
Package ‘ctsGE’
February 1, 2026

Title Clustering of Time Series Gene Expression data

Version 1.37.0

Description Methodology for supervised clustering of potentially many predictor
variables, such as genes etc., in time series datasets
Provides functions that help the user assigning genes to
predefined
set of model profiles.

Depends R (>= 3.2)

Imports ccaPP, ggplot2, limma, reshape2, shiny, stats, stringr, utils

Suggests BiocStyle, dplyr, DT, GEOquery, knitr, pander, rmarkdown,
testthat

URL https://github.com/michalsharabi/ctsGE

BugReports https://github.com/michalsharabi/ctsGE/issues

License GPL-2

LazyData true

RoxygenNote 5.0.1

VignetteBuilder knitr

biocViews ImmunoOncology, GeneExpression, Transcription,
DifferentialExpression, GeneSetEnrichment, Genetics, Bayesian,
Clustering, TimeCourse, Sequencing, RNASeq

git_url https://git.bioconductor.org/packages/ctsGE

git_branch devel

git_last_commit 87924de

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Michal Sharabi-Schwager [aut, cre],
Ron Ophir [aut]

Maintainer Michal Sharabi-Schwager <michalsharabi@gmail.com>

1

https://github.com/michalsharabi/ctsGE
https://github.com/michalsharabi/ctsGE/issues

2 ClustIndexes

Contents
ClustIndexes . 2
ctsGEShinyApp . 3
index . 4
PlotIndexesClust . 5
PreparingTheIndexes . 6
readTSGE . 7

Index 9

ClustIndexes Clustering the indexes applying K-means

Description

Clustering each index, that was predifined by PreparingTheIndexes, with kmeans.

Usage

ClustIndexes(x, scaling = TRUE)

Arguments

x list of expression data and their indexes after running PreparingTheIndexes

scaling Boolean parameter, does the data should be standardized before clustered. De-
fault = TRUE

Details

The clustering is done with K-means. To choose an optimal k for K-means clustering, the Elbow
method was applied, this method looks at the percentage of variance explained as a function of
the number of clusters: the chosen number of clusters should be such that adding another cluster
does not give much better modeling of the data. First, the ratio of the within-cluster sum of squares
(WSS) to the total sum of squares (TSS) is computed for different values of k (i.e., 1, 2, 3 ...). The
WSS, also known as sum of squared error (SSE), decreases as k gets larger. The Elbow method
chooses the k at which the SSE decreases abruptly. This happens when the computed value of the
WSS-to-TSS ratio first drops from 0.2.

Running kmeans and calculating the optimal k for each one of the indexes in the data could take a
long time. To shorten the procedure the user can skip this step altogether and directly view a specific
index and its clusters by running either the PlotIndexesClust or the ctsGEShinyApp function.

By default data is standardize before clustering,for clustering the raw counts set the scaling param-
eter to FALSE.

Value

list object is returned as output, with the relative culstered indexes table in object$ClusteredIdxTable,
and the number of clusters for each index in object$optimalK

ctsGEShinyApp 3

See Also

kmeans, PlotIndexesClust

Examples

data_dir <- system.file("extdata", package = "ctsGE")
files <- dir(path=data_dir,pattern = "\\.xls$")
rts <- readTSGE(files, path = data_dir,
labels = c("0h","6h","12h","24h","48h","72h"), skip = 10625)
prts <- PreparingTheIndexes(rts)

tsCI <- ClustIndexes(prts)

head(tsCI$ClusteredIdxTable) #the table with the clusterd indexes
head(tsCI$optimalK) #the table with the number of clusters for each index

ctsGEShinyApp GUI for interactive exploration of gene expression data.

Description

Produce and launch Shiny app for interactive exploration of gene expression data. For more infor-
mation about shiny apps http://shiny.rstudio.com/

Usage

ctsGEShinyApp(rts, min_cutoff = 0.5, max_cutoff = 0.7, mad.scale = TRUE,
title = NULL)

Arguments

rts list of an expression data that made by readTSGE
min_cutoff A numeric the lower limit range to calculate the optimal cutoff for the data,

default to 0.5 See PreparingTheIndexes.
max_cutoff A numeric the upper limit range to calculate the optimal cutoff for the data,

default to 0.7 See PreparingTheIndexes.
mad.scale A boolean defaulting to TRUE as to what method of scaling to use. Default

median-base scaling. FALSE, mean-base scaling
title Character, the title at the header panel. default to NULL.

Details

The ‘ctsGEShinyApp‘ function takes the ctsGE object and opens an html page as a GUI. On the
web page, the user chooses the profile to visualize and the number of clusters (k parameter for
K-means) to show. The line graph of the profile separated into the clusters will show in the main
panel, and a list of the genes and their expressions will also be available. The tables and figures can
be downloaded.

4 index

Value

Creates a shiny application and opens a shinyapp.io web page

See Also

shiny::ShinyApp

Examples

Not run:
data_dir <- system.file("extdata", package = "ctsGE")
files <- dir(path=data_dir,pattern = "\\.xls$")
rts <- readTSGE(files, path = data_dir,
labels = c("0h","6h","12h","24h","48h","72h"))
ctsGEShinyApp(rts)
End(Not run)

index Indexing function

Description

Takes a numeric vector and return an expression index (i.e., a sequence of 1,-1, and 0)

Usage

index(x, cutoff)

Arguments

x A numeric

cutoff A numeric, dermine the threshold for indexing

Details

The function defines limits around the center (median or mean), +/- cutoff value in median absolute
deviation (MAD) or standard deviation (SD) units respectively.The user defines a parameter cutoff
that determines the limits around the gene-expression center. Then the function calculates the index
value at each time point according to:

1. 0: standardized value is within the limits (+/- cutoff)

2. 1: standardized value exceeds the upper limit (+ cutoff)

3. -1: standardized value exceeds the lower limit (- cutoff)

PlotIndexesClust 5

Value

Gene expression index

See Also

PreparingTheIndexes

Examples

rawCounts <-
c(103.5, 75.1, 97.3, 27.12, 34.83, 35.53, 40.59, 30.84, 16.39, 29.29)

(sCounts <- scale(rawCounts)[,1])# standardized mean-base scaling

cutoff <- seq(0.2,2,0.1) # different cutoff produce different indexes

for(i in cutoff){print(index(sCounts,i))}

PlotIndexesClust Graphic visualization of an index

Description

The function generates graphs and tables of a specific index and its clusters. The user decides
whether to supply the k or let the function calculate the k for the selected index

Usage

PlotIndexesClust(x, idx, k = NULL, scaling = TRUE)

Arguments

x list of expression data and their indexes after running PreparingTheIndexes

idx A character, the index to plot (e.g., for 8 time points "11100-1-1-1")

k A numeric, number of clusters. If not given the function will calculate what is
the optimal k for the index.

scaling A boolean, default to TRUE, does the data should be standardized before clus-
tered with K-means.

Value

A list with two objects:

1. Table of of a specific index and its clusters

2. Gene expression pattern graphs for each one of the clusters

6 PreparingTheIndexes

See Also

ggplot, kmeans, ClustIndexes

Examples

data_dir <- system.file("extdata", package = "ctsGE")
files <- dir(path=data_dir,pattern = "\\.xls$")
rts <- readTSGE(files, path = data_dir,
labels = c("0h","6h","12h","24h","48h","72h"), skip = 10625)
prts <- PreparingTheIndexes(rts)
pp <- PlotIndexesClust(prts,idx="00101-1")
pp$graphs # plots the line graphs

PreparingTheIndexes Define an expression index for each gene

Description

Reads the table of genes expression and return an expression index for each gene.

Usage

PreparingTheIndexes(x, min_cutoff = 0.5, max_cutoff = 0.7,
mad.scale = TRUE)

Arguments

x list of an expression data that made by readTSGE

min_cutoff A numeric the lower limit range to calculate the optimal cutoff for the data,
default to 0.5 See Details.

max_cutoff A numeric the upper limit range to calculate the optimal cutoff for the data,
default to 0.7 See Details.

mad.scale A boolean defaulting to TRUE as to what method of scaling to use. Default
median-base scaling. FALSE, mean-base scaling.

Details

1. First, the expression matrix is standardized. The function default standardizing method is a
median-based scaling; alternatively, a mean-based scaling can be used. The new scaled values
represent the distance of each gene at a certain time point from its center, median or mean, in
median absolute deviation (MAD) units or standard deviation (SD) units, respectively.

2. The function compute the cutoff value following the idea that the clustering will be performed
on small gene groups, an optimal cutoff value will be one that will minimize the number of genes
in each group, i.e., generate index groups of equal size. The chi-squared values will be generate for

readTSGE 7

each cutoff value (from min_cutoff to max_cutoff parameter in increments of 0.05) the cutoff that
generate the lowest chi-squared is chosen.

3. Next, the standardized values are converted to index values that indicate whether gene expres-
sion is above, below or within the limits around the center of the time series, i.e., **1 / -1 / 0**,
respectively. The cutoff parameter determines the limits around the gene-expression center. Then
the function calculates the index value at each time point according to:

1. 0: standardized value is within the limits (+/- cutoff)

2. 1: standardized value exceeds the upper limit (+ cutoff)

3. -1: standardized value exceeds the lower limit (- cutoff)

Value

list object is returned as output with the relative standarization table in object$scaled, and the in-
dexes table in object$index

See Also

scale index

Examples

data_dir <- system.file("extdata", package = "ctsGE")
files <- dir(path=data_dir,pattern = "\\.xls$")
rts <- readTSGE(files, path = data_dir,
labels = c("0h","6h","12h","24h","48h","72h"), skip = 10625)
prts <- PreparingTheIndexes(rts)
prts$cutoff # the optimal cutoff

readTSGE Read and merge a set of files containing gene expression data

Description

Reads and merges a set of text files containing normalized gene expression data

Usage

readTSGE(files, path = NULL, columns = c(1, 2), labels = NULL,
desc = NULL, ...)

8 readTSGE

Arguments

files character vector of filenames, or alternative a named list of tables for each time
point.

path character string giving the directory containing the files. The default is the cur-
rent working directory.

columns numeric vector stating which two columns contain the tag names and counts,
respectively

labels character vector giving short names to associate with the libraries.

desc character vector with genes description (annotation),default to NULL Defaults
to the file names.

... other are passed to read.delim

Details

As input, the ctsGE package expects normalized expression table, where rows are genes and columns
are samples Each file is assumed to contained digital gene expression data for one sample (or li-
brary), with transcript or gene identifiers in the first column and expression values in the second
column. Transcript identifiers are assumed to be unique and not repeated in any one file. By de-
fault, the files are assumed to be tab-delimited and to contain column headings. The function forms
the union of all transcripts and creates one big table with zeros where necessary. When reading the
normalized expression values the function check whether there are rows that their median absolute
deviation (MAD) value equal to zero and remove these rows. This step is important in order to
continue to the next step of indexing the data. The function will output a message of how many
genes were remove.

Value

A list with four objects:

1. expression matrix

2. samples names

3. tags - genes name

4. timePoints - number of time points

Examples

Read all .txt files from current working directory
data_dir <- system.file("extdata", package = "ctsGE")
files <- dir(path=data_dir,pattern = "\\.xls$")

reading only 2000 genes
rts <- readTSGE(files, path = data_dir,
labels = c("0h","6h","12h","24h","48h","72h"), skip = 10625)

Index

ClustIndexes, 2, 6
ctsGEShinyApp, 2, 3

ggplot, 6

index, 4, 7

kmeans, 2, 3, 6

PlotIndexesClust, 2, 3, 5
PreparingTheIndexes, 2, 3, 5, 6

readTSGE, 7

scale, 7

9

	ClustIndexes
	ctsGEShinyApp
	index
	PlotIndexesClust
	PreparingTheIndexes
	readTSGE
	Index

