Package ‘customProDB’

January 30, 2026
Type Package

Title Generate customized protein database from NGS data, with a focus
on RNA-Seq data, for proteomics search

Version 1.51.0
Date 2024-04-03
Author Xiaojing Wang

Maintainer Xiaojing Wang <xwang.research@gmail.com>
Bo Wen <wenbostar@gmail.com>

Description Database search is the most widely used approach for
peptide and protein identification in mass spectrometry-based
proteomics studies. Our previous study showed that
sample-specific protein databases derived from RNA-Seq data
can better approximate the real protein pools in the samples
and thus improve protein identification. More importantly,
single nucleotide variations, short insertion and deletions
and novel junctions identified from RNA-Seq data make protein
database more complete and sample-specific. Here, we report
an R package customProDB that enables the easy generation of
customized databases from RNA-Seq data for proteomics search.
This work bridges genomics and proteomics studies and
facilitates cross-omics data integration.

License Artistic-2.0
Depends R (>=3.0.1), IRanges, AnnotationDbi, biomaRt(>=2.17.1)

Imports S4Vectors (>=0.9.25), DBI, GenomelnfoDb, GenomicRanges,
Rsamtools (>= 1.10.2), GenomicAlignments, Biostrings (>=
2.26.3), GenomicFeatures (>= 1.32.0), stringr, RCurl, plyr,
VariantAnnotation (>= 1.13.44), rtracklayer, RSQLite,
txdbmaker, AhoCorasickTrie, methods

Suggests RMariaDB, BSgenome.Hsapiens.UCSC.hg19
LazyLoad yes

biocViews ImmunoOncology, Sequencing, MassSpectrometry, Proteomics,
SNP, RNASeq, Software, Transcription, AlternativeSplicing,
FunctionalGenomics



aaVariation

git_url https://git.bioconductor.org/packages/customProDB

git_branch devel
git_last_commit 8317345
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-01-30

Contents
aaVariation . . . . . ... e 2
Bed2Range . . . . . . . . e 3
calculateRPKM . . . . . . . . . e 4
easyRun . . . . . . L e e 5
easyRun_mul . . . . . .. 7
InputVef . . . o o L e 8
JunctionType . . . . . . . e 9
Multiple_VCF . . . . . . . e e 10
Outputaberrant . . . . . . . . . ... e e e e 11
OutputNovelJun . . . . . . . . . . 12
OULPULPIOSEq . « v v v v v e e e e e e e e e e e e e e e e e e e e 13
OutputsharedPro . . . . . . . . . . .. 14
OutputVarprocodingseq . . . . . .« v v v it e e e e e e 15
OUtputVarproSeq . . . . ¢« v v v vt e e e e e e e e e 16
OutputVarproseq_single . . . . . . . . . . ... 18
Positionincoding . . . . . . ... 19
PrepareAnnotationEnsembl . . . . . ... ..o oL L 20
PrepareAnnotationRefseq . . . . . . . . ... 21
SharedJunc . . . . . . . .. 22
Varlocation . . . . . . . . . . 23

Index 25

aaVariation get the functional consequencece of SNVs located in coding region
Description

Variations can be divided into SNVs and INDELs. By taking the output of positionincoding() as
input, aaVariation() function predicts the consequences of SNVs in the harbored transcript, such as
Synonymous or non-synonymous.

Usage

aaVariation(position_tab, coding, ...)



Bed2Range 3

Arguments

position_tab a data frame from Positionincoding()
coding a data frame cotaining coding sequence for each protein.

Additional arguments

Details

this function predicts the consequence for SNVs. for INDELs, use Outputabberrant().

Value

a data frame containing consequence for each variations.

Author(s)

Xiaojing Wang

Examples

vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")
vef <- InputVcf(vcffile)
table(values(vcf[[1J1)LL"INDEL']])

index <- which(values(vcf[[1]1)[['INDEL']]==FALSE)

SNVvcf <- vef[[1]1][index]

load(system.file("extdata/refseq”, "exon_anno.RData", package="customProDB"))
load(system.file("extdata/refseq”, "dbsnpinCoding.RData", package="customProDB"))
load(system.file("extdata/refseq”, "procodingseq.RData", package="customProDB"))
postable_snv <- Positionincoding(SNVvcf,exon,dbsnpinCoding)

txlist <- unique(postable_snv[, 'txid'])

codingseq <- procodingseq[procodingseql,'tx_id'] %in% txlist,]

mtab <- aaVariation (postable_snv,codingseq)

mtab[1:3,]

Bed2Range Generate a GRanges objects from BED file.

Description

Read BED file into a GRanges object. This function requires complete BED file. Go to https://genome.ucsc.edu/FAQ/FAQfor
for more information about BED format.

Usage

Bed2Range(bedfile, skip = 1, covfilter = 5, ...)



4 calculateRPKM

Arguments
bedfile a character contains the path and name of a BED file.
skip the number of lines of the BED file to skip before beginning to read data, default
1.
covfilter the number of minimum coverage for the candidate junction, default 5.
additional arguments
Details

Read BED file contain junctions into a GRanges object.

Value

a GRanges object containing all candidate junctions from the BED file.

Author(s)

Xiaojing Wang

Examples

bedfile <- system.file("extdata/beds”, "junctionsl.bed”, package="customProDB")
jun <- Bed2Range(bedfile, skip=1,covfilter=5)
length(jun)

calculateRPKM Caculate RPKM for each transcripts based on exon read counts.

Description

Normalized expression level based on exon read counts. The default output is a vector containing
RPKMs for each transcript. vector name is the transcript name. calculate the RPKMs by chro-
mosome. If proteincodingonly=TRUE, vetor name will be set to protein name, and only output
RPKMs for the protein coding transcripts.

Usage

calculateRPKM(bamFile, exon, proteincodingonly = TRUE,
ids = NULL, ...)



easyRun 5

Arguments
bamFile a the input BAM file name.
exon a dataframe of exon annotations.
proteincodingonly
if TRUE only output RPKMs for protein coding transcripts, the name of output
vector will be protein id. if FALSE, output the RPKM for all transcripts.
ids a dataframe containing gene/transcript/protein id mapping information.
additional arguments
Details

caculate RPKM from a BAM file based on exon read counts

Value

RPKM value for all transcripts or protein coding transcripts.

Author(s)

Xiaojing Wang

Examples

##testl.bam file is part of the whole bam file.
load(system.file("extdata/refseq”, "exon_anno.RData”, package="customProDB"))
bamFile <- system.file("extdata/bams”, "testl_sort.bam”, package="customProDB")
load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))

RPKM <- calculateRPKM(bamFile,exon,proteincodingonly=TRUE, ids)

easyRun An integrated function to generate customized protein database for a
single sample

Description

Generate a customized protein database for a single sample.

Usage

easyRun(bamFile, RPKM = NULL, vcfFile, annotation_path,
outfile_path, outfile_name, rpkm_cutoff = 1,
INDEL = FALSE, lablersid = FALSE, COSMIC = FALSE,
nov_junction = FALSE, bedFile = NULL, genome = NULL,
)



Arguments

bamFile

RPKM

vcfFile
outfile_path

outfile_name

annotation_path

rpkm_cutoff

INDEL

lablersid

COSMIC

nov_junction

bedFile

genome

Details

easyRun

Input BAM file name

Alternative to bamFile,default NULL, a vector containing expression level for
proteins. (e.g. FPKMs from cufflinks)

Input VCF file name.
Folder path for the output FASTA files.
Output FASTA file name.

The path of saved annotation.

The cutoff of RPKM value. see ’cutoff’ in function Outputproseq for more
detail.

If the vcfFile contains the short insertion/deletion. Default is FALSE.

If includes the dbSNP rsid in the header of each sequence, default is FALSE.
Users should provide dbSNP information when running function Positionincod-
ing() if put TRUE here.

If output the cosmic ids in the variation table.Default is FALSE. If choose TRUE,
there must have cosmic.RData in the annotation folder.

If output the peptides that cover novel junction into the database. if TRUE, there
should be splicemax.RData in the annotation folder.

The path of bed file which contains the splice junctions identified in RNA-Seq.
A BSgenome object(e.g. Hsapiens). Default is NULL.

Additional arguments

The function gives a more convenient way for proteomics researchers to generate customized
database for a single sample.

Value

A table file contains detailed variation information and several FASTA files.

Author(s)

Xiaojing Wang

Examples

bamFile <- system.file("extdata/bams”, "testl_sort.bam”,
package="customProDB")

vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")

annotation_path <- system.file("extdata/refseq”, package="customProDB")

outfile_path <- tempdir()

outfile_name <-

"test'

easyRun(bamFile, RPKM=NULL, vcffile, annotation_path, outfile_path,



easyRun_mul 7

outfile_name, rpkm_cutoff=1, INDEL=TRUE, lablersid=TRUE,
COSMIC=TRUE, nov_junction=FALSE)

easyRun_mul An integrated function to generate consensus protein database from
multiple samples

Description

Generate consensus protein database for multiple samples in a single function.

Usage

easyRun_mul (bamFile_path, RPKM_mtx = NULL, vcfFile_path,
annotation_path, rpkm_cutoff, share_num = 2,
var_shar_num = 2, outfile_path, outfile_name,
INDEL = FALSE, lablersid = FALSE, COSMIC = FALSE,
nov_junction = FALSE, bedFile_path = NULL,
genome = NULL, junc_shar_num = 2, ...)

Arguments

bamFile_path  The path of BAM files

RPKM_mtx Alternative to bamFile_path,default NULL, a matrix containing expression level
for proteins in each sample. (e.g. FPKMs from cufflinks)

vcfFile_path  The path of VCF files
annotation_path
The path of already saved annotation, which will be used in the function

rpkm_cutoff Cutoffs of RPKM values. see ’cutoff’ in function OutputsharedPro for more
information

share_num The minimum share sample numbers for proteins which pass the cutoff.
var_shar_num  Minimum sample number of recurrent variations.

outfile_path  The path of output FASTA file

outfile_name  The name prefix of output FASTA file

INDEL If the vcfFile contains the short insertion/deletion. Default is FALSE.

lablersid If includes the dbSNP rsid in the header of each sequence, default is FALSE.
Users should provide dbSNP information when running function Positionincod-
ing() if put TRUE here.

COSMIC If output the cosmic ids in the variation table.Default is FALSE. If choose TRUE,

there must have cosmic.RData in the annotation folder.

nov_junction  If output the peptides that cover novel junction into the database. if TRUE, there
should be splicemax.RData in the annotation folder.

bedFile_path  The path of BED files which contains the splice junctions identified in RNA-
Seq.



8 InputVceft

genome A BSgenome object(e.g. Hsapiens). Default is NULL. Required if nov_junction==TRUE.
junc_shar_num Minimum sample number of recurrent splicing junctions.

Additional arguments

Details

The function give a more convenient way for proteinomics researchers to generate customized
database of multiple samples.

Value

A table file contains detailed variation information and several FASTA files.

Author(s)

Xiaojing Wang

Examples

bampath <- system.file("extdata/bams”, package="customProDB")
vcfFile_path <- system.file("extdata/vcfs”, package="customProDB")
annotation_path <- system.file("extdata/refseq”, package="customProDB")
outfile_path <- tempdir()

outfile_name <- 'mult’

easyRun_mul (bampath, RPKM_mtx=NULL, vcfFile_path, annotation_path, rpkm_cutoff=1,
share_num=2, var_shar_num=2, outfile_path, outfile_name, INDEL=TRUE,
lablersid=TRUE, COSMIC=TRUE, nov_junction=FALSE)

InputVcf Generate a list of GRanges objects from a VCF file.

Description

The InputVcf() function generates a list of GRanges object from a single VCF file.

Usage
InputVcf(vcfFile, ...)
Arguments
vcfFile a character contains the path and name of a VCF file
additional arguments
Details

Read all fields in a VCF file into GRanges object.



JunctionType 9

Value

a list of GRanges object containing a representation of data from the VCF file

Author(s)

Xiaojing Wang

Examples

## multiple samples in one VCF file

vcffile <- system.file("extdata”, "test_mul.vcf"”, package="customProDB")
vcfs <- InputVcf(vcffile)
length(vcfs)

## single sample
vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")

vef <- InputVcf(vcffile)
length(vcf)

JunctionType Annotates the junctions in a bed file.

Description

For identified splice junctions from RNA-Seq, this function finds the junction types for each entry
according to the given annotation. Six types of junctions are classified. find more details in the

tutorial.
Usage
JunctionType(jun, splicemax, txdb, ids, ...)
Arguments
jun a GRange object for junctions, the output of function Bed2Range.
splicemax a known exon splice matrix from the annotation.
txdb a TxDb object.
ids a dataframe containing gene/transcript/protein id mapping information.
additional arguments
Details

Go to https://genome.ucsc.edu/FAQ/FAQformat.html#format] for more information about BED
format.



10 Multiple_ VCF

Value

a data frame of type and source for each junction.

Author(s)

Xiaojing Wang

Examples

bedfile <- system.file("extdata/beds”, "junctionsl.bed”, package="customProDB")

jun <- Bed2Range(bedfile,skip=1,covfilter=5)

load(system.file("extdata/refseq”, "splicemax.RData”, package="customProDB"))

load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))

txdb <- loadDb(system.file("extdata/refseq”, "txdb.sqlite"”,
package="customProDB"))

junction_type <- JunctionType(jun, splicemax, txdb, ids)

table(junction_typel[, 'jun_type'])

Multiple_VCF Generate shared variation dataset from multiple VCF files

Description

Load multiple vcf files and output a GRange object with SNVs present in multiple samples.

Usage
Multiple_VCF(vcfs, share_num, ...)
Arguments
vcfs a list of GRanges object which input from multiple VCF files using function
InputVcf.
share_num Two options, percentage format or sample number.
additional arguments
Details

This function allows to limit SN'Vs that are present in at least m out of n VCF files.

Value

a GRange object that contains the shared variations

Author(s)

Xiaojing Wang



Outputaberrant 11

Examples

path <- system.file("extdata/vcfs"”, package="customProDB")

vcfFiles<- paste(path, '/', list.files(path, pattern="xvcf$"), sep='")
vcfs <- lapply(vcfFiles, function(x) InputVcf(x))

shared <- Multiple_VCF(vcfs, share_num=2)

Outputaberrant generate FASTA file containing short INDEL

Description

Short insertion/deletion may lead to aberrant proteins in cells. We provide a function to generate
FASTA file containing this kind of proteins.

Usage
Outputaberrant(positiontab, outfile, coding, proteinseq,
ids, RPKM = NULL, ...)
Arguments
positiontab a data frame which is the output of function Positionincoding() for INDELs.
outfile output file name
coding a data frame cotaining coding sequence for each protein.
proteinseq a data frame cotaining amino acid sequence for each protein.
ids a dataframe containing gene/transcript/protein id mapping information.
RPKM if includes the RPKM value in the header of each sequence, default is NULL.

Additional arguments.

Details

the function applys the INDEL into the coding sequence, then translates them into protein sequence,
terminated by stop codon. Remove the sequences the same as normal ones or as part of normal ones.

Value

FASTA file containing aberrant proteins.

Author(s)

Xiaojing Wang



12 OutputNovelJun

Examples

vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")
vef <- InputVcf(vcffile)

table(values(vcf[[111)LL"INDEL']])

index <- which(values(vcf[[1]1)L['INDEL']] == TRUE)

indelvcf <- vcf[[1]]1[index]

load(system.file("extdata/refseq”, "exon_anno.RData”, package="customProDB"))

load(system.file("extdata/refseq”, "dbsnpinCoding.RData",
package="customProDB"))

load(system.file("extdata/refseq”, "procodingseq.RData",
package="customProDB"))

load(system.file("extdata/refseq”, "proseq.RData"”, package="customProDB"))

load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))

postable_indel <- Positionincoding(indelvcf, exon)

txlist_indel <- unique(postable_indel[, 'txid'])

codingseq_indel <- procodingseq[procodingseq[, 'tx_id'] %in% txlist_indel, ]

outfile <- paste(tempdir(), '/test_indel.fasta', sep='")

Outputaberrant(postable_indel, coding=codingseq_indel,

proteinseq=proteinseq, outfile=outfile, ids=ids)

OutputNovelJun generate peptide FASTA file that contains novel junctions.

Description

Three-frame translation of novel junctions. And remove those could be found in normal protein
sequences. This function requires a genome built by BSgenome package.

Usage
OutputNovelJun(junction_type, genome, outfile,
proteinseq, ...)
Arguments

junction_type adata frame which is the output of function JunctionType()

genome a BSgenome object. (e.g. Hsapiens)
outfile output file name
proteinseq a data frame cotaining amino acid sequence for each protein.

Additional arguments.

Value

FASTA file that contains novel junction peptides.



Outputproseq 13

Author(s)

Xiaojing Wang

Examples

bedfile <- system.file("extdata/beds”, "junctionsl.bed”, package="customProDB")

jun <- Bed2Range(bedfile,skip=1,covfilter=5)

load(system.file("extdata/refseq”, "splicemax.RData", package="customProDB"))

load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))

txdb <- loadDb(system.file("extdata/refseq”, "txdb.sqlite"”,
package="customProDB"))

junction_type <- JunctionType(jun, splicemax, txdb, ids)

table(junction_typel[, 'jun_type'l)

chrom <- paste('chr',c(1:22,'X"','Y','M"),sep="")

junction_type <- subset(junction_type, segnames %in% chrom)

outf_junc <- paste(tempdir(), '/test_junc.fasta', sep='")

load(system.file("extdata/refseq”, "proseq.RData"”, package="customProDB"))

library('BSgenome.Hsapiens.UCSC.hg19")

OutputNovelJun <- OutputNovelJun(junction_type, Hsapiens, outf_junc,
proteinseq)

Outputproseq output FASTA format file contains proteins that have expression level
above the cutoff

Description

Get the FASTA file of proteins that pass RPKM cutoff. the FASTA ID line contains protein ID,
gene ID, HGNC symbol and description

Usage
Outputproseq(rpkm, cutoff = "30%", proteinseq, outfile,
ids, ...)

Arguments

rpkm a numeric vector containing RPKM for each protein

cutoff cutoff of RPKM value. Two options are available, percentage format or RPKM.

By default we use "30 proteins according to their RPKMs.

proteinseq a dataframe containing protein ids and protein sequences.

outfile output file name.

ids a dataframe containing gene/transcript/protein id mapping information.

additional arguments



14 OutputsharedPro

Details
by taking the RPKM value as input, the function outputs sequences of the proteins that pass the
cutoff.

Value

FASTA file contains proteins with RPKM above the cutoff.

Author(s)
Xiaojing Wang

Examples
load(system.file("extdata/refseq”, "exon_anno.RData”, package="customProDB"))
load(system.file("extdata/refseq”, "proseq.RData"”, package="customProDB"))
bamFile <- system.file("extdata/bams”, "testl_sort.bam”,

package="customProDB")
load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))
RPKM <- calculateRPKM(bamFile, exon, proteincodingonly=TRUE, ids)
outf1 <- paste(tempdir(), '/test_rpkm.fasta', sep='")
Outputproseq(RPKM, 1, proteinseq, outf1, ids)

OutputsharedPro Output the sequences of proteins with high expressions in multiple
samples.

Description

Output a FASTA file containing shared proteins with expression above cutoff in multiple samples

Usage

OutputsharedPro(RPKMs, cutoff = "30%",
share_sample = "50%", proteinseq, outfile, ids, ...)

Arguments

RPKMs RPKM matrix; row name (protein name) is required.

cutoff a percentage format cutoff (e.g. *30 a vector with each element as a vlaue cutoff
referring to one sample

share_sample  the minimum share sample numbers for proteins which pass the cutoff.

proteinseq a dataframe containing protein ids and protein sequences
outfile output file name
ids a dataframe containing gene/transcript/protein id mapping information.

additional arguments



OutputVarprocodingseq 15

Details

this function takes RPKM matrix as input, users can set two paramteters,cutoff and shared, to gen-
erated a consensus expressed database

Value

a FASTA file containing proteins with RPKM above the cutoff in at least certain number of samples

Author(s)

Xiaojing Wang

Examples

path <- system.file("extdata/bams"”, package="customProDB")
load(system.file("extdata/refseq”, "exon_anno.RData”, package="customProDB"))
load(system.file("extdata/refseq”, "proseq.RData"”, package="customProDB"))
load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))
bamFile<- paste(path, '/', list.files(path, pattern="*bam$"), sep='")
rpkms <- sapply(bamFile, function(x)

calculateRPKM(x, exon, proteincodingonly=TRUE, ids))
outfile <- paste(tempdir(), '/test_rpkm_share.fasta', sep="")
OutputsharedPro(rpkms, cutoff=1, share_sample=2, proteinseq,

outfile, ids)

OutputVarprocodingseq Output the variant(SNVs) protein coding sequences

Description

Output ’snvprocoding’

Usage

OutputVarprocodingseq(vartable, procodingseq, ids, lablersid = FALSE, ...)
Arguments

vartable A data frame which is the output of aaVariation().

procodingseq A dataframe containing protein ids and coding sequence for the protein.

ids A dataframe containing gene/transcript/protein id mapping information.

lablersid If includes the dbSNP rsid in the header of each sequence, default is FALSE.
Must provide dbSNP information in function Positionincoding() if put TRUE
here.

Additional arguments



16 OutputVarproseq

Details

This function uses the output of aaVariation() as input, introduces the nonsynonymous variation
into the protein database.

Value

a data frame containing protein coding sequence proteins with single nucleotide variation.

Author(s)

Xiaojing Wang

Examples

vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")

vef <- InputVcf(vcffile)

table(values(vcf[[111)LL"INDEL']])

index <- which(values(vcf[[1]I)[['INDEL']] == FALSE)

SNVvcf <- vcf[[1]]1[index]

load(system.file("extdata/refseq”, "exon_anno.RData"”,

package="customProDB"))

load(system.file("extdata/refseq”, "dbsnpinCoding.RData",
package="customProDB"))

load(system.file("extdata/refseq”, "procodingseq.RData"”,
package="customProDB"))

load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))

load(system.file("extdata/refseq”, "proseq.RData"”, package="customProDB"))

postable_snv <- Positionincoding(SNVvcf, exon, dbsnpinCoding)

txlist <- unique(postable_snv[, 'txid'])

codingseq <- procodingseq[procodingseql[, 'tx_id'] %in% txlist, ]

mtab <- aaVariation (postable_snv, codingseq)

OutputVarprocodingseq(mtab, codingseq, ids, lablersid=TRUE)

OutputVarproseq Output the variant(SNVs) protein sequences into FASTA format

Description

Output the non-synonymous SNVs into FASTA file.

Usage

OutputVarproseq(vartable, proteinseq, outfile, ids, lablersid = FALSE,
RPKM = NULL, ...)



Output Varproseq

Arguments

vartable
proteinseq
outfile
ids
lablersid

RPKM

Details

17

A data frame which is the output of aaVariation().

A dataframe containing protein ids and the protein sequence.

Output file name.

A dataframe containing gene/transcript/protein id mapping information.

If includes the dbSNP rsid in the header of each sequence, default is FALSE.
Must provide dbSNP information in function Positionincoding() if put TRUE
here.

If includes the RPKM value in the header of each sequence, default is NULL.

Additional arguments

This function uses the output of aaVariation() as input, introduces the nonsynonymous variation
into the protein database.

Value

a FASTA file and a data frame containing proteins with single nucleotide variation.

Author(s)

Xiaojing Wang

Examples

vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")

vef <- InputVcf(vcffile)

table(values(vcf[[111)LL"INDEL']])

index <- which(values(vcf[[1]]1)[['INDEL']] == FALSE)

SNVvcf <- vcf[[1]]1[index]

load(system.file("extdata/refseq”, "exon_anno.RData"”,

package="customProDB"))

load(system.file("extdata/refseq”, "dbsnpinCoding.RData",
package="customProDB"))

load(system.file("extdata/refseq”, "procodingseq.RData"”,
package="customProDB"))

load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))

load(system.file("extdata/refseq”, "proseq.RData"”, package="customProDB"))

postable_snv <- Positionincoding(SNVvcf, exon, dbsnpinCoding)

txlist <- unique(postable_snv[, 'txid'])

codingseq <- procodingseq[procodingseql[, 'tx_id'] %in% txlist, ]

mtab <- aaVariation (postable_snv, codingseq)

outfile <- paste(tempdir(), '/test_snv.fasta',sep='")

snvproseq <- OutputVarproseq(mtab, proteinseq, outfile, ids, lablersid=TRUE, RPKM=NULL)



18 OutputVarproseq_single

OutputVarproseq_single
Output the variant(SNVs) protein sequences into FASTA format

Description

Output the non-synonymous SNVs into FASTA file, one SNV per sequence.

Usage
OutputVarproseq_single(vartable, proteinseq, outfile,
ids, lablersid = FALSE, RPKM = NULL, ...)
Arguments
vartable A data frame which is the output of aaVariation().
proteinseq A dataframe containing protein ids and the protein sequence.
outfile Output file name.
ids A dataframe containing gene/transcript/protein id mapping information.
lablersid If includes the dbSNP rsid in the header of each sequence, default is FALSE.
Must provide dbSNP information in function Positionincoding() if put TRUE
here.
RPKM If includes the RPKM value in the header of each sequence. default is NULL.

Additional arguments

Details

This function uses the output of aaVariation() as input, introduces the nonsynonymous variation
into the protein database. If a protein have more than one SNVs, introduce one SNV each time, end
up with equal number of sequences.

Value

FASTA file containing proteins with single nucleotide variation.

Author(s)

Xiaojing Wang

Examples

vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")
vef <- InputVcf(vcffile)

table(values(vcf[[1]1)LL'INDEL']1])

index <- which(values(vcf[[1]1)LL"INDEL']] == FALSE)

SNVvcf <- vef[[1]1][index]



Positionincoding 19

load(system.file("extdata/refseq”, "exon_anno.RData"”,

package="customProDB"))

load(system.file("extdata/refseq”, "dbsnpinCoding.RData",
package="customProDB"))

load(system.file("extdata/refseq”, "procodingseq.RData"”,
package="customProDB"))

load(system.file("extdata/refseq”, "ids.RData"”, package="customProDB"))

load(system.file("extdata/refseq”, "proseq.RData"”, package="customProDB"))

postable_snv <- Positionincoding(SNVvcf, exon, dbsnpinCoding)

txlist <- unique(postable_snv[, 'txid'l])

codingseq <- procodingseq[procodingseq[, 'tx_id'] %in% txlist, ]

mtab <- aaVariation (postable_snv, codingseq)

outfile <- paste(tempdir(), '/test_snv_single.fasta',sep='")

OutputVarproseq_single(mtab, proteinseq, outfile, ids, lablersid=TRUE)

Positionincoding Find the position in coding sequence for each variation.

Description

For those variations labeled with "Coding", positionincoding() function computes the position of
variation in the coding sequence of each transcript.

Usage
Positionincoding(Vars, exon, dbsnp = NULL, COSMIC = NULL,
)
Arguments
Vars a GRanges object of variations
exon a dataframe of exon annotations for protein coding transcripts.
dbsnp provide a GRanges object of known dbsnp information to include dbsnp evi-
dence into the output table, default is NULL.
COSMIC provide a GRanges object of known COSMIC information to include COSMIC
evidence into the output table, default is NULL.
additional arguments
Details

this function prepares input data frame for aaVariation().

Value

a data frame containing the position in coding sequence for each variation



20 PrepareAnnotationEnsembl

Author(s)

Xiaojing Wang

Examples

vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")
vcf <- InputVcf(vcffile)

table(values(vcf[[1]1)LL'INDEL']1])

index <- which(values(vcf[[1]11)[['INDEL']] == TRUE)

indelvcf <- vcf[[1]1]1[index]

index <- which(values(vcf[[1]1)[['INDEL']] == FALSE)
SNVvcf <- vef[[1]1][index]
load(system.file("extdata/refseq”, "exon_anno.RData"”,
package="customProDB"))
load(system.file("extdata/refseq”, "dbsnpinCoding.RData",
package="customProDB"))
load(system.file("extdata/refseq”, "procodingseq.RData"”,
package="customProDB"))
load(system.file("extdata/refseq”, "cosmic.RData”,
package="customProDB"))
postable_snv <- Positionincoding(SNVvcf, exon, dbsnpinCoding, COSMIC=cosmic)

PrepareAnnotationEnsembl
prepare annotation from ENSEMBL

Description

prepare the annotation from ENSEMBL through biomaRt.

Usage
PrepareAnnotationEnsembl(mart, annotation_path, splice_matrix = FALSE,
dbsnp = NULL, transcript_ids = NULL, COSMIC = FALSE, ...)
Arguments
mart which version of ENSEMBL dataset to use. see useMart from package biomaRt

for more detail.
annotation_path

specify a folder to store all the annotations

splice_matrix whether generate a known exon splice matrix from the annotation. this is not
necessary if you don’t want to analyse junction results, default is FALSE.

dbsnp specify a snp dataset you want to use for the SNP annotation, default is NULL.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids

COSMIC whether to download COSMIC data, default is FALSE.

additional arguments



PrepareAnnotationRefseq

Details

this function automaticlly prepares all annotation infromation needed in the following analysis.

Value

several .RData file containing annotations needed for following analysis.

Author(s)

Xiaojing Wang

Examples

ensembl <- useEnsembl(biomart = 'genes',
dataset = 'hsapiens_gene_ensembl',
version = 111)

annotation_path <- tempdir()

transcript_ids <- c("ENSTQ0000234420", "ENST00000269305", "ENST00000445888",
"ENSTQ0000257430", "ENST00000508376", "ENSTQ0000288602",
"ENSTQ0000269571", "ENSTQ0000256078", "ENSTQ0000384871")

PrepareAnnotationEnsembl (mart=ensembl, annotation_path=annotation_path,
splice_matrix=FALSE, dbsnp=NULL, transcript_ids=transcript_ids,
COSMIC=FALSE)

PrepareAnnotationRefseq
prepare annotation for Refseq

Description

prepare the annotation for Refseq through UCSC table browser.

Usage

PrepareAnnotationRefseq(genome
dbsnp = NULL, transcript_ids

"hg19", CDSfasta, pepfasta, annotation_path,
NULL, splice_matrix = FALSE,

ClinVar = FALSE, ...)
Arguments
genome specify the UCSC DB identifier (e.g. "hgl19")
CDSfasta path to the fasta file of coding sequence.

pepfasta path to the fasta file of protein sequence, check ’introduction’ for more detail.



22 SharedJunc

annotation_path
specify a folder to store all the annotations.

dbsnp specify a snp dataset to be used for the SNP annotation, default is NULL. (e.g.
"snp148")

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. Default is NULL.

splice_matrix whether generate a known exon splice matrix from the annotation. this is not
necessary if you don’t want to analyse junction results, default is FALSE.

ClinVar whether to download ClinVar data, default is FALSE.

additional arguments

Value

several .RData file containing annotations needed for further analysis.

Author(s)

Xiaojing Wang

Examples

## Not run:

transcript_ids <- c(”"NM_001126112", "NM_033360", "NR_073499", "NM_004448",
"NM_000179", "NR_029605", "NM_004333", "NM_001127511")

pepfasta <- system.file("extdata”, "refseq_pro_seq.fasta”,
package="customProDB")

CDSfasta <- system.file("extdata"”, "refseq_coding_seq.fasta",
package="customProDB")

annotation_path <- tempdir()

PrepareAnnotationRefseq(genome="hg38', CDSfasta, pepfasta, annotation_path,
dbsnp=NULL, transcript_ids=transcript_ids,
splice_matrix=FALSE, ClinVar=FALSE)

## End(Not run)

SharedJunc Generate shared junctions dataset from multiple BED files

Description

Load multiple BED files and output a GRange object with junctions present in multiple samples.

Usage

SharedJunc(juns, share_num = 2, ...)



Varlocation 23

Arguments
juns a list of GRanges object which input from multiple VCF files using function
InputVcf.
share_num Junctions must occurs in this number of samples to be consider. Two options,
percentage format or sample number.
additional arguments
Details

This function allows to limit junctions that are present in at least m out of n BED files.

Value

a GRange object that contains the shared junctions

Author(s)
Xiaojing Wang

Examples

path <- system.file("extdata/beds"”, package="customProDB")

bedFiles<- paste(path, '/', list.files(path, pattern="xbed$"), sep='")
juncs <- lapply(bedFiles, function(x) Bed2Range(x, skip=1, covfilter=5))
shared <- SharedJunc(juncs, share_num=2)

shared

Varlocation Annotates the variations with genomic location.

Description

For a given GRange object of variations, the Varlocation() function finds the genomic locations
for each entry according to the given annotation. Seven labels are used to describe the location
(intergenic, intro_nonProcoding, exon_nonProcoding, intron, Sutr, 3utr and coding). details of the
definition can be found in the tutorial.

Usage
Varlocation(Vars, txdb, ids, ...)
Arguments
Vars a GRange object of variations
txdb a TxDb object.
ids a dataframe containing gene/transcript/protein id mapping information

additional arguments



24 Varlocation

Details

see ’introduction’ for more details

Value

a data frame of locations for each variation

Author(s)

Xiaojing Wang

Examples

## Not run:
vcffile <- system.file("extdata/vcfs”, "testl.vcf”, package="customProDB")
vef <- InputVcf(vcffile)

table(values(vcf[[111)L['INDEL']1])
index <- which(values(vcf[[1]1)L['INDEL']] == TRUE)
indelvcf <- vcf[[1]1]1[index]

index <- which(values(vcf[[1]1)LL'INDEL']] == FALSE)
SNVvcf <- vef[[1]1][index]

txdb <- loadDb(system.file("extdata/refseq”, "txdb.sqlite”, package="customProDB"))
load(system.file("extdata/refseq”, "ids.RData", package="customProDB"))

SNVloc <- Varlocation(SNVvcf,txdb,ids)

indelloc <- Varlocation(indelvcf,txdb,ids)

table(SNVloc[, 'location'])

## End(Not run)



Index

aaVariation, 2
Bed2Range, 3
calculateRPKM, 4

easyRun, 5
easyRun_mul, 7

InputVcf, 8
JunctionType, 9
Multiple_VCF, 10

Outputaberrant, 11
OutputNovelJun, 12
Outputproseq, 13
OutputsharedPro, 14
OutputVarprocodingseq, 15
OutputVarproseq, 16
OutputVarproseq_single, 18

Positionincoding, 19
PrepareAnnotationEnsembl, 20
PrepareAnnotationRefseq, 21

SharedJunc, 22

Varlocation, 23

25



	aaVariation
	Bed2Range
	calculateRPKM
	easyRun
	easyRun_mul
	InputVcf
	JunctionType
	Multiple_VCF
	Outputaberrant
	OutputNovelJun
	Outputproseq
	OutputsharedPro
	OutputVarprocodingseq
	OutputVarproseq
	OutputVarproseq_single
	Positionincoding
	PrepareAnnotationEnsembl
	PrepareAnnotationRefseq
	SharedJunc
	Varlocation
	Index

