph object to test
K object to test
Format

An object of class character of length 7.

Value

Functions return invisible() but throw warnings and errors as side effect

4 .connect_undirected_graph

Examples

data(graph_toy)
diffuStats:::.check_scores(diffuStats:::to_list(graph_toy$input_mat))
diffuStats:::.check_method("raw")

diffuStats:::.check_metric(list(auc = metric_fun(curve = "R0OC")))
data(graph_toy)

diffuStats:::.check_graph(graph_toy)

data(graph_toy)
diffuStats:::.check_K(regularisedLaplacianKernel(graph_toy))

.connect_undirected_graph
Function to connect a non connected graph

Description

Function to connect a non connected graph

Usage

.connect_undirected_graph(g)

Arguments

g an igraph object

Value

a connected igraph object

Examples

library(igraph)
g <- diffuStats:::.connect_undirected_graph(
graph.empty(10, directed = FALSE))

.default_graph_param

.default_graph_param Generate data.frame with default vertex attributes

Description

Generate data.frame with default vertex attributes

Default proportions for randomly generated graphs

Usage

.default_graph_param()

.default_prop

Format

An object of class numeric of length 3.

Value

data.frame with default node class attributes

named numeric with default class proportions

convertSparse S4 sparse matrix to arma::sp_mat

Description

Convert an S4 sparse matrix from the Matrix package to an arma sp_mat.

Usage

convertSparse(mat)
Arguments

mat S4 sparse matrix from the Matrix
Value

an arma::sp_mat object

Source

http://gallery.rcpp.org/articles/armadillo-sparse-matrix/

http://gallery.rcpp.org/articles/armadillo-sparse-matrix/

6 diffuse

diffuse Diffuse scores on a network

Description

Function diffuse takes a network in igraph format (or a graph kernel matrix stemming from a
graph) and an initial state to score all the nodes in the network. The seven diffusion scores hereby
provided differ on (a) how they distinguish positives, negatives and unlabelled examples, and (b)
their statistical normalisation. The argument method offers the following options:

Methods without statistical normalisation:

* raw: positive nodes introduce unitary flow (y_raw[i] = 1) to the network, whereas neither
negative nor unlabelled nodes introduce anything (y_raw[j] = @) [Vandin, 2011]. They are
computed as:

f raw = K - Yraw
where K is a graph kernel, see ?kernels. These scores treat negative and unlabelled nodes
equivalently.

* ml: same as raw, but negative nodes introduce a negative unit of flow [Zoidi, 2015] and are
therefore not equivalent to unlabelled nodes.

* gm: same as ml, but the unlabelled nodes are assigned a (generally non-null) bias term based
on the total number of positives, negatives and unlabelled nodes [Mostafavi, 2008].

* ber_s: this is a quantification of the relative change in the node score before and after the
network smoothing. The score for a particular node i can be written as

f _ fraw,i
bers,i — — . _
°r Yraw,i +e€

where eps is a parameter controlling the importance of the relative change.

Methods with statistical normalisation: the raw diffusion score of every node i is computed and
compared to its own diffusion scores stemming from a permuted input.

* mc: the score of node i is based in its empirical p-value, computed by permuting the input
n.perm times:
T + 1

bi= n.perm + 1

pLi] is roughly the proportion of input permutations that led to a diffusion score as high or
higher than the original diffusion score (a total of r[i] for node i, in absolute terms). This
assesses how likely a high diffusion score is to arise from chance, in absence of signal. To be
consistent with the direction, mc is defined as:

fmc,i =1 —Di

e ber_p: as used in [Bersanelli, 2016], this score combines raw and mc, in order to take into
account both the magnitude of the raw scores and the effect of the network topology:

fberp,i = - 10g10(pi) : f'r‘aw,i

diffuse 7

e z: this is a parametric alternative to mc. The raw score of node i is subtracted its mean value
and divided by its standard deviation. The statistical moments have a closed analytical form,
see the main vignette, and are inspired in [Harchaoui, 2013]. Unlike mc and ber_p, the z
scores do not require actual permutations, giving them an advantage in terms of speed.

If the input labels are not quantitative, i.e. positive(1), negative(0) and possibly unlabelled, all the
scores (raw, gm, ml, z, mc, ber_s, ber_p) can be used. Quantitative inputs are naturally defined
on raw, z, mc, ber_s and ber_p by extending the definitions above, and are readily available in
diffuStats. Further details on the scores can be found in the main vignette.

Usage
diffuse(graph, scores, method, ...)
diffuse_grid(scores, grid_param, ...)
Arguments
graph igraph object for the diffusion. Alternatively, a kernel matrix can be provided
through the argument K insted of the igraph object.
scores scores to be smoothed; either a named numeric vector, a column-wise matrix
whose rownames are nodes and colnames are different scores, or a named list of
such matrices.
method character, one of raw, gm, ml, z, mc, ber_s, ber_p. For batch analysis of several
methods, see ?diffuse_grid.
additional arguments for the diffusion method. mc and ber_p accept n.perm
(number of permutations), seed (for reproducibility, defaults to 1) and sample. prob,
a list of named vectors -one per background- with sampling probabilities for the
null model, uniform by default. More details available in ?diffuse_mc. On the
other hand, ber_s accepts eps, a parameter controlling the importance of the
relative change.
grid_param data frame containing parameter combinations to explore. The column names
should be the names of the parameters. Parameters that have a fixed value can
be specified in the grid or through the additional arguments (. . .)
Details

Input scores can be specified in three formats. A single set of scores to smooth can be represented
as (1) a named numeric vector, whereas if several of these vectors that share the node names need to
be smoothed, they can be provided as (2) a column-wise matrix. However, if the unlabelled entities
are not the same from one case to another, (3) a named list of such score matrices can be passed to
this function. The input format will be kept in the output.

The implementation of mc and ber_p is optimized for sparse inputs. Dense inputs might take a
longer time to compute. Another relevant note: z can give NaN for a particular node when the
observed nodes are disconnected from the node being scored. This is because these nodes are
neither annotated with experimental not network (topology) data.

8 diffuse

Value

diffuse returns the diffusion scores, with the same format as scores

diffuse_grid returns a data frame containing the diffusion scores for the specified combinations
of parameters

References

Scores "raw": Vandin, F., Upfal, E., & Raphael, B. J. (2011). Algorithms for detecting significantly
mutated pathways in cancer. Journal of Computational Biology, 18(3), 507-522.

Scores "ml": Zoidi, O., Fotiadou, E., Nikolaidis, N., & Pitas, I. (2015). Graph-based label propaga-
tion in digital media: A review. ACM Computing Surveys (CSUR), 47(3), 48.

Scores "gm": Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., & Morris, Q. (2008). Gene-
MANIA: a real-time multiple association network integration algorithm for predicting gene func-
tion. Genome biology, 9(1), S4.

Scores "mc", "ber_s", "ber_p": Bersanelli, M., Mosca, E., Remondini, D., Castellani, G., & Mi-
lanesi, L. (2016). Network diffusion-based analysis of high-throughput data for the detection of
differentially enriched modules. Scientific reports, 6.

Scores "z": Harchaoui, Z., Bach, F., Cappe, O., & Moulines, E. (2013). Kernel-based methods for
hypothesis testing: A unified view. IEEE Signal Processing Magazine, 30(4), 87-97.

Examples

THHHEHHHEHHEEAHEEEH A

library(igraph)

library(ggplot2)

data(graph_toy)

input_vec <- graph_toy$input_vec
n <- vcount(graph_toy)

HHHEHHEEEE A
Examples for 'diffuse':

Using a binary vector as input
diff_scores <- diffuse(

graph = graph_toy,

scores = input_vec,

method = "raw")

Using a matrix as input
diff_scores <- diffuse(
graph = graph_toy,
scores = graph_toy$input_mat,
method = "raw”

Using a list of matrices as input
diff_scores <- diffuse(
graph = graph_toy,

diffuse

scores = list(myScoresl = graph_toy$input_mat,
myScores?2 = head(graph_toy$input_mat, n/2)),
method = "raw")

HHHHHHAEHE A
Examples for 'diffuse_grid':

Using a single vector of scores and comparing the methods
"raw”, "ml”, and "z"
df_diff <- diffuse_grid(

graph = graph_toy,

scores = graph_toy$input_vec,

grid_param = expand.grid(method = c("raw”, "ml"”, "z")))
head(df_diff)

Same settings, but comparing several choices of the
parameter epsilon ("eps"”) in the scores "ber_s”
df _diff <- diffuse_grid(
graph = graph_toy,
scores = graph_toy$input_vec,
grid_param = expand.grid(method = "ber_s", eps = 1:5/5))
ggplot(df_diff, aes(x = factor(eps), fill = eps, y = node_score)) +
geom_boxplot()

Using a matrix with four set of scores
called Single, Row, Small_sample, Large_sample
See the 'quickstart' vignette for more details on these toy scores
We compute scores for methods "ber_p” and "mc” and
permute both 1e3 and 1e4 times in each run
df _diff <- diffuse_grid(
graph = graph_toy,
scores = graph_toy$input_mat,
grid_param = expand.grid(
method = c("mc”, "ber_p"),
n.perm = c(1e3, 1e4)))
dim(df_diff)
head(df_diff)

IR

Differences when using (1) a quantitative input and
(2) different backgrounds.

In this example, the
small background contains binary scores and continuous scores for
half of the nodes in the 'graph_toy' example graph.

*

(1) Continuous scores have been generated by
changing the positive labels to a random, positive numeric value.
The user can see the impact of this in the scores 'raw', 'ber_s',

1o

'ber_p', 'mc' and 'z

ETE T

10

(2) The larger background is just the small background

completed with zeroes, both for binary and continuous scores.
This illustrates how 'raw' and 'ber_s' treat unlabelled

and negative labels equally, whereas 'ml', 'gm', 'ber_p',

'mc' and 'z' do not.

Examples:

The input:

lapply(graph_toy$input_list, head)

'raw' scores treat equally unlabelled and negative nodes,

and can account for continuous inputs
diff_raw <- diffuse(
graph = graph_toy,
scores = graph_toy$input_list,
method = "raw")
lapply(diff_raw, head)

'z' scores distinguish unlabelled and negatives and accepts

continuous inputs

diff_z <- diffuse(
graph = graph_toy,
scores = graph_toy$input_list,
method = "z")

lapply(diff_z, head)

'ml' and 'gm' are the same score if there are no unobserved nodes

diff_compare <- diffuse_grid(
graph = graph_toy,
scores = input_vec,

grid_param = expand.grid(method = c("raw”, "ml"”, "gm"))

)

df_compare <- reshape2::acast(
diff_compare,
node_id~method,
value.var = "node_score")

head(df_compare)

'ml' and 'gm' are different in presence of unobserved nodes

diff_compare <- diffuse_grid(
graph = graph_toy,
scores = head(input_vec, n/2),

grid_param = expand.grid(method = c("raw”, "ml"”, "gm"))

)

df_compare <- reshape2::acast(
diff_compare,
node_id~method,
value.var = "node_score"”)

head(df_compare)

diffuse

diffuse_mc

11

diffuse_mc

Compute the heatrank using permutations

Description

Function diffuse_mc has an implemented parallelisation of the Monte Carlo trials for diffusion in
a network. The input scores are assumed to be sparse and are internally sparsified, so very dense
scores migth take time with current implementation.

Usage
diffuse_mc(
graph,
scores,

n.perm = 10000,
sample.prob = NULL,

seed = 1,

oneminusHeatRank = TRUE,

K = NULL,

Arguments
graph
scores
n.perm

sample.prob

igraph object
Recursive list, can have either binary or quantitative scores
Numeric, number of permutations

Numeric, probabilities (needn’t be scaled) to permute the input. This is passed
to sample’s prob argument. If NULL, sampling is uniform. It has to be in a list
format, with the same names as scores, and each element of the list must be the
sampling probability of each background.

seed Numeric, seed for random number generator
oneminusHeatRank
Logical, should 1 - heatrank be returned instead of heatrank?
K Kernel matrix (if precomputed). If K is not supplied, the regularised Laplacian
will be computed on the fly and used.
currently ignored arguments
Value

A list containing matrices of heatrank scores

12 diffuse_raw

Examples

Using a list as input (needed)
data(graph_toy)
list_input <- list(myInputl = graph_toy$input_mat)
diff_mc <- diffuse_mc(
graph = graph_toy,
scores = list_input)

diffuse_raw Diffuse scores on a network

Description

Function diffuse takes a network in igraph format and an initial state to score all the nodes in the

network.
Usage
diffuse_raw(graph, scores, z = FALSE, K = NULL, ...)
Arguments
graph igraph object for the diffusion
scores list of score matrices. For a single input with a single background, supply a list
with a vector column
z logical, should z-scores be computed instead of raw scores?
K optional matrix, precomputed diffusion kernel
currently ignored arguments
Value

A list of scores, with the same length and dimensions as scores

Examples

Using a list as input (needed)
data(graph_toy)
list_input <- list(myInputl = graph_toy$input_mat)
diff_raw <- diffuse_raw(
graph = graph_toy,
scores = list_input)
diff_z <- diffuse_raw(
graph = graph_toy,
scores = list_input,
z = TRUE)

diffuStats 13

diffuStats diffuStats: an R package to compute and benchmark diffusion scores

Description

The diffuStats package consists of (i) functions to compute graph kernels, see kernels, (ii) the

function diffuse to compute the diffusion scores and (iii) the function perf_eval and its wrapper

perf to compute performance measures. The user can find two vignettes in browseVignettes("diffuStats”):
(1) a quick start with concise examples and (2) a detailed explanation of the implemented methods

with a practical case study using a yeast protein dataset.

Author(s)

Sergio Picart-Armada <sergi.picart @upc.edu>, Alexandre Perera-Lluna

References

General references:

Most of the graph kernels can be found in: Smola, A. J., & Kondor, R. (2003, August). Kernels and
regularization on graphs. In COLT (Vol. 2777, pp. 144-158).

The statistical normalisation of the diffusion scores, which has interest per se, has been introduced
in: Bersanelli, M., Mosca, E., Remondini, D., Castellani, G., & Milanesi, L. (2016). Network
diffusion-based analysis of high-throughput data for the detection of differentially enriched mod-
ules. Scientific reports, 6.

generate_graph Generate a random graph

Description

Function generate_graph generates a random network using igraph graph generators. Several
models are available, and

Usage
generate_graph(
fun_gen,
param_gen,

class_label = NULL,

class_attr = .default_graph_param(),
fun_curate = .connect_undirected_graph,
seed = NULL

14 generate_input

Arguments
fun_gen function to generate the graphs. Typically from igraph, like barabasi.game,
watts.strogatz.game, erdos.renyi.game, make_lattice, etc.
param_gen list with parameters to pass to fun_gen
class_label character vector with length equal to the number of nodes in the graph to gen-

erate. If left to NULL, the default classes are c("source”, "filler"”, "end")
with proportions of c(0.05, 0.45, 0.5).

class_attr data.frame with vertex classes as rownames and a column for each vertex at-
tribute. The name of the column will be used as the attribute name.

fun_curate function to apply to the graph before returning it. Can be set to identity or
NULL to skip this step. By default, the graph is connected: nodes not belonging
to the largest connected component are randomly wired to a node in it.

seed numeric, seed for random number generator

Value

An igraph object

Examples

g <- generate_graph(
fun_gen = igraph::barabasi.game,
param_gen = list(n = 100, m = 3, directed = FALSE),

seed = 1)
g
generate_input Generate a random input for graph diffusion
Description

Function generate_input generates a random list of nodes from an igraph object. It also specifies
the true solution generating the list. The graph object needs to have some attributes (automatically
added through generate_graph)

Usage

generate_input(graph, order, length_inputs, return_matrix = TRUE, seed = NULL)

Arguments
graph an igraph object, typically from generate_input
order numeric or vector, order of the neighbourhoods that generate the list

length_inputs numeric, number of nodes in the generated inputs
return_matrix logical, should inputs be returned as a matrix?

seed numeric, seed for random number generator

graph_toy

Value

15

A list whose elements are lists with three slots: pos for the true signal generators, neg for the nodes

that did not generate signal and input for the signal itself

Examples

g <- generate_graph(
fun_gen = igraph: :barabasi.game,
param_gen = list(n = 200, m = 3, directed = FALSE),

seed = 1)

synth_input <- generate_input(
g,
order = 2,

length_inputs = 3, return_matrix = TRUE)
str(synth_input)

graph_toy Toy graph to play with diffusion

Description

Small graph that can easily be plotted and experimented with. It has graphical parameters included,
such as the vertex colour and the layout. It also includes an example input. Has graph attributes with
example inputs and outputs, see input_* and output_* from list.graph.attributes(graph_toy)

Usage

graph_toy

Format

An object of class igraph of length 10.

Value

An igraph object

16 kernels

is_kernel Check if a matrix is a valid kernel

Description

This function checks whether the eigenvalues are non-negative

Usage

is_kernel(x, tol = 1e-08)

Arguments
X numeric, symmetric matrix to be checked
tol numeric, tolerance for zero eigenvalues
Value

scores in desired format

Examples

data(graph_toy)

K <- regularisedLaplacianKernel(graph_toy)
is_kernel(K)

is_kernel(K - 1)

kernels Compute graph kernels

Description

Function commuteTimeKernel computes the conmute-time kernel, which is the expected time of
going back and forth between a couple of nodes. If the network is connected, then the commute
time kernel will be totally dense, therefore reflecting global properties of the network. For further
details, see [Yen, 2007]. This kernel can be computed using both the unnormalised and normalised
graph Laplacian.

Function diffusionKernel computes the classical diffusion kernel that involves matrix exponenti-
ation. It has a "bandwidth" parameter o that controls the extent of the spreading. Quoting [Smola,
2003]: K(x1,x2) can be visualized as the quantity of some substance that would accumulate at
vertex x2 after a given amount of time if we injected the substance at vertex x1 and let it diffuse
through the graph along the edges. This kernel can be computed using both the unnormalised and
normalised graph Laplacian.

kernels 17

Function inverseCosineKernel computes the inverse cosine kernel, which is based on a cosine
transform on the spectrum of the normalized Laplacian matrix. Quoting [Smola, 2003]: the inverse
cosine kernel treats lower complexity functions almost equally, with a significant reduction in the
upper end of the spectrum. This kernel is computed using the normalised graph Laplacian.

Function pStepKernel computes the p-step random walk kernel. This kernel is more focused on
local properties of the nodes, because random walks are limited in terms of length. Therefore, if
p is small, only a fraction of the values K(x1,x2) will be non-null if the network is sparse [Smola,
2003]. The parameter a is a regularising term that is summed to the spectrum of the normalised
Laplacian matrix, and has to be 2 or greater. The p-step kernels can be cheaper to compute and have
been successful in biological tasks, see the benchmark in [Valentini, 2014].

Function regularisedLaplacianKernel computes the regularised Laplacian kernel, which is a
standard in biological networks. The regularised Laplacian kernel arises in numerous situations,
such as the finite difference formulation of the diffusion equation and in Gaussian process estima-
tion. Sticking to the heat diffusion model, this function allows to control the constant terms summed
to the diagonal through add_diag, i.e. the strength of the leaking in each node. If a node has diago-
nal term of 0, it is not allowed to disperse heat. The larger the diagonal term of a node, the stronger
the first order heat dispersion in it, provided that it is positive. Every connected component in the
graph should be able to disperse heat, i.e. have at least a node i with add_diag[i] > @. If this is not
the case, the result diverges. More details on the parameters can be found in [Smola, 2003]. This
kernel can be computed using both the unnormalised and normalised graph Laplacian.

Usage
commuteTimeKernel (graph, normalized = FALSE)
diffusionKernel(graph, sigma2 = 1, normalized = TRUE)
inverseCosineKernel (graph)
pStepKernel(graph, a = 2, p = 5L)

regularisedLaplacianKernel(graph, sigma2 = 1, add_diag = 1, normalized = FALSE)

Arguments

graph undirected igraph object. If the edges have weights, those should typically be
non-negative.

normalized logical, should the normalised (TRUE) or unnormalised (FALSE) graph Laplacian
matrix be used?

sigma2 numeric value, parameter o2 of the kernel - higher values force more spreading
in the network

a numeric value greater or equal to 2, which acts as a regularisation term. Can
also be a vector of length vcount (graph)

p integer greater than 0, the number of steps for the random walk

add_diag numeric value or vector of length vcount(graph), term to regularise the spec-

trum of the Laplacian

18 largest_cc

Details

Please be aware that the kernel computation can be rather slow and memory demanding. This is a
reference table of the peak memory usage and computing time for the regularised Laplacian kernel
given the order of the network:

5k: 900MB & 250s

10k: 3,200MB & 2,200s
15k: 8,000MB & 8,000s
20k: 13,000MB & 21,000s

However, given a network to study, this step is a one-time task than can be stored and reused.

Value

A kernel matrix with adequate dimnames

References

The regularised Laplacian, diffusion, p-step and inverse cosine kernels: Smola, A. J., & Kondor, R.
(2003, August). Kernels and regularization on graphs. In COLT (Vol. 2777, pp. 144-158).

The commute time kernel: Yen, L., Fouss, F., Decaestecker, C., Francq, P., & Saerens, M. (2007).
Graph nodes clustering based on the commute-time kernel. Advances in Knowledge Discovery and
Data Mining, 1037-1045.

Benchmark on kernels: Valentini, G., Paccanaro, A., Caniza, H., Romero, A. E., & Re, M. (2014).
An extensive analysis of disease-gene associations using network integration and fast kernel-based
gene prioritization methods. Artificial Intelligence in Medicine, 61(2), 63-78.

Examples

data(graph_toy)

K_lap <- regularisedlLaplacianKernel(graph_toy)
K_diff <- diffusionKernel(graph_toy)

K_pstep <- pStepKernel(graph_toy)

K_ct <- commuteTimeKernel(graph_toy)

K_ic <- inverseCosineKernel(graph_toy)
is_kernel(K_lap)

largest_cc Largest connected component

Description

Obtain the largest connected component of an igraph object

Usage

largest_cc(g)

metric_auc 19

Arguments

g igraph object

Value

A connected igraph object

Examples

library(igraph)

set.seed(1)

g <- erdos.renyi.game(30, p.or.m = .05)
largest_cc(g)

metric_auc Compute the area under the curves (ROC, PRC)

Description

Function metric_auc computes the AUROC (Area Under the Receiver Operating Characteristic
Curve) and the AUPRC (Area Under the Precision Recall Curve), measures of goodness of a rank-
ing in a binary classification problem. Partial areas are also supported. Important: the higher ranked
classes are assumed to ideally target positives (label = 1) whereas lower ranks correspond to nega-
tives (label = 0).

Function metric_fun is a wrapper on metric_auc that returns a function for performance evalu-
ation. This function takes as input actual and predicted values and outputs a performance metric.
This is needed for functions such as perf and perf_eval, which iterate over a list of such metric
functions and return the performance measured through each of them.

Usage
metric_auc(
actual,
predicted,
curve = "ROC",

partial = c(o, 1),
standardized = FALSE

metric_fun(...)

20 metric_auc

Arguments
actual numeric, binary labels of the negatives (8) and positives (1)
predicted numeric, prediction used to rank the entities - this will typically be the diffusion
scores
curve character, either "ROC” for computing the AUROC or "PRC" for the AUPRC
partial vector with two numeric values for computing partial areas. The numeric values

are the limits in the x axis of the curve, as implemented in the "x1im" argument
in part. Defaults to c(@, 1), i.e. the whole area

standardized logical, should partial areas be standardised to range in [0, 1]? Defaults to FALSE
and only affects partial areas.

parameters to pass to metric_auc

Details

The AUROC is a scalar value: the probability of a randomly chosen positive having a higher rank
than a randomly chosen negative. AUROC is cutoff-free and an informative of the performance of a
ranker. Likewise, AUPRC is the area under the Precision-Recall curve and is also a standard metric
for binary classification. Both measures can be found in [Saito, 2017].

AUROC and AUPRC have their partial counterparts, in which only the area enclosed up to a certain
false positive rate (AUROC) or recall (AUPRC) is accounted for. This can be useful when assessing
the goodness of the ranking, focused on the top entities.

The user can, however, define his or her custom performance metric. AUROC and AUPRC are
common choices, but other problem-specific metrics might be of interest. For example, number of
hits in the top k nodes. Machine learning metrics can be found in packages such as Metrics and
MLmetrics from the CRAN repository (http://cran.r-project.org/).

Value

metric_auc returns a numeric value, the area under the specified curve

metric_fun returns a function (performance metric)

References

Saito, T., & Rehmsmeier, M. (2017). Precrec: fast and accurate precision—recall and ROC curve
calculations in R. Bioinformatics, 33(1), 145-147.

Examples

generate class and numeric ranking
set.seed(1)
n <- 50
actual <- rep(@:1, each = n/2)
predicted <- ifelse(
actual == 1,
runif(n, min = 0.2, max = 1),
runif(n, min = @, max = 0.8))

http://cran.r-project.org/

moments 21

AUROC
metric_auc(actual, predicted, curve = "ROC")

partial AUC (up until false positive rate of 10%)
metric_auc(

actual, predicted, curve = "ROC",

partial = c(@, 0.1))

The same are, but standardised in (@, 1)
metric_auc(

actual, predicted, curve = "ROC",

partial = c(@, 0.1), standardized = TRUE)

AUPRC
metric_auc(actual, predicted, curve = "PRC")

Generate performance functions for perf and perf_eval
f_roc <- metric_fun(
curve = "ROC", partial = c(@, 0.5),
standardized = TRUE)
f_roc
f_roc(actual = actual, predicted = predicted)

moments Compute exact statistical moments

Description

Function get_mu() computes the exact expected values of the null distributions

Function get_covar() computes the exact covariance matrix of the null distributions (square ma-
trix, same size as kernel matrix); the variances are the values in the matrix diagonal

Function get_mu_reference() computes the reference expected values (one scalar value for each
node/entity)

Function get_var_reference () computes the reference variances (one scalar value for each node/entity),
log10-transformed

Usage
get_mu(K, id_labelled = colnames(K), mu_y)
get_covar(K, id_labelled = colnames(K), var_y)
get_mu_reference(K, id_labelled = colnames(K))

get_var_reference(K, id_labelled = colnames(K))

22 moments

Arguments
K square matrix, precomputed diffusion graph kernel, see ?kernels
id_labelled character, names of the labelled nodes (must be a subset of the colnames of K)
mu_y, var_y (scalar) mean and variance of the input, see details

Details

These functions enable exploring the properties of the null distributions of diffusion scores. They
provide the exact statistical moments mentioned in:

Sergio Picart-Armada, Wesley K Thompson, Alfonso Buil, Alexandre Perera-Lluna. The effect of
statistical normalisation on network propagation scores. Bioinformatics, 2020, btaa896. https://doi.org/10.1093/bioinformatic

Specifically, get_mu_reference() and get_var_reference() provide the so-called 'Reference
expected values’ and ’Reference variances’, which are input-independent (one only needs the kernel
and the ids of the labelled nodes). Getting the actual expected values and variances requires provid-
ing the input expected value and variance, and can be achieved with get_mu() and get_covar().

Value

get_mu_reference(), get_var_reference() and get_mu() return a vector, whereas get_covar ()
returns a square matrix.

References

Article: https://doi.org/10.1093/bioinformatics/btaa896 Functions: https://github.com/b2slab/diffuBench/blob/master/helper

Examples

data(graph_toy)

Kernel

K_pstep <- pStepKernel(graph_toy)

Labelled nodes

ids <- head(rownames(K_pstep), ncol(K_pstep)/3)
Reference values

get_mu_reference(K_pstep, ids)
get_var_reference(K_pstep, ids)

Actual moments with an input y

y <- graph_toy$input_vec[ids]

mu_y <- mean(y)

var_y <- var(y)

mu <- get_mu(K_pstep, ids, mu_y = mu_y)

covar <- get_covar(K_pstep, ids, var_y = var_y)
mean values

mu

variances

diag(covar)

covariances

covar[1:6, 1:6]

named.list

23

named.list Create a named list

Description

Create a list with variables and name the slots using the variables names

Usage

named.list(...)

Arguments

Variables to pack in a list

Value

A list of variables

Examples

diffuStats:::named.list(LETTERS, mean)

ParallelHeatrank Compute heatrank in parallel

Description

ParallelHeatrank is a wrapper that computes heatranks for (possibly) different backgrounds and
for multiple inputs at once. It will reuse the permutations, which have to be passed to the func-
tion. The input must be binary for this implementation, so numeric values for each node are not

supported.

Usage

ParallelHeatrank(R, perm, G)

Arguments
R dense matrix with the diffusion kernel
perm dense matrix with the permutations (indices in columns). This has to ensure that

enough indices are sampled, i.e. at least as great as the largest list in the input

(largest colSums in G)

G S4 sparse matrix with the heat sources

24 perf

Value

a matrix with the same amount of rows that R and columns in G, containing the heatrank scores.
These scores are corrected using (r + 1)/ (p + 1) instead of r/p. The smaller the score, the warmer
the node.

perf Compare diffusions to a target score on a grid of parameters

Description

Function perf computes diffusion scores on a grid of parameters and evaluates them using the gold
standard scores provided by the user.

Usage
perf(
scores,
validation,
grid_param,
metric = list(auc = metric_fun(curve = "ROC")),
)
Arguments
scores scores to be smoothed; either a named numeric vector, a column-wise matrix
whose rownames are nodes and colnames are different scores, or a named list of
such matrices.
validation target scores to which the smoothed scores will be compared to. Must have the
same format as the input scores, although the number of rows may vary and only
the matching rows will give a performance measure
grid_param data frame containing parameter combinations to explore. The column names
should be the names of the parameters.
metric named list of metrics to apply. Each metric should accept the form f (actual,
predicted)
additional named arguments for the diffusion method. It’s important to input at
least an igraph object or, alternative, a kernel matrix K
Details

Function perf takes a network in igraph format, an initial state to score all the nodes in the network,
a target score set. To explore the parameter combinations, it needs a grid and a list of metrics to
apply. The validation scores might be only a subset of the network nodes, in which case the metric
will be restricted to this set as well.

perf_eval 25

Value

A data frame containing the performance of each diffusion score

Examples

Using a single vector of scores
data(graph_toy)
df_perf <- perf(
graph = graph_toy,
scores = graph_toy$input_vec,
validation = graph_toy$input_vec,
grid_param = expand.grid(method = c("raw”, "ml")))
df_perf
Using a matrix with four set of scores
called Single, Row, Small_sample, Large_sample
df _perf <- perf(
graph = graph_toy,
scores = graph_toy$input_mat,
validation = graph_toy$input_mat,
grid_param = expand.grid(method = c("raw”, "ml")))
df_perf

perf_eval Compute performance of diffusion scores on a single case

Description

Function perf_eval directly compares a desired output with the scores from diffusion. It handles
the possible shapes of the scores (vector, matrix, list of matrices) and gives the desired metrics.

Usage
perf_eval(
prediction,
validation,
metric = list(auc = metric_fun(curve = "ROC"))
)
Arguments
prediction smoothed scores; either a named numeric vector, a column-wise matrix whose
rownames are nodes and colnames are different scores, or a named list of such
matrices.
validation target scores to which the smoothed scores will be compared to. Must have the
same format as the input scores, although the number of rows may vary and only
the matching rows will give a performance measure.
metric named list of metrics to apply. Each metric should accept the form f (actual,

predicted)

26 perf_wilcox

Value

A data frame containing the metrics for each comparable pair of output-validation.

Examples

Using a matrix with four set of scores
called Single, Row, Small_sample, Large_sample
data(graph_toy)
diff <- diffuse(

graph = graph_toy,

scores = graph_toy$input_mat,

method = "raw")
df_perf <- perf_eval(

prediction = diff,

validation = graph_toy$input_mat)
df_perf

perf_wilcox Compute column-wise statistics in a performance matrix

Description

Function perf_wilcox compares all the columns of a matrix through awilcox. test. The columns
are assumed to be performance measures (e.g. AUROC) whereas the rows are instances.

Usage
perf_wilcox(
perf_mat,
adjust = function(p) stats::p.adjust(p, method = "fdr"),
ci = 0.95,
digits_ci = 2,
digits_p = 3,
)
Arguments
perf_mat Numeric matrix whose columns contain performance metrics of different meth-
ods.
adjust Function to adjust the p-values for multiple testing. By default, p.adjust with
its default parameters is used.
ci Numeric, confidence interval (defaults to @.95)
digits_ci Integer, digits to display in the confidence interval
digits_p Integer, digits to display in the p-value

further arguments for format

scores2colours 27

Details

The statistical comparison of the columns is intended to ease comparisons between methods in a
rigorous way. Methods are compared pairwise and a p-value for difference in performance. The
function perf_wilcox returns a character matrix so that (1) the upper triangular matrix contains
confidence intervals on the estimate of the difference between performances, and (2) the lower
triangular matrix contains the two-tailed p-value that tests difference in performance, with multiple
testing correction. The comparison takes place between row and column in that precise order: a
positive difference favours the row and a negative one, the column.

Value

Character matrix. The upper triangular matrix contains a confidence interval and the estimate of the
pairwise difference in performance. The lower triangular matrix shows the associated two-tailed
p-value, with multiple testing correction.

Examples

Dummy data frame to test

n <- 100

perf_mat <- cbind(
good = runif(n = n, min = 0.5, max = 1),
so_so = runif(n = n, min = 0.2, max = 0.7),
bad = runif(n = n, min = @, max = 0.5)

)

wilcox_mat <- perf_wilcox(perf_mat)

See how the methods in the rows compare to those
in the columns, confidence interval

(upper) and p-value (lower)

wilcox_mat

scores2colours Translate values into colours

Description

Create a vector of hex colours from numeric values, typically diffusion scores

Usage

scores2colours(
X?
range = c(min(@, min(x)), max(x)),
n.colors = 10,
palette = colorRampPalette(c("#3C5488FF", "white"”, "#F39B7FFF"))

28 scores2shapes

Arguments
X numeric vector to be colorised
range range of values to filter x (values out of the range will be collapsed to the closest
limit)
n.colors integer, number of colors in the palette
palette palette function that generates a scale of colours given the number of desired
colours. Defaults to a blue-white-red scale by colorRampPalette
Value

Character vector with hex colours

Examples

set.seed(1)
scores2colours(runif(20))

scores2shapes Translate values into shapes

Description

Translate 0/1 to shapes, by default "circle” and "square”

Usage

scores2shapes(x, shapes = c("circle”, "square"))
Arguments

X numeric vector to generate shapes from

shapes character vector with two shapes, respectively zeroes and ones
Value

Character vector with shapes

Examples

set.seed(1)
scores2shapes(rbinom(n = 20, size = 1, prob = .5))

serialHeatrank

29

serialHeatrank Compute heatrank for a single case

Description

The heatrank incorporates the correction (r + 1)/(p + 1) instead of r/p

Usage

serialHeatrank(R, perm, G, ind)

Arguments
R dense matrix with the diffusion kernel
perm sparse matrix with the permutations
G sparse matrix with the heat sources
ind index of the G column for current source
Value

an arma::vec with node heatranks

sparsify?2 Sparsify arma::mat into arma::sp_mat

Description

Return permutations as a numeric sparse matrix (can be binary or continuous)

Usage

sparsify2(perm, nrow, G)

Arguments
perm dense matrix with the permutations
nrow number of rows for the sparse matrix
G sparse column matrix

Value

an arma::sp_mat object

30

to_x_from_list

to_list Convert input to list format

Description

Convert any input to list format

Usage

to_list(scores, dummy_column = "X1", dummy_list = "X1")
Arguments

scores object to reformat

dummy_column, dummy_list
character, names for the dummy columns/items

Value

scores in list format

Examples

data(graph_toy)
x_v <- diffuStats:::to_list(graph_toy$input_vec)
x_m <- diffuStats:::to_list(graph_toy$input_mat)

to_x_from_list Convert list format to desired format

Description

Convert any list format to the convenient one

Usage

to_x_from_list(scores, x)

Arguments

scores list to reformat

X character, desired format
Value

scores in desired format

which_format

Examples

data(graph_toy)

X_Vv <- diffuStats:::to_x_from_list(
diffuStats:::to_list(graph_toy$input_vec), "vector”)

x_m <- diffuStats:::to_x_from_list(
diffuStats:::to_list(graph_toy$input_vec), "matrix”)

which_format In which format is the input?

Description

Tell apart vector, matrix or list of matrices

Usage

which_format(x)

Arguments

X object to evaluate

Value

character: vector, matrix or list.

Examples

data(graph_toy)
diffuStats:::which_format(graph_toy$input_vec)
diffuStats:::which_format(graph_toy$input_mat)

Index

+ datasets
.check_scores, 3
.default_graph_param, 5
graph_toy, 15
.available_methods (.check_scores), 3
.check_K (.check_scores), 3
.check_graph (.check_scores), 3
.check_method (.check_scores), 3
.check_metric (.check_scores), 3
.check_scores, 3
.connect_undirected_graph, 4
.default_graph_param, 5
.default_prop (.default_graph_param), 5

barabasi.game, 14

colorRampPalette, 28
commuteTimeKernel (kernels), 16
convertSparse, 5

diffuse, 6, 13

diffuse_grid (diffuse), 6
diffuse_mc, 11
diffuse_raw, 12
diffusionKernel (kernels), 16
diffuStats, 13

erdos.renyi.game, 14
format, 26

generate_graph, 13
generate_input, /4, 14
get_covar (moments), 21

get_mu (moments), 21
get_mu_reference (moments), 21
get_var_reference (moments), 21
graph_toy, 15

inverseCosineKernel (kernels), 16
is_kernel, 16

32

kernels, 13, 16
largest_cc, 18

make_lattice, /4

Matrix, 5
metric_auc, 19, 20
metric_fun (metric_auc), 19
moments, 21

named.list, 23

p.adjust, 26
ParallelHeatrank, 23
part, 20

perf, 13,19, 24
perf_eval, 13, 19, 25
perf_wilcox, 26
pStepKernel (kernels), 16

regularisedlLaplacianKernel (kernels), 16

sample, /1
scores2colours, 27
scores2shapes, 28
serialHeatrank, 29
sparsify2, 29

to_list, 30
to_x_from_list, 30

watts.strogatz.game, /4
which_format, 31
wilcox.test, 26

	.check_scores
	.connect_undirected_graph
	.default_graph_param
	convertSparse
	diffuse
	diffuse_mc
	diffuse_raw
	diffuStats
	generate_graph
	generate_input
	graph_toy
	is_kernel
	kernels
	largest_cc
	metric_auc
	moments
	named.list
	ParallelHeatrank
	perf
	perf_eval
	perf_wilcox
	scores2colours
	scores2shapes
	serialHeatrank
	sparsify2
	to_list
	to_x_from_list
	which_format
	Index

