
Package ‘compcodeR’
February 1, 2026

Type Package

Title RNAseq data simulation, differential expression analysis and
performance comparison of differential expression methods

Version 1.47.0

Description This package provides extensive functionality for
comparing results obtained by different methods for
differential expression analysis of RNAseq data. It also
contains functions for simulating count data. Finally, it provides
convenient interfaces to several packages for performing the
differential expression analysis. These can also be used as templates
for setting up and running a user-defined differential analysis
workflow within the framework of the package.

Depends R (>= 4.0), sm

Imports knitr (>= 1.2), markdown, ROCR, lattice (>= 0.16), gplots,
gtools, caTools, grid, KernSmooth, MASS, ggplot2, stringr,
modeest, edgeR, limma, vioplot, methods, stats, utils, ape,
phylolm, matrixStats, grDevices, graphics, rmarkdown, shiny,
shinydashboard

Suggests BiocStyle, EBSeq, DESeq2 (>= 1.1.31), genefilter, NOISeq,
TCC, NBPSeq (>= 0.3.0), phytools, phangorn, testthat, ggtree,
tidytree, statmod, covr, sva, tcltk

Enhances rpanel, DSS

License GPL (>= 2)

VignetteBuilder knitr

biocViews ImmunoOncology, RNASeq, DifferentialExpression

RoxygenNote 7.2.3

URL https://github.com/csoneson/compcodeR

BugReports https://github.com/csoneson/compcodeR/issues

Encoding UTF-8

git_url https://git.bioconductor.org/packages/compcodeR

1

https://github.com/csoneson/compcodeR
https://github.com/csoneson/compcodeR/issues


2 Contents

git_branch devel

git_last_commit 7aac3d1

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Charlotte Soneson [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3833-2169>),

Paul Bastide [aut] (ORCID: <https://orcid.org/0000-0002-8084-9893>),
Mélina Gallopin [aut] (ORCID: <https://orcid.org/0000-0002-2431-7825>)

Maintainer Charlotte Soneson <charlottesoneson@gmail.com>

Contents
compcodeR-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
add_replicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
checkDataObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
checkParamMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
checkParamVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
checkSpecies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
checkTableConsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
check_compData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
check_compData_results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
check_phyloCompData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
compData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
compData-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
computeFactorLengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
convertcompDataToList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
convertListTocompData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
convertListTophyloCompData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
convertphyloCompDataToList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DESeq2.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
DESeq2.length.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DSS.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
EBSeq.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
edgeR.exact.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
edgeR.GLM.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
extract_results_phylolm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
generateCodeHTMLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
generateLengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
generateLengthsPhylo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
generateSyntheticData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
getNegativeBinomialDispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
getNegativeBinomialMean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
getNegativeBinomialParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
getTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
get_model_factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

https://orcid.org/0000-0003-3833-2169
https://orcid.org/0000-0002-8084-9893
https://orcid.org/0000-0002-2431-7825


compcodeR-package 3

get_poisson_log_normal_parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
lengthNorm.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
lengthNorm.sva.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
listcreateRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
logcpm.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
NBPSeq.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
NB_to_PLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
nEffNaive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
nEffRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
NOISeq.prenorm.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
phyloCompData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
phyloCompData-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
phyloCompDataFromCompData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
phylolm.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
phylolm_analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
runComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
runComparisonGUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
runComparisonShiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
runDiffExp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
scale_variance_process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
show,compData-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
show,phyloCompData-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
show_compData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
simulateData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
simulateDataPhylo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
simulatePhyloPoissonLogNormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
sqrtcpm.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
summarizeSyntheticDataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
TCC.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ttest.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
voom.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
voom.ttest.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
writeNormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Index 84

compcodeR-package RNAseq data simulation, differential expression analysis and perfor-
mance comparison of differential expression methods

Description

RNAseq data simulation, differential expression analysis and performance comparison of differen-
tial expression methods



4 checkDataObject

Details

This package provides extensive functionality for comparing results obtained by different methods
for differential expression analysis of RNAseq data. It also contains functions for simulating count
data and interfaces to several packages for performing the differential expression analysis.

Author(s)

Charlotte Soneson

add_replicates Add replicates to a tree

Description

Utility function to add replicates to a tree, as tips with zero length branches.

Usage

add_replicates(tree, r)

Arguments

tree A phylogenetic tree with n tips.

r the number of replicates too add at each species.

Value

A phylogenetic tree with n * r tips, and clusters of tips with zero branch lengths.

checkDataObject Check a list or a compData object for compatibility with the differential
expression functions interfaced by compcodeR

Description

Check if a list or a compData object contains the necessary slots for applying the differential ex-
pression functions interfaced by the compcodeR package. This function is provided for backward
compatibility, see also check_compData and check_compData_results.

Usage

checkDataObject(data.obj)

Arguments

data.obj A list containing data and condition information, or a compData object.



checkParamMatrix 5

Author(s)

Charlotte Soneson

Examples

mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,
samples.per.cond = 5, n.diffexp = 100)

checkDataObject(mydata.obj)

checkParamMatrix Check Matrix Parameter

Description

Check that the parameters are compatible with the tree. Throws an error if not.

Usage

checkParamMatrix(x, name, tree)

Arguments

x matrix of parameters being tested.

name name of the parameter.

tree A phylogenetic tree with n tips.

checkParamVector Check Vector Parameter

Description

Check that the parameters are compatible with the tree. Throws an error if not.

Usage

checkParamVector(x, name, tree)

Arguments

x vector of parameters being tested.

name name of the parameter.

tree A phylogenetic tree with n tips.



6 checkTableConsistency

checkSpecies Check Species

Description

Check that the parameters are compatible with the tree. Throws an error if not.

Usage

checkSpecies(x, name, tree, tol, check.id.species)

Arguments

x vector of parameters being tested.

name name of the parameter.

tree A phylogenetic tree with n tips.

checkTableConsistency Check consistency of input table to runComparison

Description

Check that the dataset, nbr.samples, repl and de.methods columns of a data frame are consis-
tent with the information provided in the input files (given in the input.files column of the data
frame). If there are inconsistencies or missing information in any of the columns, replace the given
information with the information in the input files.

Usage

checkTableConsistency(file.table)

Arguments

file.table A data frame with columns named input.files and (optionally) datasets,
nbr.samples, repl, de.methods.

Value

Returns a consistent file table defining the result files that will be used as the basis for a method
comparison.

Author(s)

Charlotte Soneson



check_compData 7

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = tmpdir,
norm.method = "TMM")

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.exact",
Rmdfunction = "edgeR.exact.createRmd", output.directory = tmpdir,
norm.method = "TMM",
trend.method = "movingave", disp.type = "tagwise")

## A correct table
file.table <- data.frame(input.files = file.path(tmpdir,

c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
datasets = c("mydata", "mydata"),
nbr.samples = c(5, 5),
repl = c(1, 1),
stringsAsFactors = FALSE)

new.table <- checkTableConsistency(file.table)
new.table

## An incorrect table
file.table <- data.frame(input.files = file.path(tmpdir,

c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
datasets = c("mydata", "mydata"),
nbr.samples = c(5, 3),
repl = c(2, 1),
stringsAsFactors = FALSE)

new.table <- checkTableConsistency(file.table)
new.table

## A table with missing information
file.table <- data.frame(input.files = file.path(tmpdir,

c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
stringsAsFactors = FALSE)

new.table <- checkTableConsistency(file.table)
new.table

check_compData Check the validity of a compData object

Description

Check the validity of a compData object. An object that passes the check can be used as the input
for the differential expression analysis methods interfaced by compcodeR.

Usage

check_compData(object)



8 check_compData_results

Arguments

object A compData object

Author(s)

Charlotte Soneson

Examples

mydata <- generateSyntheticData(dataset = "mydata", n.vars = 1000,
samples.per.cond = 5, n.diffexp = 100)

check_compData(mydata)

check_compData_results

Check the validity of a compData result object

Description

Check the validity of a compData object containing differential expression results. An object that
passes the check can be used as the input for the method comparison functions in compcodeR.

Usage

check_compData_results(object)

Arguments

object A compData object

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

## Check an object without differential expression results
check_compData_results(mydata)

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"),
result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

resdata <- readRDS(file.path(tmpdir, "mydata_voom.limma.rds"))
## Check an object containing differential expression results
check_compData_results(resdata)



check_phyloCompData 9

check_phyloCompData Check the validity of a phyloCompData object

Description

Check the validity of a phyloCompData object. An object that passes the check can be used as the
input for the differential expression analysis methods interfaced by compcodeR.

Usage

check_phyloCompData(object)

Arguments

object A phyloCompData object

Author(s)

Charlotte Soneson, Paul Bastide

Examples

mydata <- generateSyntheticData(dataset = "mydata", n.vars = 1000,
samples.per.cond = 5, n.diffexp = 100,
id.species = factor(1:10),
tree = ape::rphylo(10, 1, 0),
lengths.relmeans = "auto", lengths.dispersions = "auto")

check_phyloCompData(mydata)

compData Create a compData object

Description

The compData class is used to store information about the experiment, such as the count matrix,
sample and variable annotations, information regarding the generation of the data and results from
applying a differential expression analysis to the data. This constructor function creates a compData
object.



10 compData

Usage

compData(
count.matrix,
sample.annotations,
info.parameters,
variable.annotations = data.frame(),
filtering = "no info",
analysis.date = "",
package.version = "",
method.names = list(),
code = "",
result.table = data.frame()

)

Arguments

count.matrix A count matrix, with genes as rows and observations as columns.
sample.annotations

A data frame, containing at least one column named ’condition’, encoding the
grouping of the observations into two groups. The row names should be the
same as the column names of the count.matrix.

info.parameters

A list containing information regarding simulation parameters etc. The only
mandatory entries are dataset and uID, but it may contain entries such as the
ones listed below (see generateSyntheticData for more detailed information
about each of these entries).

• dataset: an informative name or identifier of the data set (e.g., summariz-
ing the simulation settings).

• samples.per.cond

• n.diffexp

• repl.id

• seqdepth

• minfact

• maxfact

• fraction.upregulated

• between.group.diffdisp

• filter.threshold.total

• filter.threshold.mediancpm

• fraction.non.overdispersed

• random.outlier.high.prob

• random.outlier.low.prob

• single.outlier.high.prob

• single.outlier.low.prob

• effect.size



compData 11

• uID: a unique ID for the data set. In contrast to dataset, the uID is unique
e.g. for each instance of replicated data sets generated with the same simu-
lation settings.

variable.annotations

A data frame with variable annotations (with number of rows equal to the num-
ber of rows in count.matrix, that is, the number of variables in the data set).
Not mandatory, but may contain columns such as the ones listed below. If
present, the row names should be the same as the row names of the count.matrix.

• truedispersions.S1: the true dispersion for each gene in condition S1.
• truedispersions.S2: the true dispersion for each gene in condition S2.
• truemeans.S1: the true mean value for each gene in condition S1.
• truemeans.S2: the true mean value for each gene in condition S2.
• n.random.outliers.up.S1: the number of ’random’ outliers with extremely

high counts for each gene in condition S1.
• n.random.outliers.up.S2: the number of ’random’ outliers with extremely

high counts for each gene in condition S2.
• n.random.outliers.down.S1: the number of ’random’ outliers with ex-

tremely low counts for each gene in condition S1.
• n.random.outliers.down.S2: the number of ’random’ outliers with ex-

tremely low counts for each gene in condition S2.
• n.single.outliers.up.S1: the number of ’single’ outliers with extremely

high counts for each gene in condition S1.
• n.single.outliers.up.S2: the number of ’single’ outliers with extremely

high counts for each gene in condition S2.
• n.single.outliers.down.S1: the number of ’single’ outliers with ex-

tremely low counts for each gene in condition S1.
• n.single.outliers.down.S2: the number of ’single’ outliers with ex-

tremely low counts for each gene in condition S2.
• M.value: the M-value (observed log2 fold change between condition S1

and condition S2) for each gene.
• A.value: the A-value (observed average expression level across condition

S1 and condition S2) for each gene.
• truelog2foldchanges: the true (simulated) log2 fold changes between

condition S1 and condition S2.
• upregulation: a binary vector indicating which genes are simulated to be

upregulated in condition S2 compared to condition S1.
• downregulation: a binary vector indicating which genes are simulated to

be downregulated in condition S2 compared to condition S1.
• differential.expression: a binary vector indicating which genes are

simulated to be differentially expressed in condition S2 compared to condi-
tion S1.

filtering A character string containing information about the filtering that has been ap-
plied to the data set.

analysis.date If a differential expression analysis has been performed, a character string de-
tailing when it was performed.



12 compData

package.version

If a differential expression analysis has been performed, a character string giving
the version of the differential expression packages that were applied.

method.names If a differential expression analysis has been performed, a list with entries full.name
and short.name, giving the full name of the differential expression method
(may including version number and parameter settings) and a short name or
abbreviation.

code If a differential expression analysis has been performed, a character string con-
taining the code that was run to perform the analysis. The code should be in R
markdown format, and can be written to an HTML file using the generateCodeHTMLs
function.

result.table If a differential expression analysis has been performed, a data frame containing
the results of the analysis. The number of rows should be equal to the number of
rows in count.matrix and if present, the row names should be identical. The
only mandatory column is score, which gives a score for each gene, where a
higher score suggests a "more highly differentially expressed" gene. Different
comparison functions use different columns of this table, if available. The list
below gives the columns that are used by the interfaced methods.

• pvalue nominal p-values
• adjpvalue p-values adjusted for multiple comparisons
• logFC estimated log-fold changes between the two conditions
• score the score that will be used to rank the genes in order of significance.

Note that high scores always signify differential expression, that is, a strong
association with the predictor. For example, for methods returning a nomi-
nal p-value the score can be defined as 1 - pvalue.

• FDR false discovery rate estimates
• posterior.DE posterior probabilities of differential expression
• prob.DE conditional probabilities of differential expression
• lfdr local false discovery rates
• statistic test statistics from the differential expression analysis
• dispersion.S1 dispersion estimates in condition S1
• dispersion.S2 dispersion estimates in condition S2

Value

A compData object.

Author(s)

Charlotte Soneson

Examples

count.matrix <- round(matrix(1000*runif(4000), 1000))
sample.annotations <- data.frame(condition = c(1, 1, 2, 2))
info.parameters <- list(dataset = "mydata", uID = "123456")
cpd <- compData(count.matrix, sample.annotations, info.parameters)



compData-class 13

compData-class Class compData

Description

The compData class is used to store information about the experiment, such as the count matrix,
sample and variable annotations, information regarding the generation of the data and results from
applying a differential expression analysis to the data.

Slots

count.matrix: The read count matrix, with genes as rows and samples as columns. Class matrix

sample.annotations: A data frame containing sample annotation information for all samples in
the data set. Must contain at least a column named condition, encoding the division of
the samples into two classes. The row names should be the same as the column names of
count.matrix. Class data.frame

info.parameters: A list of parameters detailing the simulation process used to generate the data.
Must contain at least two entries, named dataset (an informative name for the data set/simulation
setting) and uID (a unique ID for the specific data set instance). Class list

filtering: A character string detailing the filtering process that has been applied to the data. Class
character

variable.annotations: Contains information regarding the variables, such as the differential
expression status, the true mean, dispersion and effect sizes. If present, the row names should
be the same as those of count.matrix. Class data.frame

analysis.date: (If a differential expression analysis has been performed and the results are in-
cluded in the compData object). Gives the date when the differential expression analysis was
performed. Class character

package.version: (If a differential expression analysis has been performed and the results are
included in the compData object). Gives the version numbers of the package(s) used for the
differential expression analysis. Class character

method.names: (If a differential expression analysis has been performed and the results are in-
cluded in the compData object). A list, containing the name of the method used for the dif-
ferential expression analysis. The list should have two entries: full.name and short.name,
where the full.name is the full (potentially long) name identifying the method, and short.name
may be an abbreviation. Class list

code: (If a differential expression analysis has been performed and the results are included in the
compData object). A character string containing the code that was used to run the differential
expression analysis. The code should be in R markdown format. Class character

result.table: (If a differential expression analysis has been performed and the results are in-
cluded in the compData object). Contains the results of the differential expression analysis,
in the form of a data frame with one row per gene. Must contain at least one column named
score, where a higher value corresponds to ’more strongly differentially expressed genes’.
Class data.frame



14 compData-class

Methods

count.matrix signature(x="compData")

count.matrix<- signature(x="compData",value="matrix"): Get or set the count matrix in a
compData object. value should be a numeric matrix.

sample.annotations signature(x="compData")

sample.annotations<- signature(x="compData",value="data.frame"): Get or set the sample
annotations data frame in a compData object. value should be a data frame with at least a
column named ’condition’.

info.parameters signature(x="compData")

info.parameters<- signature(x="compData",value="list"): Get or set the list with info pa-
rameters in a compData object. value should be a list with at least elements named ’dataset’
and ’uID’.

filtering signature(x="compData")

filtering<- signature(x="compData",value="character"): Get or set the information about
the filtering in a compData object. value should be a character string describing the filtering
that has been performed.

variable.annotations signature(x="compData")

variable.annotations<- signature(x="compData",value="data.frame"): Get or set the vari-
able annotations data frame in a compData object. value should be a data frame.

analysis.date signature(x="compData")

analysis.date<- signature(x="compData",value="character"): Get or set the analysis date
in a compData object. value should be a character string describing when the differential
expression analysis of the data was performed.

package.version signature(x="compData")

package.version<- signature(x="compData",value="character"): Get or set the information
about the package version in a compData object. value should be a character string detailing
which packages and versions were used to perform the differential expression analysis of the
data.

method.names signature(x="compData")

method.names<- signature(x="compData",value="list"): Get or set the method names in a
compData object. value should be a list with slots full.name and short.name, giving the
full name and an abbreviation for the method that was used to perform the analysis of the data.

code signature(x="compData")

code<- signature(x="compData",value="character"): Get or set the code slot in a compData
object. value should be a character string in R markdown format, giving the code that was
run to obtain the results from the differential expression analysis.

result.table signature(x="compData")

result.table<- signature(x="compData",value="data.frame"): Get or set the result table in a
compData object. value should be a data frame with one row per gene, and at least a column
named ’score’.

Construction

An object of the class compData can be constructed using the compData function.



computeFactorLengths 15

Author(s)

Charlotte Soneson

computeFactorLengths Compute Length Normalization Factors

Description

Compute the factor to be applied for length normalization. Each column of the matrix (samples) is
normalized by the weighted average of the column, with weights corresponding to the true proba-
bilities of each gene.

Usage

computeFactorLengths(length_matrix, prob.S1, sum.S1)

Arguments

length_matrix An n.vars times n.sample matrix of lengths of each gene in each sample.

prob.S1 Vector of means for condition 1.

sum.S1 Sum of means for condition 1.

Value

A matrix of the same size as ’length_matrix’, with normalization factors to be applied for each
sample and each gene.

convertcompDataToList Convert a compData object to a list

Description

Given a compData object, convert it to a list.

Usage

convertcompDataToList(cpd)

Arguments

cpd A compData object

Author(s)

Charlotte Soneson



16 convertListTophyloCompData

Examples

mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 12500,
samples.per.cond = 5, n.diffexp = 1250)

mydata.list <- convertcompDataToList(mydata.obj)

convertListTocompData Convert a list with data and results to a compData object

Description

Given a list with data and results (resulting e.g. from compcodeR version 0.1.0), convert it to a
compData object.

Usage

convertListTocompData(inp.list)

Arguments

inp.list A list with data and results, e.g. generated by compcodeR version 0.1.0.

Author(s)

Charlotte Soneson

Examples

convertListTocompData(list(count.matrix = matrix(round(1000*runif(4000)), 1000),
sample.annotations = data.frame(condition = c(1,1,2,2)),
info.parameters = list(dataset = "mydata",
uID = "123456")))

convertListTophyloCompData

Convert a list with data and results to a phyloCompData object

Description

Given a list with data and results (resulting e.g. from compcodeR version 0.1.0), convert it to a
phyloCompData object.

Usage

convertListTophyloCompData(inp.list)



convertphyloCompDataToList 17

Arguments

inp.list A list with data and results, e.g. generated by compcodeR version 0.1.0.

Author(s)

Charlotte Soneson, Paul Bastide

Examples

tree <- ape::read.tree(
text = "(((A1:0,A2:0,A3:0):1,B1:1):1,((C1:0,C2:0):1.5,(D1:0,D2:0):1.5):0.5);"
)

count.matrix <- round(matrix(1000*runif(8000), 1000))
sample.annotations <- data.frame(condition = c(1, 1, 1, 1, 2, 2, 2, 2),

id.species = c("A", "A", "A", "B", "C", "C", "D", "D"))
info.parameters <- list(dataset = "mydata", uID = "123456")
length.matrix <- round(matrix(1000*runif(8000), 1000))
colnames(count.matrix) <- colnames(length.matrix) <- rownames(sample.annotations) <- tree$tip.label
convertListTophyloCompData(list(count.matrix = count.matrix,

sample.annotations = sample.annotations,
info.parameters = list(dataset = "mydata",

uID = "123456"),
tree = tree,
length.matrix = length.matrix))

convertphyloCompDataToList

Convert a phyloCompData object to a list

Description

Given a phyloCompData object, convert it to a list.

Usage

convertphyloCompDataToList(cpd)

Arguments

cpd A phyloCompData object

Author(s)

Charlotte Soneson, Paul Bastide



18 DESeq2.createRmd

Examples

tree <- ape::read.tree(
text = "(((A1:0,A2:0,A3:0):1,B1:1):1,((C1:0,C2:0):1.5,(D1:0,D2:0):1.5):0.5);"
)

id.species <- factor(c("A", "A", "A", "B", "C", "C", "D", "D"))
names(id.species) <- tree$tip.label
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 4, n.diffexp = 100,
tree = tree,
id.species = id.species)

mydata.list <- convertcompDataToList(mydata.obj)

DESeq2.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with DESeq2

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the DESeq2 package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

DESeq2.createRmd(
data.path,
result.path,
codefile,
fit.type,
test,
beta.prior = TRUE,
independent.filtering = TRUE,
cooks.cutoff = TRUE,
impute.outliers = TRUE,
nas.as.ones = FALSE

)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

fit.type The fitting method used to get the dispersion-mean relationship. Possible values
are "parametric", "local" and "mean".



DESeq2.createRmd 19

test The test to use. Possible values are "Wald" and "LRT".

beta.prior Whether or not to put a zero-mean normal prior on the non-intercept coefficients.
Default is TRUE.

independent.filtering

Whether or not to perform independent filtering of the data. With independent
filtering=TRUE, the adjusted p-values for genes not passing the filter threshold
are set to NA.

cooks.cutoff The cutoff value for the Cook’s distance to consider a value to be an outlier. Set
to Inf or FALSE to disable outlier detection. For genes with detected outliers,
the p-value and adjusted p-value will be set to NA.

impute.outliers

Whether or not the outliers should be replaced by a trimmed mean and the anal-
ysis rerun.

nas.as.ones Whether or not adjusted p values that are returned as NA by DESeq2 should be
set to 1. This option is useful for comparisons with other methods. For more
details, see section "I want to benchmark DESeq2 comparing to other DE tools"
from the DESeq2 vignette (available by running vignette("DESeq2", package
= "DESeq2")). Default to FALSE.

Details

For more information about the methods and the interpretation of the parameters, see the DESeq2
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome
Biology 11:R106

Examples

try(
if (require(DESeq2)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DESeq2",
Rmdfunction = "DESeq2.createRmd",
output.directory = tmpdir, fit.type = "parametric",



20 DESeq2.length.createRmd

test = "Wald")
})

DESeq2.length.createRmd

Generate a .Rmd file containing code to perform differential expression
analysis with DESeq2 with custom model matrix

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the DESeq2 package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

DESeq2.length.createRmd(
data.path,
result.path,
codefile,
fit.type,
test,
beta.prior = TRUE,
independent.filtering = TRUE,
cooks.cutoff = TRUE,
impute.outliers = TRUE,
extra.design.covariates = NULL,
nas.as.ones = FALSE

)

Arguments

data.path The path to a .rds file containing the phyloCompData object that will be used for
the differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

fit.type The fitting method used to get the dispersion-mean relationship. Possible values
are "parametric", "local" and "mean".

test The test to use. Possible values are "Wald" and "LRT".

beta.prior Whether or not to put a zero-mean normal prior on the non-intercept coefficients.
Default is TRUE.

independent.filtering

Whether or not to perform independent filtering of the data. With independent
filtering=TRUE, the adjusted p-values for genes not passing the filter threshold
are set to NA.



DESeq2.length.createRmd 21

cooks.cutoff The cutoff value for the Cook’s distance to consider a value to be an outlier. Set
to Inf or FALSE to disable outlier detection. For genes with detected outliers,
the p-value and adjusted p-value will be set to NA.

impute.outliers

Whether or not the outliers should be replaced by a trimmed mean and the anal-
ysis rerun.

extra.design.covariates

A vector containing the names of extra control variables to be passed to the de-
sign matrix of DESeq2. All the covariates need to be a column of the sample.annotations
data frame from the phyloCompData object, with a matching column name. The
covariates can be a numeric vector, or a factor. Note that "condition" factor
column is always included, and should not be added here. See Details.

nas.as.ones Whether or not adjusted p values that are returned as NA by DESeq2 should be
set to 1. This option is useful for comparisons with other methods. For more
details, see section "I want to benchmark DESeq2 comparing to other DE tools"
from the DESeq2 vignette (available by running vignette("DESeq2", package
= "DESeq2")). Default to FALSE.

Details

For more information about the methods and the interpretation of the parameters, see the DESeq2
package and the corresponding publications.

The lengths matrix is used as a normalization factor and applied to the DESeq2 model in the way
explained in normalizationFactors (see examples of this function). The provided matrix will be
multiplied by the default normalization factor obtained through the estimateSizeFactors func-
tion.

The design model used in the DESeqDataSetFromMatrix uses the "condition" column of the
sample.annotations data frame from the phyloCompData object as well as all the covariates
named in extra.design.covariates. For example, if extra.design.covariates = c("var1",
"var2"), then sample.annotations must have two columns named "var1" and "var2", and the
design formula in the DESeqDataSetFromMatrix function will be: ~ condition + var1 + var2.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson, Paul Bastide, Mélina Gallopin

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome
Biology 11:R106

Love, M.I., Huber, W., Anders, S. (2014) Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology, 15:550. 10.1186/s13059-014-0550-8.



22 DSS.createRmd

Examples

try(
if (require(DESeq2)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
## Simulate data
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
id.species = 1:10,
lengths.relmeans = rpois(1000, 1000),
lengths.dispersions = rgamma(1000, 1, 1),
output.file = file.path(tmpdir, "mydata.rds"))

## Add covariates
## Model fitted is count.matrix ~ condition + test_factor + test_reg
sample.annotations(mydata.obj)$test_factor <- factor(rep(1:2, each = 5))
sample.annotations(mydata.obj)$test_reg <- rnorm(10, 0, 1)
saveRDS(mydata.obj, file.path(tmpdir, "mydata.rds"))
## Diff Exp
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DESeq2",

Rmdfunction = "DESeq2.length.createRmd",
output.directory = tmpdir, fit.type = "parametric",
test = "Wald",
extra.design.covariates = c("test_factor", "test_reg"))

})

DSS.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with DSS

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the DSS package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

DSS.createRmd(data.path, result.path, codefile, norm.method, disp.trend)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "quantile", "total" and "median".



EBSeq.createRmd 23

disp.trend A logical parameter indicating whether or not to include a trend in the dispersion
estimation.

Details

For more information about the methods and the interpretation of the parameters, see the DSS pack-
age and the corresponding publications.

Author(s)

Charlotte Soneson

References

Wu H, Wang C and Wu Z (2013): A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics 14(2), 232-243

Examples

try(
if (require(DSS)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DSS",
Rmdfunction = "DSS.createRmd",
output.directory = tmpdir, norm.method = "quantile",
disp.trend = TRUE)

})

EBSeq.createRmd Generate a .Rmd file containing code to perform differential expres-
sion analysis with EBSeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the EBSeq package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

EBSeq.createRmd(data.path, result.path, codefile, norm.method)



24 EBSeq.createRmd

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "median" and "quantile".

Details

For more information about the methods and the meaning of the parameters, see the EBSeq package
and the corresponding publications.

Value

The function generates a .Rmd file containing the differential expression code. This file can be
executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart
RM and Kendziorski C (2013): EBSeq: An empirical Bayes hierarchical model for inference in
RNA-seq experiments. Bioinformatics

Examples

try(
if (require(EBSeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "EBSeq",
Rmdfunction = "EBSeq.createRmd",
output.directory = tmpdir, norm.method = "median")

}
)



edgeR.exact.createRmd 25

edgeR.exact.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with the edgeR exact test

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the exact test functionality from the edgeR package. The
code is written to a .Rmd file. This function is generally not called by the user, the main interface
for performing differential expression analysis is the runDiffExp function.

Usage

edgeR.exact.createRmd(
data.path,
result.path,
codefile,
norm.method,
trend.method,
disp.type

)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "TMM", "RLE", "upperquartile" and "none".

trend.method The method used to estimate the trend in the mean-dispersion relationship. Pos-
sible values are "none", "movingave" and "loess"

disp.type The type of dispersion estimate used. Possible values are "common", "trended"
and "tagwise".

Details

For more information about the methods and the interpretation of the parameters, see the edgeR
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.



26 edgeR.GLM.createRmd

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.exact",
Rmdfunction = "edgeR.exact.createRmd",
output.directory = tmpdir, norm.method = "TMM",
trend.method = "movingave", disp.type = "tagwise")

edgeR.GLM.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with the edgeR GLM approach

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the GLM functionality from the edgeR package. The code
is written to a .Rmd file. This function is generally not called by the user, the main interface for
performing differential expression analysis is the runDiffExp function.

Usage

edgeR.GLM.createRmd(
data.path,
result.path,
codefile,
norm.method,
disp.type,
disp.method,
trended

)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.



edgeR.GLM.createRmd 27

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "TMM", "RLE", "upperquartile" and "none".

disp.type The type of dispersion estimate used. Possible values are "common", "trended"
and "tagwise".

disp.method The method used to estimate the dispersion. Possible values are "CoxReid",
"Pearson" and "deviance".

trended Logical parameter indicating whether or not a trended dispersion estimate should
be used.

Details

For more information about the methods and the interpretation of the parameters, see the edgeR
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.GLM",
Rmdfunction = "edgeR.GLM.createRmd",
output.directory = tmpdir, norm.method = "TMM",
disp.type = "tagwise", disp.method = "CoxReid",
trended = TRUE)



28 generateCodeHTMLs

extract_results_phylolm

Extract phylolm results

Description

Extract results from a phylolm object. The coefficient of interest must be named "condition".

Usage

extract_results_phylolm(phylo_lm_obj)

Arguments

phylo_lm_obj a phylolm object.

Value

A list, with:

pvalue the p value of the differential expression.

logFC the log fold change of the differential expression.

score 1 - pvalue.

generateCodeHTMLs Generate HTML file(s) containing code used to run differential expres-
sion analysis.

Description

A function to extract the code used to generate differential expression results from saved compData
result objects (typically obtained by runDiffExp), and to write the code to HTML files. This
requires that the code was saved as a character string in R markdown format in the code slot of the
result object, which is done automatically by runDiffExp. If the differential expression analysis
was performed with functions outside compcodeR, the code has to be added manually to the result
object.

Usage

generateCodeHTMLs(input.files, output.directory)



generateLengths 29

Arguments

input.files A vector with paths to one or several .rds files containing compData objects
with the results from differential expression analysis. One code HTML file is
generated for each file in the vector.

output.directory

The path to the directory where the code HTML files will be saved.

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = tmpdir,
norm.method = "TMM")

generateCodeHTMLs(file.path(tmpdir, "mydata_voom.limma.rds"), tmpdir)

generateLengths Simulate a length matrix

Description

Simulate a length matrix of size n.vars times n.sample, with the length of each gene in each sample.

Usage

generateLengths(id.species, lengths.relmeans, lengths.dispersions)

Arguments

id.species An n.sample vector, indicating the species of each sample.
lengths.relmeans

A vector of mean values to use in the simulation of lengths from the Negative
Binomial distribution.

lengths.dispersions

A vector or matrix of dispersions to use in the simulation of data from the Neg-
ative Binomial distribution.

Value

A matrix of lengths, with as many columns as the number of species (length of id.species) and as
many rows as the number of parameters in lengths.relmeans.



30 generateSyntheticData

generateLengthsPhylo Simulate a length matrix with a phylo model

Description

Simulate a length matrix of size n.vars times n.sample, with the length of each gene in each sample.

Usage

generateLengthsPhylo(tree, id.species, lengths.relmeans, lengths.dispersions)

Arguments

tree The phylogeneti tree.

id.species An n.sample vector, indicating the species of each sample.

lengths.relmeans

A vector of mean values to use in the simulation of lengths from the Negative
Binomial distribution.

lengths.dispersions

A vector or matrix of dispersions to use in the simulation of data from the Neg-
ative Binomial distribution.

lengths.lambda A vector of heritability parameters to use in the simulation of data from the
lambda model.

Value

A matrix of the same size as ’length_matrix’, with normalization factors to be applied for each
sample and each gene.

generateSyntheticData Generate synthetic count data sets

Description

Generate synthetic count data sets, following the simulation strategy detailed in Soneson and De-
lorenzi (2013).



generateSyntheticData 31

Usage

generateSyntheticData(
dataset,
n.vars,
samples.per.cond,
n.diffexp,
repl.id = 1,
seqdepth = 1e+07,
minfact = 0.7,
maxfact = 1.4,
relmeans = "auto",
dispersions = "auto",
fraction.upregulated = 1,
between.group.diffdisp = FALSE,
filter.threshold.total = 1,
filter.threshold.mediancpm = 0,
fraction.non.overdispersed = 0,
random.outlier.high.prob = 0,
random.outlier.low.prob = 0,
single.outlier.high.prob = 0,
single.outlier.low.prob = 0,
effect.size = 1.5,
output.file = NULL,
tree = NULL,
prop.var.tree = 1,
model.process = c("BM", "OU"),
selection.strength = 0,
id.condition = NULL,
id.species = as.factor(rep(1, 2 * samples.per.cond)),
check.id.species = TRUE,
lengths.relmeans = NULL,
lengths.dispersions = NULL,
lengths.phylo = TRUE

)

Arguments

dataset A name or identifier for the data set/simulation settings.

n.vars The initial number of genes in the simulated data set. Based on the filtering con-
ditions (filter.threshold.total and filter.threshold.mediancpm), the
number of genes in the final data set may be lower than this number.

samples.per.cond

The number of samples in each of the two conditions.

n.diffexp The number of genes simulated to be differentially expressed between the two
conditions.

repl.id A replicate ID for the specific simulation instance. Useful for example when
generating multiple count matrices with the same simulation settings.



32 generateSyntheticData

seqdepth The base sequencing depth (total number of mapped reads). This number is
multiplied by a value drawn uniformly between minfact and maxfact for each
sample to generate data with different actual sequencing depths.

minfact, maxfact
The minimum and maximum for the uniform distribution used to generate fac-
tors that are multiplied with seqdepth to generate individual sequencing depths
for the simulated samples.

relmeans A vector of mean values to use in the simulation of data from the Negative Bi-
nomial distribution, or "auto". Note that these values may be scaled in order to
comply with the given sequencing depth. With the default value ("auto"), the
mean values are sampled from values estimated from the Pickrell and Cheung
data sets. If relmeans is a vector, the provided values will be used as mean val-
ues in the simulation for the samples in the first condition. The mean values for
the samples in the second condition are generated by combining the relmeans
and effect.size arguments.

dispersions A vector or matrix of dispersions to use in the simulation of data from the Neg-
ative Binomial distribution, or "auto". With the default value ("auto"), the
dispersion values are sampled from values estimated from the Pickrell and Che-
ung data sets. If both relmeans and dispersions are set to "auto", the means
and dispersion values are sampled in pairs from the values in these data sets. If
dispersions is a single vector, the provided dispersions will be used for simu-
lating data from both conditions. If it is a matrix with two columns, the values
in the first column are used for condition 1, and the values in the second column
are used for condition 2.

fraction.upregulated

The fraction of the differentially expressed genes that is upregulated in condition
2 compared to condition 1.

between.group.diffdisp

Whether or not the dispersion should be allowed to be different between the
conditions. Only applicable if dispersions is "auto".

filter.threshold.total

The filter threshold on the total count for a gene across all samples. All genes
for which the total count across all samples is less than the threshold will be
filtered out.

filter.threshold.mediancpm

The filter threshold on the median count per million (cpm) for a gene across all
samples. All genes for which the median cpm across all samples is less than the
threshold will be filtered out.

fraction.non.overdispersed

The fraction of the genes that should be simulated according to a Poisson dis-
tribution, without overdispersion. The non-overdispersed genes will be divided
proportionally between the upregulated, downregulated and non-differentially
expressed genes.

random.outlier.high.prob

The fraction of ’random’ outliers with unusually high counts.
random.outlier.low.prob

The fraction of ’random’ outliers with unusually low counts.



generateSyntheticData 33

single.outlier.high.prob

The fraction of ’single’ outliers with unusually high counts.
single.outlier.low.prob

The fraction of ’single’ outliers with unusually low counts.

effect.size The strength of the differential expression, i.e., the effect size, between the two
conditions. If this is a single number, the effect sizes will be obtained by sim-
ulating numbers from an exponential distribution (with rate 1) and adding the
results to the effect.size. For genes that are upregulated in the second con-
dition, the mean in the first condition is multiplied by the effect size. For genes
that are downregulated in the second condition, the mean in the first condition
is divided by the effect size. It is also possible to provide a vector of effect
sizes (one for each gene), which will be used as provided. In this case, the
fraction.upregulated and n.diffexp arguments will be ignored and the val-
ues will be derived from the effect.size vector.

output.file If not NULL, the path to the file where the data object should be saved. The
extension should be .rds, if not it will be changed.

tree a dated phylogenetic tree of class phylo with ‘samples.per.cond * 2‘ species.

prop.var.tree the proportion of the common variance explained by the tree for each gene. It
can be a scalar, in which case the same parameter is used for all genes. Other-
wise it needs to be a vector with length n.vars. Default to 1.

model.process the process to be used for phylogenetic simulations. One of "BM" or "OU",
default to "BM".

selection.strength

if the process is "OU", the selection strength parameter.

id.condition A named vector, indicating which species is in each condition. Default to first
‘samples.per.cond‘ species in condition ‘1‘ and others in condition ‘2‘.

id.species A factor giving the species for each sample. If a tree is used, should be a
named vector with names matching the taxa of the tree. Default to rep(1,
2*samples.per.cond), i.e. all the samples come from the same species.

check.id.species

Should the species vector be checked against the tree lengths (if provided) ?
If TRUE, the function checks that all the samples that share a factor value in
id.species that their distance on the tree is zero, i.e. that they are on the same
tip of the tree. Default to TRUE.

lengths.relmeans

An optional vector of mean values to use in the simulation of lengths from the
Negative Binomial distribution. Should be of length n.vars. Default to NULL: the
lengths are not taken into account for the simulation. If set to "auto", the mean
length values are sampled from values estimated from the Stern & Crandall
(2018) data set.

lengths.dispersions

An optional vector of dispersions to use in the simulation of data from the Neg-
ative Binomial distribution. Should be of length n.vars. Default to NULL: the
lengths are not taken into account for the simulation. If set to "auto", the disper-
sion length values are sampled from values estimated from the Stern & Crandall
(2018) data set.



34 generateSyntheticData

lengths.phylo If TRUE, the lengths are simulated according to a phylogenetic Poisson Log-
Normal model on the tree, with a BM process. If FALSE, they are simulated ac-
cording to an iid negative binomial distribution. In both cases, lengths.relmeans
and lengths.dispersions are used. Default to TRUE if a tree is provided.

Details

In the comparison function, only results obtained for data sets with the same value of the dataset
parameter will be compared. Hence, it is important to give the same value of this parameter e.g. to
different replicates generated with the same simulation settings.

For more detailed information regarding the different types of outliers, see Soneson and Delorenzi
(2013).

Mean and dispersion parameters (if relmeans and/or dispersions is set to "auto") are sampled
from values estimated from the data sets by Pickrell et al (2010) and Cheung et al (2010). The data
sets were downloaded from the ReCount web page (Frazee et al (2011)) and processed as detailed
by Soneson and Delorenzi (2013).

To get the actual mean value for the Negative Binomial distribution used for the simulation of counts
for a given sample, take the column truemeans.S1 (or truemeans.S2, if the sample is in condition
S2) of the variable.annotations slot, divide by the sum of the same column and multiply with
the base sequencing depth (provided in the info.parameters list) and the depth factor for the
sample (given in the sample.annotations data frame). Thus, if you have a vector of mean values
that you want to provide as the relmeans argument and make sure to use it ’as-is’ in the simulation
(for condition S1), make sure to set the seqdepth argument to the sum of the values in the relmeans
vector, and to set minfact and maxfact equal to 1.

When the tree argument is provided (not NULL), then the "phylogenetic Poisson log-Normal" model
is used for the simulations, possibly with varying gene lengths across species (both lengths.relmeans
and lengths.dispersions must be specified or set to "auto".) Phylogenetic simulations use the
rTrait function from package phylolm.

Value

A compData object. If output.file is not NULL, the object is saved in the given output.file
(which should have an .rds extension).

Author(s)

Charlotte Soneson

References

Soneson C and Delorenzi M (2013): A comparison of methods for differential expression analysis
of RNA-seq data. BMC Bioinformatics 14:91

Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M and Spielman RS (2010):
Polymorphic cis- and trans-regulation of human gene expression. PLoS Biology 8(9):e1000480

Frazee AC, Langmead B and Leek JT (2011): ReCount: a multi-experiment resource of analysis-
ready RNA-seq gene count datasets. BMC Bioinformatics 12:449



getNegativeBinomialDispersion 35

Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M,
Gilad Y and Pritchard JK (2010): Understanding mechanisms underlying human gene expression
variation with RNA sequencing. Nature 464, 768-772

Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ and Taylor JM (2012): Efficient ex-
perimental design and analysis strategies for the detection of differential expression using RNA-
sequencing. BMC Genomics 13:484

Stern DB and Crandall KA (2018): The Evolution of Gene Expression Underlying Vision Loss in
Cave Animals. Molecular Biology and Evolution. 35:2005–2014.

Examples

## RNA-Seq data
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100)

## Inter-species RNA-Seq data
library(ape)
tree <- read.tree(text = "(((A1:0,A2:0,A3:0):1,B1:1):1,((C1:0,C2:0):1.5,(D1:0,D2:0):1.5):0.5);")
id.species <- factor(c("A", "A", "A", "B", "C", "C", "D", "D"))
names(id.species) <- tree$tip.label
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 4, n.diffexp = 100,
tree = tree,
id.species = id.species,
lengths.relmeans = "auto",
lengths.dispersions = "auto")

getNegativeBinomialDispersion

Get NB dispersion

Description

Get the NB dispersion for one gene in one sample

Usage

getNegativeBinomialDispersion(
i,
j,
S1,
truedispersions.S1,
S2,
truedispersions.S2

)



36 getNegativeBinomialMean

Arguments

i gene index.

j sample index.

S1 Indices in condition 1.
truedispersions.S1

Vector of dispersions for condition 1.

S2 Indices in condition 2.
truedispersions.S2

Vector of dispersions for condition 2.

Value

The dispersion for gene i in sample j.

getNegativeBinomialMean

Get NB mean

Description

Get the NB mean for one gene in one sample

Usage

getNegativeBinomialMean(
i,
j,
S1,
prob.S1,
sum.S1,
nfact_length.S1,
S2,
prob.S2,
sum.S2,
nfact_length.S2,
seq.depths

)

Arguments

i gene index.

j sample index.

S1 Indices in condition 1.

prob.S1 Vector of means for condition 1.

sum.S1 Sum of means for condition 1.



getNegativeBinomialParameters 37

nfact_length.S1

Matrix of length factors for condition 1.

S2 Indices in condition 2.

prob.S2 Vector of means for condition 2.

sum.S2 Sum of means for condition 2.
nfact_length.S2

Matrix of length factors for condition 2.

Value

The mean for gene i in sample j.

getNegativeBinomialParameters

Get all parameters of the NB at once

Description

Get both the mean and the dispersions of the NB as matrices for all indices.

Usage

getNegativeBinomialParameters(
n.vars,
S1,
prob.S1,
sum.S1,
truedispersions.S1,
nfact_length.S1,
S2,
prob.S2,
sum.S2,
truedispersions.S2,
nfact_length.S2,
seq.depths

)

Arguments

n.vars The initial number of genes in the simulated data set. Based on the filtering con-
ditions (filter.threshold.total and filter.threshold.mediancpm), the
number of genes in the final data set may be lower than this number.

S1 Indices in condition 1.

prob.S1 Vector of means for condition 1.

sum.S1 Sum of means for condition 1.



38 getTree

truedispersions.S1

Vector of dispersions for condition 1.

nfact_length.S1

Matrix of length factors for condition 1.

S2 Indices in condition 2.

prob.S2 Vector of means for condition 2.

sum.S2 Sum of means for condition 2.
truedispersions.S2

Vector of dispersions for condition 2.

nfact_length.S2

Matrix of length factors for condition 2.

Value

A list of parameters for each entry of the count matrix:

count_means a matrix of mean for each gene and sample.

count_dispersions a matrix of dispersions for each gene and sample.

getTree Get the tree from a phyloCompData object

Description

Return the tree of a phyloCompData object. If no tree, return a star tree with unit height, and throw
a warning.

Usage

getTree(cdata)

Arguments

cdata a phyloCompData object.

Value

A tree of class phylo



get_model_factor 39

get_model_factor Get the scaling factor

Description

Get the scaling factors.

Usage

get_model_factor(model.process, selection.strength, tree)

Arguments

model.process the process to be used for phylogenetic simulations. One of "BM" or "OU",
default to "BM".

selection.strength

if the process is "OU", the selection strength parameter.
tree a dated phylogenetic tree of class phylo with ‘samples.per.cond * 2‘ species.

Value

A vector N of factors.

get_poisson_log_normal_parameters

Compute log means and variances

Description

From the parameters of a negative binomial (count_means and count_dispersions), compute the
parameters of a phylogenetic Poisson log-normal with the same expectations and variances.

Usage

get_poisson_log_normal_parameters(
count_means,
count_dispersions,
prop.var.tree

)

Arguments

count_means a matrix with the number of genes p rows and the number of species n columns.
Column names should match the tree taxa names.

count_dispersions

a matrix of size p x n, for each gene and species. Column names should match
the tree taxa names.



40 lengthNorm.limma.createRmd

Value

A list, with:

log_means the p x n matrix of log-means for Poisson-lognormal simulations.

log_variance_phylo the p vector of phylogenetic log-variances for Poisson-lognormal simulations.

log_variance_sample the p x n matrix of environmental log-variances for Poisson-lognormal sim-
ulations.

lengthNorm.limma.createRmd

Generate a .Rmd file containing code to perform differential expression
analysis with length normalized counts + limma

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) by applying a length normalizing transformation followed by dif-
ferential expression analysis with limma. The code is written to a .Rmd file. This function is
generally not called by the user, the main interface for performing differential expression analysis
is the runDiffExp function.

Usage

lengthNorm.limma.createRmd(
data.path,
result.path,
codefile,
norm.method,
extra.design.covariates = NULL,
length.normalization = "RPKM",
data.transformation = "log2",
trend = FALSE,
block.factor = NULL

)

Arguments

data.path The path to a .rds file containing the phyloCompData object that will be used for
the differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The normal-
ization factors are calculated using the calcNormFactors of the edgeR package.
Possible values are "TMM", "RLE", "upperquartile" and "none"



lengthNorm.limma.createRmd 41

extra.design.covariates

A vector containing the names of extra control variables to be passed to the de-
sign matrix of limma. All the covariates need to be a column of the sample.annotations
data frame from the phyloCompData object, with a matching column name. The
covariates can be a numeric vector, or a factor. Note that "condition" factor
column is always included, and should not be added here. See Details.

length.normalization

one of "none" (no length correction), "TPM", or "RPKM" (default). See details.
data.transformation

one of "log2", "asin(sqrt)" or "sqrt". Data transformation to apply to the normal-
ized data.

trend should an intensity-trend be allowed for the prior variance? Default to FALSE.

block.factor Name of the factor specifying a blocking variable, to be passed to duplicateCorrelation
function of the limma package. All the factors need to be a sample.annotations
from the phyloCompData object. Default to null (no block structure).

Details

For more information about the methods and the interpretation of the parameters, see the limma
package and the corresponding publications.

The length.matrix field of the phyloCompData object is used to normalize the counts, using one
of the following formulas:

• length.normalization="none" : CPMgi =
Ngi+0.5

NFi×
∑

g Ngi+1 × 106

• length.normalization="TPM" : TPMgi =
(Ngi+0.5)/Lgi

NFi×
∑

g Ngi/Lgi+1 × 106

• length.normalization="RPKM" : RPKMgi =
(Ngi+0.5)/Lgi

NFi×
∑

g Ngi+1 × 109

where Ngi is the count for gene g and sample i, where Lgi is the length of gene g in sample i, and
NFi is the normalization for sample i, normalized using calcNormFactors of the edgeR package.

The function specified by the data.transformation is then applied to the normalized count ma-
trix.

The "+0.5" and "+1" are taken from Law et al 2014, and dropped from the normalization when the
transformation is something else than log2.

The "×106" and "×109" factors are omitted when the asin(sqrt) transformation is taken, as asin
can only be applied to real numbers smaller than 1.

The design model used in the lmFit uses the "condition" column of the sample.annotations data
frame from the phyloCompData object as well as all the covariates named in extra.design.covariates.
For example, if extra.design.covariates = c("var1", "var2"), then sample.annotations
must have two columns named "var1" and "var2", and the design formula in the lmFit function
will be: ~ condition + var1 + var2.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.



42 lengthNorm.sva.limma.createRmd

Author(s)

Charlotte Soneson, Paul Bastide, Mélina Gallopin

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Smyth, G. K., Michaud, J., and Scott, H. (2005). The use of within-array replicate spots for assess-
ing differential expression in microarray experiments. Bioinformatics 21(9), 2067-2075.

Law, C.W., Chen, Y., Shi, W. et al. (2014) voom: precision weights unlock linear model analysis
tools for RNA-seq read counts. Genome Biol 15, R29.

Musser, JM, Wagner, GP. (2015): Character trees from transcriptome data: Origin and individuation
of morphological characters and the so-called “species signal”. J. Exp. Zool. (Mol. Dev. Evol.)
324B: 588– 604.

Examples

try(
if (require(limma)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
## Simulate data
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
id.species = factor(1:10),
lengths.relmeans = rpois(1000, 1000),
lengths.dispersions = rgamma(1000, 1, 1),
output.file = file.path(tmpdir, "mydata.rds"))

## Add covariates
## Model fitted is count.matrix ~ condition + test_factor + test_reg
sample.annotations(mydata.obj)$test_factor <- factor(rep(1:2, each = 5))
sample.annotations(mydata.obj)$test_reg <- rnorm(10, 0, 1)
saveRDS(mydata.obj, file.path(tmpdir, "mydata.rds"))
## Diff Exp
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "length.limma",

Rmdfunction = "lengthNorm.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM",
extra.design.covariates = c("test_factor", "test_reg"))

})

lengthNorm.sva.limma.createRmd

Generate a .Rmd file containing code to perform differential expression
analysis with length normalized counts + SVA + limma



lengthNorm.sva.limma.createRmd 43

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) by applying a length normalizing transformation, followed by a
surrogate variable analysis (SVA), and then a differential expression analysis with limma. The code
is written to a .Rmd file. This function is generally not called by the user, the main interface for
performing differential expression analysis is the runDiffExp function.

Usage

lengthNorm.sva.limma.createRmd(
data.path,
result.path,
codefile,
norm.method,
extra.design.covariates = NULL,
length.normalization = "RPKM",
data.transformation = "log2",
trend = FALSE,
n.sv = "auto"

)

Arguments

data.path The path to a .rds file containing the phyloCompData object that will be used for
the differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The normal-
ization factors are calculated using the calcNormFactors of the edgeR package.
Possible values are "TMM", "RLE", "upperquartile" and "none"

extra.design.covariates

A vector containing the names of extra control variables to be passed to the de-
sign matrix of limma. All the covariates need to be a column of the sample.annotations
data frame from the phyloCompData object, with a matching column name. The
covariates can be a numeric vector, or a factor. Note that "condition" factor
column is always included, and should not be added here. See Details.

length.normalization

one of "none" (no length correction), "TPM", or "RPKM" (default). See details.
data.transformation

one of "log2", "asin(sqrt)" or "sqrt". Data transformation to apply to the normal-
ized data.

trend should an intensity-trend be allowed for the prior variance? Default to FALSE.

n.sv The number of surrogate variables to estimate (see sva). Default to "auto":
will be estimated with num.sv.



44 lengthNorm.sva.limma.createRmd

Details

For more information about the methods and the interpretation of the parameters, see the sva and
limma packages and the corresponding publications.

See the details section of lengthNorm.limma.createRmd for details on the normalization and
the extra design covariates.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson, Paul Bastide, Mélina Gallopin

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Smyth, G. K., Michaud, J., and Scott, H. (2005). The use of within-array replicate spots for assess-
ing differential expression in microarray experiments. Bioinformatics 21(9), 2067-2075.

Law, C.W., Chen, Y., Shi, W. et al. (2014) voom: precision weights unlock linear model analysis
tools for RNA-seq read counts. Genome Biol 15, R29.

Musser, JM, Wagner, GP. (2015): Character trees from transcriptome data: Origin and individuation
of morphological characters and the so-called “species signal”. J. Exp. Zool. (Mol. Dev. Evol.)
324B: 588– 604.

Leek JT, Johnson WE, Parker HS, Jaffe AE, and Storey JD. (2012) The sva package for remov-
ing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics
DOI:10.1093/bioinformatics/bts034

Examples

try(
if (require(limma) && require(sva)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
## Simulate data
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
id.species = factor(1:10),
lengths.relmeans = rpois(1000, 1000),
lengths.dispersions = rgamma(1000, 1, 1),
output.file = file.path(tmpdir, "mydata.rds"))

## Add covariates
## Model fitted is count.matrix ~ condition + test_factor + test_reg
sample.annotations(mydata.obj)$test_factor <- factor(rep(1:2, each = 5))
sample.annotations(mydata.obj)$test_reg <- rnorm(10, 0, 1)
saveRDS(mydata.obj, file.path(tmpdir, "mydata.rds"))
## Diff Exp



listcreateRmd 45

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "lengthNorm.sva.limma",
Rmdfunction = "lengthNorm.sva.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM",
extra.design.covariates = c("test_factor", "test_reg"))

})

listcreateRmd List available *.createRmd functions

Description

Print a list of all *.createRmd functions that are available in the search path. These functions can
be used together with the runDiffExp function to perform differential expression analysis. Consult
the help pages for the respective functions for more information.

Usage

listcreateRmd()

Author(s)

Charlotte Soneson

Examples

listcreateRmd()

logcpm.limma.createRmd

Generate a .Rmd file containing code to perform differential expres-
sion analysis with limma after log-transforming the counts per million
(cpm)

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using limma, after preprocessing the counts by computing the
counts per million (cpm) and applying a logarithmic transformation. The code is written to a .Rmd
file. This function is generally not called by the user, the main interface for performing differential
expression analysis is the runDiffExp function.

Usage

logcpm.limma.createRmd(data.path, result.path, codefile, norm.method)



46 logcpm.limma.createRmd

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none"

Details

For more information about the methods and the interpretation of the parameters, see the edgeR and
limma packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "logcpm.limma",
Rmdfunction = "logcpm.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")



NBPSeq.createRmd 47

NBPSeq.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with NBPSeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using NBPSeq. The code is written to a .Rmd file. This function is
generally not called by the user, the main interface for performing differential expression analysis
is the runDiffExp function.

Usage

NBPSeq.createRmd(data.path, result.path, codefile, norm.method, disp.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".

disp.method The method to use to estimate the dispersion values. Possible values are "NBP"
and "NB2".

Details

For more information about the methods and the interpretation of the parameters, see the NBPSeq
and edgeR packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson



48 NB_to_PLN

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Di Y, Schafer DW, Cumbie JS, and Chang JH (2011): The NBP Negative Binomial Model for
Assessing Differential Gene Expression from RNA-Seq. Statistical Applications in Genetics and
Molecular Biology 10(1), 1-28

Examples

try(
if (require(NBPSeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "NBPSeq",
Rmdfunction = "NBPSeq.createRmd",
output.directory = tmpdir, norm.method = "TMM", disp.method = "NBP")

})

NB_to_PLN Negative Binomial to Poisson Log-Normal

Description

From the parameters of a negative binomial (mean and dispersion), compute the parameters of a
Poisson log-normal with the same expectation and variance.

Usage

NB_to_PLN(mean, dispersion)

Arguments

mean mean of the negative binomial.

dispersion dispersion of the negative binomial.

Value

A list, with:

log_means_pln Mean of the Poisson log normal in the log space.

log_variances_pln Variance of the Poisson log normal in the log space.



nEffNaive 49

nEffNaive Effective Sample Size

Description

Sample size so that the variance of the estimator is sigma^2 / nEff.

Usage

nEffNaive(tree, id.condition, model, selection.strength)

Arguments

tree A phylogenetic tree. If NULL, samples are assumed to be iid.

id.condition A named vector giving the state of each tip (sample).

model The trait evolution model. One of "BM" or "OU".
selection.strength

If model="OU", the selection strength parameter.

Value

The effective sample size.

nEffRatio Effective Sample Size Ratio

Description

Ratio between the tree sample size and the sample size of the equivalent problem with independent
measures. A result larger than one indicates a problem that is made "easier" by the tree structure.
Note that it strongly depends on the tip conditions (see examples).

Usage

nEffRatio(tree, id.condition, model, selection.strength)

Arguments

tree A phylogenetic tree. If NULL, samples are assumed to be iid.

id.condition A named vector giving the state of each tip (sample).

model The trait evolution model. One of "BM" or "OU".
selection.strength

If model="OU", the selection strength parameter.



50 NOISeq.prenorm.createRmd

Value

The ratio of sample sizes.

Examples

set.seed(1289)
## Ballanced tree
ntips <- 2^5
tree <- ape::compute.brlen(ape::stree(ntips, "balanced"))
## Alt cond : nEff greater than 1
id_cond <- rep(rep(0:1, each = 2), ntips / 4)
names(id_cond) <- tree$tip.label
plot(tree); ape::tiplabels(pch = 21, col = id_cond, bg = id_cond)
compcodeR:::nEffRatio(tree, id_cond, "BM", 0)
## Bloc cond : nEff smaller than 1
id_cond <- rep(0:1, each = ntips / 2)
names(id_cond) <- tree$tip.label
plot(tree); ape::tiplabels(pch = 21, col = id_cond, bg = id_cond)
compcodeR:::nEffRatio(tree, id_cond, "BM", 0)

NOISeq.prenorm.createRmd

Generate a .Rmd file containing code to perform differential expression
analysis with NOISeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using NOISeq. The code is written to a .Rmd file. This function is
generally not called by the user, the main interface for performing differential expression analysis
is the runDiffExp function.

Usage

NOISeq.prenorm.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".



phyloCompData 51

Details

For more information about the methods and the interpretation of the parameters, see the NOISeq
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Tarazona S, Furio-Tari P, Ferrer A and Conesa A (2012): NOISeq: Exploratory analysis and differ-
ential expression for RNA-seq data. R package

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A and Conesa A (2011): Differential expression in
RNA-seq: a matter of depth. Genome Res 21(12), 2213-2223

Examples

try(
if (require(NOISeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "NOISeq",
Rmdfunction = "NOISeq.prenorm.createRmd",
output.directory = tmpdir, norm.method = "TMM")

})

phyloCompData Create a phyloCompData object

Description

The phyloCompData class extends the compData class with sequence length and phylogeny related
information.



52 phyloCompData

Usage

phyloCompData(
count.matrix,
sample.annotations,
info.parameters,
variable.annotations = data.frame(),
filtering = "no info",
analysis.date = "",
package.version = "",
method.names = list(),
code = "",
result.table = data.frame(),
tree = list(),
length.matrix = matrix(NA_integer_, 0, 0)

)

Arguments

count.matrix A count matrix, with genes as rows and observations as columns.
sample.annotations

A data frame, containing at least one column named ’condition’, encoding the
grouping of the observations into two groups, and one column named id.species
of factors giving the species for each sample if the tree is specified. The row
names should be the same as the column names of count.matrix. Class data.frame.

info.parameters

A list containing information regarding simulation parameters etc. The only
mandatory entries are dataset and uID, but it may contain entries such as the
ones listed below (see generateSyntheticData for more detailed information
about each of these entries).

• dataset: an informative name or identifier of the data set (e.g., summariz-
ing the simulation settings).

• samples.per.cond

• n.diffexp

• repl.id

• seqdepth

• minfact

• maxfact

• fraction.upregulated

• between.group.diffdisp

• filter.threshold.total

• filter.threshold.mediancpm

• fraction.non.overdispersed

• random.outlier.high.prob

• random.outlier.low.prob

• single.outlier.high.prob



phyloCompData 53

• single.outlier.low.prob

• effect.size

• uID: a unique ID for the data set. In contrast to dataset, the uID is unique
e.g. for each instance of replicated data sets generated with the same simu-
lation settings.

variable.annotations

A data frame with variable annotations (with number of rows equal to the num-
ber of rows in count.matrix, that is, the number of variables in the data set).
Not mandatory, but may contain columns such as the ones listed below. If
present, the row names should be the same as the row names of the count.matrix.

• truedispersions.S1: the true dispersion for each gene in condition S1.
• truedispersions.S2: the true dispersion for each gene in condition S2.
• truemeans.S1: the true mean value for each gene in condition S1.
• truemeans.S2: the true mean value for each gene in condition S2.
• n.random.outliers.up.S1: the number of ’random’ outliers with extremely

high counts for each gene in condition S1.
• n.random.outliers.up.S2: the number of ’random’ outliers with extremely

high counts for each gene in condition S2.
• n.random.outliers.down.S1: the number of ’random’ outliers with ex-

tremely low counts for each gene in condition S1.
• n.random.outliers.down.S2: the number of ’random’ outliers with ex-

tremely low counts for each gene in condition S2.
• n.single.outliers.up.S1: the number of ’single’ outliers with extremely

high counts for each gene in condition S1.
• n.single.outliers.up.S2: the number of ’single’ outliers with extremely

high counts for each gene in condition S2.
• n.single.outliers.down.S1: the number of ’single’ outliers with ex-

tremely low counts for each gene in condition S1.
• n.single.outliers.down.S2: the number of ’single’ outliers with ex-

tremely low counts for each gene in condition S2.
• M.value: the M-value (observed log2 fold change between condition S1

and condition S2) for each gene.
• A.value: the A-value (observed average expression level across condition

S1 and condition S2) for each gene.
• truelog2foldchanges: the true (simulated) log2 fold changes between

condition S1 and condition S2.
• upregulation: a binary vector indicating which genes are simulated to be

upregulated in condition S2 compared to condition S1.
• downregulation: a binary vector indicating which genes are simulated to

be downregulated in condition S2 compared to condition S1.
• differential.expression: a binary vector indicating which genes are

simulated to be differentially expressed in condition S2 compared to condi-
tion S1.

filtering A character string containing information about the filtering that has been ap-
plied to the data set.



54 phyloCompData

analysis.date If a differential expression analysis has been performed, a character string de-
tailing when it was performed.

package.version

If a differential expression analysis has been performed, a character string giving
the version of the differential expression packages that were applied.

method.names If a differential expression analysis has been performed, a list with entries full.name
and short.name, giving the full name of the differential expression method
(may including version number and parameter settings) and a short name or
abbreviation.

code If a differential expression analysis has been performed, a character string con-
taining the code that was run to perform the analysis. The code should be in R
markdown format, and can be written to an HTML file using the generateCodeHTMLs
function.

result.table If a differential expression analysis has been performed, a data frame containing
the results of the analysis. The number of rows should be equal to the number of
rows in count.matrix and if present, the row names should be identical. The
only mandatory column is score, which gives a score for each gene, where a
higher score suggests a "more highly differentially expressed" gene. Different
comparison functions use different columns of this table, if available. The list
below gives the columns that are used by the interfaced methods.

• pvalue nominal p-values
• adjpvalue p-values adjusted for multiple comparisons
• logFC estimated log-fold changes between the two conditions
• score the score that will be used to rank the genes in order of significance.

Note that high scores always signify differential expression, that is, a strong
association with the predictor. For example, for methods returning a nomi-
nal p-value the score can be defined as 1 - pvalue.

• FDR false discovery rate estimates
• posterior.DE posterior probabilities of differential expression
• prob.DE conditional probabilities of differential expression
• lfdr local false discovery rates
• statistic test statistics from the differential expression analysis
• dispersion.S1 dispersion estimates in condition S1
• dispersion.S2 dispersion estimates in condition S2

tree The phylogenetic tree describing the relationships between samples. The taxa
names of the tree should be the same as the column names of the count.matrix.

length.matrix The length matrix, with genes as rows and samples as columns. The column
names of the length.matrix should be the same as the column names of the
count.matrix.

Value

A phyloCompData object.

Author(s)

Charlotte Soneson, Paul Bastide



phyloCompData-class 55

Examples

tree <- ape::read.tree(
text = "(((A1:0,A2:0,A3:0):1,B1:1):1,((C1:0,C2:0):1.5,(D1:0,D2:0):1.5):0.5);"
)

count.matrix <- round(matrix(1000*runif(8000), 1000))
sample.annotations <- data.frame(condition = c(1, 1, 1, 1, 2, 2, 2, 2),

id.species = c("A", "A", "A", "B", "C", "C", "D", "D"))
info.parameters <- list(dataset = "mydata", uID = "123456")
length.matrix <- round(matrix(1000*runif(8000), 1000))
colnames(count.matrix) <- colnames(length.matrix) <- rownames(sample.annotations) <- tree$tip.label
cpd <- phyloCompData(count.matrix, sample.annotations, info.parameters,

tree = tree, length.matrix = length.matrix)

phyloCompData-class Class phyloCompData

Description

The phyloCompData class extends the compData class with sequence length and phylogeny related
information.

Slots

tree: The phylogenetic tree describing the relationships between samples. The taxa names of the
tree should be the same as the column names of the count.matrix. Class phylo.

length.matrix: The length matrix, with genes as rows and samples as columns. The column
names of the length.matrix should be the same as the column names of the count.matrix.
Class matrix.

sample.annotations: In addition to the columns described in the compData class, if the tree is
specified, it should contain an extra column named id.species of factors giving the species
for each sample. The row names should be the same as the column names of count.matrix.
Class data.frame.

Methods

phylo.tree signature(x="phyloCompData")

phylo.tree<- signature(x="phyloCompData",value="phylo"): Get or set the tree in a phyloCompData
object. value should be a phylo object.

length.matrix signature(x="phyloCompData")

length.matrix<- signature(x="phyloCompData",value="matrix"): Get or set the length ma-
trix in a phyloCompData object. value should be a numeric matrix.

Construction

An object of the class phyloCompData can be constructed using the phyloCompData function.



56 phyloCompDataFromCompData

Author(s)

Charlotte Soneson, Paul Bastide

phyloCompDataFromCompData

Create a phyloCompData object

Description

The phyloCompData class extends the compData class with sequence length and phylogeny related
information.

Usage

phyloCompDataFromCompData(
compDataObject,
tree = list(),
length.matrix = matrix(NA_integer_, 0, 0)

)

Arguments

compDataObject An object of class compData.

tree A phylogenetic tree describing the relationships between samples.

length.matrix A length matrix, with genes as rows and observations as columns.

Value

A phyloCompData object.

Author(s)

Charlotte Soneson, Paul Bastide



phylolm.createRmd 57

phylolm.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with phylolm.

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the phylolm package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

phylolm.createRmd(
data.path,
result.path,
codefile,
norm.method,
model = "BM",
measurement_error = TRUE,
extra.design.covariates = NULL,
length.normalization = "RPKM",
data.transformation = "log2",
...

)

Arguments

data.path The path to a .rds file containing the phyloCompData object that will be used for
the differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The normal-
ization factors are calculated using the calcNormFactors of the edgeR package.
Possible values are "TMM", "RLE", "upperquartile" and "none"

model The model for trait evolution on the tree. Default to "BM".
measurement_error

A logical value indicating whether there is measurement error. Default to TRUE.
extra.design.covariates

A vector containing the names of extra control variables to be passed to the de-
sign matrix of phyolm. All the covariates need to be a column of the sample.annotations
data frame from the phyloCompData object, with a matching column name. The
covariates can be a numeric vector, or a factor. Note that "condition" factor
column is always included, and should not be added here. See Details.



58 phylolm.createRmd

length.normalization

one of "none" (no correction), "TPM" or "RPKM" (default). See details.
data.transformation

one of "log2", "asin(sqrt)" or "sqrt". Data transformation to apply to the normal-
ized data.

... Further arguments to be passed to function phylolm.

Details

For more information about the methods and the interpretation of the parameters, see the phylolm
package and the corresponding publications.

The length.matrix field of the phyloCompData object is used to normalize the counts, using one
of the following formulas: * length.normalization="none" : CPMgi =

Ngi+0.5
NFi×

∑
g Ngi+1×106 *

length.normalization="TPM" : TPMgi =
(Ngi+0.5)/Lgi

NFi×
∑

g Ngi/Lgi+1×106 * length.normalization="RPKM"

: RPKMgi =
(Ngi+0.5)/Lgi

NFi×
∑

g Ngi+1 × 109

where Ngi is the count for gene g and sample i, where Lgi is the length of gene g in sample i, and
NFi is the normalization for sample i, normalized using calcNormFactors of the edgeR package.

The function specified by the data.transformation is then applied to the normalized count ma-
trix.

The "+0.5" and "+1" are taken from Law et al 2014, and dropped from the normalization when the
transformation is something else than log2.

The "×106" and "×109" factors are omitted when the asin(sqrt) transformation is taken, as asin
can only be applied to real numbers smaller than 1.

The design model used in the phylolm uses the "condition" column of the sample.annotations
data frame from the phyloCompData object as well as all the covariates named in extra.design.covariates.
For example, if extra.design.covariates = c("var1", "var2"), then sample.annotations
must have two columns named "var1" and "var2", and the design formula in the phylolm func-
tion will be: ~ condition + var1 + var2.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson, Paul Bastide, Mélina Gallopin

References

Ho, L. S. T. and Ane, C. 2014. "A linear-time algorithm for Gaussian and non-Gaussian trait
evolution models". Systematic Biology 63(3):397-408.

Law, C.W., Chen, Y., Shi, W. et al. (2014) voom: precision weights unlock linear model analysis
tools for RNA-seq read counts. Genome Biol 15, R29.



phylolm_analysis 59

Musser, JM, Wagner, GP. (2015): Character trees from transcriptome data: Origin and individuation
of morphological characters and the so-called “species signal”. J. Exp. Zool. (Mol. Dev. Evol.)
324B: 588– 604.

Examples

try(
if (require(ape) && require(phylolm)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
set.seed(20200317)
tree <- rphylo(10, 0.1, 0)
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
tree = tree,
id.species = 1:10,
lengths.relmeans = rpois(1000, 1000),
lengths.dispersions = rgamma(1000, 1, 1),
output.file = file.path(tmpdir, "mydata.rds"))

## Add covariates
## Model fitted is count.matrix ~ condition + test_factor + test_reg
sample.annotations(mydata.obj)$test_factor <- factor(rep(1:2, each = 5))
sample.annotations(mydata.obj)$test_reg <- rnorm(10, 0, 1)
saveRDS(mydata.obj, file.path(tmpdir, "mydata.rds"))
## Diff Exp
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DESeq2",

Rmdfunction = "phylolm.createRmd",
output.directory = tmpdir,
norm.method = "TMM",
extra.design.covariates = c("test_factor", "test_reg"),
length.normalization = "RPKM")

})

phylolm_analysis Perform the phylolm analysis

Description

Perform the phylolm analysis for a given gene.

Usage

phylolm_analysis(
dat,
design_data,
design_formula,
tree,
model,
measurement_error,
...

)



60 runComparison

Arguments

dat the data associated with a gene

design_data design matrix

design_formula design formula

tree phylogenetic tree

model the model to be used in phylolm
measurement_error

boolean

Value

A list, with:

pvalue the p value of the differential expression.

logFC the log fold change of the differential expression.

score 1 - pvalue.

runComparison Run the performance comparison between differential expression
methods.

Description

The main function for performing comparisons among differential expression methods and gen-
erating a report in HTML format. It is assumed that all differential expression results have been
generated in advance (using e.g. the function runDiffExp) and that the result compData object for
each data set and each differential expression method is saved separately in files with the extension
.rds. Note that the function can also be called via the runComparisonGUI function, which lets the
user set parameters and select input files using a graphical user interface.

Usage

runComparison(
file.table,
parameters,
output.directory,
check.table = TRUE,
out.width = NULL,
save.result.table = FALSE,
knit.results = TRUE

)



runComparison 61

Arguments

file.table A data frame with at least a column input.files, potentially also columns
named datasets, nbr.samples, repl and de.methods.

parameters A list containing parameters for the comparison study. The following entries are
supported, and used by different comparison methods:

• incl.nbr.samples An array with sample sizes (number of samples per
condition) to consider in the comparison. If set to NULL, all sample sizes
will be included.

• incl.dataset A dataset name (corresponding to the dataset slot of the
results or data objects), indicating the dataset that will be used for the com-
parison. Only one dataset can be chosen.

• incl.replicates An array with replicate numbers to consider in the com-
parison. If set to NULL, all replicates will be included.

• incl.de.methods An array with differential expression methods to be com-
pared. If set to NULL, all differential expression methods will be included.

• fdr.threshold The adjusted p-value threshold for FDR calculations. De-
fault 0.05.

• tpr.threshold The adjusted p-value threshold for TPR calculations. De-
fault 0.05.

• mcc.threshold The adjusted p-value threshold for MCC calculations. De-
fault 0.05.

• typeI.threshold The nominal p-value threshold for type I error calcula-
tions. Default 0.05.

• fdc.maxvar The maximal number of variables to include in false discovery
curve plots. Default 1500.

• overlap.threshold The adjusted p-value for overlap analysis. Default
0.05.

• fracsign.threshold The adjusted p-value for calculation of the fraction/number
of genes called significant. Default 0.05.

• nbrtpfp.threshold The adjusted p-value for calculation of the number of
TP, FP, TN, FN genes. Default 0.05.

• ma.threshold The adjusted p-value threshold for coloring genes in MA
plots. Default 0.05.

• signal.measure Either 'mean' or 'snr', determining how to define the
signal strength for a gene which is expressed in only one condition.

• upper.limits,lower.limits Lists that can be used to manually set the
upper and lower plot limits for boxplots of fdr, tpr, auc, mcc, fracsign,
nbrtpfp and typeIerror.

• comparisons Array containing the comparison methods to be applied. The
entries must be chosen among the following abbreviations:

– "auc" - Compute the area under the ROC curve
– "mcc" - Compute Matthew’s correlation coefficient
– "tpr" - Compute the true positive rate at a given adjusted p-value

threshold (tpr.threshold)



62 runComparison

– "fdr" - Compute the false discovery rate at a given adjusted p-value
threshold (fdr.threshold)

– "fdrvsexpr" - Compute the false discovery rate as a function of the
expression level.

– "typeIerror" - Compute the type I error rate at a given nominal p-
value threshold (typeI.threshold)

– "fracsign" - Compute the fraction of genes called significant at a
given adjusted p-value threshold (fracsign.threshold).

– "nbrsign" - Compute the number of genes called significant at a given
adjusted p-value threshold (fracsign.threshold).

– "nbrtpfp" - Compute the number of true positives, false positives,
true negatives and false negatives at a given adjusted p-value thresh-
old (nbrtpfp.threshold).

– "maplot" - Construct MA plots, depicting the average expression level
and the log fold change for the genes and indicating the genes called
differential expressed at a given adjusted p-value threshold (ma.threshold).

– "fdcurvesall" - Construct false discovery curves for each of the in-
cluded replicates.

– "fdcurvesone" - Construct false discovery curves for a single replicate
only

– "rocall" - Construct ROC curves for each of the included replicates
– "rocone" - Construct ROC curves for a single replicate only
– "overlap" - Compute the overlap between collections of genes called

differentially expressed by the different methods at a given adjusted
p-value threshold (overlap.threshold)

– "sorensen" - Compute the Sorensen index, quantifying the overlap be-
tween collections of genes called differentially expressed by the differ-
ent methods, at a given adjusted p-value threshold (overlap.threshold)

– "correlation" - Compute the Spearman correlation between gene
scores assigned by different methods

– "scorevsoutlier" - Visualize the distribution of the gene scores as a
function of the number of outlier counts introduced for the genes

– "scorevsexpr" - Visualize the gene scores as a function of the average
expression level of the genes

– "scorevssignal" - Visualize the gene score as a function of the ’signal
strength’ (see the signal.measure parameter above) for genes that are
expressed in only one condition

output.directory

The directory where the results should be written. The subdirectory structure
will be created automatically. If the directory already exists, it will be overwrit-
ten.

check.table Logical, should the input table be checked for consistency. Default TRUE.

out.width The width of the figures in the final report. Will be passed on to knitr when the
HTML is generated.



runComparison 63

save.result.table

Logical, should the intermediate result table be saved for future use ? Default to
FALSE.

knit.results Logical, should the Rmd be generated and knitted ? Default to TRUE. If FALSE,
no comparison report is generated, and only the intermediate result table is saved
(if save.result.table=TRUE).

Details

The input to runComparison is a data frame with at least a column named input.files, containing
paths to .rds files containing result objects (of the class compData), such as those generated by
runDiffExp. Other columns that can be included in the data frame are datasets, nbr.samples,
repl and de.methods. They have to match the information contained in the corresponding result
objects. If these columns are not present, they will be added to the data frame automatically.

Value

If knit.results=TRUE, the function will create a comparison report, named compcodeR_report<timestamp>.html,
in the output.directory. It will also create subfolders named compcodeR_code and compcodeR_figure,
where the code used to perform the differential expression analysis and the figures contained in the
report, respectively, will be stored. Note that if these directories already exists, they will be over-
written. If save.result.table=TRUE, the function will also create a comparison report, named
compcodeR_result_table_<timestamp>.rds in the output.directory, containing the result ta-
ble.

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = tmpdir,
norm.method = "TMM")

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.exact",
Rmdfunction = "edgeR.exact.createRmd", output.directory = tmpdir,
norm.method = "TMM",
trend.method = "movingave", disp.type = "tagwise")

file.table <- data.frame(input.files = file.path(tmpdir,
c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
stringsAsFactors = FALSE)

parameters <- list(incl.nbr.samples = 5, incl.replicates = 1, incl.dataset = "mydata",
incl.de.methods = NULL,
fdr.threshold = 0.05, tpr.threshold = 0.05, typeI.threshold = 0.05,
ma.threshold = 0.05, fdc.maxvar = 1500, overlap.threshold = 0.05,
fracsign.threshold = 0.05, mcc.threshold = 0.05,
nbrtpfp.threshold = 0.05,



64 runComparisonGUI

comparisons = c("auc", "fdr", "tpr", "ma", "correlation"))
if (interactive()) {
runComparison(file.table = file.table, parameters = parameters, output.directory = tmpdir)

}

runComparisonGUI A GUI to the main function for running the performance comparison
between differential expression methods.

Description

This function provides a GUI to the main function for performing comparisons among differential
expression methods and generating a report in HTML format (runComparison). It is assumed
that all differential expression results have been generated in advance (using e.g. the function
runDiffExp) and that the result compData object for each data set and each differential expres-
sion method is saved separately in files with the extension .rds. The function opens a graphical
user interface where the user can set parameter values and choose the files to be used as the basis
of the comparison. It is, however, possible to circumvent the GUI and call the comparison function
runComparison directly.

Usage

runComparisonGUI(
input.directories,
output.directory,
recursive,
out.width = NULL,
upper.limits = NULL,
lower.limits = NULL

)

Arguments

input.directories

A list of directories containing the result files (*.rds). All results in the provided
directories will be available for inclusion in the comparison, and the selection is
performed through a graphical user interface. All result objects saved in the files
should be of the compData class, although list objects created by earlier versions
of compcodeR are supported.

output.directory

The directory where the results should be written. The subdirectory structure
will be created automatically. If the directory already exists, it will be overwrit-
ten.

recursive A logical parameter indicating whether or not the search should be extended
recursively to subfolders of the input.directories.



runComparisonShiny 65

out.width The width of the figures in the final report. Will be passed on to knitr when the
HTML is generated. Can be for example "800px" (see knitr documentation for
more information)

upper.limits, lower.limits
Lists that can be used to manually set upper and lower limits for boxplots of fdr,
tpr, auc, mcc, fracsign, nbrtpfp, nbrsign and typeIerror.

Details

This function requires that the rpanel package is installed. If this package can not be installed,
please use the runComparison function directly.

Value

The function will create a comparison report, named compcodeR_report<timestamp>.html, in the
output.directory. It will also create subfolders named compcodeR_code and compcodeR_figure,
where the code used to perform the differential expression analysis and the figures contained in the
report, respectively, will be saved. Note that if these directories already exist they will be overwrit-
ten.

Author(s)

Charlotte Soneson

Examples

if (interactive()) {
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 12500,

samples.per.cond = 5, n.diffexp = 1250,
output.file = "mydata.rds")

runDiffExp(data.file = "mydata.rds", result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = ".",
norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "ttest",
Rmdfunction = "ttest.createRmd", output.directory = ".",
norm.method = "TMM")

runComparisonGUI(input.directories = ".", output.directory = ".", recursive = FALSE)
}

runComparisonShiny A shiny-based GUI to the main function for running the performance
comparison between differential expression methods.



66 runComparisonShiny

Description

This function provides a GUI to the main function for performing comparisons among differential
expression methods and generating a report in HTML format (runComparison). It is assumed
that all differential expression results have been generated in advance (using e.g. the function
runDiffExp) and that the result compData object for each data set and each differential expres-
sion method is saved separately in files with the extension .rds. The function opens a graphical
user interface where the user can set parameter values and choose the files to be used as the basis
of the comparison. It is, however, possible to circumvent the GUI and call the comparison function
runComparison directly.

Usage

runComparisonShiny(
input.directories,
output.directory,
recursive,
out.width = NULL,
upper.limits = NULL,
lower.limits = NULL

)

Arguments

input.directories

A list of directories containing the result files (*.rds). All results in the provided
directories will be available for inclusion in the comparison, and the selection is
performed through a graphical user interface. All result objects saved in the files
should be of the compData class, although list objects created by earlier versions
of compcodeR are supported.

output.directory

The directory where the results should be written. The subdirectory structure
will be created automatically. If the directory already exists, it will be overwrit-
ten.

recursive A logical parameter indicating whether or not the search should be extended
recursively to subfolders of the input.directories.

out.width The width of the figures in the final report. Will be passed on to knitr when the
HTML is generated. Can be for example "800px" (see knitr documentation for
more information).

upper.limits, lower.limits
Lists that can be used to manually set upper and lower limits for boxplots of fdr,
tpr, auc, mcc, fracsign, nbrtpfp, nbrsign and typeIerror.

Value

The function will create a comparison report, named compcodeR_report<timestamp>.html, in the
output.directory. It will also create subfolders named compcodeR_code and compcodeR_figure,
where the code used to perform the differential expression analysis and the figures contained in the



runDiffExp 67

report, respectively, will be saved. Note that if these directories already exist they will be overwrit-
ten.

Author(s)

Charlotte Soneson

Examples

if (interactive()) {
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 12500,

samples.per.cond = 5, n.diffexp = 1250,
output.file = "mydata.rds")

runDiffExp(data.file = "mydata.rds", result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = ".",
norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "ttest",
Rmdfunction = "ttest.createRmd", output.directory = ".",
norm.method = "TMM")

runComparisonShiny(input.directories = ".", output.directory = ".", recursive = FALSE)
}

runDiffExp The main function to run differential expression analysis

Description

The main function for running differential expression analysis (comparing two conditions), using
one of the methods interfaced through compcodeR or a user-defined method. Note that the interface
functions are provided for convenience and as templates for other, user-defined workflows, and
there is no guarantee that the included differential expression code is kept up-to-date with the latest
recommendations and best practices for running each of the interfaced methods, or that the chosen
settings are suitable in all situations. The user should make sure that the analysis is performed in the
way they intend, and check the code that was run, using e.g. the generateCodeHTMLs() function.

Usage

runDiffExp(
data.file,
result.extent,
Rmdfunction,
output.directory = ".",
norm.path = TRUE,
...

)



68 runDiffExp

Arguments

data.file The path to a .rds file containing the data on which the differential expres-
sion analysis will be performed, for example a compData object returned from
generateSyntheticData.

result.extent The extension that will be added to the data file name in order to construct the
result file name. This can be for example the differential expression method
together with a version number.

Rmdfunction A function that creates an Rmd file containing the code that should be run to
perform the differential expression analysis. All functions available through
compcodeR can be listed using the listcreateRmd function.

output.directory

The directory in which the result object will be saved.

norm.path Logical, whether to include the full (absolute) path to the output object in the
saved code.

... Additional arguments that will be passed to the Rmdfunction, such as parameter
choices for the differential expression method.

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

listcreateRmd()
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",

Rmdfunction = "voom.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

if (interactive()) {
## The following list covers the currently available
## differential expression methods:
runDiffExp(data.file = "mydata.rds", result.extent = "DESeq2",

Rmdfunction = "DESeq2.createRmd",
output.directory = ".", fit.type = "parametric",
test = "Wald", beta.prior = TRUE,
independent.filtering = TRUE, cooks.cutoff = TRUE,
impute.outliers = TRUE)

runDiffExp(data.file = "mydata.rds", result.extent = "DSS",
Rmdfunction = "DSS.createRmd",
output.directory = ".", norm.method = "quantile",
disp.trend = TRUE)

runDiffExp(data.file = "mydata.rds", result.extent = "EBSeq",
Rmdfunction = "EBSeq.createRmd",
output.directory = ".", norm.method = "median")

runDiffExp(data.file = "mydata.rds", result.extent = "edgeR.exact",



scale_variance_process 69

Rmdfunction = "edgeR.exact.createRmd",
output.directory = ".", norm.method = "TMM",
trend.method = "movingave", disp.type = "tagwise")

runDiffExp(data.file = "mydata.rds", result.extent = "edgeR.GLM",
Rmdfunction = "edgeR.GLM.createRmd",
output.directory = ".", norm.method = "TMM",
disp.type = "tagwise", disp.method = "CoxReid",
trended = TRUE)

runDiffExp(data.file = "mydata.rds", result.extent = "logcpm.limma",
Rmdfunction = "logcpm.limma.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "NBPSeq",
Rmdfunction = "NBPSeq.createRmd",
output.directory = ".", norm.method = "TMM",
disp.method = "NBP")

runDiffExp(data.file = "mydata.rds", result.extent = "NOISeq",
Rmdfunction = "NOISeq.prenorm.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "sqrtcpm.limma",
Rmdfunction = "sqrtcpm.limma.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "TCC",
Rmdfunction = "TCC.createRmd",
output.directory = ".", norm.method = "tmm",
test.method = "edger", iteration = 3,
normFDR = 0.1, floorPDEG = 0.05)

runDiffExp(data.file = "mydata.rds", result.extent = "ttest",
Rmdfunction = "ttest.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "voom.ttest",
Rmdfunction = "voom.ttest.createRmd",
output.directory = ".", norm.method = "TMM")

}

scale_variance_process

Scale the variances

Description

Scale the variances of the process simulation so that they are equal to log_variance_phylo.

Usage

scale_variance_process(
log_variance_phylo,
tree,



70 show,compData-method

model.process,
selection.strength

)

Arguments

tree a dated phylogenetic tree of class phylo with ‘samples.per.cond * 2‘ species.

model.process the process to be used for phylogenetic simulations. One of "BM" or "OU",
default to "BM".

selection.strength

if the process is "OU", the selection strength parameter.

Value

A matrix N * P of factors to multiply the simulated phylogenetic residuals.

show,compData-method Show method for compData object

Description

Show method for compData object.

Usage

## S4 method for signature 'compData'
show(object)

Arguments

object A compData object

Author(s)

Charlotte Soneson

Examples

mydata <- generateSyntheticData(dataset = "mydata", n.vars = 12500,
samples.per.cond = 5, n.diffexp = 1250)

mydata



show,phyloCompData-method 71

show,phyloCompData-method

Show method for phyloCompData object

Description

Show method for phyloCompData object.

Usage

## S4 method for signature 'phyloCompData'
show(object)

Arguments

object A phyloCompData object

Author(s)

Charlotte Soneson, Paul Bastide

Examples

mydata <- generateSyntheticData(dataset = "mydata", n.vars = 1000,
samples.per.cond = 5, n.diffexp = 100,
id.species = factor(1:10),
tree = ape::rphylo(10, 1, 0),
lengths.relmeans = "auto", lengths.dispersions = "auto")

mydata

show_compData Show function for compData object

Description

Show function for compData object.

Usage

show_compData(object)

Arguments

object A compData object



72 simulateData

simulateData Simulate the Data

Description

Use the Poisson or Negative Binomial model to simulate the data.

Usage

simulateData(
n.vars,
S1,
prob.S1,
sum.S1,
truedispersions.S1,
nfact_length.S1,
S2,
prob.S2,
sum.S2,
truedispersions.S2,
nfact_length.S2,
seq.depths,
overdispersed

)

Arguments

n.vars The initial number of genes in the simulated data set. Based on the filtering con-
ditions (filter.threshold.total and filter.threshold.mediancpm), the
number of genes in the final data set may be lower than this number.

S1 Indices in condition 1.

prob.S1 Vector of means for condition 1.

sum.S1 Sum of means for condition 1.
truedispersions.S1

Vector of dispersions for condition 1.
nfact_length.S1

Matrix of length factors for condition 1.

S2 Indices in condition 2.

prob.S2 Vector of means for condition 2.

sum.S2 Sum of means for condition 2.
truedispersions.S2

Vector of dispersions for condition 2.
nfact_length.S2

Matrix of length factors for condition 2.

overdispersed Indices that are overdispersed.



simulateDataPhylo 73

Value

Z a n.var times 2*samples.per.cond matrix with the simulated data.

simulateDataPhylo Simulate the Data using the tree

Description

Use the Phylogenetic Poisson Log Normal model to simulate the data.

Usage

simulateDataPhylo(
count_means,
count_dispersions,
tree,
prop.var.tree,
model.process = "BM",
selection.strength = 0

)

Arguments

tree a dated phylogenetic tree of class phylo with ‘samples.per.cond * 2‘ species.

prop.var.tree the proportion of the common variance explained by the tree for each gene. It
can be a scalar, in which case the same parameter is used for all genes. Other-
wise it needs to be a vector with length n.vars. Default to 1.

model.process the process to be used for phylogenetic simulations. One of "BM" or "OU",
default to "BM".

selection.strength

if the process is "OU", the selection strength parameter.

Value

Z a matrix with the data



74 simulatePhyloPoissonLogNormal

simulatePhyloPoissonLogNormal

Simulate Tree Structured Counts

Description

Simulate a tree structured matrix of counts according to a Poisson-lognormal model, with the log
parameter of the poisson following a Brownian Motion (BM) on the tree with noise.

Usage

simulatePhyloPoissonLogNormal(
tree,
log_means,
log_variance_phylo,
log_variance_sample,
model.process = "BM",
selection.strength = 0

)

Arguments

tree A phylogenetic tree with n tips.

log_means a matrix with the number of genes p rows and the number of species n columns.
Column names should match the tree taxa names.

log_variance_phylo

a vector of length p of phylogenetic variances for the BM in the log space for
each gene.

log_variance_sample

a matrix of size p x n of environmental variances for individual variations in the
log space, for each gene and species. Column names should match the tree taxa
names.

Details

For each gene, the log-lambda parameter evolves like a BM on the tree, with an extra independent
variance noise that can depend on the species. Each gene has its own tree variance for the BM.
Each gene and each species has its own mean. The counts for each gene and each species are then
obtained as a Poisson draw with a different lambda parameter, as generated by the BM.

Value

A list, with:

log_lambda the p x n matrix of log-lambda simulated by the BM on the tree.

counts the p x n matrix of counts with corresponding Poisson draws.



sqrtcpm.limma.createRmd 75

sqrtcpm.limma.createRmd

Generate a .Rmd file containing code to perform differential expres-
sion analysis with limma after square root-transforming the counts
per million (cpm)

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using limma, after preprocessing the counts by computing the
counts per million (cpm) and applying a square-root transformation. The code is written to a .Rmd
file. This function is generally not called by the user, the main interface for performing differential
expression analysis is the runDiffExp function.

Usage

sqrtcpm.limma.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".

Details

For more information about the methods and the interpretation of the parameters, see the edgeR and
limma packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson



76 summarizeSyntheticDataSet

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "sqrtcpm.limma",
Rmdfunction = "sqrtcpm.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

summarizeSyntheticDataSet

Summarize a synthetic data set by some diagnostic plots

Description

Summarize a synthetic data set (generated by generateSyntheticData) by some diagnostic plots.

Usage

summarizeSyntheticDataSet(data.set, output.filename)

Arguments

data.set A data set, either a compData object or a path to an .rds file where such an
object is stored.

output.filename

The filename of the resulting html report (including the path).

Author(s)

Charlotte Soneson



TCC.createRmd 77

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

if (interactive()) {
summarizeSyntheticDataSet(data.set = file.path(tmpdir, "mydata.rds"),

output.filename = file.path(tmpdir, "mydata_check.html"))
}

TCC.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with TCC

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the TCC package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

TCC.createRmd(
data.path,
result.path,
codefile,
norm.method,
test.method,
iteration = 3,
normFDR = 0.1,
floorPDEG = 0.05

)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "tmm", and "deseq".

test.method The method used in TCC to find differentially expressed genes. Possible values
are "edger", "deseq" and "bayseq".



78 ttest.createRmd

iteration The number of iterations used to find the normalization factors. Default value is
3.

normFDR The FDR cutoff for calling differentially expressed genes in the computation of
the normalization factors. Default value is 0.1.

floorPDEG The minimum value to be eliminated as potential differentially expressed genes
before performing step 3 in the TCC algorithm. Default value is 0.05.

Details

For more information about the methods and the interpretation of the parameters, see the TCC pack-
age and the corresponding publications.

Author(s)

Charlotte Soneson

References

Kadota K, Nishiyama T, and Shimizu K. A normalization strategy for comparing tag count data.
Algorithms Mol Biol. 7:5, 2012.

Sun J, Nishiyama T, Shimizu K, and Kadota K. TCC: an R package for comparing tag count data
with robust normalization strategies. BMC Bioinformatics 14:219, 2013.

Examples

try(
if (require(TCC)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "TCC",
Rmdfunction = "TCC.createRmd",
output.directory = tmpdir, norm.method = "tmm",
test.method = "edger")

})

ttest.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with a t-test

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using a t-test, applied to the normalized counts. The code is written
to a .Rmd file. This function is generally not called by the user, the main interface for performing
differential expression analysis is the runDiffExp function.



ttest.createRmd 79

Usage

ttest.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none"

Details

For more information about the methods and the interpretation of the parameters, see the edgeR
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Examples

try(
if (require(genefilter)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "ttest",
Rmdfunction = "ttest.createRmd",
output.directory = tmpdir, norm.method = "TMM")

})



80 voom.limma.createRmd

voom.limma.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with voom+limma

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) by applying the voom transformation (from the limma package)
followed by differential expression analysis with limma. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

voom.limma.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.
codefile The path to the file where the code will be written.
norm.method The between-sample normalization method used to compensate for varying li-

brary sizes and composition in the differential expression analysis. The normal-
ization factors are calculated using the calcNormFactors of the edgeR package.
Possible values are "TMM", "RLE", "upperquartile" and "none"

Details

For more information about the methods and the interpretation of the parameters, see the limma
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Law CW, Chen Y, Shi W and Smyth GK (2014): voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biology 15, R29



voom.ttest.createRmd 81

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

voom.ttest.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with voom+t-test

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) by applying the voom transformation (from the limma package)
followed by differential expression analysis with a t-test. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

voom.ttest.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".

Details

For more information about the methods and the interpretation of the parameters, see the limma and
edgeR packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.



82 writeNormalization

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Law CW, Chen Y, Shi W and Smyth GK (2014): voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biology 15, R29

Examples

try(
if (require(genefilter)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.ttest",
Rmdfunction = "voom.ttest.createRmd",
output.directory = tmpdir, norm.method = "TMM")

})

writeNormalization Generate a .Rmd file containing code to normalize data.

Description

Generate a .Rmd file containing code to normalize data.

Usage

writeNormalization(
norm.method,
length.normalization,
data.transformation,
codefile

)

Arguments

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The normal-
ization factors are calculated using the calcNormFactors of the edgeR package.
Possible values are "TMM", "RLE", "upperquartile" and "none"

length.normalization

one of "none" (no correction), "TPM", "RPKM" (default). See details.



writeNormalization 83

data.transformation

one of "log2", "asin(sqrt)" or "sqrt." Data transformation to apply to the normal-
ized data.

codefile

Details

The length.matrix field of the phyloCompData object is used to normalize the counts.

none: No length normalization.

TPM: The raw counts are divided by the length of their associated genes before normalization by
voom.

RPKM: The log2 length is substracted to the log2 CPM computed by voom for each gene and sample.



Index

∗ internal
add_replicates, 4
checkParamMatrix, 5
checkParamVector, 5
checkSpecies, 6
computeFactorLengths, 15
extract_results_phylolm, 28
generateLengths, 29
generateLengthsPhylo, 30
get_model_factor, 39
get_poisson_log_normal_parameters,

39
getNegativeBinomialDispersion, 35
getNegativeBinomialMean, 36
getNegativeBinomialParameters, 37
getTree, 38
NB_to_PLN, 48
nEffNaive, 49
nEffRatio, 49
phyloCompDataFromCompData, 56
phylolm_analysis, 59
scale_variance_process, 69
show_compData, 71
simulateData, 72
simulateDataPhylo, 73
simulatePhyloPoissonLogNormal, 74
writeNormalization, 82

∗ package
compcodeR-package, 3

add_replicates, 4

check_compData, 4, 7
check_compData_results, 4, 8
check_phyloCompData, 9
checkDataObject, 4
checkParamMatrix, 5
checkParamVector, 5
checkSpecies, 6
checkTableConsistency, 6

compcodeR (compcodeR-package), 3
compcodeR-package, 3
compData, 9, 14, 34, 51, 55, 56, 76
compData-class, 13
computeFactorLengths, 15
convertcompDataToList, 15
convertListTocompData, 16
convertListTophyloCompData, 16
convertphyloCompDataToList, 17

DESeq2.createRmd, 18
DESeq2.length.createRmd, 20
DESeqDataSetFromMatrix, 21
DSS.createRmd, 22
duplicateCorrelation, 41

EBSeq.createRmd, 23
edgeR.exact.createRmd, 25
edgeR.GLM.createRmd, 26
estimateSizeFactors, 21
extract_results_phylolm, 28

generateCodeHTMLs, 12, 28, 54
generateLengths, 29
generateLengthsPhylo, 30
generateSyntheticData, 30, 68, 76
get_model_factor, 39
get_poisson_log_normal_parameters, 39
getNegativeBinomialDispersion, 35
getNegativeBinomialMean, 36
getNegativeBinomialParameters, 37
getTree, 38

lengthNorm.limma.createRmd, 40, 44
lengthNorm.sva.limma.createRmd, 42
listcreateRmd, 45, 68
lmFit, 41
logcpm.limma.createRmd, 45

NB_to_PLN, 48
NBPSeq.createRmd, 47

84



INDEX 85

nEffNaive, 49
nEffRatio, 49
NOISeq.prenorm.createRmd, 50
normalizationFactors, 21
num.sv, 43

phylo, 33, 39, 70, 73
phyloCompData, 21, 41, 43, 51, 51, 55, 57, 58
phyloCompData-class, 55
phyloCompDataFromCompData, 56
phylolm, 57, 58
phylolm.createRmd, 57
phylolm_analysis, 59

rTrait, 34
runComparison, 6, 60, 63–66
runComparisonGUI, 60, 64
runComparisonShiny, 65
runDiffExp, 18, 20, 22, 23, 25, 26, 28, 40, 43,

45, 47, 50, 57, 60, 63, 64, 66, 67, 75,
77, 78, 80, 81

scale_variance_process, 69
show,compData-method, 70
show,phyloCompData-method, 71
show_compData, 71
simulateData, 72
simulateDataPhylo, 73
simulatePhyloPoissonLogNormal, 74
sqrtcpm.limma.createRmd, 75
summarizeSyntheticDataSet, 76
sva, 43

TCC.createRmd, 77
ttest.createRmd, 78

voom.limma.createRmd, 80
voom.ttest.createRmd, 81

writeNormalization, 82


	compcodeR-package
	add_replicates
	checkDataObject
	checkParamMatrix
	checkParamVector
	checkSpecies
	checkTableConsistency
	check_compData
	check_compData_results
	check_phyloCompData
	compData
	compData-class
	computeFactorLengths
	convertcompDataToList
	convertListTocompData
	convertListTophyloCompData
	convertphyloCompDataToList
	DESeq2.createRmd
	DESeq2.length.createRmd
	DSS.createRmd
	EBSeq.createRmd
	edgeR.exact.createRmd
	edgeR.GLM.createRmd
	extract_results_phylolm
	generateCodeHTMLs
	generateLengths
	generateLengthsPhylo
	generateSyntheticData
	getNegativeBinomialDispersion
	getNegativeBinomialMean
	getNegativeBinomialParameters
	getTree
	get_model_factor
	get_poisson_log_normal_parameters
	lengthNorm.limma.createRmd
	lengthNorm.sva.limma.createRmd
	listcreateRmd
	logcpm.limma.createRmd
	NBPSeq.createRmd
	NB_to_PLN
	nEffNaive
	nEffRatio
	NOISeq.prenorm.createRmd
	phyloCompData
	phyloCompData-class
	phyloCompDataFromCompData
	phylolm.createRmd
	phylolm_analysis
	runComparison
	runComparisonGUI
	runComparisonShiny
	runDiffExp
	scale_variance_process
	show,compData-method
	show,phyloCompData-method
	show_compData
	simulateData
	simulateDataPhylo
	simulatePhyloPoissonLogNormal
	sqrtcpm.limma.createRmd
	summarizeSyntheticDataSet
	TCC.createRmd
	ttest.createRmd
	voom.limma.createRmd
	voom.ttest.createRmd
	writeNormalization
	Index

