Package ‘compEpiTools’

February 1, 2026

Type Package

Title Tools for computational epigenomics
Version 1.45.0
Date 2025-07-22

Description Tools for computational epigenomics developed for the analysis, integration and simulta-
neous visualization of various (epi)genomics data types across multiple genomic regions in mul-
tiple samples.

License GPL

Imports AnnotationDbi, BiocGenerics, Biostrings, Rsamtools, parallel,
grDevices, gplots, IRanges, GenomicFeatures, X Vector,
methylPipe, GO.db, S4Vectors, Seqinfo

Depends R (>= 3.1.1), methods, topGO, GenomicRanges

Suggests BSgenome.Mmusculus.UCSC.mm9,
TxDb.Mmusculus.UCSC.mm9.knownGene, org.Mm.eg.db, knitr,
rtracklayer

VignetteBuilder knitr

biocViews GeneExpression, Sequencing, Visualization, GenomeAnnotation,
Coverage

git_url https://git.bioconductor.org/packages/compEpiTools
git_branch devel

git_last_commit 949¢b04

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Mattia Pelizzola [aut],
Kamal Kishore [aut],
Mattia Furlan [ctb, cre]

Maintainer Mattia Furlan <mattia.furlan@iit.it>

2 compEpiTools-package

Contents
compEpiTools-package 2
countOverlapsInBins-methods 0oL 4
distanceFromTSS-methods L 5
enhancers-methods 6
findLncRNA e 7
getPromoterClass L e 9
GR2fasta-methods 10
GRanges2ucsc-methods 10
GRangesInPromoters-methods Lo o 11
GRannotate-methods L 11
GRannotateSimple-methods 13
GRbaseCoverage-methods 14
GRcoverage-methods L 15
GRcoverageSummit-methods oL 16
GRenrichment-methods 16
GRmidpoint-methods e 17
GRsetwidth-methods L 18
heatmapData 18
heatmapPlot 20
makeGtfFromDb-methods oo 22
matchEnhancers-methods oL 23
overlapOfGRanges-methods 24
palette2d 25
plotStallinglndex 26
simplifyGOterms 27
stallingIndex 28
tOpGOTIES o e e e e e e e 30
TS e e 31
ucsc2GRanges L. 32
unionMaxScore-methods 33

Index 34

compEpiTools-package Tools for computational epigenomics
Description

Tools for computational epigenomics

compEpiTools-package 3

Details

Package: = compEpiTools

Type: Package
Version: 0.1
Date: 2014-04-07

License: = GPL
Depends: methods

The package offers the following functionalities, divided by topic

Counting reads in GRanges:

GRbaseCoverage: based on a GRanges and a BAM file, returns a list of base coverage vectors
for each range

GRcoverage: based on a GRanges and a BAM file, returns the total coverage for each range
GRcoveragelnbins: same as GRcoverage but dividing each range in equally-sized bins

GRcoverageSummit: based on a GRanges and a BAM file, returns a GRanges with the posi-
tions of maximum coverage within each range

GRenrichment: determines the enrichment over a set of genomic regions given two BAM files

countOverlapsInBins: given a query and a subject GRanges returns a matrix of counts of
subject in bins of query

stallingIndex: computes the Polll stalling index based on number of ChIP-seq reads in pro-
moter and genebody

Annotation of genomic regions:

TSS: based on a tXDb returns a GRanges with the TSS positions for all transcripts

distanceFromTSS: based on a GRanges, returnes the GRanges annotated with info about the
closer TSS

GRangesInPromoters: based on a GRanges and a TxDb, subsets the GRanges to those regions
overlapping with promoters

GRmidpoint: returns a GRanges containing the mid point of a GRanges

GRannotate: based on a GRanges and a TxDb, returns the GRanges with a series of annota-
tions

GRannotateSimple: a GRanges method to split a GRanges in three GRanges: promoter, intra-
genic and intergenic

makeGtfFromDb: utilities to transform a TranscriptDDb into a GTF file

Functional annotation:

enhancers: a GRanges method to define enhancers based on H3K4mel peaks

matchEnhancers: a GRanges method to match enhancers with putative targets sites (either
TSS or TF-bound TSS)

topGOres: determines GeneOntology enriched terms for a set of gene ids

4 countOverlapsInBins-methods

* simplifyGOterms: simplify a list of GeneOntology terms based on the list of genes assigned
to each GO term

* findLncRNA: identify putative long non coding RNAs (IncRNA) based on ChIP-seq chro-
matin features and RNAseq data

» getPromoterClass: determining the CpG promoter class and the average CpG content
Visualization:
* heatmapData: Based on a list of GRanges, determine various kind of counts before displaying
a heatmap
* palette2d: build a two dimensional color palette
* heatmapPlot: displays the heatmap based on the data from GRheatmapData
* plotStallingIndex: plot the Polll stalling index

Other:
* GR2fasta: A GRanges method to extract and write to the disk a fasta file containing genomic

sequences for the GRanges regions in a genome

* overlapOfGRanges: given a list of GRanges, all pair-wise overlap are evaluated and the per-
centage of overlapping ranges is visualized in a heatmap

* GRsetwidth: set the width of a GRanges based on the mid point of each region

* unionMaxScore: GRanges method to perform union of peaks keeping the pvalue of the most
significant peak

* GRanges2ucsc: a GRanges method to convert ranges information into UCSC format

* ucsc2GRanges: convert UCSC-formatted genomic positions into a GRanges

Author(s)

Computational Epigenomics Unit at the Center for Genomic Sciences of [IT@SEMM, Milan, Italy
http://genomics.iit.it/groups/computational-epigenomics.html <mattia.pelizzola@gmail.com>

countOverlapsInBins-methods
given a query and a subject GRanges returns a matrix of counts of
subject in bins of query

Description

Given a query and a subject GRanges, this function returns a matrix with number of rows equal to
the number of regions in query and number of columns equal to the number of bins. For each bin
of each region, the occurrence (1) or not (0) of subject is returned.

http://genomics.iit.it/groups/computational-epigenomics.html

distanceFromTSS-methods 5

Methods

The countOverlaps method can be used to determine the overlap between a query and a subject
GRanges.

The countOverlapsInBins method add the functionality to partition query in bins.
To be used in this form:
countOverlapsInBins(query, subject, nbins)
where:
query: GRanges

* subject: GRanges

¢ nbins: numeric, the number of bins
It returns a matrix with number of rows equal to the number of regions in query and number
of columns equal to the number of bins.
For each bin of each region 1 is assigned of subject GRanges overlap, 0 if it does not.

Examples

grl <- GRanges(segnames=Rle('chr1',2), ranges=IRanges(start=c(10,100), end=c(50, 150)))
gr2 <- GRanges(seqgnames=Rle('chrl1',2), ranges=IRanges(start=c(2,40), end=c(15, 70)))
countOverlapsInBins(grl, gr2, nbins=4)

distanceFromTSS-methods
Returns the GRanges annotated with info about the closer TSS

Description

For each GRanges region it decorates the GRanges with extra columns containing info about the
closer TSS.

Methods

To be used in this form:
distanceFromTSS(Object, txdb, EG2GS=NULL)
where:
Object: GRanges
e txdb: TxDb
* EG2GS: an object of class OrgDb; like org.Mm.eg.db, org.Hs.eg.db (use the exact name
of object)
The method returns a GRanges with additional columns. If EG2GS is NULL three columns
are appended containing info for the gene with the closer TSS:
nearest_tx_name: the transcript id
* distance_fromTSS: the distance in bp
* nearest_gene_id: gene id

If EG2GS is provided, gene symbols are also included as additional column.

6 enhancers-methods

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(TRUE, rep(FALSE, length(isActiveSeq(txdb))-1))
TSSpos <- TSS(txdb)

gr <- TSSpos[1:5]

start(gr) <- start(gr)-1000

end(gr) <- end(gr)-600

mcols(gr) <- NULL

distanceFromTSS(Object=gr, txdb=txdb, EG2GS=NULL)
restoreSeqlevels(txdb)

enhancers-methods A GRanges method to define enhancers based on H3K4mel peaks

Description

A GRanges method to define enhancers based on H3K4mel peaks and genome annotation

Methods

To be used in this form:
enhancers(gr, txdb, upstream= 2000, downstream= 1000, CGIgr=NULL)
where:
gr: a GRanges, typically of H3K4mel peaks
¢ txdb: an object of class TxDB
* upstream: numeric; the number of bp upstream the TSS
* downstream: numeric; the number of bp downstream the TSS

CGlgr: GRanges; optional GRanges of CpG Islands (CGI)

Enhancers are defined as distal H3K4mel peaks not overlapping with CGI, to avoid unan-
notated transcriptional units. Distal peaks are those peaks not overlapping with promot-
ers. Alternative marks or proteins, such as H3K27ac or mediator, could be used here in
place of H3K4mel. For example, H3K27ac would specifically allow to identify active
enhancers.

L]

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
loading H3K4mel peaks as a GRanges object
built based on the BED file from the GEO GSM1234488 sample
limited to chr19:3200000-4000000
H3K4me1GR <- system.file("extdata”, "H3K4melGR.Rda", package="compEpiTools")
load (H3K4me1GR)
enhancers(H3K4me1GR, txdb)

findLncRNA 7

findLncRNA Identify putative long non coding RNAs (IncRNA)

Description
Identify putative long non coding RNAs (IncRNA) based on ChIP-seq chromatin features and
RNAseq data

Usage

findLncRNA(k4me3gr, k4me3bam, k4melbam, k79bam, k36bam, RNAsegbam,
sizelLNC=10000, extDB= NULL, txdb, org=NULL, Qthr=0.95)

Arguments
k4me3gr GRanges; the set of H3K4me3 peaks from a ChIP-seq experiment
k4me3bam character; a path to BAM file containing H3K4me3 ChIP-seq aligned reads
k4melbam character; a path to BAM file containing H3K4me1 ChIP-seq aligned reads
k79bam either NA or a path to BAM file containing H3K79me?2 ChIP-seq aligned reads
k36bam either NA or a path to BAM file containing H3K36me3 ChIP-seq aligned reads
RNAsegbam either NA or a path to BAM file containing RNA-seq aligned reads
sizelLNC numeric; the size of the putative IncRNA
extDB GRanges; a set IncRNAs to be included in the analysis
txdb an object of class TxDb
org either NULL or an object of class BSgenome
Qthr numeric in [0,1]; the percentile of the signal in random genomic regions to be

considered as minumum cutoff
Details

Putative long non coding RNAs (IncRNAs) are identified based on the associated chromatin features
and, possibly, RNAseq signal. Only putative IncRNAs distal from genebodies are identified. Briefly,
H3K4me3 peaks are used as the main mark indicating transcriptional activity. Only H3K4me3
peaks outside genebodies +/- 10Kb are considered. Only peaks where the signal of H3K4mel is
lower than H3K4me3 are kept, to discard possible enhancer sites. Regions of interest of length
sizeLNC (default 10Kb) are considered from the mid point of remaining H3K4me3 peaks, either in
the forward or reverse direction (ROIs). The rational is that distal H3K4me3 marks could indicate
the TSS of distal IncRNAs.

Optionally, to increase the likelihood of having identified a bona-fide transcriptional unit, down-
stream regions (ROIs on either the forward or reverse strand) are evaluated for the existence of
significant transcriptional signal. This is achieved based on the optional data (optional tracks)
to be provided as BAM files: ChIP-seq for H3K79me2 or H3K36me3, or RNA-seq. Density of
H3K79me2, H3K36me3 and RNAseq reads in the remaining H3K4me3 regions and in 100K ran-
dom regions of 10Kb each is determined (non overlapping with ROIs), normalized by the respective

findLncRNA

library size. ROIs where the signal of any of these is higher than the Qthr percentile of the random
regions (profiled for the same mark) are considered as putative IncRNAs.

An optional GRanges containing regions to be considered in any case (for example based on lists
of a priori known IncRNAs) can be provided as extDB. These regions will be evaluated as they are,
and subject to the same filtering procedure based on H3K79me2, H3K36me3 and RNAseq data, if
provided.

Passing at least one of H3K79me2, H3K36me3 and RNAseq while setting Qthr to O correspond to
profile the ROIs (and the extDB regions if provided) for those optional tracks and avoid filtering
based on the signal of random regions. All bam files have to be associated to the corresponding
index .bai files. Please refer to the documentation of samtools on how to create them.

Value

Either NULL of a data.frame where putative IncRNAs (UCSC-format coordinates are reported as
row names) are reported on the rows and the columns indicate the library-size normalized reads
density of the following marks: H3K4me3, H3K4mel, H3K79me2, H3K36me3 and RNAseq reads.
Reads density is reported for both up- and down-stream regions of width sizeLNC, see details, while
for extDB regions the reads density is reported only for the regions as they are defined.

References

http://genomics.iit.it/groups/computational-epigenomics.html

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
loading H3K4me3 peaks as a GRanges object
built based on the BED file from the GEO GSM1234483 sample
limited to chr19:3200000-4000000
H3K4me3GR <- system.file("extdata”, "H3K4me3GR.Rda", package="compEpiTools")
load(H3K4me3GR)
pointing to Pol2 BAM file (it could be used as a replacement of the K79bam or K36bam ..)
BAM file from the GEO GSM1234478 sample, limited to chri19:3200000-4000000
Pol2bam <- system.file("extdata”, "Pol2.bam"”, package="compEpiTools")
pointing to H3K4me3 BAM file
BAM file from the GEO GSM1234483 sample, limited to chri19:3200000-4000000
H3K4me3bam <- system.file("extdata”, "H3K4me3.bam"”, package="compEpiTools")
pointing to H3K4mel BAM file
BAM file from the GEO GSM1234488 sample, limited to chri19:3200000-4000000
H3K4melbam <- system.file("extdata”, "H3K4mel.bam"”, package="compEpiTools")
res <- findLncRNA(k4me3gr=H3K4me3GR, k4me3bam=H3K4me3bam, k4melbam=H3K4melbam,
k79bam=Pol2bam, k36bam=NA, RNAsegbam=NA,
sizelLNC=10000, txdb=txdb, org=NULL, Qthr=0)

getPromoterClass 9

getPromoterClass Determining the CpG promoter class and the average CpG content

Description

Determining the CpG promoter class (Low, Intermediate or High CpG Content: lowCG, intCG or
highCG, respectively) and the average CpG content for each entry of a transcriptDB.

Methods

To be used in this form:
getPromoterClass(txdb, Nproc=1, org, upstream=1000, downstream=0)
where:
txdb:An object of class TxDb
* Nproc:numeric; the number of processors to be used; one chr is run for each processor
e org:an object of class BSgenome

* upstream:numeric; number of bp upstream transcription start sites defining upstream limit
of promoters

* downstream:numeric; number of bp downstream transcription start sites defining down-
stream limit of promoters

According to Weber M et al, Nature Genet 2007: the CpG content is determined as (W*CpG)/(C*QG),
where W is the window size and CpG, C and G are the number of CpG, C and G occurrences,
respectively. Here W is set to 500bp. The CplusG content is (C*G)/W. The promoter CpG

class is determined sliding a 500bp window in 1Kb upstream regions, with step of 5 bp. If the
maximum CpG content for a given promoter is < 0.48, the promoter is assigned a lowCG. If

the maximum CpG content is > 0.75 and CplusG>0.55, the promoter is assigned a highCG.

The remaining promoters are assigned a intCG. The average CpG ratio is the average of the

CpG ratios for all the windows.

A GRanges object decorated with the promoterClass and promoterCpG data is returned.

Examples

require(BSgenome.Mmusculus.UCSC.mm9)
require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(rep(FALSE,20), TRUE, rep(FALSE, 14))
allpromoter <- getPromoterClass(txdb, Nproc=1, org=Mmusculus)
restoreSeqglevels(txdb)

10 GRanges2ucsc-methods

GR2fasta-methods A GRanges method to extract and write to the disk a fasta file contain-
ing genomic sequences for the GRanges regions in a genome

Description

Given a GRanges and a reference genome returns the sequences for all the ranges as in fasta format.

Methods

To be used in this form:
GR2fasta(GR, org, fastaFile=NULL)
where:
GR: GRanges
* org: an object of class BSgenome
* fastaFile: character or NULL; an optional file name for the file to be written on disk
For each range in the gr GRanges , the unmasked reference sequenced is retrieved. All the

sequences are returned in fasta format, named by the genomic ranges in UCSC format, and
optionally written on disk.

Examples

require(BSgenome.Mmusculus.UCSC.mm9)

gr <- GRanges(Rle(c('chr1','chr2")),
ranges=IRanges(start=c(1e7, 2e7), end=c(1e7+19, 2e7+19)))
show(GR2fasta(GR=gr, org=Mmusculus, fastaFile=NULL))

GRanges2ucsc-methods A GRanges method to convert ranges information into UCSC format

Description

Chr assignments, start and end positions are converted into UCSC format, in the form chr1:100-500

Methods

To be used in this form:
GRanges2ucsc(Object)
where Object is a GRanges

Examples

gr <- GRanges(Rle(c('chr1','chr2')),
ranges=IRanges(start=c(1e7, 2e7), end=c(1e7+19, 2e7+19)))
GRanges2ucsc(gr)

GRangesInPromoters-methods 11

GRangesInPromoters-methods
Based on a GRanges and a TxDb, subsets the GRanges to those re-
gions overalpping with promoters

Description

Subset a GRanges returning only those ranges which are overlapping (at least 1bp) with promoters

Methods
This method subsets a GRanges returning only those ranges which are overlapping, or not,
with promoters defined based on a TxDb, upstream and downstream distance from TSS.
To be used in this form:
GRangesInPromoters(Object, txdb, upstream=2000, downstream=1000, invert=FALSE)
where:
Object: GRanges

¢ txdb: TxDb

* upstream: numeric

* downstream: numeric

* invert: logical; see below

Promoters are defined based on upstream and downstream distances from Transcription Start
Sites (TSS). If invert if FALSE, the subset of Object overlapping with promoter regions is
returned, if any, otherwise NULL is returned. If invert if TRUE, the subset of Object which is
not overlapping with promoter regions is returned, if any, otherwise NULL is returned.

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb<- TxDb.Mmusculus.UCSC.mm9.knownGene

TSSpos <- TSS(txdb)

gr <- TSSpos[1:5]

start(gr) <- start(gr) - 1000

end(gr) <- end(gr) - 600

GRangesInPromoters(Object=gr, txdb=txdb, upstream=2000, downstream=1000)

GRannotate-methods Based on a GRanges and a TxDb, returns the GRanges with a series
of annotations

Description

Based on a GRanges and a TxDb, returns the GRanges with a series of annotations

12

Methods

GRannotate-methods

To be used in this form:
GRannotate(Object, txdb, EG2GS, upstream=2000, downstream=1000, userAnn=NULL)
where:
Object: a GRanges object with ranges of width 1
e txdb: TxDb

* EG2GS: an object of class OrgDb; like org.Mm.eg.db, org.Hs.eg.db (use the exact name
of object)

 upstream: numeric, bp upstream the TSS to define promoters
» downstream: numeric, bp downstream the TSS to define promoters

e userAnn: either NULL or a named GRangesList containing user defined annotations as
GRanges objects

The method returns a GRanges with extra columns containing the following annotations:

nearest_tx_name: transcript id for the gene with the closer TSS

* distance_fromTSS: distance in bp from the closer TSS

* nearest_gene_id: gene id for the gene with the closer TSS

* nearest_gene_symbol: gene symbol for the gene with the closer TSS

* location: ’intergenic’ or a combination of ’promoter’ and ’genebody’

e Jocation_tx_id: transcript id(s) corresponding to the matched location, location is not
’intergenic’

* Jocation_gene_id: gene id(s) corresponding to the matched location, location is not ’in-
tergenic’

* location_gene_symbol: gene symbol(s) corresponding to the matched location, location
is not ’intergenic’

This method only works with GRanges containing ranges of width 1. In case of annotation of
GRanges of different width, such as ChIP-seq peaks, they should be summarized to GRanges
of width 1. This could be easily done using the GRmidpoint method, pointing to the peaks mid
points, or using GRcoverageSummit, pointing to the positions of maximum coverage provided
that the BAM file is available. The obtained annotation only refers to these GRanges of width
1, and should not be referred as the annotation of a wider region. This is necessary to decrease
the complexity of the output. Indeed, even given a simple GRanges of width 1, one could have
multiple associated genomic features associated to each range. For example, a range could be
associated at the same time to a promoter of a transcript and to the intron of another isoform
for the same gene.

Additional columns will be reported in the output GRanges if a userAnn GRangesList is pro-
vided (if userAnn is not NULL). For each of these extra-columns, 1 (or 0) are used to indicate
overlap (or lack of) for each given Object range with at least one range of the correspondent
userAnn GRanges. To this purpose, annotation tracks (tables) that are available in UCSC can
be used as userAnn GRangesList. Please refer to the documentation of ucscTableQuery in
the rtracklayer package to download these tables in R and convert them into a GRangesList
object. See the example for a case in which mm9 CpG Islands are retrieved and provided to
GRannotate to match each genomic region of interest (the mid points of gr) to this annotation
source (CGlgr). Promoter regions are defined based on upstream and downstream bp from
TSS.

GRannotateSimple-methods 13

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(TRUE, rep(FALSE, length(isActiveSeq(txdb))-1))
require(org.Mm.eg.db)

require(rtracklayer)

TSSpos <- TSS(txdb)

gr <- TSSpos[1:5]

start(gr) <- start(gr) - 1000

end(gr) <- end(gr) - 600

mcols(gr) <- NULL

res <- GRannotate(Object=GRmidpoint(gr), txdb=txdb, EG2GS=org.Mm.eg.db,
upstream=2000, downstream=1000)

isActiveSeq(txdb) <- rep(TRUE, length(isActiveSeq(txdb)))

alternatively, CGI can be incoirporated as follow:

retrieving CGI mm9 islands from UCSC annotation tables

session <- browserSession()

genome(session) <- 'mm9’

query <- ucscTableQuery(session, 'cpgIslandExt')

CGIgr <- as(track(query), 'GRanges')

res <- GRannotate(Object=GRmidpoint(gr), txdb=txdb, EG2GS=org.Mm.eg.db,
upstream=2000, downstream=1000, userAnn=GRangesList(CGI=CGIgr))

od o o

GRannotateSimple-methods
a GRanges method to split a GRanges in three GRanges: promoter,
intragenic and intergenic

Description

Given a GRanges and a TxDB object, the GRanges are divided according to their overlap to pro-
moters (defined based on upstream and downstream bp from transcription start sites, TSS) and
genebody (intragenic), while the remaining GRanges are assigned to intergenic

Methods

To be used in this form:
GRannotateSimple(gr, txdb, upstream=2000, downstream=1000)
where:
gr: a GRanges
* txdb: an object of class TxDB
e upstream: numeric; the number of bp upstream the TSS

* downstream: numeric; the number of bp downstream the TSS

14 GRbaseCoverage-methods

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

gr <- GRanges(Rle(c('chr1','chr1")),
ranges=IRanges(start=c(100,200), end=c(150,250)))
GRannotateSimple(gr, txdb)

GRbaseCoverage-methods
Based on a GRanges and a BAM file, returns a list of base coverage
vectors for each range

Description

Based on a GRanges and a BAM file, returns a list of base coverage vectors for each range

Methods

To be used in this form:
GRbaseCoverage(Object, bam, Nnorm=FALSE)
where:
Object: GRanges
e bam: path to BAM file

e Nnorm: logical; whether to apply library size normalization

The method determines for each base in each region of the GRanges the number of reads
in the BAM file. If Nnorm is TRUE the coverage is divided by million of mapped reads
contained in the BAM file. The method returns a list of length equal to the length of the Object
GRanges. Each list item is a vector of lenth equal to the length of the corresponding range
width. The vector reports the (normalized) base coverage. The bam file has to be associated
to the corresponding index .bai file. Please refer to the documentation of samtools on how to
create it.

Examples

bampath <- system.file("extdata”, "ex1.bam”, package="Rsamtools")
gr <- GRanges(segnames=Rle(c('seql’', 'seq2')),
ranges=IRanges(start=c(1000, 100), end=c(2000, 1000)))

res <- GRbaseCoverage(Object=gr, bam=bampath)

str(res)

GRcoverage-methods 15

GRcoverage-methods based on a GRanges and a BAM file, returns the total coverage for
each range, or for each bin of the range.

Description

GRcoverage returns the total coverage for each range in GRanges, while GRcoveragelnbins divides
each range in equally-sized bins and returns the total coverage for each bin.

Methods

To be used in this form:
GRcoverage(Object, bam, Nnorm=TRUE, Snorm=TRUE)
GRcoveragelnbins(Object, bam, Nnorm=TRUE, Snorm=TRUE, Nbins)
where:
Object: GRanges

e bam: character; a path to a BAM file

* Nnorm: logical; whether to perform library size normalization

* Snorm: logical; whether to perform normalization based on the region width in bp

* Nbins: numeric; the number of equally sized bins each range in Object is divide into
For each range in the GRanges (or for each bin within the range), the sum of the base coverage
in the range is determined.
If Nnorm is TRUE, the coverage is divided by the number of aligned reads in the BAM file,
and multiplied by 1e6.
If Snorm is TRUE, the coverage is divided by the region width in bp.
GRcoverage returns an array of region coverages with length equal to the length of the Object
GRanges.
GRcoveragelnbins returns a matrix with nrow equal to the length of the Object GRanges and
ncol equal to Nbins; if Nbins is equal to 1 a matrix of 1 column is returned.
An increasing number of bins, does not correspond to a significant increase in the computation
time (65sec for 43k regions and 10 bins).
GRcoveragelnbins with Nbins equal to 1 returns counts identical to GRcoverage but it is
slightly slower (64sec vs 46sec for 43k regions).
GRcoveragelnbins will return NAs and a warning for the rows corresponding to those ranges
whose width is lower than the number of bins.
The coverage for sequences not available in the BAM file is set to 0.
The BAM file has to be associated to the corresponding index .bai file. Please refer to the
documentation of samtools on how to create it.

Examples

bampath <- system.file("extdata”, "ex1.bam”, package="Rsamtools")

gr <- GRanges(seqnames= Rle(c('seql', 'seq2')),
ranges=IRanges(start=c(1000, 100), end=c(2000, 1000)))
GRcoverage(Object=gr, bam=bampath, Nnorm=TRUE, Snorm=TRUE)
GRcoverageInbins(Object=gr, bam=bampath, Nnorm=TRUE, Snorm=TRUE, Nbins=4)

16 GRenrichment-methods

GRcoverageSummit-methods
Based on a GRanges and a BAM file, returns a GRanges with the po-
sitions of maximum coverage within each range

Description

Based on a GRanges and a BAM file (and optionally a control BAM file), returns a GRanges with
the positions of maximum coverage within each range; it can be used to identify peak summits in
ChlIPseq enriched regions.

Methods

To be used in this form:
GRcoverageSummit(Object, bam, bamControl=NULL)
where:
Object: GRanges

* bam: a BAM file path

* bamControl: a BAM file path
The method returns a GRanges with regions of width 1 pointing to the position of higher
coverage.
If the optional bamControl is provided, typically the ChIP-seq input sample, the bamControl
coverage is subtracted from the bam coverage before identifying the maximum.
If multiple maxima exist in a range, one is returned at random.

The bam file has to be associated to the corresponding index .bai file. Please refer to the
documentation of samtools on how to create it.

Examples

bampath <- system.file("extdata”, "ex1.bam”, package="Rsamtools")

gr <- GRanges(segnames=Rle(c('seql’', 'seq2')),
ranges=IRanges(start=c(1000, 100), end=c(2000, 1000)))

GRcoverageSummit(Object=gr, bam=bampath)

GRenrichment-methods Determines the enrichment over a set of genomic regions given two
BAM files

Description

Given a GRanges, and two BAM files, this method detetermines the coverage of the 1st BAM file
(bam) and of the 2nd BAM file (bamRef), both normalized by millions of reads in the library.
Subsequently, the enrichment is computed as log2(bam - bamRef).

GRmidpoint-methods 17

Methods

To be used in this form:
GRenrichment(Object, bam, bamRef)
where:
Object: a GRanges
* bam: path to a BAM file

e bamRef: path to a BAM file, to be used as reference
This is typically useful when applied to BAM files derived from ChIP-seq experiments,
where bam and bamRef are the result of the alignment of ChIP and input reads, respec-
tively.

An array of length equal to the length of Object is returned, containing the enrichment values.
The enrichment of a given genomic region in Object is set to NA if in either bam or bamRef
there are no reads, while it is -Inf of the same normalized coverage is found for both bam and
bamRef (as in the example).

The bam file has to be associated to the corresponding index .bai file. Please refer to the
documentation of samtools on how to create it.

Examples

bampath <- system.file("extdata”, "ex1.bam”, package="Rsamtools")

gr <- GRanges(seqnames=Rle(c('seql’', 'seq2')),
ranges=IRanges(start=c(1000, 100), end=c(2000, 1000)))

bam and bamRef should not be pointing to the same file in real life ..
GRenrichment(Object=gr, bam=bampath, bamRef=bampath)

GRmidpoint-methods Returns a GRanges containing the mid point of a GRanges

Description

Returns a GRanges containing the mid point of a GRanges

Methods
To be used in this form:
GRmidpoint(Object)
where Object is a GRanges.

A GRanges with width 1 containing the mid points of each range in Object is returned.

Examples

gr <- GRanges(segnames=Rle('chri1’',2),
ranges=IRanges(start=c(10,100), end=c(50, 150)))
GRmidpoint(gr)

18 heatmapData

GRsetwidth-methods Set the width of a GRanges based on the mid point of each region

Description

Given a GRanges, this method sets the width of a GRanges based on the mid point of each region

Methods

To be used in this form:
GRsetwidth(gr, newWidth)
where:
gr: a GRanges
* newWidth: a positive numeric

Examples

gr <- GRanges(Rle(c('chr1','chr1")),
ranges=IRanges(start=c(100,200), end=c(150,250)))
GRsetwidth(gr, 1000)

heatmapData Based on a list of GRanges, determine various kind of counts before
displaying a heatmap

Description

Based on a list of GRanges, determine various kind of counts before displaying a heatmap

Usage

heatmapData(grl, refgr=grl[[1]], useScore=rep(FALSE,
length(grl)), type, Nnorm=TRUE, Snorm=TRUE, txdb=NULL, nbins=5)

Arguments

grl list; a list of GRanges or paths to BAM files

refgr GRanges; the reference set of genomic regions

useScore logical; an optional boolean array of length equal to the length of grl

type character; an array of length equal to the length of grl, with a combination of
’mcols’, ’gr’ or "cov’

Nnorm logical; whether to perform library size normalization, only applied if some of
the element in type are equal to cov’

Snorm logical; whether to perform normalization based on the refgr widths, only ap-
plied if some of the element in type are equal to ’cov’

nbins numeric; the number of bins the ranges in refgr have to be divided into

txdb an object of class TxDb

heatmapData 19

Details

The functions is used to determine various kind of counts for each object in grl in each range of
refgr and is typically used to prepare the input for the heatmapPlot method.

The type of counts is determined through the corresponding type setting. If type is mcols, the counts
are expected to be pre-calculated and available in the mcols of the correponding grl GRanges. If
type is gr, the corresponding grl GRanges (gr) is considered and the counts are the number of
occurrencies of gr for each ranges of refgr; if nbins is greater than 1 and type is gr, the counts are
determined for each bin of each range of refgr. A score (the lower, the more significant) can be
provided in the first column of the mcols of gr; the minimum score over the gr ranges associated
to every given refgr range is determined and stored in the corresponding column of the scoreMat
output matrix.

If type is cov, the corresponding grl has to be a path to a BAM file, and the counts are the coverage
within each range of refgr; if nbins is greater than 1 and type is cov, the counts are determined for
each bin of each range of refgr. If Nnorm is TRUE and type is cov, the counts are divided by the
million mapped reads in the BAM file. If Snorm is TRUE and type is cov, the counts are divided by
the range width in bp.

If a TxDb is provided, the presence of an intron or exon is registered for each range of refgr; intron
is assigned 0.6, exon 0.4, and they will be rendered using the heatmapPlot function as red and pink,
respectively. If nbins is greater than 1 and a TxDb is provided, the presence of an intron or exon is
registered for each bin of each range of refgr.

The bam files have to be associated to the corresponding index .bai files. Please refer to the docu-
mentation of samtools on how to create them.

Value

A list of two items, matList and scoreMat is returned. matList: if a TxDb is not provided, matList is
a list of length equal to the length of grl; each item of the list is a matrix with number of rows equal to
the number of ranges in refgr, and number of columns equal to nbins; if a TxDb is provided, matList
is a list of length equal to the length of grl + 2 is returned; the two extra items contain the count for
introns and exons. scoreMat: if useScore is all FALSE then scoreMat is set to NULL, otherwise it
is a matrix whose number of rows is equal to the length of refgr and the number of columns is equal
to the length of grl; row Nr and column Nc contain the minimum score of mcols(grl[[Nc]])[,1] for
the ranges overlapping with refgr[Nr], if any (0O otherwise).

References

http://genomics.iit.it/groups/computational-epigenomics.html

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(TRUE, rep(FALSE, length(isActiveSeq(txdb)) - 1))

TSSpos <- TSS(txdb)

gr <- TSSpos[1:5]

start(gr) <- start(gr) - 1000

end(gr) <- end(gr) - 600

extgr <- GRanges(segnames(gr), ranges=IRanges(start(gr) - 1000, end(gr) + 1000))

20

heatmapPlot

data <- heatmapData(grl=1ist(ChIPseq= gr), refgr=extgr, type='gr')
restoreSeqglevels(txdb)

heatmapPlot

displays the heatmap based on the data from heatmapData

Description

displays heatmap of counts for a list of GRanges, typically computed based on the heatmapData

function

Usage

heatmapPlot(matList, sigMat=NULL, gnorm=NULL, tnorm=NULL,
rowLab=FALSE, collLab=TRUE, margins=NULL, colors=NULL,
clusterInds=1:1length(matList), dendrogram=TRUE)

Arguments

matList

sigMat

gnorm

thorm

rowLab

collLab

colors

margins

clusterInds

dendrogram

Details

list; a list of matrices, all with the same number of rows and columns, typically
the output of heatmapData

matrix; a matrix of p-values with nrow equal to the nrow of the matList matrices
and ncol equal to the length of matList

array; an array with length equal to the length of matList containing either
NULL or thresholds for quantile normalization, see details

array; an aray with length equal to the length of matList containing either NULL
or threshold for data normalization, see details

logical; whether to add row labels to the heatmap, taken from the rownames of
matList[[1]]

logical; whether to add column names to the heatmap, taken from the names of
matList

either NULL or character with an array of valid colors; it only works if sigMat
is NULL

either NULL or a numeric array of length 2

either NULL or numerics, defining with matList items have to be used to drive
the clustering of heatmap rows

logical; whether to display the dendrogram folling the clustering of rows

Each matrix in matList is either ranging from O to 1 or will be forced to by dividing to its maxumum.
Alternatively, matrix normalization can be obtained using gqnorm or tnorm. Setting qrnorm to X
[0,1] for a given matList matrix will force the maximum of the matrix to be quantile(matrix, X).
Setting trnorm to X for a given matList matrix will force the maximum of the matrix to be X. Using
either qnorm or tnorm matrix will be finally normalized to 1 by dividing it by its maximum.

heatmapPlot 21

If sigMat is not NULL it is expected to contain a list of pvalues or scores [0,1] for each range for
each matList dataset. The colorscale of the heatmap will be adjusted to display the significance,
by lightening the observation colors as a function of its significance, see the example. A minimum
pvalue of le-10 is forced. 50 levels of intensity (white to orange to red palette, as displayed in the
colorscale) and 10 levels of significance (white for the less significance, full color according to the
intensity palette, as displayed in the colorsclae) are considered. Plese ignore the values reported in
the colorscale. If sigMat is NULL, the normalized intensity in each matList item is reported as it is
on a white to beige to red default palette, or based on the colors defined in the colors argument.

If margins is set to NULL the row and columns margins used to display labels are computed auto-
matically, otherwise a numeric array of length two can be set to define them (in lines).

clusterInds can be used to define which matList items drive the clustering of heatmap rows. If
clusterInds is NULL no clustering is performed and no dendrogram is displayed. If clusterInds
is an array of index in l:length(matList), only those matList items will be used to determine the
clustering and the dendrogram, while all matList data will be displayed.

If a TxDB was provided to heatmapData beofre calling heatmapPlot, the last two tracks are about
the overlap with exons and introns in the forward and reverse strand, repectively. If the default
white to red color palette is used, and sigMat is NULL exons will be plotted in red and introns in
pink. Rather, if sigMat is defined, introns will be in orange.

Value

A list with two items

data the normalized matrix used for the final heatmap visualization

heatRes the list invisibly returned by the heatmap.2 function, see its documentation

Be careful that the rowInds contained in heatRes poiting to the new order of clustered data rows, is
intended to list the reordered rows starting from the bottom of the heatmap.

References

http://genomics.iit.it/groups/computational-epigenomics.html

See Also

See Also as heatmap. 2

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(TRUE, rep(FALSE, length(isActiveSeq(txdb)) - 1))
TSSpos <- TSS(txdb)

names (TSSpos) <- TSSpos$tx_name

gr <- TSSpos[1:50]

start(gr) <- start(gr) - 1000

end(gr) <- end(gr) - 600

pvalues <- c(runif(20,1e-20,1e-8), runif(15,1e-4,1e-2), runif(15,0.5,1))
mcols(gr) <- pvalues

extgr <- GRanges(segnames(gr), ranges= IRanges(start(gr) - 1000, end(gr) + 1000))

22

makeGtfFromDb-methods

data <- heatmapData(grl=1ist(ChIPseq=gr), refgr=extgr, type='gr', useScore=TRUE,
Nnorm=TRUE, Snorm=TRUE, nbins=6, txdb=txdb)

rownames(datal[[1]J[[1]]) <- paste(1:50, signif(pvalues,1), sep=' # ')

heatmapPlot(matList=data$matList, gnorm=NULL, tnorm=NULL,
rowLab=TRUE, colLab=TRUE, clusterInds=1:3)

dev.new()

heatmapPlot(matList=data$matList, sigMat=data$scoreMat, gnorm=NULL, tnorm=NULL,
rowLab=TRUE, colLab=TRUE, clusterInds=1:3)

restoreSeqglevels(txdb)

makeGtfFromDb-methods Utilities to transform a TxDb into a GTF file

Description

Given a TxDB, the method *'makeGtfFromDDb’ creates and writes to file a GTF file of exons either
at the gene level or at the transcript level. This methods can be used to generate a GTF file that
is compliant with Bioconductor TxDB libraries, to be used for example with external tools for
counting NGS reads over genes or transcripts. The method ’featuresLength’ determines the length
of all the features associated to every gene or transctipt and returns the sum. All the exons associated
to either a gene or a transcript are non-overlapping. This can be useful to determine read counts
into summaries such as expression RPKMs.

Methods

The *makeGtfFromDb’ has to be used in this form:
makeGtfFromDb(object, type, filename)
where:
object: TxDb
* type: character, either gene’ or 'tx’
* filename: either NULL (a data.frame is returned) or a character containing the path to the
file that has to be written
The ’featuresLength’ has to be used in this form:
featuresLength(object, type)
where:
object: TxDb
* type: character, either 'gene’ or 'tx’
It returns a vector of integers with number of items equal to the number genes or transcripts
annotated in the TxDb given containing the widths of the features.

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(TRUE, rep(FALSE, length(isActiveSeq(txdb)) - 1))
chrigenelLengths <- featuresLength(txdb, 'gene')

res <- makeGtfFromDb(txdb, 'gene')

isActiveSeq(txdb) <- rep(TRUE, length(isActiveSeq(txdb)))

matchEnhancers-methods 23

matchEnhancers-methods
GRanges method to match enhancers with putative targets sites

Description

GRanges method to match enhancers with putative targets sites (either TSS or TF-bound TSS)

Methods

To be used in this form:
matchEnhancers(enhGR, minD=2e4, maxD=2e5, txdb, EG2GS, TFGR=NULL)
where:
enhGR: a GRanges of enhancer sites, such as those provided by the enhancers method
* minD: a positive numeric; the minimum distance between an enhancer and a target ge-
nomic region
» maxD: a positive numeric; the maximum distance between an enhancer and a target ge-
nomic region
* txdb: an object of class TxDb
* EG2GS: an object of class OrgDb; like org.Mm.eg.db, org.Hs.eg.db (use the exact name
of object)

* TFGR: an optional GRanges collecting genomic regions bound from a transcription factor
which also binds promoters

This methods relies on a previous identification of enhancer sites, as the one performed by
the enhancers compEpiTools method based on H3K4mel peaks (or alternatively H3K27ac,
mediator, ..). Genomic regions which are evaluated as putative target sites of these enhancers
are either transcription start sites (TSS) or TSS which are bound at least by a transcription
factor (TF) whose binding sites are provided wuth TFGR.
Putative target sites of the provided enhancers are here defined based on the maximum and
minimum distance from an enhancer. In addition, no additional TSS (belonging to differe
genes, isoforms of the same gene do not count) have to be in between the enhancer and the
reference target region.
If a set of TF bound regions is also provided, which is supposed to contain binding sites at the
level of promoters, this method returns a list with 5 items:
XmP: a GRanges with location of TSS with no enhancers, based on the distance contraints
* EmP.E: a GRanges of TF-unbound enhancers putatively associated to the TF-bound pro-
moters EmP.mP
* EmP.mP: a GRanges of TF-bound promoters putatively associated to the TF-unbound
enhancer sites EmP.E
* mEmP.mE: a GRanges of TF-bound enhancers putatively associated to the TF-bound
promoter EmP.mP

* mEmP.mP: a GRanges of TF-bound promoters putatively associated to the TF-bound
enhancer sites EmP.E

24 overlapOfGRanges-methods

otherwise this method returns a list with 3 items
XP: a GRanges with location of TSS with no enhancers, based on the distance contraints
* EP.E: a GRanges of enhancers putatively associated to the promoters EP.P
* EP.P: a GRanges of promoters putatively associated to the enhancer sites EP.E

Examples

require(org.Mm.eg.db)

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

loading H3K4mel peaks as a GRanges object
built based on the BED file from the GEO GSM1234488 sample
limited to chr19:3200000-4000000
H3K4me1GR <- system.file("extdata”, "H3K4melGR.Rda", package="compEpiTools")
load(H3K4me1GR)

enh <- enhancers(H3K4me1GR, txdb)

m.enh <- matchEnhancers(enhGR=enh, minD=2e4, maxD=2e5,
txdb=txdb, EG2GS=org.Mm.eg.db)

overlapOfGRanges-methods
visualization of GRanges overlap

Description

given a list of GRanges, all pair-wise overlap are evaluated and the percentage of overlapping ranges
is visualized in a heatmap

Methods

To be used in this form:
overlapOfGRanges(GRlist, plot=TRUE)
where:
GRlist: a list of GRanges
* plot: logical

This function uses countOverlaps to count the number of shared ranges for all pairs of GRanges
in the input list. The result is returned as an heatmap, white to beige to red, corresponding to
increased overlap. The percentage overlap is added on each heatmap cell. For each GRanges
on the column of the heatmap (GRC) it represents the percentage of each GRanges in the
heatmap rows which is overlapping with GRC.

Examples

starts <- seq(100, 500, length.out=5)

gr1 <- GRanges(Rle('chr1'),
ranges=IRanges(start=starts, end=starts+100))
starts <- seq(300, 700, length.out=5)

palette2d 25

gr2 <- GRanges(Rle('chr1'),
ranges=IRanges(start=starts+50, end=starts+120))
overlapOfGRanges(GRlist=1ist(gr1, gr2), plot=FALSE)

palette2d build a two dimensional color palette

Description

build a two dimensional color palette

Usage

palette2d(n, k, coll='white', col2='orange', col3='red')

Arguments
n numeric
k numeric
coll character; a color, the lower limit of the color palette
col2 character; a color, the mid point of the color palette
col3 character; a color, the upper limit of the color palette
Details

A bidimensional color palette is built. First a setl of round(n/2) colors ranging from coll and col2
is defined. Then a set2 of round(n/2) colors ranging from col2 and col3 is defined. Setl and set2 are
concatenated, as the first row of a k X n matrix M. Finally, for each column i of M, k colors ranging
from white to M[1,i] are defined.

It is used in the GRheatmapPlot function to have a color palette simultaneously representing the
intensity of an event (n) and its significance (k). See the example.
Value

A matrix of color codes, as described in details

References

http://genomics.iit.it/groups/computational-epigenomics.html

Examples

res <- palette2d(50, 10)
plot(rep(1:ncol(res),each=nrow(res)), rep(1:nrow(res),times=ncol(res)), col=res,
pch=20, xlab='intensity', ylab='significance')

26 plotStallingIndex

plotStallingIndex Stalling Index plots

Description

generates the plot from the output of the stallinglndex function. The plot has 3 panels: Stalling
Index, TSS and gene body

Usage

plotStallingIndex(matlist, xlimlist=NULL,
colors=rainbow(length(matlist)))

Arguments
matlist List of matrices; each matrix must have a TSS, GB and SI column, as in the
output of the function stallingIndex
xlimlist List of numeric vectors (optional); ranges for the x axis of the three plots. The
list must have 3 elements named ’SI’, *TSS’ and *’GB’. Default:NULL
colors array; names of the colors used for the lines in the plot. Default:rainbow palette
Details

Generates a 3-panel plot for the Stalling Index data (Stalling Index, TSS, and gene body).

Value

A plot

References

http://genomics.iit.it/groups/computational-epigenomics.html

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

require(org.Mm.eg.db)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(rep(FALSE,18), TRUE, rep(FALSE, length(isActiveSeq(txdb))-19))
pointing to Pol2 BAM file

BAM file from the GEO GSM1234478 sample, limited to chri19:3200000-4000000
Pol2bam <- system.file("extdata”, "Pol2.bam", package="compEpiTools")

loading Pol2 peaks as a GRanges object

built based on the BED file from the GEO GSM1234478 sample

limited to chr19:3200000-4000000

Pol2GR <- system.file("extdata”, "Pol2GR.Rda", package="compEpiTools")
load(Pol2GR)

egs <- distanceFromTSS(Pol2GR, txdb=txdb)

simplifyGOterms 27

egs <- unique(egs$nearest_gene_id)

SI_matrix <- stallingIndex(BAMlist=list(Pol2bam), peakGRlist=1ist(Pol2GR),
genesList=list(egs), transcriptDB=txdb, countMode='gene')

plotStallingIndex(SI_matrix)

restoreSeqlevels(txdb)

simplifyGOterms simplify a list of GO terms

Description

simplify a list of GeneOntology terms based on the list of genes assigned to each GO term

Usage

simplifyGOterms(goterms, maxOverlap= 0.8, ontology, go2allEGs)

Arguments

goterms character; a vector of GO ids

maxOverlap numeric in (0,1) see details

ontology character; one of BP, MF or CC

go2allEGs the species specific assignment of each GO term to EntrezGene ids
Details

Given a pair of parent and child GO terms, and the Entrez Gene ids (genes sets) which can be
assigned to them, the parent GO term is defined as redundant if the two gene sets overlap more than
100*maxOverlap percent of the parent genes. Given a set goterms, this rule is applied to discard
redundant parent terms while keeping the corresponding children terms.

Value

A subset of the (possibly unaltered) input goterms

References

http://genomics.iit.it/groups/computational-epigenomics.html

Examples

require(org.Mm.eg.db)
simplifyGOterms(goterms=c('G0:0002320"', 'G0:0002244"'), maxOverlap= 0.1, ontology='BP', go2allEGs= org.Mm.egGO2ALL

28

stallingIndex

stallingIndex

returns a list with average read count on TSS, gene body, and stalling
index for a number of samples

Description

based on a TxDb, and a list of Pol2 ChIP-seq samples with a GRange corresponding to the peak
call, returns a list whose elements contain the stalling index and average read count on TSS and
gene body for a user-defined list of genes

Usage

stallingIndex(BAMlist,inputList=NULL, peakGRlist, peakGB=FALSE,
geneslList, transcriptDB, countMode="transcript”, upstream=300,
downstream=300, cutoff=600, elongationOffset=0)

Arguments

BAMlist List of characters; paths to BAM files containing ChIP-seq aligned reads

inputList List of characters (optional); paths to BAM files containing ChIP-seq aligned
reads of inputs relative to the ChIP-seq samples in BAMlist

peakGRlist List of GRanges; Pol2 peaks relative to the ChIP-seq samples in BAMlist. Only
genes with a peak on the TSS will be used for counting

peakGB logical; whether or not to consider only genes which have also a Pol2 peak on
the gene body. Deafult=FALSE

geneslList List of characters; Entrez gene IDs defining the genes where the stalling index
will be computed

transcriptDB An object of class transcriptDb

countMode either ’transcript’ or ’average’ or ’gene’. Genomic units used to count reads:
"transcript’ considers all transcripts separately, *average’ averages over different
isoforms of a gene, *gene’ considers the longest isoform only. Default="transcript’

upstream numeric; upstream end of the TSS interval where reads will be counted. De-
fault=300

downstream numeric; downstream end of the TSS interval where reads will be counted. De-
fault=300

cutoff numeric; minimum length required for a gene to be considered for the counts.
Default=600

elongationOffset

numeric; downstream end of the gene body interval where reads will be counted.
Default=0

stallingIndex 29

Details

Given a set of Pol2 ChIP-seq samples, computes the average base coverage on TSS and gene body
and their ratio (Pol2 stalling index) computed over specific sets of genes for a list of samples.

For each sample, reads will be counted only for genes contained in the corresponding element of
the genesList, and only for those genes having a Pol2 peak (given in peakGRlist as list of GRanges)
on the TSS region (defined through upstream and downstream). If peakGB is set to TRUE, a Pol2
peak on the body of a gene will be required. The lists of genes peakGRlist must be provided in
terms of entrezIDs.

Reads can be counted on individual gene isoforms (countMode="transcript’), averaging over iso-
forms (countMode="average’) or taking the longest isoform for each gene (countMode="gene’).

The read counts will be performed on the intervals [TSS-upstream, TSS+downstream] (TSS) and
[TSS+downstream, TES+elongationOffset] (genebody), where upstream, downstream, elongationOff-
set are user-defined parameters. Moreover, only genes having a length bigger than the user-defined
parameter cutoff will be considered.

BAM files have to be associated to the corresponding index .bai files. Please refer to the documen-
tation of samtools on how to create them.

Value

A list of matrices, each containing TSS counts, gene body counts and stalling index for each sample

References

http://genomics.iit.it/groups/computational-epigenomics.html

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

require(org.Mm.eg.db)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

isActiveSeq(txdb) <- c(rep(FALSE,18), TRUE, rep(FALSE, length(isActiveSeq(txdb))-19))

pointing to Pol2 BAM file

BAM file from the GEO GSM1234478 sample, limited to chr19:3200000-4000000

Pol2bam <- system.file("extdata”, "Pol2.bam”, package="compEpiTools")

loading Pol2 peaks as a GRanges object

built based on the BED file from the GEO GSM1234478 sample

limited to chr19:3200000-4000000

Pol2GR <- system.file("extdata”, "Pol2GR.Rda", package="compEpiTools")

load(Pol2GR)

egs <- distanceFromTSS(Pol2GR, txdb=txdb)

egs <- unique(egs$nearest_gene_id)

SI_matrix <- stallingIndex(BAMlist=list(Pol2bam), peakGRlist=1ist(Pol2GR),
genesList=list(egs), transcriptDB=txdb, countMode='gene')

restoreSeqlevels(txdb)

30

topGOres

topGOres

determines GeneOntology (GO) enriched terms for a set of Entrez
gene ids

Description

determines GeneOntology (GO) enriched terms for a set of Entrez gene ids

Usage

topGOres(ids, ontology='BP', Pthr=1e-05, maxN=5000, minN=5,
orgdb, allEG=keys(orgdb),showTerms=NULL)

Arguments
ids
ontology

Pthr

maxN

minN

orgdb
allEG

showTerms

Details

can be either a vector or a list of human or mouse EntrezGene ids

one of the three GO ontologies: BP (Biological Processes), CC (Cellular Com-
ponents) or MF (Molecular Functions)

numeric [0,1]; the p-value for an enrichment to be considered significant

numeric; only GO terms with a total up to maxN genes annotated on the genome
are considered

numeric; only GO terms with a minimum of minN genes annotated on the
genome are considered

An object of class OrgDb; either org.Hs.eg.db, org.Mm.eg.db or org.Dm.eg.db
character; the reference universe of EntrezGene ids, by default all of them

numeric: the number of GO terms to plot; NULL: no plotting

Determines GeneOntology (GO) enriched terms for a set of Entrez gene ids. Based on the topGO
Bioconductor library. Both maxN and minN refer to the number of genes annotated in the reference
genome for a given GO term (indipendently from the ids that the enrichment is being evaluated for).
This can be used for excluding GOterm very generic or very specific, since these would mostly be
ignored in the final output. This would also save time in the analysis and decrease the severity of
the multiple testing issue.

Value

A matrix containing enriched GO terms ranked by significance is returned, with the following

columns:

GO.ID
Term
Annotated

Significant

GO id
text description of the GO id
total number of genes annotated with the considered GOterm

number of genes in ids for the specific GOterms

TSS

Expected expected number of GOterms genes in ids in case of random enrichment

Classic pvalue for the enrichment as reported from the topGO package

Genes Gene ids of significantly annotated genes for each specific GOterms
References

http://genomics.iit.it/groups/computational-epigenomics.html

See Also

topGOdata in the topGO Bioconductor package

Examples

require(org.Mm.eg.db)

egs <- keys(org.Mm.egACCNUM)[1:50]

topGOres(ids=egs, Pthr=0.006, maxN=5000, minN=5,
orgdb=org.Mm.eg.db, allEG=keys(org.Mm.eg.db)[1:5000])

TSS based on a TxDb returns a GRanges with the TSS positions for all
transcripts

Description

based on a TxDb returns a GRanges of width 1 with the TSS positions for all transcripts

Usage
TSS(txdb)

Arguments

txdb An object of class TxDb

Details

based on a TxDb returns a GRanges of width 1 with the TSS positions for all transcripts

Value

A GRanges

References

http://genomics.iit.it/groups/computational-epigenomics.html

32 ucsc2GRanges

Examples

require(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
res <- TSS(txdb)

res[1:2]

ucsc2GRanges Convert UCSC-formatted genomic positions into a GRanges

Description

Convert UCSC-formatted genomic positions to a GRanges object

Usage

ucsc2GRanges (ucscPositions)

Arguments

ucscPositions character; a vector of UCSC formatted genomic positions.

Details

UCSC formatted genomic positions such as chr5:10000-35000 are converted into GRanges format.

Value

a GRanges with chr, start and end derived from the UCSC format

References

http://genomics.iit.it/groups/computational-epigenomics.html

Examples

ucsc2GRanges(c('chr1:100-500', 'chrX:20-1000"'))

unionMaxScore-methods 33

unionMaxScore-methods GRanges method to perform union of peaks keeping the score of the
most significant peak

Description

the union between two GRanges associated to scores is performed, and the most significant score
for the overlapping regions is returned

Methods

To be used in this form:
unionMaxScore(grl, gr2, scorel=mcols(grl)[,1], score2=mcols(gr2)[,1])
where:
grl: GRanges

» gr2: GRanges

 scorel: numeric; the scores (or any kind of score) associated to grl

* score2: numeric; the scores (or any kind of score) associated to gr2
The method returns the union GRanges as in union(grl, g2). For each range, if it resulted

from overlapping ranges, the maximum score for those ranges is returned. In case pvalues (P)
are adopted, they should be transformed in a score with something like -log10(P)

Examples

gr1 <- GRanges(Rle(c('chr1','chr1')),

ranges=IRanges(start=c(100,200), end=c(150,250)), pvalue=c(200, 100))
gr2 <- GRanges(Rle(c('chr1','chr1")),

ranges=IRanges(start=c(80,400), end=c(300,500)), pvalue=c(50, 150))
unionMaxScore(grl, gr2)

Index

+ methods
countOverlapsInBins-methods, 4
distanceFromTSS-methods, 5
enhancers-methods, 6
getPromoterClass, 9
GR2fasta-methods, 10
GRanges2ucsc-methods, 10
GRangesInPromoters-methods, 11
GRannotate-methods, 11
GRannotateSimple-methods, 13
GRbaseCoverage-methods, 14
GRcoverage-methods, 15
GRcoverageSummit-methods, 16
GRenrichment-methods, 16
GRmidpoint-methods, 17
GRsetwidth-methods, 18
makeGtfFromDb-methods, 22
matchEnhancers-methods, 23
overlapOfGRanges-methods, 24
unionMaxScore-methods, 33

+ package
compEpiTools-package, 2

compEpiTools (compEpiTools-package), 2

compEpiTools-package, 2

countOverlapsInBins
(countOverlapsInBins-methods),
4

countOverlapsInBins, GRanges-method
(countOverlapsInBins-methods),
4

countOverlapsInBins-methods, 4

distanceFromTSS
(distanceFromTSS-methods), 5

distanceFromTSS,GRanges-method
(distanceFromTSS-methods), 5

distanceFromTSS-methods, 5

enhancers (enhancers-methods), 6

34

enhancers,GRanges-method
(enhancers-methods), 6
enhancers-methods, 6

featuresLength (makeGtfFromDb-methods),
22

featuresLength, TxDb-method
(makeGtfFromDb-methods), 22

featuresLength-methods
(makeGtfFromDb-methods), 22

findLncRNA, 7

getPromoterClass, 9
getPromoterClass, TxDb-method
(getPromoterClass), 9
getPromoterClass-methods
(getPromoterClass), 9
GR2fasta (GR2fasta-methods), 10
GR2fasta,GRanges-method
(GR2fasta-methods), 10
GR2fasta-methods, 10
GRanges, 9
GRanges2ucsc (GRanges2ucsc-methods), 10
GRanges2ucsc,GRanges-method
(GRanges2ucsc-methods), 10
GRanges2ucsc-methods, 10
GRangesInPromoters
(GRangesInPromoters-methods),
11
GRangesInPromoters, GRanges-method
(GRangesInPromoters-methods),
11
GRangesInPromoters-methods, 11
GRannotate (GRannotate-methods), 11
GRannotate,GRanges-method
(GRannotate-methods), 11
GRannotate-methods, 11
GRannotateSimple
(GRannotateSimple-methods), 13

INDEX

GRannotateSimple,GRanges-method
(GRannotateSimple-methods), 13
GRannotateSimple-methods, 13
GRbaseCoverage
(GRbaseCoverage-methods), 14
GRbaseCoverage,GRanges-method
(GRbaseCoverage-methods), 14
GRbaseCoverage-methods, 14
GRcoverage (GRcoverage-methods), 15
GRcoverage,GRanges-method
(GRcoverage-methods), 15
GRcoverage-methods, 15
GRcoveragelnbins (GRcoverage-methods),
15
GRcoverageInbins,GRanges-method
(GRcoverage-methods), 15
GRcoveragelnbins-methods
(GRcoverage-methods), 15
GRcoverageSummit
(GRcoverageSummit-methods), 16
GRcoverageSummit,GRanges-method
(GRcoverageSummit-methods), 16
GRcoverageSummit-methods, 16
GRenrichment (GRenrichment-methods), 16
GRenrichment,GRanges-method
(GRenrichment-methods), 16
GRenrichment-methods, 16
GRmidpoint (GRmidpoint-methods), 17
GRmidpoint,GRanges-method
(GRmidpoint-methods), 17
GRmidpoint-methods, 17
GRsetwidth (GRsetwidth-methods), 18
GRsetwidth,GRanges-method
(GRsetwidth-methods), 18
GRsetwidth-methods, 18

heatmap. 2, 21
heatmapData, 18
heatmapPlot, 20

makeGtfFromDb (makeGtfFromDb-methods),
22

makeGtfFromDb, TxDb-method
(makeGtfFromDb-methods), 22

makeGtfFromDb-methods, 22

matchEnhancers
(matchEnhancers-methods), 23

matchEnhancers,GRanges-method
(matchEnhancers-methods), 23

35

matchEnhancers-methods, 23

overlapOfGRanges
(overlapOfGRanges-methods), 24

overlapOfGRanges,GRanges-method
(overlapOfGRanges-methods), 24

overlapOfGRanges-methods, 24

palette2d, 25
plotStallingIndex, 26

simplifyGOterms, 27
stallingIndex, 28

topGOres, 30
TSS, 31

ucsc2GRanges, 32

unionMaxScore (unionMaxScore-methods),
33

unionMaxScore,GRanges-method
(unionMaxScore-methods), 33

unionMaxScore-methods, 33

	compEpiTools-package
	countOverlapsInBins-methods
	distanceFromTSS-methods
	enhancers-methods
	findLncRNA
	getPromoterClass
	GR2fasta-methods
	GRanges2ucsc-methods
	GRangesInPromoters-methods
	GRannotate-methods
	GRannotateSimple-methods
	GRbaseCoverage-methods
	GRcoverage-methods
	GRcoverageSummit-methods
	GRenrichment-methods
	GRmidpoint-methods
	GRsetwidth-methods
	heatmapData
	heatmapPlot
	makeGtfFromDb-methods
	matchEnhancers-methods
	overlapOfGRanges-methods
	palette2d
	plotStallingIndex
	simplifyGOterms
	stallingIndex
	topGOres
	TSS
	ucsc2GRanges
	unionMaxScore-methods
	Index

