Package ‘cmapR’

February 1, 2026
Type Package
Title CMap Tools in R
Date 2023-04-03
Version 1.23.0

Description The Connectivity Map (CMap) is a massive resource of perturbational
gene expression profiles built by researchers at the Broad Institute and
funded by the NIH Library of Integrated Network-Based Cellular Signatures
(LINCS) program. Please visit https://clue.io for more information.
The cmapR package implements methods to parse, manipulate, and write common
CMap data objects, such as annotated matrices and collections of gene sets.

License file LICENSE
Depends R (>=4.0)

Imports methods, rhdf5, data.table, flowCore, SummarizedExperiment,
matrixStats

Suggests knitr, testthat, BiocStyle, rmarkdown
VignetteBuilder knitr

biocViews Datalmport, DataRepresentation, GeneExpression
URL https://github.com/cmap/cmapR

BugReports https://github.com/cmap/cmapR/issues

LazyData true

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/cmapR

git_branch devel

git_last_commit b3d9762

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Ted Natoli [aut, cre] (ORCID: <https://orcid.org/0000-0002-0953-0206>)

Maintainer Ted Natoli <ted.e.natoli@gmail.com>

1


https://github.com/cmap/cmapR
https://github.com/cmap/cmapR/issues
https://orcid.org/0000-0002-0953-0206

2 Contents

Contents
align_matrices . . . . . . . . .. e e e e e e 3
ANNOtAte.gCt . . . . . . . e e e e e e e 4
append.dim . . . ... e e 5
cdesc_char. . . . . . . . . e 6
check colnames . . . . . . . . .. 6
check_dups . . . . . . e e 7
distil . . . . o 7
ds .o e 8
EXIraCt.ECt . . . . o i e 8
fix.datatypes . . . . . .. e 10
GCT . . . e 11
GCT=Class . . . . . . . e e e e e e 12
GENE_SEL . . . v i e e e e e e e e e e e e e e e e e 12
ds . . e 13
is.wholenumber . . . . . . ... 14
kd_get . . o 14
Ixb2mat . . . . .o e 15
MAL . . o e e e e e e 16
melt.get . . .o e 17
MEIZE.ECL .« .« o v v v e e e e e e 18
merge_with_precedence . . . . . . . . ... e 19
META . . o o e e e e e e e e e e 20
na_pad_matrix . . . . . . ... e e e e e 21
PATSE.ECLX . . v o o e e e e e e e e e e e e e e e e 21
PArSE.EMU . . . . . . L e e e e e e e e e e 22
PATSE.EMX . . o v v v v i e e e e e e e e e e e e e e e e e 23
PATSE.EIP « v o v e e e e e e e e e e e e e e e e e e 24
process_ids . . ... L e e e 25
rank.gCt . . . . L 26
read.gCtX.ids . . . ..o e e 27
read.@CtX.Meta . . . . . . ... e e 28
TODUSE_ZSCOTE . . . . . o v o o o e e e e e e e e e e 29
SUDSEL.ECE . . . v o e e e e e e e e e e e 29
subset_to idS . . . . ... e, 30
threshold . . . . . . . . e 31
transposSe.ECt . . . . . . L e e e e e e e e e e 31
Update.gCtX . . . . . e e e e e e e e e e e e e 32
WIEE.ZCt . .« o o o o e e e 33
WIE.ECEX . . . . o ot o e e e e e e e 34
WIE.ZCEX.MEA . . . . . . o o v vt e e e e e e e e e 35
write.tbl . . . L e e 36
WILE_ZME . . . o o o o o e e e e e e e e e e e e e e e e e e e e 37
WILE_ZIP « . v o o v e e e e e e e e e e e e 38

Index 39



align_matrices 3

align_matrices Align the rows and columns of two (or more) matrices

Description

Align the rows and columns of two (or more) matrices

Usage
align_matrices(ml, m2, ..., L = NULL, na.pad = TRUE, as.3D = TRUE)
Arguments
m1 a matrix with unique row and column names
m2 a matrix with unique row and column names
additional matrices with unique row and column names
L a list of matrix objects. If this is given, m1, m2, and ... are ignored
na.pad boolean indicating whether to pad the combined matrix with NAs for rows/columns
that are not shared by m1 and m2.
as.3D boolean indicating whether to return the result as a 3D array. If FALSE, will
return a list.
Value

an object containing the aligned matrices. Will either be a list or a 3D array

Examples

# construct some example matrices
ml <- matrix(rnorm(20), nrow=4)
rownames(ml) <- letters[1:4]
colnames(m1) <- LETTERS[1:5]

m2 <- matrix(rnorm(20), nrow=5)
rownames(m2) <- letters[1:5]
colnames(m2) <- LETTERS[1:4]

ml

m2

# align them, padding with NA and returning a 3D array
align_matrices(ml, m2)

# align them, not padding and retuning a list
align_matrices(ml, m2, na.pad=FALSE, as.3D=FALSE)



4 annotate.gct

annotate.gct Add annotations to a GCT object

Description
Given a GCT object and either a data. frame or a path to an annotation table, apply the annotations
to the gct using the given keyfield.

Usage
annotate.gct(...)

n n

annotate_gct(g, annot, dim = "row”, keyfield = "id")

## S4 method for signature 'GCT'

annotate_gct(g, annot, dim = "row"”, keyfield = "id")
Arguments
arguments passed on to annotate_gct
g a GCT object
annot a data.frame or path to text table of annotations
dim either ‘row’ or column’ indicating which dimension of g to annotate
keyfield the character name of the column in annot that matches the row or column

identifiers in g

Value

a GCT object with annotations applied to the specified dimension

See Also
Other GCT utilities: melt.gct(), merge.gct(), rank.gct(), subset.gct()

Examples

gct_path <- system.file("extdata”, "modzs_n25x50.gctx"”, package="cmapR")
# read the GCT file, getting the matrix only

g <- parse_gctx(gct_path, matrix_only=TRUE)

# separately, read the column annotations and then apply them using

# annotate_gct

cdesc <- read_gctx_meta(gct_path, dim="col")

g <- annotate_gct(g, cdesc, dim="col"”, keyfield="id")



append.dim 5

append.dim Append matrix dimensions to filename

Description

Append matrix dimensions to filename

Usage

append.dim(...)

append_dim(ofile, mat, extension = "gct")

Arguments

arguments passed on to append_dim

ofile the file name

mat the matrix

extension the file extension
Details

This is a helper function that most users will not use directly

Value

a character string of the filename with matrix dimensions appended

See Also

Other GCTX parsing functions: GCT, fix.datatypes(), parse.gctx(), process_ids(), read.gctx.ids(),
read.gctx.meta(),write.gctx.meta(),write.gctx(),write.gct()

Examples

(filename <- cmapR:::append_dim("my.gctx.filename"”,
matrix(nrow=10, ncol=15)))



6 check colnames

cdesc_char An example table of metadata, as would be parsed from or parse.gctx.
Initially all the columns are of type character.

Description
An example table of metadata, as would be parsed from or parse.gctx. Initially all the columns are
of type character.

Usage

cdesc_char

Format

An object of class data. frame with 368 rows and 8 columns.

check_colnames Check whether test_names are columns in the data. frame df

Description

Check whether test_names are columns in the data. frame df

Usage

check_colnames(test_names, df, throw_error = TRUE)

Arguments
test_names a vector of column names to test
df the data. frame to test against
throw_error boolean indicating whether to throw an error if any test_names are not found
indf
Value

boolean indicating whether or not all test_names are columns of df

Examples
check_colnames(c("pert_id", "pert_iname"), cdesc_char) # TRUE
check_colnames(c("pert_id", "foobar"),

cdesc_char, throw_error=FALSE)# FALSE, suppress error



check_dups 7

check_dups Check for duplicates in a vector

Description

Check for duplicates in a vector

Usage
check_dups(x, name = "")
Arguments
X the vector
name the name of the object to print in an error message if duplicates are found
Value
silently returns NULL
Examples

# this will throw an erorr, let's catch it
tryCatch(
CheCk_dUpS(C("a", Hbll, “C", Ilall’ Ildl)))’
error=function(e) print(e)

)

distil Collapse the rows or columns of a matrix using weighted averaging

Description

This is equivalent to the 'modz’ procedure used in collapsing replicates in traditional L1000 data
processing. The weight for each replicate is computed as its normalized average correlation to the
other replicates in the set.

Usage
distil(m, dimension = "col”, method = "spearman")

Arguments
m a numeric matrix where the rows or columns are assumed to be replicates
dimension the dimension to collapse. either 'row’ or "col’

method the correlation method to use



8 extract.gct

Value
a list with the following elements
values a vector of the collapsed values

correlations a vector of the pairwise correlations

weights a vector of the computed weights

Examples

m <- matrix(rnorm(30), ncol=3)

distil(m)
ds An example of a GCT object with row and column metadata and gene
expression values in the matrix.
Description

An example of a GCT object with row and column metadata and gene expression values in the
matrix.

Usage

ds

Format

An object of class GCT of length 1.

extract.gct Exract elements from a GCT matrix

Description

extract the elements from a GCT object where the values of row_field and col_field are the same.
A concrete example is if g represents a matrix of signatures of genetic perturbations, and you wan
to extract all the values of the targeted genes.



extract.gct

Usage

extract.gct(...

extract_gct(
g,
row_field,
col_field,
rdesc = NULL,
cdesc = NULL,
row_keyfield

— ”id”,

col_keyfield = "id"

Arguments

g

row_field
col_field
rdesc

cdesc
row_keyfield
col_keyfield

Value

arguments passed on to extract_gct

the GCT object

the column name in rdesc to search on

the column name in cdesc to search on

a data. frame of row annotations

a data. frame of column annotations

the column name of rdesc to use for annotating the rows of g

the column name of cdesc to use for annotating the rows of g

a list of the following elements

mask a logical matrix of the same dimensions as ds@mat indicating which matrix elements have
been extracted

idx an array index into ds@mat representing which elements have been extracted

vals a vector of the extracted values

Examples

# get the values for all targeted genes from a

# dataset of knockdown experiments

res <- extract_gct(kd_gct, row_field="pr_gene_symbol",
col_field="pert_mfc_desc")

str(res)

stats::quantile(res$vals)



10 fix.datatypes

fix.datatypes Adjust the data types for columns of a meta data frame

Description

GCT(X) parsing initially returns data frames of row and column descriptors where all columns are
of type character. This is inconvenient for analysis, so the goal of this function is to try and guess
the appropriate data type for each column.

Usage

fix.datatypes(...)

fix_datatypes(meta)

Arguments
arguments passed on to fix_datatypes
meta a data.frame
Details

This is a low-level helper function which most users will not need to access directly

Value

meta the same data frame with (potentially) adjusted column types.

See Also

Other GCTX parsing functions: GCT, append.dim(), parse.gctx(), process_ids(), read.gctx.ids(),
read.gctx.meta(),write.gctx.meta(),write.gctx(),write.gct()

Examples

# meta data table with all character types
str(cdesc_char)

fixed <- cmapR:::fix_datatypes(cdesc_char)
# note how some column classes have changed
str(fixed)



GCT 11

GCT Initialize an object of class GCT

Description

Initialize an object of class GCT

Usage
GCT(
mat = NULL,
rdesc = NULL,
cdesc = NULL,
src = NULL,
rid = NULL,
cid = NULL,
matrix_only = FALSE
)
Arguments
mat a matrix
rdesc a data.frame of row metadata
cdesc a data. frame of column metadata
src path to a GCT file to read
rid vector of character identifiers for rows
cid vector of character identifiers for columns
matrix_only logical indicating whether to read just the matrix data from src
Details

If mat is provided, rid and cid are treated as the row and column identifiers for the matrix and are
assigned to the rid and cid slots of the GCT object.

If mat is not provided but src is provided, rid and cid are treated as filters. Data will be read
from the file path provided to src and will then be restricted to the character ids or integer indices
provided to rid and cid. In a similar manner, matrix_only controls whether the row and column
metadata are also read from the src file path.

Value

a GCT object

See Also

Other GCTX parsing functions: append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx.meta(),write.gctx(),write.gct()



12 gene_set

Examples

# an empty object
(g <= GCTO)
# with a matrix
# note we must specify row and column ids
(g <= GCT(mat=matrix(rnorm(100), nrow=10),
rid=letters[1:10], cid=letters[1:10]))
# from file
gct_file <- system.file("extdata”, "modzs_n25x50.gctx”, package="cmapR")
(g <- GCT(src=gct_file))

GCT-class An S84 class to represent a GCT object

Description

The GCT class serves to represent annotated matrices. The mat slot contains said data and the rdesc
and cdesc slots contain data frames with annotations about the rows and columns, respectively

Slots

mat anumeric matrix

rid a character vector of row ids

cid acharacter vector of column ids

rdesc adata.frame of row descriptors
rdesc adata.frame of column descriptors

src a character indicating the source (usually file path) of the data

See Also

parse_gctx, write_gctx, read_gctx_meta, read_gctx_ids

visit http://clue.io/help for more information on the GCT format

gene_set An example collection of gene sets as used in the Lamb 2006 CMap
paper.

Description

An example collection of gene sets as used in the Lamb 2006 CMap paper.

Usage

gene_set


http://clue.io/help

ids 13

Format

An object of class 1ist of length 8.

Source

Lamb et al 2006 doi:10.1126/science.1132939

ids Extract the or set row or column ids of a GCT object

Description

Extract the or set row or column ids of a GCT object

Usage

ids(g, dimension = "row"

## S4 method for signature 'GCT'
ids(g, dimension = "row")

ids(g, dimension = "row"”) <- value

## S4 replacement method for signature 'GCT'

ids(g, dimension = "row") <- value
Arguments
g the GCT object
dimension the dimension to extract/update ['row’ or ’column’]
value a character vector
Value

a vector of row ids

See Also

Other GCT accessor methods: mat (), meta()



14 kd_gct

Examples

# extract rids

rids <- ids(ds)

# extract column ids

cids <- ids(ds, "column")

# set rids

ids(ds) <- as.character(1:length(rids))

# set cids

ids(ds, "column") <- as.character(1:length(cids))

is.wholenumber Check if x is a whole number

Description

Check if x is a whole number

Usage

is.wholenumber(x, tol = .Machine$double.eps”0.5)
Arguments

X number to test

tol the allowed tolerance
Value

boolean indicating whether x is tol away from a whole number value

Examples

is.wholenumber (1)
is.wholenumber(0.5)

kd_gct An example GCT object of knockdown experiments targeting a subset
of landmark genes.

Description

An example GCT object of knockdown experiments targeting a subset of landmark genes.

Usage
kd_gct



Ixb2mat 15

Format

An object of class GCT of length 1.

1xb2mat Read an LXB file and return a matrix

Description

Read an LXB file and return a matrix

Usage

1xb2mat (1xb_path, columns = c(”"RID"”, "RP1"), newnames = c("barcode_id", "FI"))

Arguments

1xb_path the path to the Ixb file
columns which columns in the 1xb file to retain

newnames what to name these columns in the returned matrix

Value

a matrix

See Also

Other CMap parsing functions: parse.gmt(), parse.gmx(), parse.grp(),write_gmt(),write_grp()

Examples

1xb_path <- system.file("extdata”, "example.lxb", package="cmapR")
1xb_data <- 1xb2mat(lxb_path)
str(lxb_data)



16

mat

mat Extract or set the matrix of GCT object

Description

Extract or set the matrix of GCT object

Usage
mat(g)

## S4 method for signature 'GCT'
mat(g)

mat(g) <- value

## S4 replacement method for signature 'GCT'
mat(g) <- value

Arguments

g the GCT object

value a numeric matrix

Value

a matrix

See Also

Other GCT accessor methods: ids(), meta()

Examples

# get the matrix

m <- mat(ds)

# set the matrix

mat(ds) <- matrix(@, nrow=nrow(m), ncol=ncol(m))



melt.gct 17

melt.gct Transform a GCT object in to a long form data.table (aka 'melt’)

Description

Utilizes the melt.data. table function to transform the matrix into long form. Optionally can
include the row and column annotations in the transformed data. table.

Usage

melt.gct(...)

melt_gct(
g,
suffixes = NULL,
remove_symmetries = FALSE,
keep_rdesc = TRUE,
keep_cdesc = TRUE,

)
## S4 method for signature 'GCT'
melt_gct(

g,

suffixes = NULL,
remove_symmetries = FALSE,
keep_rdesc = TRUE,
keep_cdesc = TRUE,

)
Arguments
e further arguments passed along to data.table: :merge
g the GCT object
suffixes the character suffixes to be applied if there are collisions between the names of

the row and column descriptors
remove_symmetries

boolean indicating whether to remove the lower triangle of the matrix (only
applies if g@mat is symmetric)

keep_rdesc boolean indicating whether to keep the row descriptors in the final result
keep_cdesc boolean indicating whether to keep the column descriptors in the final result
Value

adata.table object with the row and column ids and the matrix values and (optinally) the row and
column descriptors



18

See Also

merge.gct

Other GCT utilities: annotate.gct(), merge.gct(), rank.gct(), subset.gct()

Examples

# simple melt, keeping both row and column meta
head(melt_gct(ds))

# update row/colum suffixes to indicate rows are genes, columns experiments
head(melt_gct(ds, suffixes = c("_gene"”, "_experiment"”)))

# ignore row/column meta
head(melt_gct(ds, keep_rdesc = FALSE, keep_cdesc = FALSE))

merge.gct

Merge two GCT objects together

Description

Merge two GCT objects together

Usage

## S3 method for class 'gct'

merge(...)

[l

merge_gct(gl, g2, dim = "row”, matrix_only = FALSE)

## S4 method for signature 'GCT,GCT'

merge_gct(gl, g2, dim =

Arguments

g1
g2
dim

matrix_only

Value

a GCT object

See Also

n

row”, matrix_only = FALSE)

arguments passed on to merge_gct

the first GCT object

the second GCT object

the dimension on which to merge (row or column)

boolean idicating whether to keep only the data matrices from g1 and g2 and
ignore their row and column meta data

Other GCT utilities: annotate.gct(), melt.gct(), rank.gct(), subset.gct()



merge_with_precedence 19

Examples

# take the first 10 and last 10 rows of an object
# and merge them back together

(a <- subset_gct(ds, rid=1:10))

(b <- subset_gct(ds, rid=969:978))

(merged <- merge_gct(a, b, dim="row"))

merge_with_precedence Merge two data.frames, but where there are common fields those in
x are retained and those in 'y are dropped.

Description

Merge two data. frames, but where there are common fields those in x are retained and those in y
are dropped.

Usage

merge_with_precedence(x, y, by, allow.cartesian = TRUE, as_data_frame = TRUE)

Arguments
X the data. frame whose columns take precedence
y another data. frame
by a vector of column names to merge on

allow.cartesian

boolean indicating whether it’s ok for repeated values in either table to merge
with each other over and over again.

as_data_frame boolean indicating whether to ensure the returned object is a data.frame in-
stead of a data.table. This ensures compatibility with GCT object conven-
tions, that is, the rdesc and cdesc slots must be strictly data. frame objects.

Value

adata.frame or data.table object

See Also

data.table::merge

Examples

(x <- data.table::data.table(foo=letters[1:10], bar=1:10))

(y <- data.table::data.table(foo=letters[1:10], bar=11:20,
baz=LETTERS[1:10]))

# the 'bar' column from y will be dropped on merge

cmapR: : :merge_with_precedence(x, y, by="foo")



20 meta

meta Extract the or set metadata of a GCT object

Description

Extract the or set metadata of a GCT object
Usage
meta(g, dimension = "row")

## S4 method for signature 'GCT'
meta(g, dimension = "row")

meta(g, dimension = "row") <- value

## S4 replacement method for signature 'GCT'

meta(g, dimension = "row") <- value
Arguments
g the GCT object
dimension the dimension to extract/update [’row’ or ’column’]
value a data.frame
Value

a data.frame

See Also

Other GCT accessor methods: ids(), mat()

Examples

# extract rdesc

rdesc <- meta(ds)

# extract cdesc

cdesc <- meta(ds, dim="column")

# set rdesc

meta(ds) <- data.frame(x=sample(letters, nrow(rdesc), replace=TRUE))

# set cdesc

meta(ds, dim="column") <- data.frame(x=sample(letters, nrow(cdesc),
replace=TRUE))



na_pad_matrix 21

na_pad_matrix Pad a matrix with additional rows/columns of NA values

Description

Pad a matrix with additional rows/columns of NA values

Usage

na_pad_matrix(m, row_universe = NULL, col_universe = NULL)

Arguments

m a matrix with unique row and column names
row_universe  a vector with the universe of possible row names

col_universe  avector with the universe of possible column names

Value

a matrix

Examples

m <- matrix(rnorm(10), nrow=2)

rownames(m) <- c("A", "B")

colnames(m) <- letters[1:5]

na_pad_matrix(m, row_universe=LETTERS, col_universe=letters)

parse.gctx Parse a GCTX file into the workspace as a GCT object

Description

Parse a GCTX file into the workspace as a GCT object

Usage

parse.gctx(...)

parse_gctx(fname, rid = NULL, cid = NULL, matrix_only = FALSE)



22 parse.gmt

Arguments
arguments passed on to parse_gctx
fname path to the GCTX file on disk
rid either a vector of character or integer row indices or a path to a grp file containing
character row indices. Only these indicies will be parsed from the file.
cid either a vector of character or integer column indices or a path to a grp file
containing character column indices. Only these indicies will be parsed from
the file.
matrix_only boolean indicating whether to parse only the matrix (ignoring row and column
annotations)
Details

parse_gctx also supports parsing of plain text GCT files, so this function can be used as a general
GCT parser.

Value

a GCT object

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), process_ids(), read.gctx.ids(),
read.gctx.meta(),write.gctx.meta(),write.gctx(),write.gct()

Examples

gct_file <- system.file("extdata”, "modzs_n25x50.gctx"”, package="cmapR")
(ds <- parse_gctx(gct_file))

# matrix only
(ds <- parse_gctx(gct_file, matrix_only=TRUE))

# only the first 10 rows and columns
(ds <- parse_gctx(gct_file, rid=1:10, cid=1:10))

parse.gmt Read a GMT file and return a list

Description

Read a GMT file and return a list



parse.gmx 23

Usage

parse.gmt(...)

parse_gmt(fname)

Arguments
arguments passed on to parse_gmt
fname the file path to be parsed
Details

parse_gmt returns a nested list object. The top level contains one list per row in fname. Each of
these is itself a list with the following fields: - head: the name of the data (row in fname) - desc:
description of the corresponding data - 1en: the number of data items - entry: a vector of the data
items

Value

a list of the contents of fname. See details.

See Also

Visit http://clue.io/help for details on the GMT file format
Other CMap parsing functions: 1xb2mat(), parse.gmx(), parse.grp(),write_gmt(),write_grp()

Examples

gmt_path <- system.file("”extdata”, "query_up.gmt”, package="cmapR")
gmt <- parse_gmt(gmt_path)
str(gmt)

parse.gmx Read a GMX file and return a list

Description

Read a GMX file and return a list

Usage

parse.gmx(...)

parse_gmx(fname)


http://clue.io/help

24 parse.grp

Arguments
arguments passed on to parse_gmx
fname the file path to be parsed
Details

parse_gmx returns a nested list object. The top level contains one list per column in fname. Each
of these is itself a list with the following fields: - head: the name of the data (column in fname) -
desc: description of the corresponding data - 1len: the number of data items - entry: a vector of
the data items

Value

a list of the contents of fname. See details.

See Also

Visit http://clue.io/help for details on the GMX file format
Other CMap parsing functions: 1xb2mat (), parse.gmt(), parse.grp(),write_gmt(),write_grp()

Examples

gmx_path <- system.file("extdata”, "lm_probes.gmx"”, package="cmapR")
gmx <- parse_gmx(gmx_path)
str(gmx)

parse.grp Read a GRP file and return a vector of its contents

Description

Read a GRP file and return a vector of its contents

Usage

parse.grp(...)

parse_grp(fname)

Arguments
arguments passed on to parse_grp
fname the file path to be parsed
Value

a vector of the contents of fname


http://clue.io/help

process_ids 25

See Also

Visit http://clue.io/help for details on the GRP file format
Other CMap parsing functions: 1xb2mat(), parse.gmt(), parse.gmx(),write_gmt(),write_grp()

Examples

grp_path <- system.file("extdata”, "lm_epsilon_n978.grp", package="cmapR")
values <- parse_grp(grp_path)

str(values)
process_ids Return a subset of requested GCTX row/colum ids out of the universe
of all ids
Description

Return a subset of requested GCTX row/colum ids out of the universe of all ids

Usage

process_ids(ids, all_ids, type = "rid")

Arguments
ids vector of requested ids. If NULL, no subsetting is performed
all_ids vector of universe of ids
type flag indicating the type of ids being processed

Details

This is a low-level helper function which most users will not need to access directly

Value

a list with the following elements ids: a character vector of the processed ids idx: an integer list of
their corresponding indices in all_ids

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), read.gctx.ids(),
read.gctx.meta(),write.gctx.meta(),write.gctx(),write.gct()

Examples

gct_file <- system.file("extdata”, "modzs_n25x50.gctx"”, package="cmapR")
ids <- read_gctx_ids(gct_file)

processed_ids <- cmapR:::process_ids(ids[1:10], ids)

str(processed_ids)


http://clue.io/help

rank.gct

26
rank.gct Convert a GCT object’s matrix to ranks
Description
Convert a GCT object’s matrix to ranks
Usage
rank.gct(...)
rank_gct(g, dim = "col"”, decreasing = TRUE)
## S4 method for signature 'GCT'
rank_gct(g, dim = "col"”, decreasing = TRUE)
Arguments
arguments passed on to rank_gct
g the GCT object to rank
dim the dimension along which to rank (row or column)
decreasing boolean indicating whether higher values should get lower ranks
Value
a modified version of g, with the values in the matrix converted to ranks
See Also
Other GCT utilities: annotate.gct(), melt.gct(), merge.gct(), subset.gct()
Examples

(ranked <- rank_gct(ds, dim="column"))

# scatter rank vs. score for a few columns

m <- mat(ds)

m_ranked <- mat(ranked)

plot(m[, 1:3], m_ranked[, 1:37,
xlab="score", ylab="rank")



read.gctx.ids 27

read.gctx.ids Read GCTX row or column ids

Description

Read GCTX row or column ids

Usage

read.gctx.ids(...)

read_gctx_ids(gctx_path, dim = "row")

Arguments
arguments passed on to read_gctx_ids
gctx_path path to the GCTX file
dim which ids to read (row or column)
Value

a character vector of row or column ids from the provided file

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.meta(),write.gctx.meta(),write.gctx(),write.gct()

Examples

gct_file <- system.file("extdata”, "modzs_n25x50.gctx"”, package="cmapR")
# row ids

rid <- read_gctx_ids(gct_file)

head(rid)

# column ids

cid <- read_gctx_ids(gct_file, dim="column")

head(cid)



28 read.gctx.meta

read.gctx.meta Parse row or column metadata from GCTX files

Description

Parse row or column metadata from GCTX files

Usage

read.gctx.meta(...)

read_gctx_meta(gctx_path, dim = "row"”, ids = NULL)

Arguments
arguments passed on to read_gctx_meta
gctx_path the path to the GCTX file
dim which metadata to read (row or column)
ids a character vector of a subset of row/column ids for which to read the metadata
Value

a data. frame of metadata

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(),write.gctx.meta(), write.gctx(),write.gct()

Examples

gct_file <- system.file("extdata”, "modzs_n25x50.gctx”, package="cmapR")
# row meta

row_meta <- read_gctx_meta(gct_file)

str(row_meta)

# column meta

col_meta <- read_gctx_meta(gct_file, dim="column")
str(col_meta)

# now for only the first 10 ids

col_meta_first10 <- read_gctx_meta(gct_file, dim="column”,
ids=col_meta$id[1:10])

str(col_meta_first10)



robust_zscore 29

robust_zscore Compoute robust z-scores

Description

robust zscore implementation takes in a 1D vector, returns 1D vector after computing robust zscores
rZ = (x-med(x))/mad(x)

Usage
robust_zscore(x, min_mad = 1e-06, ...)
Arguments
X numeric vector to z-score
min_mad the minimum allowed MAD, useful for avoiding division by very small numbers
further options to median, max functions
Value

transformed version of x

Examples
(x <= rnorm(25))

(robust_zscore(x))

# with min_mad
(robust_zscore(x, min_mad=1e-4))

subset.gct Subset a gct object using the provided row and column ids

Description

Subset a gct object using the provided row and column ids

Usage

## S3 method for class 'gct'
subset(...)

subset_gct(g, rid = NULL, cid = NULL)

## S4 method for signature 'GCT'
subset_gct(g, rid = NULL, cid = NULL)



30

Arguments

g
rid

cid

Value

a GCT object

See Also

arguments passed on to subset_gct
a gct object
a vector of character ids or integer indices for ROWS

a vector of character ids or integer indices for COLUMNS

Other GCT utilities: annotate.gct(), melt.gct(), merge.gct(), rank.gct()

Examples

# first 10 rows and columns by index
(a <- subset_gct(ds, rid=1:10, cid=1:10))

# first 10 rows and columns using character ids
# use \code{ids} to extract the ids

rid <- ids(ds)

cid <- ids(ds, dimension="col")
(b <- subset_gct(ds, rid=rid[1:10], cid=cid[1:10]))

identical(a, b) # TRUE

subset_to_ids

subset_to_ids

Do a robust data. frame subset to a set of ids

Description

Do a robust data. frame subset to a set of ids

Usage

subset_to_ids(df, ids)

Arguments

df

ids

Value

data. frame to subset

the ids to subset to

a subset version of df



threshold

31

threshold Threshold a numeric vector

Description

Threshold a numeric vector

Usage

threshold(x, minval, maxval)

Arguments
X the vector
minval minium allowed value
maxval maximum allowed value
Value

a thresholded version of x

Examples

X <- rnorm(20)
threshold(x, -0.1, -0.1)

transpose.gct Transpose a GCT object

Description

Transpose a GCT object
Usage

transpose.gct(...)

transpose_gct(g)

## S4 method for signature 'GCT'
transpose_gct(g)

Arguments

arguments passed on to transpose_gct
g the GCT object



32 update.gctx

Value

a modified verion of the input GCT object where the matrix has been transposed and the row and
column ids and annotations have been swapped.

Examples

transpose_gct(ds)

update.gctx Update the matrix of an existing GCTX file

Description

Update the matrix of an existing GCTX file

Usage

## S3 method for class 'gctx'
update(...)

update_gctx(x, ofile, rid = NULL, cid = NULL)

Arguments
arguments passed on to update_gctx
X an array of data
ofile the filename of the GCTX to update
rid integer indices or character ids of the rows to update
cid integer indices or character ids of the columns to update
Details

Overwrite the rows and columns of ofile as indicated by rid and cid respectively. rid and cid
can either be integer indices or character ids corresponding to the row and column ids in ofile.

Value

silently returns NULL



write.gct 33

Examples

## Not run:

m <- matrix(rnorm(20), nrow=10)

# update by integer indices

update_gctx(m, ofile="my.gctx", rid=1:10, cid=1:2)

# update by character ids

row_ids <- letters[1:10]

col_ids <- LETTERS[1:2]

update_gctx(m, ofile="my.gctx"”, rid=row_ids, cid=col_ids)

## End(Not run)

write.gct Write a GCT object to disk in GCT format

Description

Write a GCT object to disk in GCT format

Usage

write.gct(...)

write_gct(ds, ofile, precision = 4, appenddim = TRUE, ver = 3)

Arguments
arguments passed on to write_gct
ds the GCT object
ofile the desired output filename
precision the numeric precision at which to save the matrix. See details.
appenddim boolean indicating whether to append matrix dimensions to filename
ver the GCT version to write. See details.
Details

Since GCT is text format, the higher precision you choose, the larger the file size. ver is assumed
to be 3, aka GCT version 1.3, which supports embedded row and column metadata in the GCT file.
Any other value passed to ver will result in a GCT version 1.2 file which contains only the matrix
data and no annotations.

Value

silently returns NULL



34 write.gctx

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx.meta(), write.gctx()

Examples

# note this will create a GCT file in your current directory
write_gct(ds, "dataset”, precision=2)

write.gctx Write a GCT object to disk in GCTX format

Description

Write a GCT object to disk in GCTX format

Usage

write.gctx(...)

write_gctx(
ds,
ofile,
appenddim = TRUE,
compression_level = 0,
matrix_only = FALSE,
max_chunk_kb = 1024

)
Arguments
arguments passed on to write_gctx
ds a GCT object
ofile the desired file path for writing
appenddim boolean indicating whether the resulting filename will have dimensions appended

(e.g. my_file_n384x978.gctx)
compression_level

integer between 1-9 indicating how much to compress data before writing. Higher
values result in smaller files but slower read times.

matrix_only boolean indicating whether to write only the matrix data (and skip row, column
annotations)

max_chunk_kb  for chunking, the maximum number of KB a given chunk will occupy



write.gctx.meta 35

Value

silently returns NULL

See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx.meta(),write.gct()

Examples

# note this will create a GCT file in your current directory
write_gctx(ds, "dataset”)

write.gctx.meta Write a data. frame of meta data to GCTX file

Description

Write a data. frame of meta data to GCTX file

Usage

write.gctx.meta(...)

write_gctx_meta(ofile, df, dimension = "row")

Arguments

arguments passed on to write_gctx_meta

ofile the desired file path for writing
df the data. frame of annotations
dimension the dimension to annotate (row or column)
Value
silently returns NULL
See Also

Other GCTX parsing functions: GCT, append.dim(), fix.datatypes(), parse.gctx(), process_ids(),
read.gctx.ids(), read.gctx.meta(), write.gctx(),write.gct()



36 write.tbl

Examples

## Not run:
# assume ds is a GCT object
write_gctx_meta("/my/file/path”, cdesc_char, dimension="col")

## End(Not run)

write.tbl Write a data. frame to a tab-delimited text file

Description

Write a data. frame to a tab-delimited text file

Usage

write.tbl(...)

write_tbl(tbl, ofile, ...)

Arguments
additional arguments passed on to write.table
tbl the data. frame to be written
ofile the desired file name
Details

This method simply calls write.table with some preset arguments that generate a unquoated,
tab-delimited file without row names.

Value

silently returns NULL

See Also

write.table

Examples

## Not run:
write_tbl(cdesc_char, "col_meta.txt")

## End(Not run)



write_gmt 37

write_gmt Write a nested list to a GMT file

Description

Write a nested list to a GMT file

Usage

write_gmt(lst, fname)

Arguments
1st the nested list to write. See details.
fname the desired file name

Details

1st needs to be a nested list where each sub-list is itself a list with the following fields: - head: the
name of the data - desc: description of the corresponding data - 1en: the number of data items -
entry: a vector of the data items

Value

silently returns NULL

See Also

Visit http://clue.io/help for details on the GMT file format
Other CMap parsing functions: 1xb2mat (), parse.gmt(), parse.gmx(), parse.grp(),write_grp()

Examples

## Not run:
write_gmt(gene_set, "gene_set.gmt")

## End(Not run)


http://clue.io/help

38 write_grp

write_grp Write a vector to a GRP file

Description

Werite a vector to a GRP file

Usage

write_grp(vals, fname)

Arguments
vals the vector of values to be written
fname the desired file name

Value
silently returns NULL

See Also

Visit http://clue.io/help for details on the GRP file format
Other CMap parsing functions: 1xb2mat(), parse.gmt(), parse.gmx(), parse.grp(),write_gmt()

Examples

## Not run:
write_grp(letters, "letter.grp”)

## End(Not run)


http://clue.io/help

Index

* CMap parsing functions
1xb2mat, 15
parse.gmt, 22
parse.gmx, 23
parse.grp, 24
write_gmt, 37
write_grp, 38

*x GCT accessor methods
ids, 13
mat, 16
meta, 20

*x GCT utilities
annotate.gct, 4
melt.gct, 17
merge.gct, 18
rank.gct, 26
subset.gct, 29

x GCT utilties
transpose.gct, 31

* GCTX parsing functions
append.dim, 5
fix.datatypes, 10
GCT, 11
parse.gctx, 21
process_ids, 25
read.gctx.ids, 27
read.gctx.meta, 28
write.gct, 33
write.gctx, 34
write.gctx.meta, 35

x datasets
cdesc_char, 6
ds, 8
gene_set, 12
kd_gct, 14

* internal

append.dim, 5
fix.datatypes, 10
merge_with_precedence, 19

39

process_ids, 25
subset_to_ids, 30
write.gctx.meta, 35

align_matrices, 3

annotate.gct, 4, 18, 26, 30

annotate_gct (annotate.gct), 4

annotate_gct,GCT-method (annotate.gct),
4

append.dim, 5, 10, 11, 22, 25, 27, 28, 34, 35

append_dim (append.dim), 5

cdesc_char, 6
check_colnames, 6
check_dups, 7

data.frame, 4, 6, 19, 30
data.table, 17, 19
distil, 7

ds, 8

extract.gct, 8
extract_gct (extract.gct), 8

fix.datatypes, 5, 10, 11, 22, 25, 27, 28, 34,
35
fix_datatypes (fix.datatypes), 10

GCT, 5, 10, 11, 22, 25, 27, 28, 34, 35
GCT-class, 12
gene_set, 12

ids, 13, 16, 20
ids,GCT-method (ids), 13
ids<- (ids), 13
ids<-,GCT-method (ids), 13
is.wholenumber, 14

kd_gct, 14

1xb2mat, 15, 23-25, 37, 38



40

mat, 13, 16, 20
mat,GCT-method (mat), 16

mat<- (mat), 16
mat<-,GCT-method (mat), 16
melt.data.table, 17
melt.gct, 4, 17, 18, 26, 30

melt_gct (melt.gct), 17
melt_gct,GCT-method (melt.gct), 17
merge.gct, 4, 18, 18, 26, 30
merge_gct (merge.gct), 18
merge_gct,GCT,GCT-method (merge.gct), 18
merge_with_precedence, 19
meta, 13, 16, 20
meta,GCT-method (meta), 20

meta<- (meta), 20
meta<-,GCT-method (meta), 20

na_pad_matrix, 21

parse.gctx, 5, 10, 11,21, 25, 27, 28, 34, 35
parse.gmt, 15, 22, 24, 25, 37, 38
parse.gmx, 15, 23,23, 25,37, 38
parse.grp, 15,23, 24,24, 37, 38
parse_gctx, 12

parse_gctx (parse.gctx), 21

parse_gmt (parse.gmt), 22

parse_gmx (parse.gmx), 23

parse_grp (parse.grp), 24
process_ids, 5, 10, 11, 22, 25,27, 28, 34, 35

rank.gct, 4, 18, 26, 30

rank_gct (rank.gct), 26

rank_gct,GCT-method (rank.gct), 26

read.gctx.ids, 5, 10, 11,22, 25,27, 28, 34,
35

read.gctx.meta, 5, 10, 11, 22, 25, 27, 28, 34,
35

read_gctx_ids, 12

read_gctx_ids (read.gctx.ids), 27

read_gctx_meta, 12

read_gctx_meta (read.gctx.meta), 28

robust_zscore, 29

subset.gct, 4, 18, 26, 29

subset_gct (subset.gct), 29
subset_gct,GCT-method (subset.gct), 29
subset_to_ids, 30

threshold, 31

INDEX

transpose.gct, 31

transpose_gct (transpose.gct), 31

transpose_gct,GCT-method
(transpose.gct), 31

update.gctx, 32
update_gctx (update.gctx), 32

write.gct, 5, 10, 11,22, 25,27, 28,33, 35

write.gctx, 5, 10, 11, 22,25, 27, 28, 34, 34,
35

write.gctx.meta, 5, 10, 11,22, 25,27, 28,
34, 35,35

write.table, 36

write.tbl, 36

write_gct (write.gct), 33

write_gctx, 12

write_gctx (write.gctx), 34

write_gctx_meta (write.gctx.meta), 35

write_gmt, 15, 23-25, 37, 38

write_grp, 15, 23-25, 37, 38

write_tbl (write.tbl), 36



	align_matrices
	annotate.gct
	append.dim
	cdesc_char
	check_colnames
	check_dups
	distil
	ds
	extract.gct
	fix.datatypes
	GCT
	GCT-class
	gene_set
	ids
	is.wholenumber
	kd_gct
	lxb2mat
	mat
	melt.gct
	merge.gct
	merge_with_precedence
	meta
	na_pad_matrix
	parse.gctx
	parse.gmt
	parse.gmx
	parse.grp
	process_ids
	rank.gct
	read.gctx.ids
	read.gctx.meta
	robust_zscore
	subset.gct
	subset_to_ids
	threshold
	transpose.gct
	update.gctx
	write.gct
	write.gctx
	write.gctx.meta
	write.tbl
	write_gmt
	write_grp
	Index

