Package ‘dagl.ogo’

February 1, 2026
Type Package

Title dagl.ogo: a Bioconductor package for visualizing conserved amino
acid sequence pattern in groups based on probability theory

Version 1.49.0
Author Jianhong Ou, Haibo Liu, Alexey Stukalov, Niraj Nirala, Usha Acharya, Lihua Julie Zhu
Maintainer Jianhong Ou <jou@morgridge.org>

Description
Visualize significant conserved amino acid sequence pattern in groups based on probability theory.

License GPL (>=2)
Depends R (>=3.0.1), methods, grid

Imports pheatmap, Biostrings, UniProt.ws, BiocGenerics, utils,
biomaRt, motifStack, httr

Suggests XML, grlmport, grlmport2, BiocStyle, knitr, rmarkdown,
testthat

biocViews SequenceMatching, Visualization
VignetteBuilder knitr

RoxygenNote 7.2.1

Encoding UTF-8

LazyLoad yes

LazyData true

git_url https://git.bioconductor.org/packages/dagl.ogo
git_branch devel

git_last_commit 73a5187
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

2 daglogo-package

Contents
daglogo-package 2
addScheme 3
availableSchemes 4
buildBackgroundModel oL 4
buildZTestBackgroundModel L 6
cleanPeptides L 7
COlOISELS o o e 8
ColOrsets2 e 9
dagBackground-class 10
dagHeatmap 10
daglogo 11
dagPeptides-class 13
ECOlLPIOtEOME o i e e e e e e e e e e 13
fetchSequence 14
formatSequence 17
getData L e e 18
getGroupingSymbol 18
initiateBackgroundModel oL Lo 19
nameHash e 20
prepareProteome L. 20
prepareProteomeByFTP 21
prepareProteomeByUniProtWS oo o 22
Proteome-class 23
proteome.example e e e e e e 24
seg.example e e e 25
testDAU e e 26
testDAUresults-class L 27

Index 29

daglogo-package Visualize significant conserved peptide sequence pattern in groups
based on the probability theory
Description

daglogo provides differential analysis of grouped/ungrouped amino acid usage between an input
set of aligned peptide sequences and a background set of aligned peptide sequences which can
be generated in different ways. Results of Fisher’s exact test and/or Z-test are visualized using a
heatmap or DAG Logo.

addScheme 3

Details
DAG: Differential Amino acid Group

There are several differences between dagl.ogo from iceLogo:
1. The sequence patterns can be grouped by charge, chemistry, hydrophobicity and etc.
2. daglogo accepts different length of unaligned amino acid sequences.

3. Except that random, regional (called anchored) and terminal (called restricted in dagl.ogo) back-
ground model built from the whole proteome, the background set could be generated using subse-
quences from regions of the protein sequences matching the input set and complementary set of the
input set.

Author(s)

Jianhong Ou, Haibo Liu, Julie Lihua Zhu
Maintainer: Jianhong Ou <jianhong.ou@duke.edu>

Examples

data("seq.example”)

data("proteome.example”)

bg <- buildBackgroundModel(seq.example, proteome=proteome.example, numSubsamples=10L)
t <- testDAU(seq.example, bg)

daglogo(t)

addScheme Add a custom coloring or grouping scheme.

Description

Add a custom coloring or grouping scheme for ungrouped or grouped amino acids as desired.

Usage

addScheme (
color = vector("character”),
symbol = vector(”character"),

group = NULL
)
Arguments

color A named vector of character. This vector specifies different colors for visualiz-
ing the different amino acids or amino acid groups.

symbol A named vector of character. This vector specifies the different symbols for
visualizing the different amino acids or amino acid groups.

group A list or NULL. If only coloring amino acids of similar property is desired, set

group to NULL; otherwise group should be a list with same names as those of
color and symbol.

4 buildBackgroundModel

Value

Add the custom coloring or grouping scheme to the environment cacheEnv.

Examples

Add a grouping scheme based on the BLOSUM50 level 3
color = c(LVIMC = "#33FFQ@", AGSTP = "#CCFF0Q",
FYW = '#0OFF66', EDNQKRH = "#FFQ066")

symbol = c(LVIMC = "L", AGSTP = "A", FYW = "F", EDNQKRH = "E")
group = list(

LVIMC = c("L", "v", "I", "M", "C"),

AGSTP = c("A", "G", "S", "T", "P"),

FYW = c("F", "Y", "W"),

EDNQKRH = c("E", "D", "N", "Q", "K", "R", "H"))
addScheme(color = color, symbol = symbol, group = group)

availableSchemes Get all predefined coloring and grouping schemes

Description

List all predefined coloring and grouping schemes stored in the environmetn ‘cacheEnv*

Usage

availableSchemes()

Value

A vector of names of predefined coloring and grouping schemes stored in the environment ‘cacheEnv°.

Author(s)

Haibo Liu

buildBackgroundModel Build background models for DAU tests

Description

A method used to build background models for testing differential amino acid usage

buildBackgroundModel 5

Usage
buildBackgroundModel (
dagPeptides,
background = c("wholeProteome”, "inputSet"”, "nonInputSet"”),
model = c("any"”, "anchored"),
targetPosition = c("any”, "Nterminus”, "Cterminus"),

uniqueSeq = FALSE,
numSubsamples = 300L,

rand.seed = 1,

replacement = FALSE,

testType = c("ztest”, "fisher"),

proteome
)
Arguments

dagPeptides An object of dagPeptides-class containing peptide sequences as the input set.

background A character vector with options: "wholeProteome", "inputSet", and "nonlnput-
Set", indicating what set of peptide sequences should be considered to generate
a background model.

model A character vector with options: "any" and "anchored", indicating whether an

anchoring position should be applied to generate a background model.

targetPosition A character vector with options: "any", "Nterminus" and "Cterminus", indi-
cating which part of protein sequences of choice should be used to generate a
background model.

uniqueSeq A logical vector indicating whether only unique peptide sequences are included
in a background model for sampling.

numSubsamples An integer, the number of random sampling.

rand. seed An integer, the seed used to perform random sampling
replacement A logical vector of length 1, indicating whether replacement is allowed for ran-
dom sampling.
testType A character vector of length 1. Available options are "ztest" and "fisher".
proteome An object of Proteome, output of prepareProteome
Details

The background could be generated from wholeProteome, inputSet or nonlnputSet. Case 1: If
background ="wholeProteome" and model = "any": The background set is composed of randomly
selected subsequences from the wholeProteome with each subsequence of the same length as input
sequences.

Case 2: If background ="wholeProteome and model = "anchored": The background set is composed
of randomly selected subsequences from the wholeProteome with each subsequence of same length
as input sequences.Additionally, the amino acids at the anchoring positions must be the same amino
acid as that defined in the dagPeptides object,such as "K" for lysine.

6 buildZTestBackgroundModel

Case 3: If background ="inputSet" and model = "any": similar to Case 1, but the full length protein
sequences matching the protein sequence IDs in the inputSet are used for build background model
after excluding the subsequences specified in the inputSet from the full length sequences.

Case 4: If background ="inputSet" and model = "anchored": similar to Case 2, but the full-length
protein sequences matching the protein sequence IDs in the inputSet are used for build background
model after excluding the subsequences specified in the inputSet from the full length sequences.

Case 5: If background ="nonInputSet" and model = "any": The background set is composed of ran-
domly selected subsequences from the wholeProteome, not including the sequences corresponding
to the inpuSet sequencesm with each subsequence of same length as input sequences.

Case 6: If background ="nonInputSet" and model = "anchored": similar to Case 5, but the amino
acids at the anchoring positions must be the same amino acid as that defined in the dagPeptides
object, such as "K" for lysine.

Value

An object of dagBackground-class.

Author(s)

Jianhong Ou, Haibo Liu

Examples

dat <- unlist(read.delim(system.file(
"extdata”, "grB.txt", package = "daglLogo"),
header = FALSE, as.is = TRUE))

##prepare an object of Proteome Class from a fasta file
proteome <- prepareProteome(fasta = system.file("extdata”,

"HUMAN. fasta”,

package = "daglogo"),

species = "Homo sapiens”)

##prepare an object of dagPeptides Class

seq <- formatSequence(seq = dat, proteome = proteome, upstreamOffset = 14,
downstreamOffset = 15)

bg_fisher <- buildBackgroundModel(seq, background = "wholeProteome”,

proteome = proteome, testType = "fisher")
bg_ztest <- buildBackgroundModel (seq, background = "wholeProteome”,
proteome = proteome, testType = "ztest")

buildZTestBackgroundModel
Build a background model for Z-test.

Description

Build a background model for Z-test.

cleanPeptides 7

Usage

buildZTestBackgroundModel (
dagPeptides,
matches,
numSubsamples = 30L,
rand.seed = 1,
testType = "ztest",
replacement = FALSE

)

Arguments
dagPeptides An object of dagPeptides-class containing peptide sequences as the input set.
matches A character vector with the matched subsequences.

numSubsamples An integer, the number of random sampling.
rand. seed An integer, the seed used to perform random sampling.

replacement A logical vector of length 1, indicating whether replacement is allowed for ran-
dom sampling.

Value

An object of dagBackground-class.

Author(s)

Jianhong Ou, Haibo Liu

cleanPeptides clean up peptides

Description

clean up the input peptide subsequences. The function removes peptides which do NOT contain any
anchoring amino acid. Adds peptide for each additional anchor in each peptide, and allows multiple
anchoring amino acids.

Usage

cleanPeptides(dat, anchors)

Arguments

dat input data. The input dat contains two columns ‘symbol‘, protein ID, and ‘pep-
tides*, peptide sequence.The anchoring amino acid must be in lower case.

anchors A vector of character, anchoring amino acid must be in lower case.

8 colorsets

Value

A data.frame with columns: ‘symbol‘, ‘peptides‘ and ‘anchor*

Author(s)

Jianhong Ou, Julie Zhu

Examples

dat <- read.csv(system.file("extdata"”, "peptides2filter.csv”, package="daglLogo"))

dat
dat.new <- cleanPeptides(dat, anchors = c("s", "t"))
colorsets Color sets for visualization.
Description

Create color encoding for visualization of a peptide sequence logo.

Usage

colorsets(colorScheme = 1ls(envir = cachedEnv))

Arguments

colorScheme A character vector of length 1, determining the color scheme based on amino
acid classification methods. The available colorScheme are ""

non

no","bulkiness_Zimmerman","hydrophobic

"hydrophobicity_ HW", "isoelectric_point_Zimmerman", "contact_potential_Maiorov",

"chemistry_property_Mahler", "consensus_similarity_SF", "volume_Bigelow",

"non non

"structure_alignments_Mirny", "polarity_Grantham", "sequence_alignment_Dayhoff",

"bulkiness_Zimmerman_group", "hydrophobicity_KD_group", "hydrophobic-

non non non

ity_ HW_group", "charge_group", "contact_potential_Maiorov_group", "chem-

non non

istry_property_Mabhler_group", "consensus_similarity_SF_group", "volume_Bigelow_group",

non non

"structure_alignments_Mirny_group", "polarity_Grantham_group", "sequence_alignment_Dayhoff_grou

"custom" and "custom_group". If "custom" or "custom_group" are used, users
must define a grouping scheme using a list containing sublist named as "color",
and "symbol" using the function addScheme, with group set as "NULL" or a
list with same names as those of color and symbol. No grouping was applied
for the first 12 schemes. It is used to color AAs based on similarities or group
amino acids into groups of similarities..

Value

A named character vector of colors

colorsets2 9
Author(s)

Jianhong Ou, Haibo Liu

See Also

addScheme

Examples

colorsets(”polarity_Grantham_group”)

colorsets?2 retrieve color setting for logo visualization

Description

retrieve prepared color setting for logo

Usage

colorsets2(

colorScheme = c("null”, "classic”, "charge", "chemistry”, "hydrophobicity")

)
Arguments

colorScheme A vector of length 1, the option could be 'null’, ’charge’, ’chemistry’, ’classic’

or "hydrophobicity’

Value

A character vector of color scheme

Author(s)

Jianhong Ou

10 dagHeatmap

dagBackground-class Class dagBackground.

Description
An S4 class to represent a background composed of a formatted, aligned peptides for daglogo
analysis.

Slots

background A list of data frame, each of which represetns one subset of the background set. Within
each n-by-1 dataframe is a the aligned peptides of same length.
numSubsamples An integer. That is the length of the background list

testType An character. The type of statistic testing for dagl.ogo analysis of differential usage of
amino acids.

Author(s)

Jianhong Ou, Haibo Liu

dagHeatmap Visualize daglogo using a heatmap.

Description

Using a heatmap to visualize results of testing differential amino acid usage.

Usage

dagHeatmap(testDAUresults, type = c("diff"”, "statistics”), ...)

Arguments
testDAUresults An object of testDAUresults-class, which contains results of testing differ-
ential amino acid usage.

type A character vector of length 1, the type of metrics to display on y-axis. The
available options are "diff" and "statistics", which are differences in amino acid
usage at each position between the inputSet and the backgroundSet, and the Z-
scores or odds ratios when Z-test or Fisher’s exact test is performed to test the
differential usage of amino acid at each position between the two sets.

other parameters passed to thepheatmap function.

Value

The output from the pheatmap function.

daglLogo 11

Author(s)

Jianhong Ou, Haibo Liu

Examples

data("seq.example")

data("proteome.example”)

bg <- buildBackgroundModel (seq.example, proteome=proteome.example,
numSubsamples=10)

t0 <- testDAU(seq.example, bg)

dagHeatmap(testDAUresults = t@, type = "diff")

daglogo Create sequence logo.

Description

Create sequence logo for visualizing results of testing differential usage of amino acids.

Usage

daglLogo(
testDAUresults,
type = c("diff", "zscore"),
pvalueCutoff = 0.05,
groupingSymbol = getGroupingSymbol (testDAUresults@group),
font = "Helvetica”,
fontface = "bold”,
fontsize = 8,
title = NULL,
legend = FALSE,
labelRelativeToAnchor = FALSE,
labels = NULL,
alpha = 1,

markers = list()

Arguments

testDAUresults An object of testDAUresults-class, which cintains results of testing differ-
ential amino acid usage).

type A character vector of length 1. Type of statistics to be displayed on y-axis.
Available choices are "diff" or "zscore".

pvalueCutoff A numeric vector of length 1. A cutoff of p-values.
groupingSymbol A named character vector.

font A character vector of length 1. Font type for displaying sequence Logo.

12

fontface
fontsize
title

legend

daglLogo

An integer, fontface of text for axis annotation and legends.
An integer, fontsize of text for axis annotation and legends.
A character vector of length 1, main title for a plot.

A logical vector of length 1, indicating whether to show the legend.

labelRelativeToAnchor

labels
alpha

markers

Value

A logical vector of length 1, indicating whether x-axis label should be adjusted
relative to the anchoring position.

A character vector, x-axis labels.
Alpha channel for transparency of low affinity letters.

A list of marker-class.

A sequence Logo is plotted without returned values.

Author(s)

Jianhong Ou, Haibo Liu

Examples

data('seq.example')
data('proteome.example')
bg <- buildBackgroundModel (seq.example, proteome=proteome.example,

numSubsamples=10, testType = "ztest")

t0 <- testDAU(seq.example, bg)

t1 <- testDAU(dagPeptides = seq.example, dagBackground
groupingScheme = "hydrophobicity_KD")

bg,

t2 <- testDAU(dagPeptides = seq.example, dagBackground = bg,

groupingScheme = "charge_group")

t3 <- testDAU(dagPeptides = seq.example, dagBackground = bg,

groupingScheme = "chemistry_property_Mahler")

t4 <- testDAU(dagPeptides = seq.example, dagBackground = bg,

daglLogo(t0,

daglogo(t1,
daglLogo(t2,
daglLogo(t3,
daglogo(t4,

groupingScheme = "hydrophobicity_KD_group”)
markers = list(new("marker", type="rect", start=c(5, 8),

gp=gpar (1ty=3, fill=NA)),
new("marker”, type="text"”, start=9, label="x",
gp=gpar(col=3))))

groupingSymbol = getGroupingSymbol(ti@group))
groupingSymbol = getGroupingSymbol (t2@group))
groupingSymbol = getGroupingSymbol(t3@group))
groupingSymbol = getGroupingSymbol(t4@group))

dagPeptides-class 13

dagPeptides-class Class dagPeptides. An S4 class to represent formatted, aligned pep-
tides for dagLogo analysis.

Description

Class dagPeptides. An S4 class to represent formatted, aligned peptides for dagl.ogo analysis.

Slots

data A data frame with column names: IDs, anchorAA, anchorPos, peptide and anchor.
peptides A matrix of character, each element is a single-character symbol for a amino acid.
upstreamOffset An integer, the upstream offset relative to the anchoring position.
downstreamOffset An integer, the downstream offset relative to the anchoring position.

type A character vector of length 1. Available options :"UniProt", and "fasta" if the dagPeptides
object is generated using the function formatSequence, or "entrezgene" and "uniprotswis-
sprot" if generated by the function fetchSequence.

Objects from the Class

Objects can be created by calls of the form

new("dagPeptides”, data, peptides, upstreamOffset, downstreamOffset, type).

Author(s)
Jianhong Ou
ecoli.proteome An object of Proteome-class representing the Escherichia coli pro-
teome.
Description

A dataset containing the E. coli proteome.

Usage

ecoli.proteome

14 fetchSequence

Format

An object of Proteome-class for Escherichia coli proteome. The format is: A list with one data
frame and an character.

*‘proteome‘: ’data.frame’: 13780 obs. of 4 variables *‘type‘: ’character’: "UniProt" *‘species‘:
"character’: "Escherichia coli"

The format of proteome is **ENTREZ_GENE®: a character vector, records entrez gene id *‘SE-
QUENCE*: a character vector, peptide sequences *‘ID‘: a character vector, Uniprot ID *‘LEN*‘: a
character vector, length of peptides

Details

used as an example dataset
Annotation data obtained by:
library(UniProt.ws)
taxId(UniProt.ws) <- 562

proteome <- prepareProteome(UniProt.ws, species="Escherichia coli")

Source

http://www.uniprot.org/

Examples

data(ecoli.proteome)
head(ecoli.proteome@proteome)
ecoli.proteome@type

fetchSequence Fetch protein/peptide sequences and create a dagPeptides-class
object.

Description

This function fetches protein/peptide sequences from a Biomart database or from a Proteome-class
object based on protein/peptide IDs and create a dagPeptides-class object following restriction
as specified by parameters: anchorAA or anchorPos, upstreamOffset and downstreamOffset.

Usage

fetchSequence(
IDs,
type = "entrezgene”,
anchorAA = NULL,
anchorPos,
mart,

http://www.uniprot.org/

fetchSequence

15

proteome,
upstreamOffset,
downstreamOffset
)
Arguments
IDs A character vector containing protein/peptide IDs used to fetch sequences from
a Biomart database or a Proteome-class object.
type A character vector of length 1. The available options are "entrezgene" and
"uniprotswissprot" if parameter mart is missing; otherwise it can be any type
of IDs available in Biomart databases.
anchorAA A character vector of length 1 or the same length as that of anchorPos, each
element of which is a single letter symbol of amino acids, for example, "K" for
lysine.
anchorPos A character or numeric vector. Each element of which is (1) a single-letter
symbol of amino acid followed by the position of the anchoring amino acid in
the target peptide/protein sequence, for example, "K123" for lysine at position
123 or the position of the anchoring amino acid in the target peptide/protein
sequence, for example, "123" for an amino acid at position 123; or (2) a vector
of subsequences containing the anchoring AAs.
mart A Biomart database name you want to connect to. Either of parameters mart or
proteome should be provided.
proteome An object of Proteome-class. Either of parameters mart or Proteome-class

should be provided.

upstreamOffset An integer, the upstream offset relative to the anchoring position.

downstreamOffset

Value

An integer, the downstream offset relative to the anchoring position.

An object of class dagPeptides-class

Examples

Case 1: You have both positions of the anchoring AAs and the identifiers
of their enclosing peptide/protein sequences for fetching sequences using
the fetchSequence function via the Biomart.

if (interactive())

{
try({
mart <- useMart("ensembl”)
fly_mart <-
useDataset(mart = mart, dataset = "dmelanogaster_gene_ensembl”)
dat <- read.csv(system.file("extdata"”, "daglLogoTestData.csv",

package = "daglLogo"))

seq <- fetchSequence(

16

IDs = as.character(dat$entrez_geneid),
anchorPos = as.character(dat$NCBI_site),
mart = fly_mart,

upstreamOffset = 7,

downstreamOffset = 7)

fetchSequence

head(seq@peptides)
1))
3
Case 2: You don't have the exactly postion information, but You have the
interesting peptide subsequences and the identifiers of their enclosing
peptide/protein sequences for fetching sequences using the fetchSequence
function via the Biomart. In the following examples, the anchoring AAs
are marked by asterisks.
if (interactive())
{
try({
mart <- useMart("ensembl”)
fly_mart <-
useDataset(mart = mart, dataset = "dmelanogaster_gene_ensembl"”)
dat <- read.csv(system.file("extdata"”, "daglLogoTestData.csv",
package = "daglogo"))
seq <- fetchSequence(
IDs = as.character(dat$entrez_geneid),
anchorAA = "x"
anchorPos = as.character(dat$peptide),
mart = fly_mart,
upstreamOffset = 7,
downstreamOffset = 7
)
head(seq@peptides)
»
3
In following example, the anchoring AAs are lower-case "s" for amino acid
serine.
if(interactive())
{
try({

dat <- read.csv(system.file("extdata"”, "peptides4daglLogo.csv”,
package = "daglogo"))
mart <- useMart("ensembl”)
human_mart <-
useDataset(mart = mart, dataset = "hsapiens_gene_ensembl")

seq <- fetchSequence(IDs = toupper(as.character(dat$symbol)),
type = "hgnc_symbol”,
anchorAA = "s",
anchorPos = as.character(dat$peptides),
mart = human_mart,
upstreamOffset = 7,
downstreamOffset = 7)

head(seqg@peptides)

formatSequence

byl

17

formatSequence Format already aligned peptide sequences.

Description

Convert already aligned peptide sequences into an object of dagPeptides-class.

Usage

formatSequence(seq, proteome, upstreamOffset, downstreamOffset)

Arguments
seq A vector of aligned peptide sequences of the same length
proteome An object of Proteome-class.

upstreamOffset An integer, the upstream offset relative to the anchoring position.
downstreamOffset
An integer, the downstream offset relative to the anchoring position.

Value

An object of dagPeptides-class Class

Author(s)

Jianhong Ou, Haibo Liu

Examples

Suppose you already have the aligned peptides sequences at hands. Then you can use
the formatSequence function to prepare an object of dagPeptides. Befor doing
that, you need prepare a Proteome object by the prepareProteome function.

dat <- unlist(read.delim(system.file(
"extdata”, "grB.txt", package = "daglLogo"),
header = FALSE, as.is = TRUE))

prepare an object of Proteome Class from a fasta file
proteome <- prepareProteome(fasta = system.file("extdata”,
"HUMAN. fasta”,
package = "daglogo"),
species = "Homo sapiens”)

18 getGroupingSymbol

prepare an object of dagPeptides Class from a Proteome object
seq <- formatSequence(seq = dat, proteome = proteome, upstreamOffset = 14,
downstreamOffset = 15)

getData Get the data for visualization.

Description

A helper function to get the data and the label for visualization.

Usage
getData(type, testDAUresults)

Arguments

type A character vector of length 1, the type of metrics to display on y-axis. The
available options are "diff" and "statistics", which are differences in amino acid
usage at each position between the inputSet and the backgroundSet, and the Z-
scores or odds ratios when Z-test or Fisher’s exact test is performed to test the
differential usage of amino acid at each position between the two sets.

testDAUresults An object of testDAUresults-class, which contains results of testing differ-
ential amino acid usage).
Value
A list containing the following components: label A character vector of length 1. The type of data
for visualization. dat A matrix of numeric data for visualization.
Author(s)
Haibo Liu

getGroupingSymbol Get character symbols for grouped amino acids

Description

Get character symbols for grouped amino acids

Usage

getGroupingSymbol (groupingScheme = ls(envir = cachedEnv))

initiateBackgroundModel 19

Arguments

groupingScheme A character vector of length 1, determining the character symbols used to rep-
resent amino acids grouped by their physical and chemical properties. The avail-
able groupingScheme are "no","bulkiness_Zimmerman", "hydrophobicity_KD",

non

"hydrophobicity_ HW", "isoelectric_point_Zimmerman", "contact_potential_Maiorov",

non

"chemistry_property_Mahler", "consensus_similarity_SF", "volume_Bigelow",
"structure_alignments_Mirny", "polarity_Grantham", "sequence_alignment_Dayhoff",
"bulkiness_Zimmerman_group", "hydrophobicity_KD_group", "hydrophobic-

non non non

ity_ HW_group", "charge_group", "contact_potential_Maiorov_group", "chem-

non non

istry_property_Mabhler_group", "consensus_similarity_SF_group", "volume_Bigelow_group",

non non

"structure_alignments_Mirny_group", "polarity_Grantham_group", "sequence_alignment_Dayhoff_grou
and "custom". If "custom" is used, users must define a grouping scheme using a

"non

list containing sublists named as "color", "symbol" and "group" using the func-
tion addScheme. No grouping was applied for the first 12 schemes.

Value

A named character vector of character symbols if grouping is applied; otherwise NULL.

Author(s)

Jianhong Ou, Haibo Liu

See Also
addScheme

Examples

getGroupingSymbol ("polarity_Grantham_group”)

initiateBackgroundModel
Create a new dagBackground-class object for testDAU.

Description

Create a new dagBackground-class object for testDAU.

Usage

initiateBackgroundModel (background, numSubsamples = 1L, testType)

Arguments

background A list, each element of which is a vector of aligned peptide sequences of the
same length.

numSubsamples An integer, the number of random samplings to get background sequence set.
testType An character, the type of statistic testing : "ztest" or "fisher".

20 prepareProteome

Value

An object of dagBackground-class.

Author(s)
Haibo Liu

nameHash convert group name to a single character

Description

convert group name to a single character to shown in a logo

Usage

nameHash (nameScheme = c("classic”, "charge"”, "chemistry”, "hydrophobicity"))
Arguments

nameScheme could be "classic", "charge", "chemistry", "hydrophobicity"
Value

A character vector of name scheme

Author(s)

Jianhong Ou

prepareProteome prepare proteome for background building

Description

prepare proteome from UniProt webserver or a fasta file

Usage
prepareProteome(source, fasta, species = "unknown”, ...)
Arguments
source An object of UniProt.ws or A character "UniProt".
fasta fasta file name or an object of AAStringSet
species an character to assign the species of the proteome

parameters could be passed to prepareProteomeByFTP.

prepareProteomeByFTP 21

Value

an object of Proteome which contain protein sequence information.

Author(s)

Jianhong Ou

See Also

formatSequence, buildBackgroundModel

Examples

if(interactive()){
library(UniProt.ws)
availableUniprotSpecies(”Drosophila melanogaster”)
UniProt.ws <- UniProt.ws(taxId=7227)
proteome <- prepareProteome(UniProt.ws, species="Drosophila melanogaster")

3

prepareProteomeByFTP Create an object of Proteome Class.

Description

Create an object of Proteome Class by downloading a whole proteome data from UniProt for a
given organism of an NCBI taxonomy ID or species’ scientific name, or by using peptide sequences
in a fasta file.

Usage
prepareProteomeByFTP(
source = "UniProt”,
taxonID = NULL,
species = NULL,
destDir = tempdir(check = TRUE),
fastaFile,
)
Arguments
source A character vector of length 1 or NULL. A database source from which the

proteome sequences are to be downloaded. By default, currently it is "UniProt".
If it is NULL, then fastaFile has to be specified. The priority of source is
higher than fastaFile.

22

taxonID

species

destDir

fastaFile

Value

prepareProteomeByUniProtWsS

An integer(1), specifying Taxonomy ID for a species of interest. Check the
NCBI taxonomy database: https://www.ncbi.nlm.nih.gov/taxonomy or the
UniProt database http://www.uniprot.org/taxonomy/. At least one of the
two parameters, taxonID and species, should be specified. If both are speci-
fied, taxonID will be used preferentially.

A character vector of length 1. The Latin name of a species confirming to the
Linnaean taxonomy nomenclature system. CAUTION: for species with different
strains, attention should be paid. You can interactively choose the right taxonID
from an output list.

A character vector of length 1. A destination directory with writing permis-
sion for saving downloaded sequences. Default is a temporary directory in the
system’s temporary directory.

A character vector of length 1. A fasta file name from which protein sequences
are read in.

other parameters passing to the function download.file.

An object of Proteome

Author(s)
Haibo Liu

Examples

Not run:

Prepare an objecto of Proteome Class for a proteome from the UniProt database
#' proteome <- prepareProteomeByFTP(source = "UniProt", species = "Homo sapiens”)

End(Not run)

Prepare an objecto of Proteome Class from a fasta file
fasta <- system.file("extdata”, "HUMAN.fasta", package="daglLogo")
proteome <- prepareProteomeByFTP(source = NULL, species = "Homo sapiens”,

fastaFile=fasta)

prepareProteomeByUniProtWs

Prepare a Proteome object for background building

Description

Create an object of Proteome Class by query the UniProt database of an organism of a given species’
scientific name, or by using peptide sequences in a fasta file or in an AAStringSet object.

Usage

prepareProteomeByUniProtWS(UniProt.ws, fasta, species = "unknown")

https://www.ncbi.nlm.nih.gov/taxonomy
http://www.uniprot.org/taxonomy/

Proteome-class 23

Arguments

UniProt.ws An object of UniProt.ws.

fasta A fasta file name or an object of AAStringSet.

species An character vector of length (1) to designate the species of the proteome
Value

An object of Proteome which contain protein sequence information.

Author(s)

Jianhong Ou

See Also

formatSequence, buildBackgroundModel

Examples

if(interactive()){
library(UniProt.ws)
availableUniprotSpecies(”Drosophila melanogaster”)
UniProt.ws <- UniProt.ws(taxId=7227)
proteome <- prepareProteomeByUniProtWS(UniProt.ws, species="Drosophila melanogaster")

3

Proteome-class Class Proteome.

Description

An S4 class to represent a whole proteome for dagl.ogo analysis.

Slots

proteome A data frame.
type A character vector of length 1. Available options :"UniProt", and "fasta".

species A character vector of length 1, such as a conventional Latin name for a species.

Objects from the Class

Objects can be created by calls of the form

new("Proteome”, proteome, type, species).

Author(s)

Jianhong Ou

24 proteome.example

proteome.example An object of Proteome-class representing the subset of Drosophila
melanogaster proteome.

Description

The subset Proteome-class of fruit fly.

Usage

proteome.example

Format

An object of Proteome-class for fly subset proteome. The format is: A list with one data frame
and an character.

*‘proteome‘: ’data.frame’: 1406 obs. of 4 variables *‘type‘: ’character’: "UniProt" *‘species‘:
’character’: "Drosophila melanogaster"

The format of proteome is

**ENTREZ_GENE": a character vector, records entrez gene id **SEQUENCE‘: a character vector,
peptide sequences *‘ID‘: a character vector, Uniprot ID *‘LEN‘: a character vector, length of
peptides

Details
used as an example dataset
Annotation data obtained by:
library(UniProt.ws)
taxId(UniProt.ws) <- 7227
proteome <- prepareProteome(UniProt.ws)

proteome @ proteome <- proteome @ proteome[sample(1:19902, 1406),]

Source

http://www.uniprot.org/

Examples

data(proteome.example)
head(proteome.example@proteome)
proteome.example@type

http://www.uniprot.org/

seq.example 25

seq.example An object of dagPeptides-class representing acetylated lysine-
containing peptides.

Description

A dataset containing the acetylated lysine-containing peptides from Drosophila melanogaster.

Usage

seq.example

Format

An object of dagPeptides-class Class The format is: A list.

*‘data‘: ’data.frame’: 732 obs. of 7 variables *‘peptides‘: 'matrix’: amnio acid in each position
*‘upstreamOffset‘: an integer, upstream offset position *‘downstreamOffset’: an integer, down-
stream offset position *‘type‘: "character”, type of identifiers

The format of data is

*‘IDs‘: a character vector, input identifiers *‘anchorAA°‘: a character vector, anchor amino acid
provided in inputs *‘anchorPos‘: a numeric vector, anchor position in the protein *‘peptide‘: a
character vector, peptide sequences *‘anchor*: a character vector, anchor amino acid in the protein
*‘upstream‘: a character vector, upstream peptides *‘downstream‘: a character vector, downstream
peptides

Details

used as an example dataset

seq obtained by:

mart <- useMart("ensembl", "dmelanogaster_gene_ensembl")

dat <- read.csv(system.file("extdata", "dagl.ogoTestData.csv", package="dagl.ogo"))
seq <- fetchSequence(as.character(dat$entrez_geneid),
anchorPos=as.character(dat$NCBI_site),

mart=mart,

upstreamOffset=7,

downstreamOffset=7)

Examples

data(seq.example)
head(seq.example@peptides)
seq.example@upstreamOffset
seq.example@downstreamOffset

26

testDAU

testDAU

Differential usage test of amino acids or amino acid groups.

Description

Test differential usage of amino acids with or without grouping between experimental sets and

background sets.

Usage
testDAU(
dagPeptides,
dagBackground,
groupingScheme = ls(envir = cachedEnv),
bgNoise = NA,
method = "none”
)
Arguments
dagPeptides An object of Class dagPeptides-class.
dagBackground An object of Class dagBackground-class.
groupingScheme A character vector of length 1. Available choices are "no","bulkiness_Zimmerman","hydrophobicity_KD'
"hydrophobicity_ HW", "isoelectric_point_Zimmerman", "contact_potential_Maiorov",
"chemistry_property_Mahler", "consensus_similarity_SF", "volume_Bigelow",
"structure_alignments_Mirny", "polarity_Grantham", "sequence_alignment_Dayhoff",
"bulkiness_Zimmerman_group”, "hydrophobicity_KD_group", "hydrophobic-
ity_ HW_group", "charge_group", "contact_potential_Maiorov_group", "chem-
istry_property_Mahler_group", "consensus_similarity_SF_group", "volume_Bigelow_group",
"structure_alignments_Mirny_group", "polarity_Grantham_group", "sequence_alignment_Dayhoff_grou
"custom" and "custom_group". If "custom" or "custom_group" are used, users
must define a grouping scheme using a list containing sublist named as "color",
and "symbol" using the function addScheme, with group set as "NULL" or a list
with same names as those of color and symbol. No grouping was applied for the
first 12 schemes. It is used to color AAs based on similarities or group amino
acids into groups of similarities.
bgNoise A numeric vector of length 1 if not NA. It should be in the interval of (0, 1)
when not NA.
method A character vector of length 1, specifying the method used for p-value ad-
justment to correct for multiple testing. it can be "holm", "hochberg", "hom-
mel","bonferroni”, "BH", "BY", "fdr", or "none". For more details, see p.adjust.methods
and p.adjust.
Value

An object of Class testDAUresults-class.

testDAUresults-class 27

Author(s)

Jianhong Ou, Haibo Liu

Examples

dat <- unlist(read.delim(system.file(
"extdata”, "grB.txt", package = "daglLogo"),
header = FALSE, as.is = TRUE))

##prepare an object of Proteome Class from a fasta file
proteome <- prepareProteome(fasta = system.file("extdata”,
"HUMAN. fasta”,
package = "daglLogo"),
species = "Homo sapiens”)
##prepare an object of dagPeptides Class
seq <- formatSequence(seq = dat, proteome = proteome, upstreamOffset = 14,
downstreamOffset = 15)
bg_fisher <- buildBackgroundModel(seq, background = "wholeProteome”,

proteome = proteome, testType = "fisher")
bg_ztest <- buildBackgroundModel (seq, background = "wholeProteome”,
proteome = proteome, testType = "ztest")

no grouping and distinct coloring scheme, adjust p-values using the
"BH" method.
t0 <- testDAU(seq, dagBackground = bg_ztest, method = "BY")

grouped by polarity index (Granthm, 1974)
t1 <- testDAU(dagPeptides = seq, dagBackground = bg_ztest,
groupingScheme = "polarity_Grantham_group”)

grouped by charge.
t2 <- testDAU(dagPeptides = seq, dagBackground = bg_ztest,
groupingScheme = "charge_group”)

grouped on the basis of the chemical property of side chains.
t3 <- testDAU(dagPeptides = seq, dagBackground = bg_ztest,
groupingScheme = "chemistry_property_Mahler_group”)

grouped on the basis of hydrophobicity (Kyte and Doolittle, 1982)
t4 <- testDAU(dagPeptides = seq, dagBackground = bg_ztest,
groupingScheme = "hydrophobicity_KD_group”)

testDAUresults-class Class testDAUresults.

Description

An S4 class to represent a DAU statistical test result from dagl.ogo analysis.

28 testDAUresults-class

Slots

group A character vector of length 1, the type of method for grouping amino acid.

testType A character vector of length 1, the type of statistic testing. The available options are
"fisher" and "z-test".

difference A numeric matrix consisting of differences of amino acid proportions between the test
set and the background set of aligned, formatted peptides at each position.

statistics A numeric matrix consisting of Z-scores or odds ratios for Z-test and Fisher’s exact
test, respectively.

pvalue A numeric matrix consisting of p-values.

background A numeric matrix consisting of amino acid proportions in the background set of
aligned, formatted peptides at each position.

motif A numeric matrix consisting of amino acid proportions at each position for visualization by
daglogo.

upstreamOffset A positive integer, the upstream offset relative to the anchoring position.

downstreamOffset A positive integer, the upstream offset relative to the anchoring position.

Author(s)

Jianhong Ou, Haibo Liu

Index

x datasets download.file, 22
ecoli.proteome, 13
proteome.example, 24 ecoli.proteome, 13
seq.example, 25

fetchSequence, 13, 14

* figure
g formatSequence, 13,17, 21, 23

colorsets2,9
nameHash, 20

* internal
buildZTestBackgroundModel, 6
colorsets, 8
daglLogo-package, 2

getData, 18
getGroupingSymbol, 18

initiateBackgroundModel, 19

getData, 18 marker-class, /2
getGroupingSymbol, 18
initiateBackgroundModel, 19 nameHash, 20
* misc
availableSchemes, 4 p.adjust, 26
cleanPeptides, 7 p.adjust.methods, 26
prepareProteome, 20 pheatmap, 10
prepareProteomeByUniProtws, 22 prepareProteome, 5, 20
_PACKAGE (dagLogo-package), 2 prepareProteomeByFTP, 20, 21
prepareProteomeByUniProtWs, 22
AAStringSet, 23 Proteome, 27-23
addScheme, 3, 9, 19 Proteome (Proteome-class), 23
availableSchemes, 4 Proteome-class, 13, 23, 24

proteome.example, 24

buildBackgroundModel, 4, 21, 23
buildZTestBackgroundModel, 6 seq.example, 25

testDAU, 719, 26

testDAUresults (testDAUresults-class),
27

testDAUresults-class, 27

cleanPeptides, 7
colorsets, 8
colorsets2,9

dagBackground (dagBackground-class), 10
dagBackground-class, 10, 19
dagHeatmap, 10

daglLogo, 11

daglLogo-package, 2

dagPeptides, 13

dagPeptides (dagPeptides-class), 13
dagPeptides-class, 13, 14, 25

UniProt.ws, 20, 23

29

	dagLogo-package
	addScheme
	availableSchemes
	buildBackgroundModel
	buildZTestBackgroundModel
	cleanPeptides
	colorsets
	colorsets2
	dagBackground-class
	dagHeatmap
	dagLogo
	dagPeptides-class
	ecoli.proteome
	fetchSequence
	formatSequence
	getData
	getGroupingSymbol
	initiateBackgroundModel
	nameHash
	prepareProteome
	prepareProteomeByFTP
	prepareProteomeByUniProtWS
	Proteome-class
	proteome.example
	seq.example
	testDAU
	testDAUresults-class
	Index

