Package ‘derfinder’

February 1, 2026
Type Package

Title Annotation-agnostic differential expression analysis of RNA-seq
data at base-pair resolution via the DER Finder approach

Version 1.45.0
Date 2025-07-21
Depends R (>=3.5.0)

Imports BiocGenerics (>= 0.25.1), AnnotationDbi (>= 1.27.9),
BiocParallel (>= 1.15.15), bumphunter (>= 1.9.2),
derfinderHelper (>= 1.1.0), Seqinfo (>= 0.99.2), GenomeInfoDb
(>=1.45.9), GenomicAlignments, GenomicFeatures, GenomicFiles,
GenomicRanges (>= 1.61.1), Hmisc, IRanges (>= 2.3.23), methods,
gvalue (>= 1.99.0), Rsamtools (>= 2.25.1), rtracklayer,
S4Vectors (>= 0.23.19), stats, utils

Suggests BiocStyle (>=2.5.19), sessioninfo, derfinderData (>=
0.99.0), derfinderPlot, DESeq2, ggplot2, knitr (>= 1.6), limma,
RefManageR, rmarkdown (>= 0.3.3), testthat (>= 2.1.0),
TxDb.Hsapiens.UCSC.hg19.knownGene, covr

VignetteBuilder knitr

Description This package provides functions for annotation-agnostic
differential expression analysis of RNA-seq data. Two implementations of
the DER Finder approach are included in this package: (1) single base-level
F-statistics and (2) DER identification at the expressed regions-level.
The DER Finder approach can also be used to identify differentially bounded
ChIP-seq peaks.

License Artistic-2.0
LazyData true

URL https://github.com/1colladotor/derfinder

BugReports https://support.bioconductor.org/t/derfinder/

biocViews DifferentialExpression, Sequencing, RNASeq, ChIPSeq,
DifferentialPeakCalling, Software, ImmunoOncology, Coverage

RoxygenNote 7.3.2

https://github.com/lcolladotor/derfinder
https://support.bioconductor.org/t/derfinder/

2 Contents

Encoding UTF-8

Roxygen list(markdown = TRUE)

git_url https://git.bioconductor.org/packages/derfinder
git_branch devel

git_last_commit 946e0b8

git_last commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Leonardo Collado-Torres [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2140-308X>),
Alyssa C. Frazee [ctb],
Andrew E. Jaffe [aut] (ORCID: <https://orcid.org/0000-0001-6886-1454>),
Jeffrey T. Leek [aut, ths] (ORCID:
<https://orcid.org/0000-0002-2873-2671>)

Maintainer Leonardo Collado-Torres <lcolladotor@gmail.com>

Contents
derfinder-package L 3
analyzeChr e 4
annotateRegions L 7
calculatePvalues 8
calculateStats 12
coerceGR 13
collapseFullCoverage e 14
coverageTOEXon L 16
createBwo 18
createBwSample oL 19
define_cluster s 20
derfinder-deprecated 21
extendedMapSeqlevels L 22
filterData 24
findRegions L 26
fullCoverage e 28
genomeData oL 30
genomeDataRaw Lo 31
genomeFstats 32
genomelnfo 32
genomeRegions L 33
genomicState e 34
getRegionCoverage 34
getTotalMapped 36
loadCoverage o o e 37
makeGenomicState e e 40

makeModels e e e 41

https://orcid.org/0000-0003-2140-308X
https://orcid.org/0000-0001-6886-1454
https://orcid.org/0000-0002-2873-2671

derfinder-package 3

mergeResults e 43
preprocessCOVErage v o i i e e e e e e e e e e e 45
raillMatriX e e 47
rawFiles e e 50
regionMatrixo L e e 51
sampleDepth 54
Index 56
derfinder-package derfinder: Annotation-agnostic differential expression analysis of

RNA-seq data at base-pair resolution via the DER Finder approach

Description

This package provides functions for annotation-agnostic differential expression analysis of RNA-
seq data. Two implementations of the DER Finder approach are included in this package: (1) single
base-level F-statistics and (2) DER identification at the expressed regions-level. The DER Finder
approach can also be used to identify differentially bounded ChIP-seq peaks.

Author(s)
Maintainer: Leonardo Collado-Torres <lcolladotor@gmail.com> (ORCID)

Authors:

¢ Andrew E. Jaffe <andrew. jaffe@libd.org> (ORCID)
 Jeffrey T. Leek <jtleek@gmail.com> (ORCID) [thesis advisor]

Other contributors:

* Alyssa C. Frazee <alyssa.frazee@gmail.com> [contributor]

See Also

Useful links:

* https://github.com/1lcolladotor/derfinder

* Report bugs at https://support.bioconductor.org/t/derfinder/

https://orcid.org/0000-0003-2140-308X
https://orcid.org/0000-0001-6886-1454
https://orcid.org/0000-0002-2873-2671
https://github.com/lcolladotor/derfinder
https://support.bioconductor.org/t/derfinder/

4 analyzeChr
analyzeChr Run the derfinder analysis on a chromosome
Description
This is a major wrapper for running several key functions from this package. It is meant to be used
after loadCoverage has been used for a specific chromosome. The steps run include makeModels,
preprocessCoverage, calculateStats, calculatePvalues and annotating with annotateTranscripts and
matchGenes.
Usage
analyzeChr(
chr,
coveragelnfo,
models,
cutoffPre = 5,
cutoffFstat = 1e-08,
cutoffType = "theoretical”,
nPermute = 1,
seeds = as.integer(gsub("-", "", Sys.Date())) + seq_len(nPermute),
groupInfo,
txdb = NULL,
writeOutput = TRUE,
runAnnotation = TRUE,
lowMemDir = file.path(chr, "chunksDir"),
smooth = FALSE,
weights = NULL,
smoothFunction = bumphunter::locfitByCluster,
)
Arguments
chr Used for naming the output files when writeOutput=TRUE and the resulting
GRanges object.
coverageInfo A list containing a DataFrame —$coverage— with the coverage data and a log-
ical Rle —$position— with the positions that passed the cutoff. This object is
generated using loadCoverage. You should have specified a cutoff value for
loadCoverage unless that you are using colsubset which will force a filtering
step with filterData when running preprocessCoverage.
models The output from makeModels.
cutoffPre This argument is passed to preprocessCoverage (cutoff).
cutoffFstat This is used to determine the cutoff argument of calculatePvalues and it’s be-

haviour is determined by cutoffType.

analyzeChr 5

cutoffType If setto empirical, the cutoffFstat (example: 0.99) quantile is used via quan-
tile. If set to theoretical, the theoretical cutoffFstats (example: 1e-08) is
calculated via gf. If set to manual, cutoffFstats is passed to calculatePvalues
without any other calculation.

nPermute The number of permutations. Note that for a full chromosome, a small amount
(10) of permutations is sufficient. If set to 0, no permutations are performed and
thus no null regions are used, however, the $regions component is created.

seeds An integer vector of length nPermute specifying the seeds to be used for each
permutation. If NULL no seeds are used.

groupInfo A factor specifying the group membership of each sample that can later be used
with the plotting functions in the derfinderPlot package.

txdb This argument is passed to annotateTranscripts. If NULL, TxDb.Hsapiens.UCSC.hg19.knownGene
is used.

writeOutput If TRUE, output Rdata files are created at each step inside a directory with the
chromosome name (example: ’chr21’ if chrnum="'21"). One Rdata file is cre-
ated for each component described in the return section.

runAnnotation If TRUE annotateTranscripts and matchGenes are run. Otherwise these steps are
skipped.

lowMemDir If specified, each chunk is saved into a separate Rdata file under lowMemDir and
later loaded in fstats.apply when running calculateStats and calculatePvalues.
Using this option helps reduce the memory load as each fork in bplapply loads
only the data needed for the chunk processing. The downside is a bit longer
computation time due to input/output.

smooth Whether to smooth the F-statistics (fstats) or not. This is by default FALSE.
For RNA-seq data we recommend using FALSE.

weights Weights used by the smoother as described in smoother.

smoothFunction A function to be used for smoothing the F-statistics. Two functions are pro-
vided by the bumphunter package: loessByCluster and runmedByCluster. If
you are using your own custom function, it has to return a named list with an
element called $fitted that contains the smoothed F-statistics and an element
claled $smoothed that is a logical vector indicating whether the F-statistics were
smoothed or not. If they are not smoothed, the original values will be used.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way. Default
TRUE.

scalefac This argument is passed to preprocessCoverage.

chunksize This argument is passed to preprocessCoverage.

returnOutput If TRUE, it returns a list with the results from each step. Other-
wise, it returns NULL. Default: the opposite of writeOutput.

Passed to extendedMapSeqlevels, preprocessCoverage, calculateStats, calcu-
latePvalues, annotateTranscripts, matchGenes, and define_cluster.

6 analyzeChr

Details

If you are working with data from an organism different from "Homo sapiens’ specify so by setting
the global ’species’ and ’chrsStyle’ options. For example: options(species = 'arabidopsis_thaliana')
options(chrsStyle = 'NCBI')

Value

If returnOutput=TRUE, a list with six components:

timeinfo The wallclock timing information for each step.
optionsStats The main options used when running this function.
coveragePrep The output from preprocessCoverage.

fstats The output from calculateStats.

regions The output from calculatePvalues.

annotation The output from matchGenes.

These are the same components that are written to Rdata files if writeOutput=TRUE.

Author(s)

Leonardo Collado-Torres

See Also

makeModels, preprocessCoverage, calculateStats, calculatePvalues, annotateTranscripts, match-
Genes

Examples

Collapse the coverage information

collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
verbose = TRUE

)

Calculate library size adjustments

sampleDepths <- sampleDepth(collapsedFull,
probs = c(0.5), nonzero = TRUE,
verbose = TRUE

)

Build the models

groupInfo <- genomeInfo$pop

adjustvars <- data.frame(genomeInfo$gender)

models <- makeModels(sampleDepths, testvars = groupInfo, adjustvars = adjustvars)

Analyze the chromosome

results <- analyzeChr(
chr = "21", coveragelnfo = genomeData, models = models,
cutoffFstat = 1, cutoffType = "manual”, groupInfo = groupInfo, mc.cores = 1,
writeOutput = FALSE, returnOutput = TRUE, method = "regular”,

annotateRegions 7

runAnnotation = FALSE
)

names(results)

annotateRegions Assign genomic states to regions

Description

This function takes the regions found in calculatePvalues and assigns them genomic states con-
tructed with makeGenomicState. The main workhorse functions are countOverlaps and findOver-
laps.

Usage

annotateRegions(regions, genomicState, annotate = TRUE, ...)
Arguments

regions The $regions output from calculatePvalues.

genomicState A GRanges object created with makeGenomicState. It can be either the genomicState$fullGenome

or genomicState$codingGenome component.

annotate If TRUE then the regions are annotated by the genomic state. Otherwise, only the
overlaps between the regions and the genomic states are computed.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

ignore.strand Passed on to findOverlaps-methods and countOverlaps. De-
fault: TRUE.

Passed to extendedMapSeqlevels, countOverlaps and findOverlaps-methods.

Details

You might want to specify arguments such as minoverlap to control how the overlaps are deter-
mined. See findOverlaps for further details.

Value
A list with elements countTable and annotationList (only if annotate=TRUE).

countTable This is a data.frame with the number of overlaps from the regions vs the genomic
states with one type per column. For example, if fullOrCoding="full' then the columns are
exon, intergenic and intron.

annotationList This is a GRangesList with the genomic states that overlapped with the regions.
The names of this GRangesList correspond to the region index in regions.

8 calculatePvalues

Author(s)

Andrew Jaffe, Leonardo Collado-Torres

See Also

makeGenomicState, calculatePvalues

Examples

Annotate regions, first two only
annotatedRegions <- annotateRegions(
regions = genomeRegions$regions[1:2],
genomicState = genomicState$fullGenome, minoverlap = 1

)

annotatedRegions

calculatePvalues Calculate p-values and identify regions

Description

First, this function finds the regions of interest according to specified cutoffs. Then it permutes the
samples and re-calculates the F-statistics. The area of the statistics from these segments are then
used to calculate p-values for the original regions.

Usage
calculatePvalues(
coveragePrep,
models,
fstats,
nPermute = 1L,
seeds = as.integer(gsub("-", "", Sys.Date())) + seq_len(nPermute),
chr,

cutoff = quantile(fstats, ©.99, na.rm = TRUE),
significantCut = c(0.05, 0.1),

lowMemDir = NULL,

smooth = FALSE,

weights = NULL,

smoothFunction = bumphunter::locfitByCluster,

calculatePvalues 9

Arguments

coveragePrep A list with $coverageProcessed, $mclapplyIndex, and $position normally
generated using preprocessCoverage.

models A list with $mod and $mod@ normally generated using makeModels.
fstats A numerical Rle with the F-statistics normally generated using calculateStats.
nPermute The number of permutations. Note that for a full chromosome, a small amount

(10) of permutations is sufficient. If set to 0, no permutations are performed and
thus no null regions are used, however, the $regions component is created.

seeds An integer vector of length nPermute specifying the seeds to be used for each
permutation. If NULL no seeds are used.

chr A single element character vector specifying the chromosome name. This argu-
ment is passed to findRegions.

cutoff F-statistic cutoff to use to determine segments.

significantCut A vector of length two specifiying the cutoffs used to determine significance.
The first element is used to determine significance for the P-values, while the
second element is used for the Q-values (FDR adjusted P-values).

lowMemDir The directory where the processed chunks are saved when using preprocessCov-
erage with a specified LlowMemDir.
smooth Whether to smooth the F-statistics (fstats) or not. This is by default FALSE.

For RNA-seq data we recommend using FALSE.
weights Weights used by the smoother as described in smoother.

smoothFunction A function to be used for smoothing the F-statistics. Two functions are pro-
vided by the bumphunter package: loessByCluster and runmedByCluster. If
you are using your own custom function, it has to return a named list with an
element called $fitted that contains the smoothed F-statistics and an element
claled $smoothed that is a logical vector indicating whether the F-statistics were
smoothed or not. If they are not smoothed, the original values will be used.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

scalefac This argument is passed to fstats.apply and should be the same as the
one used in preprocessCoverage. Default: 32.

method Has to be either "Matrix’ (default), 'Rle’ or 'regular’. See details in
fstats.apply.

adjustF A single value to adjust that is added in the denominator of the F-stat
calculation. Useful when the Residual Sum of Squares of the alternative
model is very small. Default: 0.

writeOutput If TRUE then the regions are saved before calculating g-values,
and then overwritten once the g-values are written. This argument was in-
troduced to save the results from the permutations (can take some time) to
investigate the problem described at https://support.bioconductor.org/p/62026/

maxRegionGap Passed to internal functions of findRegions. Default: 0.

Passed to findRegions, smoothFunction and define_cluster.

10 calculatePvalues

Value

A list with four components:

regions is a GRanges with metadata columns given by findRegions with the additional metadata
column pvalues: p-value of the region calculated via permutations of the samples; qvalues:
the qvalues calculated using qvalue; significant: whether the p-value is less than 0.05 (by
default); significantQval: whether the g-value is less than 0.10 (by default). It also includes
the mean coverage of the region (mean from the mean coverage at each base calculated in
preprocessCoverage). Furthermore, if groupInfo was not NULL in preprocessCoverage, then
the group mean coverage is calculated as well as the log 2 fold change (using group 1 as the
reference).

nullStats is a numeric Rle with the mean of the null statistics by segment.

nullWidths is a numeric Rle with the length of each of the segments in the null distribution. The
area can be obtained by multiplying the absolute nullstats by the corresponding lengths.

nullPermutation is a Rle with the permutation number from which the null region originated from.

Author(s)

Leonardo Collado-Torres

See Also

findRegions, fstats.apply, qvalue

Examples

Collapse the coverage information

collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
verbose = TRUE

)

Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull, probs = c(0.5), verbose = TRUE)

Build the models

group <- genomeInfo$pop

adjustvars <- data.frame(genomeInfo$gender)

models <- makeModels(sampleDepths, testvars = group, adjustvars = adjustvars)

Preprocess the data
Automatic chunksize used to then compare 1 vs 4 cores in the 'do not run'
section
prep <- preprocessCoverage(genomeData,
groupInfo = group, cutoff = 0,
scalefac = 32, chunksize = NULL, colsubset = NULL, mc.cores = 4

)

Get the F statistics
fstats <- genomeFstats

calculatePvalues 11

We recommend determining the cutoff to use based on the F-distribution
although you could also based it on the observed F-statistics.

In this example we use a low cutoff used for illustrative purposes
cutoff <- 1

Calculate the p-values and define the regions of interest.
regsWithP <- calculatePvalues(prep, models, fstats,

nPermute = 1, seeds = 1,

chr = "chr21", cutoff = cutoff, mc.cores = 1, method = "regular”
)
regsWithP
Not run:
Calculate again, but with 10 permutations instead of just 1
regsWithP <- calculatePvalues(prep, models, fstats,

nPermute = 10, seeds = 1:10,

chr = "chr21"”, cutoff = cutoff, mc.cores = 2, method = "regular”

)

Check that they are the same as the previously calculated regions
library(testthat)
expect_that(regsWithP, equals(genomeRegions))

Histogram of the theoretical p-values by region
hist(pf(regsWithP$regions$value, df1 - df@, n - df1), main = "Distribution
original p-values by region”, freq = FALSE)

Histogram of the permutted p-values by region
hist(regsWithP$regions$pvalues, main = "Distribution permutted p-values by
region”, freq = FALSE)

MA style plot
library("ggplot2")
ma <- data.frame(
mean = regsWithP$regions$meanCoverage,
log2FoldChange = regsWithP$regions$log2FoldChangeYRIvsCEU
)
ggplot(ma, aes(x = log2(mean), y = log2FoldChange)) +
geom_point() +
ylab("Fold Change (log2)") +
xlab("”"Mean coverage (log2)") +
labs(title = "MA style plot")

Annotate the results

library("bumphunter™)

genes <- annotateTranscripts(TxDb.Hsapiens.UCSC.hg19.knownGene: :TxDb.Hsapiens.UCSC.hg19.knownGene)
annotation <- matchGenes(regsWithP$regions, genes)

head(annotation)

End(Not run)

12 calculateStats

calculateStats Calculate F-statistics at base pair resolution from a loaded BAM files

Description

After defining the models of interest (see makeModels) and pre-processing the data (see prepro-
cessCoverage), use calculateStats to calculate the F-statistics at base-pair resolution.

Usage

calculateStats(coveragePrep, models, lowMemDir = NULL, ...)

Arguments

coveragePrep A list with $coverageProcessed, $mclapplyIndex, and $position normally
generated using preprocessCoverage.

models A list with $mod and $mod@ normally generated using makeModels.

lowMemDir The directory where the processed chunks are saved when using preprocessCov-
erage with a specified lowMemDir.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

scalefac This argument is passed to fstats.apply and should be the same as the
one used in preprocessCoverage. Default: 32.

method Has to be either "Matrix’ (default), 'Rle’ or ‘regular’. See details in
fstats.apply.

adjustF A single value to adjust that is added in the denominator of the F-stat
calculation. Useful when the Residual Sum of Squares of the alternative
model is very small. Default: 0.

Passed to define_cluster.

Value

A numeric Rle with the F-statistics per base pair that passed the cutoff.

Author(s)

Leonardo Collado-Torres

See Also

makeModels, preprocessCoverage

coerceGR 13

Examples

Collapse the coverage information

collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
verbose = TRUE

)

Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull, probs = c(0.5), verbose = TRUE)

Build the models

group <- genomeInfo$pop

adjustvars <- data.frame(genomelnfo$gender)

models <- makeModels(sampleDepths, testvars = group, adjustvars = adjustvars)

Preprocess the data

prep <- preprocessCoverage(genomeData,
cutoff = 0@, scalefac = 32,
chunksize = 1e3, colsubset = NULL

)

Run the function

fstats <- calculateStats(prep, models, verbose = TRUE, method = "regular")
fstats

Not run:

Compare vs pre-packaged F-statistics

library("testthat”)

expect_that(fstats, is_equivalent_to(genomeFstats))

End(Not run)

coerceGR Coerce the coverage to a GRanges object for a given sample

Description

Given the output of fullCoverage, coerce the coverage to a GRanges object.

Usage
coerceGR(sample, fullCov, ...)
Arguments
sample The name or integer index of the sample of interest to coerce to a GRanges
object.
fullCov A list where each element is the result from loadCoverage used with returnCoverage

= TRUE. Can be generated using fullCoverage.

14 collapseFullCoverage

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

seqlengths A named vector with the sequence lengths of the chromosomes.
This argument is passed to GRanges. By default this is NULL and inferred
from the data.

Passed to define_cluster.

Value

A GRanges object with score metadata vector containing the coverage information for the specified
sample. The ranges reported are only those for regions of the genome with coverage greater than
ZEero.

Author(s)

Leonardo Collado-Torres

See Also

GRanges

Examples

Create a small fullCov object with data only for chr21
fullCov <- list("chr21” = genomeDataRaw)

Coerce to a GRanges the first sample
gr <- createBwSample(”"ERR@Q9101",
fullCov = fullCov,
seqlengths = c("chr21"” = 48129895)
)

Explore the output
gr

Coerces fullCoverage() output to GRanges for a given sample

collapseFullCoverage Collapse full coverage information for efficient quantile computations

Description

For a given data set this function collapses the full coverage information for each sample from all
the chromosomes. The resulting information per sample is the number of bases with coverage 0, 1,
etc. It is similar to using table() on a regular vector. This information is then used by sampleDepth
for calculating the sample depth adjustments. The data set can loaded to R using (see fullCoverage)
and optionally filtered using filterData.

collapseFullCoverage 15

Usage
collapseFullCoverage(fullCov, colsubset = NULL, save = FALSE, ...)
Arguments
fullCov A list where each element is the result from loadCoverage used with cutoff=NULL.
Can be generated using fullCoverage.
colsubset Which columns of coverageInfo$coverage to use.
save If TRUE, the result is saved as ’collapsedFull.Rdata’.
Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:
verbose If TRUE basic status updates will be printed along the way. Default:
FALSE.
Value

A list with one element per sample. Then per sample, a list with two vector elements: values and
weights. The first one is the coverage value and the second one is the number of bases with that
value.

Author(s)

Leonardo Collado-Torres

See Also

fullCoverage, sampleDepth

Examples

Collapse the coverage information for the filtered data
collapsedFull <- collapseFullCoverage(list(genomeData),
verbose = TRUE
)
collapsedFull
Not run:
You can also collapsed the raw data
collapsedFullRaw <- collapseFullCoverage(list(genomeDataRaw), verbose = TRUE)

End(Not run)

16 coverageToExon

coverageToExon Extract coverage information for exons

Description

This function extracts the coverage information calculated by fullCoverage for a set of exons deter-
mined by makeGenomicState. The underlying code is similar to getRegionCoverage with additional
tweaks for calculating RPKM values.

Usage

coverageToExon(
fullCov = NULL,
genomicState,
L = NULL,
returnType = "raw”,
files = NULL,

Arguments

fullCov A list where each element is the result from loadCoverage used with returnCoverage
= TRUE. Can be generated using fullCoverage. Alternatively, specify files to
extract the coverage information from the regions of interest. This can be help-
ful if you do not wish to store fullCov for memory reasons.

genomicState A GRanges object created with makeGenomicState. It can be either the genomicState$fullGenome
or genomicState$codingGenome component.

L The width of the reads used. Either a vector of length 1 or length equal to the
number of samples.

returnType If raw, then the raw coverage information per exon is returned. If rpkm, RPKM
values are calculated for each exon.

files A character vector with the full path to the sample BAM files (or BigWig files).
The names are used for the column names of the DataFrame. Check rawFiles
for constructing files. files can also be a BamFilelList object created with
BamFileList or a BigWigFilelList object created with BigWigFileList.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

BPPARAM.strandStep A BPPARAM object to use for the strand step. If not
specified, then strandCores specifies the number of cores to use for the
strand step. The actual number of cores used is the minimum of strandCores,
mc. cores and the number of strands in the data.

coverageToExon 17

BPPARAM.chrStep A BPPRAM object to use for the chr step. If not spec-
ified, then mc. cores specifies the number of cores to use for the chr step.
The actual number of cores used is the minimum of mc. cores and the num-
ber of samples.

Passed to extendedMapSeqlevels and define_cluster.

Details

Parallelization is used twice. First, it is used by strand. Second, for processing the exons by chro-
mosome. So there is no gain in using mc. cores greater than the maximum of the number of strands
and number of chromosomes.

If fullCov is NULL and files is specified, this function will attempt to read the coverage from the
files. Note that if you used ’totalMapped’ and ’targetSize’ before, you will have to specify them
again to get the same results.

Value

A matrix (nrow = number of exons in genomicState corresponding to the chromosomes in fullCov,

ncol = number of samples) with the number of reads (or RPKM) per exon. The row names corre-

spond to the row indexes of genomicState$fullGenome (if fullOrCoding="'full") or genomicState$codingGenome
(if fullOrCoding="coding").

Author(s)

Andrew Jaffe, Leonardo Collado-Torres

See Also

fullCoverage, getRegionCoverage

Examples

Obtain fullCov object
fullCov <- 1list("21" = genomeDataRaw$coverage)

Use only the first two exons

smallGenomicState <- genomicState

smallGenomicState$fullGenome <- smallGenomicState$fullGenome[
which(smallGenomicState$fullGenome$theRegion == "exon")[1:2]

Finally, get the coverage information for each exon
exonCov <- coverageToExon(

fullCov = fullCov,

genomicState = smallGenomicState$fullGenome, L = 36

18 createBw

createBw Export coverage to BigWig files

Description

Using output from fullCoverage, export the coverage from all the samples to BigWig files using

createBwSample.
Usage
createBw(fullCov, path = ".", keepGR = TRUE, ...)
Arguments
fullCov A list where each element is the result from loadCoverage used with returnCoverage
= TRUE. Can be generated using fullCoverage.
path The path where the BigWig files will be created.
keepGR If TRUE, the GRanges objects created by coerceGR grouped into a GRangesList
are returned. Otherwise they are discarded.
Arguments passed to createBwSample.
Details

Use at most one core per chromosome.

Value

If keepGR = TRUE, then a GRangesList with the output for coerceGR for each of the samples.

Author(s)

Leonardo Collado-Torres

See Also

GRangesList, export.bw, createBwSample, coerceGR

Examples

Create a small fullCov object with data only for chr21
fullCov <- list("chr21” = genomeDataRaw)

Keep only 2 samples
fullCov$chr21$coverage <- fullCov$chr2i$coveragelc(1, 31)]

Create the BigWig files for all samples in a test dir
dir.create("createBw-example")
bws <- createBw(fullCov, "createBw-example")

createBwSample 19

Explore the output
bws

First sample
bws[[11]

Note that if a sample has no bases with coverage > @, the GRanges object

is empty and no BigWig file is created for that sample.
bws[[2]]

Exports fullCoverage() output to BigWig files

createBwSample Create a BigWig file with the coverage information for a given sample

Description

Given the output of fullCoverage, this function coerces the coverage to a GRanges object using
coerceGR and then exports the coverage to a BigWig file using export.bw.

Usage
createBwSample(sample, path = ".", fullCov, keepGR = TRUE, ...)
Arguments
sample The name or integer index of the sample of interest to coerce to a GRanges
object.
path The path where the BigWig file will be created.
fullCov A list where each element is the result from loadCoverage used with returnCoverage
= TRUE. Can be generated using fullCoverage.
keepGR If TRUE, the GRanges object created by coerceGR is returned. Otherwise it is
discarded.
Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:
verbose If TRUE basic status updates will be printed along the way.
Passed to coerceGR.
Value

Creates a BigWig file with the coverage information (regions with coverage greater than zero) for a
given sample. If keepGR it returns the output from coerceGR.

Author(s)

Leonardo Collado-Torres

20 define_cluster

See Also

GRanges, export.bw, linkcoerceGR

Examples

Create a small fullCov object with data only for chr21
fullCov <- list("chr21" = genomeDataRaw)

Create a BigWig for the first sample in a test directory

dir.create("createBwSample-example"”)

bw <- createBwSample("ERR0Q9101", "createBwSample-example"”,
fullCov = fullCov, seqlengths = c("chr21"” = 48129895)

)

Explore the output
bw

Exports a single sample to a BigWig file

define_cluster Define a cluster to use.

Description

Define a cluster to use.

Usage
define_cluster(cores = "mc.cores”, ...)
Arguments
cores The argument to use to define the number of cores. This is useful for cases with
nested parallelizations.
Advanced arguments are:
mc.cores If 1 (default), then SerialParam will be used. If greater than 1, then
it specifies the number of workers for SnowParam.
mc.og Passed to log when using SnowParam.
BPPARAM.custom If specified, that’s the BPPARAM that will be used.
Details

This function is used internally in many functions.

Value

A BiocParallel *Param object

derfinder-deprecated 21

Author(s)

Leonardo Collado-Torres

Examples

Use SerialParam()
define_cluster(mc.cores = 1)

Note that BPPARAM.custom takes precedence
define_cluster(mc.cores = 2, BPPARAM.custom = BiocParallel::SerialParam())

derfinder-deprecated Deprecated functions in package ‘derfinder’

Description

These functions are provided for compatibility with older version of ‘derfinder’ only and will be
defunct at the next release.

Usage
advancedArg(fun, package = "derfinder"”, browse = interactive())
Arguments
fun The name of a function(s) that has advanced arguments in package.
package The name of the package where the function is stored. Only ’derfinder’, *derfind-
erPlot’, and ’regionReport’ are accepted.
browse Whether to open the URLSs in a browser.
Details

The following functions are deprecated and will be made defunct.

* advancedArg Not needed now that the advanced arguments are documented on the help pages
of each function.

Value

A vector of URLs with the GitHub search queries.

Examples

Open the advanced argument docs for loadCoverage()
if (interactive()) {
advancedArg("loadCoverage")
} else {
(advancedArg("loadCoverage”, browse = FALSE))
3

22

extendedMapSeqlevels

extendedMapSeqlevels Change naming style for a set of sequence names

Description

If available, use the information from GenomelnfoDb for your species of interest to map the se-
quence names from the style currently used to another valid style. For example, for Homo sapi-
ens map ’2° (NCBI style) to "chr2’ (UCSC style). If the information from GenomelnfoDb is not
available, the original sequence names will be returned. To disable this functionality specify set
chrsStyle to NULL.

Usage
extendedMapSeqlevels(
segnames,
style = getOption("chrsStyle”, "UCSC"),
species = getOption("species”, "homo_sapiens”),
currentStyle = NULL,
)
Arguments
seqnames A character vector with the sequence names.
style A single character vector specifying the naming style to use for renaming the
sequence names.
species A single character vector with the species of interest: it has to match the valid
species names supported in GenomelnfoDb. See names (GenomeInfoDb: : genomeStyles()).
If species =NULL, a guess will be made using the available information in
GenomelnfoDb.
currentStyle A single character vector with the currently used naming style. If NULL, a guess
will be made from the naming styles supported by species.
Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:
verbose If TRUE basic status updates will be printed along the way.
chrsStyle The naming style of the chromosomes. By default, UCSC. See se-
qlevelsStyle. Set to NULL to disable this function. This is used when style
is missing, which is normally the case when extendedMapSeqlevels is
called by other functions.
Details

This function is inspired from mapSeqlevels with the difference that it will return the original
sequence names if the species, current naming style or target naming style are not supported in

GenomelnfoDb.

extendedMapSeqlevels 23

If you want to disable this function, set chrsStyle to NULL. From other functions in derfinder that
pass the ... argument to this function, use chrsStyle = NULL. This can be useful when work-
ing with organisms that are absent from GenomelnfoDb as documented in https://support.
bioconductor.org/p/95521/.

Value

A vector of sequence names using the specified naming style.

Author(s)
L. Collado-Torres

Examples

Without guessing any information
extendedMapSeqlevels(”2", "UCSC", "Homo sapiens”, "NCBI")

Guessing the current naming style
extendedMapSeqlevels(”2", "UCSC", "Homo sapiens")

Guess species and current style
extendedMapSeqlevels("”2", "NCBI")

Guess species while supplying the current style.
Probably an uncommon use-case
extendedMapSeqlevels(”2", "NCBI", currentStyle = "TAIR10")

Sequence names are unchanged when using an unsupported species
extendedMapSeqlevels(”"seqg2"”, "NCBI"”, "toyOrganism")

Disable extendedMapSeqlevels. This can be useful when working with
organisms that are not supported by GenomeInfoDb
chrs <- c(
"rv, o "Irv, "rir", "ivv, "ixw, "v, "viv, "vir", "viir", "x",
"XI", "XII", "XIII", "XIV", "XV", "XVI", "XVII"

)

extendedMapSeqlevels(chrs, chrsStyle = NULL)
Not run:

Set global species and style option
options(”chrsStyle” = "UCSC")
options("species” = "homo_sapiens”)

Run using global options
extendedMapSeqglevels("2")

End(Not run)

https://support.bioconductor.org/p/95521/
https://support.bioconductor.org/p/95521/

24

filterData

filterData

Filter the positions of interest

Description

For a group of samples this function reads the coverage information for a specific chromosome
directly from the BAM files. It then merges them into a DataFrame and removes the bases that do
not pass the cutoff. This is a helper function for loadCoverage and preprocessCoverage.

Usage
filterData(
data,
cutoff = NULL,
index = NULL,
filter = "one",

totalMapped = NULL,

targetSize = 8e+07,

Arguments

data
cutoff

index

filter

totalMapped

targetSize

Either a list of Rle objects or a DataFrame with the coverage information.
The base-pair level cutoff to use. It’s behavior is controlled by filter.

A logical Rle with the positions of the chromosome that passed the cutoff. If
NULL it is assumed that this is the first time using filterData and thus no previous
index exists.

Has to be either 'one' (default) or 'mean’. In the first case, at least one sample
has to have coverage above cutoff. In the second case, the mean coverage has
to be greater than cutoff.

A vector with the total number of reads mapped for each sample. The vec-
tor should be in the same order as the samples in data. Providing this data
adjusts the coverage to reads in targetSize library prior to filtering. See get-
TotalMapped for calculating this vector.

The target library size to adjust the coverage to. Used only when totalMapped
is specified. By default, it adjusts to libraries with 80 million reads.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:
verbose If TRUE basic status updates will be printed along the way.

returnMean If TRUE the mean coverage is included in the result. FALSE by
default.

returnCoverage If TRUE, the coverage DataFrame is returned. TRUE by default.

filterData 25

Details

If cutoff is NULL then the data is grouped into DataFrame without applying any cutoffs. This can
be useful if you want to use loadCoverage to build the coverage DataFrame without applying any
cutoffs for other downstream purposes like plotting the coverage values of a given region. You can
always specify the colsubset argument in preprocessCoverage to filter the data before calculating
the F statistics.

Value

A list with up to three components.

coverage is a DataFrame object where each column represents a sample. The number of rows
depends on the number of base pairs that passed the cutoff and the information stored is the
coverage at that given base. Included only when returnCoverage = TRUE.

position is a logical Rle with the positions of the chromosome that passed the cutoff.

meanCoverage is a numeric Rle with the mean coverage at each base. Included only when
returnMean = TRUE.

colnames Specifies the column names to be used for the results DataFrame. If NULL, names from
data are used.

smoothMean Whether to smooth the mean. Used only when filter = 'mean'. This option is
used internally by regionMatrix.

Passed to the internal function . smootherFstats, see findRegions.

Author(s)

Leonardo Collado-Torres

See Also

loadCoverage, preprocessCoverage, getTotalMapped

Examples

Construct some toy data
library("IRanges")

x <= Rle(round(runif(le4, max = 10)))
y <= Rle(round(runif(le4, max = 10)))
z <- Rle(round(runif(le4, max = 10)))
DF <- DataFrame(x, y, z)

Filter the data
filt1 <- filterData(DF, 5)
filtl

Filter again but only using the first two samples
filt2 <- filterData(filt1$coverage[, 1:2], 5, index = filt1$position)
filt2

26 findRegions
findRegions Find non-zero regions in a Rle
Description
Find genomic regions for which a numeric vector is above (or below) predefined thresholds. In
other words, this function finds the candidate Differentially Expressed Regions (candidate DERS).
This is similar to regionFinder and is a helper function for calculatePvalues.
Usage
findRegions(
position = NULL,
fstats,
chr,
oneTable = TRUE,
maxClusterGap = 300L,
cutoff = quantile(fstats, .99, na.rm = TRUE),
segmentIR = NULL,
smooth = FALSE,
weights = NULL,
smoothFunction = bumphunter::locfitByCluster,
)
Arguments
position A logical Rle of genomic positions. This is generated in loadCoverage. Note
that it gets updated in preprocessCoverage if colsubset is not NULL.
fstats A numeric Rle with the F-statistics. Usually obtained using calculateStats.
chr A single element character vector specifying the chromosome name.
oneTable If TRUE only one GRanges is returned. Otherwise, a GRangesList with two
components is returned: one for the regions with positive values and one for the
negative values.
maxClusterGap This determines the maximum gap between candidate DERs. It should be greater
than maxRegionGap (0 by default).
cutoff Threshold applied to the fstats used to determine the regions.
segmentIR An IRanges object with the genomic positions that are potentials DERs. This is
used in calculatePvalues to speed up permutation calculations.
smooth Whether to smooth the F-statistics (fstats) or not. This is by default FALSE.
For RNA-seq data we recommend using FALSE.
weights Weights used by the smoother as described in smoother.

findRegions

smoothFunction

Details

27

A function to be used for smoothing the F-statistics. Two functions are pro-
vided by the bumphunter package: loessByCluster and runmedByCluster. If
you are using your own custom function, it has to return a named list with an
element called $fitted that contains the smoothed F-statistics and an element
claled $smoothed that is a logical vector indicating whether the F-statistics were
smoothed or not. If they are not smoothed, the original values will be used.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

basic If TRUE a DataFrame is returned that has only basic information on the
candidate DERs. This is used in calculatePvalues to speed up permutation
calculations. Default: FALSE.

maxRegionGap This determines the maximum number of gaps between two
genomic positions to be considered part of the same candidate region. The
default is OL.

Passed to extendedMapSeqlevels and the internal function .getSegmentsRle
that has by default verbose = FALSE.

When smooth = TRUE, . .. is passed to the internal function . smootherFstats.
This internal function has the advanced argument maxClusterGap (same as
above) and passes . . . to define_cluster and the formal arguments of smoothFun.

regionFinder adapted to Rle world.

Value

Either a GRanges or a GRangesList as determined by oneTable. Each of them has the following

metadata variables.

value The mean of the values of y for the given region.

area The absolute value of the sum of the values of y for the given region.

indexStart The start position of the region in terms of the index for y.

indexEnd The end position of the region in terms of the index for y.

cluster The cluser ID.

clusterL. The total length of the cluster.

Author(s)

Leonardo Collado-Torres

References

Rafael A. Irizarry,

Martin Aryee, Hector Corrada Bravo, Kasper D. Hansen and Harris A. Jaffee.

bumphunter: Bump Hunter. R package version 1.1.10.

28 fullCoverage

See Also

calculatePvalues

Examples

Preprocess the data

prep <- preprocessCoverage(genomeData,
cutoff = @, scalefac = 32, chunksize = 1e3,
colsubset = NULL

)

Get the F statistics
fstats <- genomeFstats

Find the regions

regs <- findRegions(prep$position, fstats, "chr21”, verbose = TRUE)

regs

Not run:

Once you have the regions you can proceed to annotate them

library("bumphunter™)

genes <- annotateTranscripts(TxDb.Hsapiens.UCSC.hg19.knownGene: :TxDb.Hsapiens.UCSC.hg19.knownGene)
annotation <- matchGenes(regs, genes)

annotation

End(Not run)

Find regions with smoothing the F-statistics by bumphunter::runmedByCluster
regs_smooth <- findRegions(prep$position, fstats, "chr21”,
verbose = TRUE,
smoothFunction = bumphunter: :runmedByCluster
)
Compare against the object regs obtained earlier
regs_smooth

fullCoverage Load the unfiltered coverage information from a group of BAM files
and a list of chromosomes

Description

For a group of samples this function reads the coverage information for several chromosomes di-
rectly from the BAM files. Per chromosome, it merges the unfiltered coverage by sample into a
DataFrame. The end result is a list with one such DataFrame objects per chromosome.

Usage

fullCoverage(
files,
chrs,

fullCoverage 29

bai = NULL,

chrlens = NULL,
outputs = NULL,
cutoff = NULL,

Arguments

files A character vector with the full path to the sample BAM files (or BigWig files).
The names are used for the column names of the DataFrame. Check rawFiles
for constructing files. files can also be a BamFilelList object created with
BamFileList or aBigWigFilelList object created with BigWigFileList.

chrs The chromosome of the files to read. The format has to match the one used in
the input files.

bai The full path to the BAM index files. If NULL it is assumed that the BAM in-
dex files are in the same location as the BAM files and that they have the .bai
extension. Ignored if files is a BamFilelList object.

chrlens The chromosome lengths in base pairs. If it’s NULL, the chromosome length is
extracted from the BAM files. Otherwise, it should have the same length as
chrs.

outputs This argument is passed to the output argument of loadCoverage. If NULL or
"auto’ it is then recycled.

cutoff This argument is passed to filterData.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

mc.cores How many cores to use for reading the chromosome information.
There’s no benefit of using a number greater than the number of chromo-
somes. Also note that your harddisk speed will limit how much you get
from using a higher mc. cores value.

mc.cores.Joad Controls the number of cores to be used per chr for loading the
data which is only useful in the scenario that you are loading in genome
tiles. If not supplied, it uses mc.cores for loadCoverage. Default: 1. If
you are using genome tiles, the total number of cores you’ll use will be
mc. cores times mc. cores. load.

Passed to loadCoverage, define_cluster and extendedMapSeqlevels. Note that
filterData is used internally by loadCoverage (and hence fullCoverage) and has
the important arguments totalMapped and targetSize which can be used to
normalize the coverage by library size. See getTotalMapped for calculating
totalMapped.

Value

A list with one element per chromosome.
Each element is a DataFrame with the coverage information produced by loadCoverage.

30 genomeData

Author(s)

Leonardo Collado-Torres

See Also

loadCoverage, filterData, getTotalMapped

Examples

datadir <- system.file("extdata”, "genomeData”, package = "derfinder")
files <- rawFiles(
datadir = datadir, samplepatt = "*accepted_hits.bam$",
fileterm = NULL
)
Shorten the column names
names(files) <- gsub("”_accepted_hits.bam",

nn

, names(files))

Read and filter the data, only for 1 file
fullCov <- fullCoverage(files = files[1], chrs = c("21", "22"))
fullCov
Not run:
You can then use filterData() to filter the data if you want to.
Use bplapply() if you want to do so with multiple cores as shown below.
library(”"BiocParallel”)
p <- SnowParam(2L)
bplapply(fullCov, function(x) {
library("derfinder")
filterData(x, cutoff = @)
}, BPPARAM = p)

End(Not run)

genomeData Genome samples processed data

Description

10kb region from chr21 processed for 31 RNA-seq samples described in genomelnfo. The TopHat
BAM files are included in the package and this is the output of loadCoverage applied to it. For more
information check the example of loadCoverage.

Format

A list with two components.

coverage is a DataFrame object where each column represents a sample.

position is a logical Rle with the positions of the chromosome that passed a cutoff of 0.

genomeDataRaw 31

References

1. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras J-B, Stephens
M, Gilad Y, Pritchard JK. Understanding mechanisms underlying human gene expression vari-
ation with RNA sequencing. Nature 2010 Apr.

2. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R,
Dermitzakis ET. Transcriptome genetics using second generation sequencing in a Caucasian
population. Nature 2010 Mar.

See Also

loadCoverage, genomelnfo

genomeDataRaw Genome samples processed data

Description

10kb region from chr21 processed for 31 RNA-seq samples described in genomelnfo. The TopHat
BAM files are included in the package and this is the output of loadCoverage applied to it with
cutoff=NULL. For more information check the example of loadCoverage.

Format

A list with two components.

coverage is a DataFrame object where each column represents a sample.

position is NULL because no bases were filtered.

References

1. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras J-B, Stephens
M, Gilad Y, Pritchard JK. Understanding mechanisms underlying human gene expression vari-
ation with RNA sequencing. Nature 2010 Apr.

2. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R,
Dermitzakis ET. Transcriptome genetics using second generation sequencing in a Caucasian
population. Nature 2010 Mar.

See Also

loadCoverage, genomelnfo

32 genomelnfo

genomeFstats F-statistics for the example data

Description
Calculated F-statistics for a 10kb region from chr21 processed for 31 RNA-seq samples described
in genomelnfo. For more information check the example of calculateStats.

Format

A numeric Rle of length 1434 with the calculated F-statistics as exemplified in calculateStats.

See Also

calculateStats

genomeInfo Genome samples information

Description

Information for the 31 samples downloaded from the Short Read Archive from studies comparing
CEU and YRI populations. This data is used to specify the adjustment variables in calculateStats.
The data is sorted according to the BAM files identifiers. Reads were 36bp long.

Format

A data.frame with 5 columns:

run The short name used to identify the sample BAM file.
library.layout Whether it was a single-end library or a paired-end library.

hapmap.id The HapMap identifier of the person sequenced. Note that some were sequenced more
than once.

gender Whether the person sequence is a female or a male.

pop The population the person belongs to.

Details
The samples are from:
10 unrelated females from the YRI population.

S unrelated females from the CEU population.

5 unrelated males (unrelated to the females too) from the CEU population.

genomeRegions 33

References

1. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras J-B, Stephens
M, Gilad Y, Pritchard JK. Understanding mechanisms underlying human gene expression vari-
ation with RNA sequencing. Nature 2010 Apr.

2. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R,
Dermitzakis ET. Transcriptome genetics using second generation sequencing in a Caucasian
population. Nature 2010 Mar.

See Also

genomeData, calculateStats

genomeRegions Candidate DERs for example data

Description

Candidate Differentially Expressed Regions (DERs) for the example data. For more information
check calculatePvalues.

Format

A list with four components.

regions a GRanges object with the candidate DERs.
nullStats a numeric Rle with the mean F-statistics for the null DERs found from the permutations.
nullWidths an integer Rle with the width of each null candidate DER.

nullPermutation an integer Rle with the permutation number for each candidate DER. It identifies
which permutation cycle created the null candidate DER.

See Also

calculatePvalues

34 getRegionCoverage

genomicState Genomic State for Hsapiens.UCSC.hg19.knownGene

Description

Pre-computed genomic state for Hsapiens UCSC hg19 knownGene annotation built using makeGe-
nomicState for TxDb.Hsapiens.UCSC.hg19.knownGene version 2.14.0. The object has been subset
for chr21 only.

Format

A GRangesList with two components.

fullGenome classifies each region as either being exon, intron or intergenic.

codingGenome classfies the regions as being promoter, exon, intro, SUTR, 3UTR or intergenic.

See Also

makeGenomicState

getRegionCoverage Extract coverage information for a set of regions

Description

This function extracts the raw coverage information calculated by fullCoverage at each base for a
set of regions found with calculatePvalues. It can further calculate the mean coverage per sample
for each region.

Usage
getRegionCoverage(
fullCov = NULL,
regions,

totalMapped = NULL,
targetSize = 8e+0@7,
files = NULL,

getRegionCoverage 35

Arguments
fullCov A list where each element is the result from loadCoverage used with returnCoverage
= TRUE. Can be generated using fullCoverage. Alternatively, specify files to
extract the coverage information from the regions of interest. This can be help-
ful if you do not wish to store fullCov for memory reasons.
regions The $regions output from calculatePvalues. It is important that the seqlengths

information is provided.

totalMapped The total number of reads mapped for each sample. Providing this data adjusts
the coverage to reads in targetSize library. By default, to reads per 80 million
reads.

targetSize The target library size to adjust the coverage to. Used only when totalMapped
is specified.

files A character vector with the full path to the sample BAM files (or BigWig files).
The names are used for the column names of the DataFrame. Check rawFiles

for constructing files. files can also be a BamFilelList object created with
BamFileList or aBigWigFilelList object created with BigWigFileList.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

Passed to extendedMapSeqlevels and define_cluster.

When fullCov is NULL, . .. has the advanced argument protectWhich (default
30000) from loadCoverage. Also ... is passed to fullCoverage for loading the
data on the fly. This can be useful for loading the data from a specific region (or
small sets of regions) without having to load in memory the output the coverage
information from all the genome.

Details

When fullCov is the output of loadCoverage with cutoff non-NULL, getRegionCoverage as-
sumes that the regions come from the same data. Meaning that filterData was not used again. This
ensures that the regions are a subset of the data available in fullCov.

If fullCov is NULL and files is specified, this function will attempt to read the coverage from the
files. Note that if you used ’totalMapped’ and ’targetSize’ before, you will have to specify them
again to get the same results.

You should use at most one core per chromosome.

Value

a list of data.frame where each data.frame has the coverage information (nrow = width of region,
ncol = number of samples) for a given region. The names of the list correspond to the region indexes
in regions

Author(s)

Andrew Jaffe, Leonardo Collado-Torres

36 getTotalMapped

See Also

fullCoverage, calculatePvalues

Examples

Obtain fullCov object
fullCov <- list(”21" = genomeDataRaw$coverage)

Assign chr lengths using hgl9 information, use only first two regions

library("GenomeInfoDb") # for getChromInfoFromUCSC()

regions <- genomeRegions$regions[1:2]

seqlengths(regions) <- seqlengths(getChromInfoFromUCSC("hg19",
as.Seqinfo = TRUE

NL
mapSeqlevels(names(seqlengths(regions)), "UCSC")

1

Finally, get the region coverage
regionCov <- getRegionCoverage(fullCov = fullCov, regions = regions)

getTotalMapped Calculate the total number of mapped reads

Description

For a given BAM calculate the total number of mapped reads and for a BigWig file calculate the
area under the curve (AUC), which is related to the number of mapped reads: the exact relationship
depends on whether the aligner soft clips reads and/or if the length of the reads is the same. If you
use the ’chrs’ argument you can choose to only consider the information for your chromosomes of
interest. For example, you can exclude the mitocondrial chromosome.

Usage

getTotalMapped(rawFile, chrs = NULL)

Arguments
rawFile Either a BAM file or a BigWig file.
chrs If NULL, all the chromosomes will be used. Otherwise, only those in chrs will
be used.
Value

The total number of mapped reads for a BAM file or the AUC for a BigWig file in a single element
vector.

Author(s)

Leonardo Collado-Torres

loadCoverage 37

Examples

Get the total number of mapped reads for an example BAM file:
bam <- system.file("extdata”, "genomeData”, "ERR009102_accepted_hits.bam",
package = "derfinder"”, mustWork = TRUE

)
getTotalMapped(bam)

loadCoverage Load the coverage information from a group of BAM files

Description

For a group of samples this function reads the coverage information for a specific chromosome
directly from the BAM files. It then merges them into a DataFrame and removes the bases that do
not pass the cutoff.

Usage
loadCoverage(
files,
chr,
cutoff = NULL,
filter = "one",

chrlen = NULL,
output = NULL,

bai = NULL,
)
Arguments

files A character vector with the full path to the sample BAM files (or BigWig files).
The names are used for the column names of the DataFrame. Check rawFiles
for constructing files. files can also be a BamFileList, BamFile, BigWig-
FileList, or BigWigFile object.

chr Chromosome to read. Should be in the format matching the one used in the raw
data.

cutoff This argument is passed to filterData.

filter Has to be either 'one' (default) or 'mean’. In the first case, at least one sample
has to have coverage above cutoff. In the second case, the mean coverage has
to be greater than cutoff.

chrlen The chromosome length in base pairs. If it’s NULL, the chromosome length is
extracted from the BAM files.

output If NULL then no output is saved in disk. If auto then an automatic name is

constructed using UCSC names (chrXCovInfo.Rdata for example). If another
character is specified, then that name is used for the output file.

38 loadCoverage

bai The full path to the BAM index files. If NULL it is assumed that the BAM index
files are in the same location as the BAM files and that they have the .bai exten-
sion. Ignored if files is a BamFilelList object or if inputType=='BigWig'.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way.

inputType Has to be either bam or BigWig. It specifies the format of the raw
data files. By default it’s set to bam before trying to guess it from the file
names.

tilewidth When specified, tileGenome is used to break up the chromosome
into chunks. We don’t recommend this for BAM files as the coverage in the
borders of the chunks might be slightly off.

which NULL by default. When a GRanges is specified, this specific region of
the genome is loaded instead of the full chromosome.

fileStyle The naming style of the chromosomes in the input files. If the global
option chrsStyle is not set, the naming style won’t be changed. This op-
tion is useful when you want to use a specific naming style but the raw files
use another style.

protectWhich When not NULL and which is specified, this argument specifies
by how much the ranges in which will be expanded. This helps get the
same base level coverage you would get from reading the coverage for a
full chromosome from BAM files. Otherwise some reads might be excluded
and thus the base level coverage will be lower. NULL by default.

drop.D Whether to drop the bases with ’D’ in the CIGAR strings or to include
them. Only used with BAM files. FALSE by default.

sampleNames Column names to be used the samples. By defaultit’s names(files).

Passed to extendedMapSeqlevels, define_cluster, scanBamFlag and filterData.
Note that filterData is used internally by loadCoverage and has the important
arguments totalMapped and targetSize which can be used to normalize the
coverage by library size. See getTotalMapped for calculating totalMapped.

Details
The ... argument can be used to control which alignments to consider when reading from BAM
files. See scanBamFlag.

Parallelization for loading the data in chunks is used only used when tilewidth is specified. You
may use up to one core per tile.

If you set the advanced argument drop.D = TRUE, bases with CIGAR string "D" (deletion from
reference) will be excluded from the base-level coverage calculation.

If you are working with data from an organism different from "Homo sapiens’ specify so by setting
the global ’species’ and *chrsStyle’ options. For example: options(species = 'arabidopsis_thaliana')
options(chrsStyle = 'NCBI')

Value

A list with two components.

loadCoverage 39

coverage is a DataFrame object where each column represents a sample. The number of rows
depends on the number of base pairs that passed the cutoff and the information stored is the
coverage at that given base.

position is a logical Rle with the positions of the chromosome that passed the cutoff.

Author(s)

Leonardo Collado-Torres, Andrew Jaffe

See Also

fullCoverage, getTotalMapped

Examples

datadir <- system.file("extdata”, "genomeData”, package = "derfinder")
files <- rawFiles(
datadir = datadir, samplepatt = "*accepted_hits.bam$",
fileterm = NULL
)
Shorten the column names
names(files) <- gsub("”_accepted_hits.bam",

nn

, names(files))

Read and filter the data, only for 2 files

dataSmall <- loadCoverage(files = files[1:2], chr = "21", cutoff = @)
Not run:

Export to BigWig files

createBw(list("chr21"” = dataSmall))

Load data from BigWig files
dataSmall.bw <- loadCoverage(c(
ERRO©9101 = "ERRQ09101.bw", ERRO09102 =
"ERRQ©9102.bw"
), chr = "chr21")

Compare them
mapply(function(x, y) {
X -y
}, dataSmall$coverage, dataSmall.bw$coverage)

Note that the only difference is the type of Rle (integer vs numeric) used
to store the data.

End(Not run)

40 makeGenomicState

makeGenomicState Obtain the genomic state per region from annotation

Description

This function summarizes the annotation contained in a TxDb at each given base of the genome
based on annotated transcripts. It groups contiguous base pairs classified as the same type into

regions.
Usage
makeGenomicState(txdb, chrs = c(seq_len(22), "X", "Y"), ...)
Arguments
txdb A TxDb object with chromosome lengths (check seqlengths(txdb)). If you
are using a TxDb object created from a GFF/GTF file, you will find this https:
//support.bioconductor.org/p/93235/ useful.
chrs The names of the chromosomes to use as denoted in the txdb object. Check
isActiveSeq.
Arguments passed to extendedMapSeqlevels.
Value

A GRangesList object with two elements: fullGenome and codingGenome. Both have metadata
information for the type of region (theRegion), transcript IDs (tx_id), transcript name (tx_name),
and gene ID (gene_id). fullGenome classifies each region as either being exon, intron or intergenic.
codingGenome classfies the regions as being promoter, exon, intro, SUTR, 3UTR or intergenic.

Author(s)

Andrew Jaffe, Leonardo Collado-Torres

See Also
TxDb

Examples

Load the example data base from the GenomicFeatures vignette

library("GenomicFeatures")

samplefile <- system.file("extdata”, "hgl9_knownGene_sample.sqlite”,
package = "GenomicFeatures”

)
txdb <- loadDb(samplefile)

Generate genomic state object, only for chr6é
sampleGenomicState <- makeGenomicState(txdb, chrs = "chré6")

https://support.bioconductor.org/p/93235/
https://support.bioconductor.org/p/93235/

makeModels 41

#

Not run:

Create the GenomicState object for Hsapiens.UCSC.hg19.knownGene

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene: :TxDb.Hsapiens.UCSC.hg19.knownGene

Creating this GenomicState object takes around 8 min for all chrs and
around 30 secs for chr21
GenomicState.Hsapiens.UCSC.hg19.knownGene.chr21 <-

makeGenomicState(txdb = txdb, chrs = "chr21")

For convinience, this object is already included in derfinder
library("testthat”)
expect_that(
GenomicState.Hsapiens.UCSC.hg19.knownGene.chr21,
is_equivalent_to(genomicState)

Hsapiens ENSEMBL GRCh37
library("GenomicFeatures")
Can take several minutes and speed will depend on your internet speed
xx <- makeTxDbPackageFromBiomart(
version = "0.99", maintainer = "Your Name”,
author = "Your Name”
)
txdb <- loadDb(file.path(
"TxDb.Hsapiens.BioMart.ensembl.GRCh37.p11", "inst",
"extdata”, "TxDb.Hsapiens.BioMart.ensembl.GRCh37.p11.sqlite”
)

Creating this GenomicState object takes around 13 min
GenomicState.Hsapiens.ensembl.GRCh37.p11 <- makeGenomicState(
txdb = txdb,
chrs = c(1:22, "X", "Y")
)

Save for later use
save(GenomicState.Hsapiens.ensembl.GRCh37.p11,

file = "GenomicState.Hsapiens.ensembl.GRCh37.p11.Rdata"”
)

End(Not run)

makeModels Build model matrices for differential expression

Description

Builds the model matrices for testing for differential expression by comparing a model with a group-
ing factor versus one without it. It adjusts for the confounders specified and the median coverage of
each sample. The resulting models can be used in calculateStats.

42

Usage

makeModels

makeModels(sampleDepths, testvars, adjustvars = NULL, testIntercept = FALSE)

Arguments

sampleDepths Per sample library size adjustments calculated with sampleDepth.

testvars A vector or matrix specifying the variables to test. For example, a factor with
the group memberships when testing for differences across groups. It’s length
should match the number of columns used from coverageInfo$coverage.

adjustvars Optional matrix of adjustment variables (e.g. measured confounders, output
from SVA, etc.) to use in fitting linear models to each nucleotide. These vari-
ables have to be specified by sample and the number of rows must match the
number of columns used. It will also work if it is a vector of the correct length.

testIntercept If TRUE then testvars is ignored and modQ will contain the column medians

and any adjusting variables specified, but no intercept.

Value

A list with two components.

mod The alternative model matrix.

mod0 The null model matrix.

Author(s)

Leonardo Collado-Torres

See Also

sampleDepth, calculateStats

Examples

Collapse the coverage information

collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
verbose = TRUE

)

Calculate library size adjustments

sampleDepths <- sampleDepth(collapsedFull,
probs = c(0.5), nonzero = TRUE,
verbose = TRUE

)

Build the models

group <- genomeInfo$pop

adjustvars <- data.frame(genomeInfo$gender)

models <- makeModels(sampleDepths, testvars = group, adjustvars =
names (models)

models

adjustvars)

mergeResults 43

mergeResults Merge results from different chromosomes

Description

This function merges the results from running analyzeChr on several chromosomes and assigns ge-

nomic states using annotateRegions. It re-calculates the p-values and g-values using the pooled ar-

eas from the null regions from all chromosomes. Once the results have been merged, derfinderReport: : generateReport
can be used to generate an HTML report of the results. The derfinderReport package is available

at https://github.com/Icolladotor/derfinderReport.

Usage
mergeResults(
chrs = c(seq_len(22), "X", "Y"),
prefix = ".",
significantCut = c(0.05, 0.1),
genomicState,

minoverlap = 20,
mergePrep = FALSE,

)
Arguments
chrs The chromosomes of the files to be merged.
prefix The main data directory path, which can be useful if analyzeChr is used for

several parameters and the results are saved in different directories.

significantCut A vector of length two specifiying the cutoffs used to determine significance.
The first element is used to determine significance for the P-values and FWER
adjusted P-values, while the second element is used for the Q-values (FDR ad-
justed P-values) similar to calculatePvalues.

genomicState A GRanges object created with makeGenomicState. It can be either the genomicState$fullGenome
or genomicState$codingGenome component.

minoverlap Determines the mininum overlap needed when annotating regions with anno-
tateRegions.
mergePrep If TRUE the output from preprocessCoverage is merged.

Arguments passed to other methods and/or advanced arguments. Advanced ar-

guments:

verbose If TRUE basic status updates will be printed along the way.

optionsStats The options used in analyzeChr. By default NULL and will be
inferred from the output files.

cutoffFstatUsed The actual F-statistic cutoff used. This can be obtained from
the logs or from the output of analyzeChr. If NULL then this function will
attempt to re-calculate it.

Passed to annotateRegions and extendedMapSeqlevels.

44 mergeResults

Details

If you want to calculate the FWER adjusted P-values, supply optionsStats which is produced by
analyzeChr.

Value
Seven Rdata files.

fullFstats.Rdata Full F-statistics from all chromosomes in a list of Rle objects.
fullTime.Rdata Timing information from all chromosomes.

fullNullSummary.Rdata A DataFrame with the null region information: statistic, width, chromo-
some and permutation identifier. It’s ordered by the statistics

fullRegions.Rdata GRanges object with regions found and with full annotation from matchGenes.
Note that the column strand from matchGenes is renamed to annoStrand to comply with
GRanges specifications.

fullCoveragePrep.Rdata A list with the pre-processed coverage data from all chromosomes.

fullAnnotatedRegions.Rdata A list as constructed in annotateRegions with the assigned genomic
states.

optionsMerge.Rdata A list with the options used when merging the results. Used in derfinderReport: : generateReport.

Author(s)

Leonardo Collado-Torres

See Also

analyzeChr, calculatePvalues, annotateRegions

Examples

The output will be saved in the 'generateReport-example' directory
dir.create("generateReport-example”, showWarnings = FALSE, recursive = TRUE)

For convenience, the derfinder output has been pre-computed
file.copy(system.file(file.path("extdata”, "chr21"),

package = "derfinder”,

mustWork = TRUE
), "generateReport-example”, recursive = TRUE)

Merge the results from the different chromosomes. In this case, there's
only one: chr21

mergeResults(
chrs = "21", prefix = "generateReport-example”,
genomicState = genomicState$fullGenome

)

Not run:

You can then explore the wallclock time spent on each step
load(file.path("generateReport-example”, "fullRegions.Rdata"))

preprocessCoverage 45

Process the time info

time <- lapply(fullTime, function(x) data.frame(diff(x)))
time <- do.call(rbind, time)

colnames(time) <- "sec"

time$sec <- as.integer(round(time$sec))

time$min <- time$sec / 60

time$chr <- paste@("chr”, gsub("\\..x", "" rownames(time)))
time$step <- gsub(”.*\\.", "", rownames(time))
rownames(time) <- seq_len(nrow(time))

Make plot

library("ggplot2")

ggplot(time, aes(x = step, y = min, colour = chr)) +
geom_point() +
labs(title = "Wallclock time by step”) +
scale_colour_discrete(limits = chrs) +
scale_x_discrete(limits = names(fullTime[[1]1)[-11) +
ylab("Time (min)") +
xlab("Step")

End(Not run)

preprocessCoverage Transform and split the data

Description

This function takes the coverage data from loadCoverage, scales the data, does the log2 transforma-
tion, and splits it into appropriate chunks for using calculateStats.

Usage

preprocessCoverage(
coveragelnfo,
groupInfo = NULL,
cutoff = 5,
colsubset = NULL,
lowMemDir = NULL,

Arguments

coverageInfo A list containing a DataFrame —$coverage— with the coverage data and a log-
ical Rle —$position— with the positions that passed the cutoff. This object is
generated using loadCoverage. You should have specified a cutoff value for
loadCoverage unless that you are using colsubset which will force a filtering
step with filterData when running preprocessCoverage.

46 preprocessCoverage

groupInfo A factor specifying the group membership of each sample. If NULL no group
mean coverages are calculated. If the factor has more than one level, the first
one will be used to calculate the log2 fold change in calculatePvalues.

cutoff The base-pair level cutoff to use. It’s behavior is controlled by filter.

colsubset Optional vector of column indices of coverageInfo$coverage that denote sam-
ples you wish to include in analysis.

lowMemDir If specified, each chunk is saved into a separate Rdata file under lowMemDir and
later loaded in fstats.apply when running calculateStats and calculatePvalues.
Using this option helps reduce the memory load as each fork in bplapply loads
only the data needed for the chunk processing. The downside is a bit longer
computation time due to input/output.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way. Default:
FALSE.

toMatrix Determines whether the data in the chunk should already be saved as
a Matrix object, which can be useful to reduce the computation time of the
F-statistics. Only used when 1lowMemDir is not NULL and by in that case set
to TRUE by default.

mc.cores Number of cores you will use for calculating the statistics.

scalefac A log 2 transformation is used on the count tables, so zero counts
present a problem. What number should we add to the entire matrix? De-
fault: 32.

chunksize How many rows of coverageInfo$coverage should be processed
at a time? Default: 5 million. Reduce this number if you have hundreds of
samples to reduce the memory burden while sacrificing some speed.

Details

If chunksize is NULL, then mc. cores is used to determine the chunksize. This is useful if you
want to split the data so each core gets the same amount of data (up to rounding).

Computing the indexes and using those for mclapply reduces memory copying as described by
Ryan Thompson and illustrated in approach #4 at http://lcolladotor.github.io/2013/11/
14/Reducing-memory-overhead-when-using-mclapply

If lowMemDir is specified then $coverageProcessed is NULL and $mclapplyIndex is a vector
with the chunk identifiers.

Value
A list with five components.

coverageProcessed contains the processed coverage information in a DataFrame object. Each col-
umn represents a sample and the coverage information is scaled and log2 transformed. Note
that if colsubset is not NULL the number of columns will be less than those in coverageInfo$coverage.
The total number of rows depends on the number of base pairs that passed the cutoff and the
information stored is the coverage at that given base. Further note that filterData is re-applied if
colsubset is not NULL and could thus lead to fewer rows compared to coverageInfo$coverage.

http://lcolladotor.github.io/2013/11/14/Reducing-memory-overhead-when-using-mclapply
http://lcolladotor.github.io/2013/11/14/Reducing-memory-overhead-when-using-mclapply

railMatrix 47

mclapplyIndex is a list of logical Rle objects. They contain the partioning information according
to chunksize.
position is a logical Rle with the positions of the chromosome that passed the cutoff.

meanCoverage is a numeric Rle with the mean coverage at each filtered base.

groupMeans is a list of Rle objects containing the mean coverage at each filtered base calculated
by group. This list has length 0 if groupInfo=NULL.

Passed to filterData when colsubset is specified.

Author(s)

Leonardo Collado-Torres

See Also

filterData, loadCoverage, calculateStats

Examples

Split the data and transform appropriately before using calculateStats()
dataReady <- preprocessCoverage(genomeData,

cutoff = @, scalefac = 32,

chunksize = 1e3, colsubset = NULL, verbose = TRUE

)
names (dataReady)
dataReady
railMatrix Identify regions data by a coverage filter and get a count matrix from
BigWig files
Description

Rail (available at http://rail.bio) generates coverage BigWig files. These files are faster to load in
R and to process. Rail creates an un-adjusted coverage BigWig file per sample and an adjusted
summary coverage BigWig file by chromosome (median or mean). railMatrix reads in the mean (or
median) coverage BigWig file and applies a threshold cutoff to identify expressed regions (ERs).
Then it goes back to the sample coverage BigWig files and extracts the base level coverage for each
sample. Finally it summarizes this information in a matrix with one row per ERs and one column
per sample. This function is similar to regionMatrix but is faster thanks to the advantages presented
by BigWig files.

48

Usage

railMatrix(

railMatrix

chrs,

summaryFiles,
sampleFiles,

L,

cutoff = NULL,
maxClusterGap = 300L,
totalMapped = NULL,

targetSize = 4e+07,
file.cores = 1L,
chrlens = NULL,

Arguments

chrs

summaryFiles

sampleFiles

cutoff
maxClusterGap

totalMapped

targetSize

file.cores

chrlens

A character vector with the names of the chromosomes.

A character vector (or BigWigFileList) with the paths to the summary BigWig
files created by Rail. Either mean or median files. These are library size adjusted
by default in Rail. The order of the files in this vector must match the order in
chrs.

A character vector with the paths to the BigWig files by sample. These files are
unadjusted for library size.

The width of the reads used. Either a vector of length 1 or length equal to the
number of samples.

The base-pair level cutoff to use. It’s behavior is controlled by filter.
This determines the maximum gap between candidate ERs.

A vector with the total number of reads mapped for each sample. The vec-
tor should be in the same order as the samples in data. Providing this data
adjusts the coverage to reads in targetSize library prior to filtering. See get-
TotalMapped for calculating this vector.

The target library size to adjust the coverage to. Used only when totalMapped is
specified. By default, it adjusts to libraries with 40 million reads, which matches
the default used in Rail.

Number of cores used for loading the BigWig files per chr.

The chromosome lengths in base pairs. If it’s NULL, the chromosome length is
extracted from the BAM files. Otherwise, it should have the same length as
chrs.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

verbose If TRUE basic status updates will be printed along the way. Default:
TRUE.

verbose.load If TRUE basic status updates will be printed along the way when
loading data. Default: TRUE.

railMatrix 49

BPPARAM.railChr A BPPARAM object to use for the chr step. Set to Seri-
alParam when file.cores = 1 and SnowParam otherwise.

chunksize Chunksize to use. Default: 1000.

Passed to filterData, findRegions and define_cluster.

Details

Given a set of un-filtered coverage data (see fullCoverage), create candidate regions by applying a
cutoff on the coverage values, and obtain a count matrix where the number of rows corresponds to
the number of candidate regions and the number of columns corresponds to the number of samples.
The values are the mean coverage for a given sample for a given region.

This function uses several other derfinder-package functions. Inspect the code if interested.

You should use at most one core per chromosome.

Value

A list with one entry per chromosome. Then per chromosome, a list with two components.

regions A set of regions based on the coverage filter cutoff as returned by findRegions.

coverageMatrix A matrix with the mean coverage by sample for each candidate region.

Author(s)

Leonardo Collado-Torres

Examples

BigWig files are not supported in Windows
if (.Platform$0S.type != "windows") {

Get data

library("derfinderData")

Identify sample files
sampleFiles <- rawFiles(system.file("extdata”, "AMY",
package =
"derfinderData”
), samplepatt = "bw", fileterm = NULL)
names(sampleFiles) <- gsub(”.bw", "", names(sampleFiles))

Create the mean bigwig file. This file is normally created by Rail
but in this example we'll create it manually.
library("GenomicRanges")

fullCov <- fullCoverage(files = sampleFiles, chrs = "chr21")

meanCov <- Reduce("+", fullCov$chr21) / ncol(fullCov$chr21)

createBw(list("chr21"” = DataFrame("meanChr21” = meanCov)),
keepGR =
FALSE
)

summaryFile <- "meanChr21.bw"

50 rawFiles

Get the regions

regionMat <- railMatrix(
chrs = "chr21"”, summaryFiles = summaryFile,
sampleFiles = sampleFiles, L = 76, cutoff = 5.1,
maxClusterGap = 3000L

)

Explore results
names(regionMat$chr21)
regionMat$chr21$regions
dim(regionMat$chr21$coverageMatrix)

rawFiles Construct full paths to a group of raw input files

Description

For a group of samples this function creates the list of paths to the raw input files which can then be
used in loadCoverage. The raw input files are either BAM files or BigWig files.

Usage

rawFiles(
datadir = NULL,
sampledirs = NULL,
samplepatt = NULL,

fileterm = "accepted_hits.bam”
)
Arguments
datadir The main directory where each of the sampledirs is a sub-directory of datadir.
sampledirs A character vector with the names of the sample directories. If datadir is NULL
it is then assumed that sampledirs specifies the full path to each sample.
samplepatt If specified and sampledirs is set to NULL, then the directories matching this
pattern in datadir (set to . if it’s set to NULL) are used as the sample directories.
fileterm Name of the BAM or BigWig file used in each sample. By default it is set to
accepted_hits.bam since that is the automatic name generated when aligning
with TopHat. If NULL it is then ignored when reading the rawfiles. This can be
useful if all the raw files are stored in a single directory.
Details

This function can also be used to identify a set of BigWig files.

regionMatrix 51

Value

A vector with the full paths to the raw files and sample names stored as the vector names.

Author(s)

Leonardo Collado-Torres

See Also

loadCoverage

Examples

Get list of BAM files included in derfinder
datadir <- system.file("extdata”, "genomeData”, package = "derfinder")
files <- rawFiles(
datadir = datadir, samplepatt = "*accepted_hits.bam$",
fileterm = NULL
)

files

regionMatrix Identify regions data by a coverage filter and get a count matrix

Description

Given a set of un-filtered coverage data (see fullCoverage), create candidate regions by applying a
cutoff on the coverage values, and obtain a count matrix where the number of rows corresponds to
the number of candidate regions and the number of columns corresponds to the number of samples.
The values are the mean coverage for a given sample for a given region.

Usage
regionMatrix(
fullCov,
cutoff =5,
L,

totalMapped = 8e+0@7,
targetSize = 8e+0@7,
runFilter = TRUE,
returnBP = TRUE,

52 regionMatrix

Arguments

fullCov A list where each element is the result from loadCoverage used with returnCoverage
= TRUE. Can be generated using fullCoverage. If runFilter = FALSE, then returnMean
= TRUE must have been used.

cutoff The base-pair level cutoff to use. It’s behavior is controlled by filter.

L The width of the reads used. Either a vector of length 1 or length equal to the
number of samples.

totalMapped A vector with the total number of reads mapped for each sample. The vector
should be in the same order as the samples in fullCov. Providing this argu-
ment adjusts the coverage to reads in targetSize library prior to filtering. See
getTotalMapped for calculating this vector.

targetSize The target library size to adjust the coverage to. Used only when totalMapped
is specified. By default, it adjusts to libraries with 80 million reads.

runFilter This controls whether to run filterData or not. If set to FALSE then returnMean =
TRUE must have been used to create each element of fullCov and the data must
have been normalized (totalMapped equal to targetSize).

returnBP If TRUE, returns $bpCoverage explained below.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:
verbose If TRUE basic status updates will be printed along the way.

chrsStyle Default: UCSC. Passed to extendedMapSeqlevels via getRegionCov-
erage.

species Default: homo_sapiens. Passed to extendedMapSeqlevels via getRe-
gionCoverage.

currentStyle Default: NULL. Passed to extendedMapSeqlevels via getRegion-
Coverage.

Passed to filterData, findRegions and define_cluster.

Note that filterData is used internally by loadCoverage (and hence fullCoverage)
and has the important arguments totalMapped and targetSize which can be
used to normalize the coverage by library size. If you already used these argu-
ments when creating the fullCov object, then don’t specify them a second time
in regionMatrix. If you have not used these arguments, we recommend using
them to normalize the mean coverage.

Details

This function uses several other derfinder-package functions. Inspect the code if interested.

You should use at most one core per chromosome.

Value

A list with one entry per chromosome. Then per chromosome, a list with three components.

regions A set of regions based on the coverage filter cutoff as returned by findRegions.

regionMatrix 53

bpCoverage A list with one element per region. Each element is a matrix with numbers of rows
equal to the number of base pairs in the region and number of columns equal to the number of
samples. It contains the base-level coverage information for the regions. Only returned when
returnBP = TRUE.

coverageMatrix A matrix with the mean coverage by sample for each candidate region.

Author(s)

Leonardo Collado-Torres

Examples

Create some toy data

library(”"IRanges")

x <- Rle(round(runif(le4, max 10)))

y <- Rle(round(runif(le4, max = 10)))

z <- Rle(round(runif(le4, max = 10)))

fullCov <- list("chr21" = DataFrame(x, y, z))

Calculate a proxy of library size
1libSize <- sapply(fullCov$chr21, sum)

Run region matrix normalizing the coverage
regionMat <- regionMatrix(
fullCov = fullCov, maxRegionGap = 10L,
maxClusterGap = 300L, L = 36, totalMapped = libSize, targetSize = 4e4
)
Not run:
You can alternatively use filterData() on fullCov to reduce the required
memory before using regionMatrix(). This can be useful when mc.cores > 1
filteredCov <- lapply(fullCov, filterData,
returnMean = TRUE, filter = "mean”,
cutoff = 5, totalMapped = libSize, targetSize = 4e4
)
regionMat2 <- regionMatrix(filteredCov,
maxRegionGap = 10L,
maxClusterGap = 300L, L = 36, runFilter = FALSE
)

End(Not run)

regionMatrix() can work with multiple chrs as shown below.
fullCov2 <- list("chr21" = DataFrame(x, y, z), "chr22" = DataFrame(x, y, z))
regionMat2 <- regionMatrix(
fullCov = fullCov2, maxRegionGap = 10L,
maxClusterGap = 300L, L = 36, totalMapped = libSize, targetSize = 4e4
)

Combine results from multiple chromosomes
library("GenomicRanges")

First extract the data

54

sampleDepth

regs <- unlist(GRangesList(lapply(regionMat2, "[[", "regions")))

covMat <- do.call(rbind, lapply(regionMat2, "[[", "coverageMatrix"))
covBp <- do.call(c, lapply(regionMat2, "[[", "bpCoverage"))

Force the names to match

names(regs) <- rownames(covMat) <- names(covBp) <- seq_len(length(regs))
Combine into a list (not really needed)

mergedRegionMat <- list(

"regions” = regs, "coverageMatrix" = covMat,
"bpCoverage"” = covBp
)
sampleDepth Calculate adjustments for library size
Description

For a given data set calculate the per-sample coverage adjustments. Hector Corrada’s group pro-
posed calculating the sum of the coverage for genes below a given sample quantile. In this function,
we calculate the sample quantiles of interest by sample, and then the sum of the coverage for bases
below or equal to quantiles of interest. The resulting values are transformed log2(x

e scalefac)

to avoid very large numbers that could potentially affect the stability of the F-statistics calcula-
tion. The sample coverage adjustments are then used in makeModels for constructing the null and
alternative models.

Usage

sampleDepth(collapsedFull, probs = c(@0.5, 1), scalefac = 32, ...)

Arguments

collapsedFull The full coverage data collapsed by sample as produced by collapseFullCover-

age.
probs Number(s) between 0 and 1 representing the quantile(s) of interest. For example,
0.5 is the median.
scalefac Number added to the sample coverage adjustments before the log2 transforma-
tion.

Arguments passed to other methods and/or advanced arguments. Advanced ar-

guments:

verbose If TRUE basic status updates will be printed along the way.

nonzero If TRUE only the nonzero counts are used to calculate the library size
adjustment. Default: TRUE.

center If TRUE the sample coverage adjustements are centered. In some cases,
this could be helpful for interpretation purposes. Default: FALSE.

sampleDepth 55

Value

A matrix (vector of length(probs) == 1) with the library size depth adjustments per sample to
be used in makeModels. The number of rows corresponds to the number of quantiles used for the
sample adjustments.

Author(s)

Leonardo Collado-Torres

References

Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial
marker-gene surveys. Nat. Methods (2013). doi:10.1038/nmeth.2658

See Also

collapseFullCoverage, makeModels

Examples

Collapse the coverage information

collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
verbose = TRUE

)

Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull, probs = c(0.5, 1), verbose = TRUE)
sampleDepths

Index

+ datasets
genomeData, 30
genomeDataRaw, 31
genomeFstats, 32
genomelInfo, 32
genomeRegions, 33
genomicState, 34

* internal
derfinder-package, 3

advancedArg (derfinder-deprecated), 21
analyzeChr, 4, 43, 44
annotateRegions, 7, 43, 44
annotateTranscripts, 4-6

BamFile, 37
BamFilelist, /6, 29, 35, 37
BigWigFile, 37
BigWigFilelist, 16, 29, 35, 37
bplapply, 5, 46

calculatePvalues, 4-8, 8, 26-28, 33-36, 43,
44, 46

calculateStats, 4-6, 9, 12, 12, 26, 32, 33,
41, 42, 4547

coerceGR, 13, 18, 19

collapseFullCoverage, 14, 54, 55

countOverlaps, 7

coverageToExon, 16

createBw, 18

createBwSample, 18, 19

define_cluster, 5, 9, 12, 14, 17, 20, 27, 29,
35, 38,49, 52

derfinder (derfinder-package), 3

derfinder-deprecated, 21

derfinder-package, 3, 49, 52

export.bw, 18-20
extendedMapSeqlevels, 5,7, 17, 22, 27, 29,
35, 38, 40, 43, 52

56

filterData, 4, 14, 24, 24, 29, 30, 35, 37, 38,
45-47,49, 52

findOverlaps, 7

findOverlaps-methods, 7

findRegions, 9, 10, 25, 26, 49, 52

fstats.apply, 5,9, 10, 12,46

fullCoverage, 13-19, 28, 29, 34-36, 39, 49,
51,52

genomeData, 30, 33

genomeDataRaw, 31

genomeFstats, 32

genomelInfo, 30-32, 32

genomeRegions, 33

genomicState, 34

getRegionCoverage, 16, 17, 34, 35, 52

getTotalMapped, 24, 25, 29, 30, 36, 38, 39,
48, 52

GRanges, 13, 14, 18-20

GRangeslList, 18

isActiveSeq, 40

loadCoverage, 4, 13, 15, 16, 18, 19, 24-26,
29-31, 35,37, 38, 45,47, 50-52
loessByCluster, 5, 9, 27

makeGenomicState, 7, 8, 16, 34, 40, 43
makeModels, 4, 6, 9, 12, 41, 54, 55
mapSeqlevels, 22
matchGenes, 4-6, 44
mergeResults, 43

preprocessCoverage, 4-6, 9, 10, 12, 24-26,
43,45, 45

af, 5
quantile, 5
qgvalue, 10

railMatrix, 47, 47

INDEX

rawFiles, 16, 29, 35, 37, 50
regionFinder, 26, 27
regionMatrix, 25,47,51, 52
runmedByCluster, 5, 9, 27

sampleDepth, 14, 15,42, 54
scanBamFlag, 38
seqlevelsStyle, 22
SerialParam, 20, 49
smoother, 5, 9, 26
SnowParam, 20, 49

tileGenome, 38
TxDb, 40

TxDb.Hsapiens.UCSC.hg19.knownGene, 5

57

	derfinder-package
	analyzeChr
	annotateRegions
	calculatePvalues
	calculateStats
	coerceGR
	collapseFullCoverage
	coverageToExon
	createBw
	createBwSample
	define_cluster
	derfinder-deprecated
	extendedMapSeqlevels
	filterData
	findRegions
	fullCoverage
	genomeData
	genomeDataRaw
	genomeFstats
	genomeInfo
	genomeRegions
	genomicState
	getRegionCoverage
	getTotalMapped
	loadCoverage
	makeGenomicState
	makeModels
	mergeResults
	preprocessCoverage
	railMatrix
	rawFiles
	regionMatrix
	sampleDepth
	Index

