Package ‘chipenrich’

February 1, 2026
Type Package
Title Gene Set Enrichment For ChIP-seq Peak Data
Version 2.35.0
Date 2025-07-22

Description ChIP-Enrich and Poly-Enrich perform gene set enrichment testing
using peaks called from a ChIP-seq experiment. The method empirically
corrects for confounding factors such as the length of genes,
and the mappability of the sequence surrounding genes.

biocViews ImmunoOncology, ChIPSeq, Epigenetics, FunctionalGenomics,
GeneSetEnrichment, HistoneModification, Regression

License GPL-3

Imports AnnotationDbi, BiocGenerics, chipenrich.data, Seqinfo,
GenomicRanges, grDevices, grid, IRanges, lattice, latticeExtra,
MASS, methods, mgcv, org.Dm.eg.db, org.Dr.eg.db, org.Hs.eg.db,
org.Mm.eg.db, org.Rn.eg.db, parallel, plyr, rms, rtracklayer,
S4Vectors (>= 0.23.10), stats, stringr, utils

Suggests BiocStyle, devtools, knitr, rmarkdown, roxygen?2, testthat
Depends R (>=3.4.0)

LazyLoad yes

Maintainer Kai Wang <wangdaha@umich.edu>

RoxygenNote 7.1.1

VignetteBuilder knitr

Collate 'assign_peaks.R' 'test_broadenrich.R' 'peaks_per_gene.R'
'read.R' 'randomize.R' 'setup.R' 'supported.R' 'utils.R’
'constants.R' '‘plot_gene_coverage.R' 'broadenrich.R’
'test_chipapprox.R' 'test_chipenrich.R’'
'test_chipenrich_slow.R' 'test_fisher.R' 'test_binomial.R'
'test_approx.R' 'plot_chipenrich_spline.R' 'plot_dist_to_tss.R'
'chipenrich.R' 'chipenrich_package_doc.R' 'test_polyapprox.R’
'test_polyenrich_weighted.R' 'test_polyenrich_slow.R'
'test_polyenrich.R' 'plot_polyenrich_spline.R' 'polyenrich.R’
'hybrid.R' 'peak_weights.R' 'peaks2genes.R' 'test_proxReg.R'
‘proxReg.R’

2 Contents

git_url https://git.bioconductor.org/packages/chipenrich
git_branch devel

git_last_commit 93dd65a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Ryan P. Welch [aut, cph],
Chee Lee [aut],
Raymond G. Cavalcante [aut],
Kai Wang [cre],
Chris Lee [aut],
Laura J. Scott [ths],
Maureen A. Sartor [ths]

Contents
assign_peaks 3
assign_peak_segments e 4
broadenrich 5
calc_peak_gene_overlap 9
chipenrich L 10
chipenrich_package L 15
filter_genesets e e 15
geNOME_tO_OIZANISIN o v v v e e et i et e e e e e e e 16
genome_to_orgdb 16
get_test_method 17
hybridenrich 17
load_peaks 20
nUM_peaks_Per_gene e e e e e e 21
peaks2genes e e 22
plot_chipenrich_spline 25
plot_diSt_to_tSS 26
plot_gene_coverageo e e 27
plot_polyenrich_spline 28
polyenrich L 30
postprocess_peak_grs e e 34
post_process_enrichments o 35
proxReg 35
read_bed 39
read_geneset L. 40
read_ldef L L 41
read_mappa o e 41
recode_peaks L 42
reset_ncores_for windows e 42
SELUP_GENESELS e e e e e e e e e e e e 43

setup_locusdef 43

assign_peaks 3

SELUP_MAPPA + « v v v v e 44
supported_genesets e 45
SUPPOrted_ZENOMES« v« v v v i e e e e e e e e e e e e 45
supported_locusdefs oL 46
supported_methods L 47
supported_read_lengths 48

Index 49

assign_peaks Assign peak midpoints to defined gene loci.
Description

Determine the midpoints of a set of input regions peaks and the overlap of the midpoints with a
given locus definition locusdef. Also report the TSS that is nearest each region (peak) overlapping
a defined locus and its distance.

Usage

assign_peaks(peaks, locusdef, tss, weighting = NULL)

Arguments
peaks A GRanges object representing regions to be used for enrichment.
locusdef A locus definition object from chipenrich.data.
tss A GRanges object representing the TSSs for the genome build. Includes mcols
for Entrez Gene ID gene_id and gene symbol symbol.
weighting A string defining what weighting option they want. Current options are *multi-
Assign’, ’signalValue’, and ’logSignal Value’. Default is NULL.
Details

Typically, this function will not be used alone, but inside chipenrich().

Value

A data.frame with columns for peak_id, chr, peak_start, peak_end, gene_locus_start,
gene_locus_end, gene_id, nearest_tss, nearest_tss_gene, dist_to_tss, nearest_tss_gene_strand.
The result is used in num_peaks_per_gene().

4 assign_peak_segments

Examples

data('locusdef.hgl9.nearest_tss', package = 'chipenrich.data')
data('tss.hg19', package = 'chipenrich.data')

file = system.file('extdata', 'test_assign.bed', package = 'chipenrich')
peaks = read_bed(file)

assigned_peaks = assign_peaks(

peaks = peaks,

locusdef = locusdef.hgl19.nearest_tss,
tss = tss.hgl9)

assign_peak_segments Assign whole peaks to all overlapping defined gene loci.

Description
Determine all overlaps between the set of input regions peaks and the given locus definition locusdef.
In addition, report where each overlap begins and ends, as well as the length of the overlap.

Usage

assign_peak_segments(peaks, locusdef)

Arguments
peaks A GRanges object representing regions to be used for enrichment.
locusdef A locus definition object from chipenrich.data.

Details

Typically, this function will not be used alone, but inside chipenrich() withmethod = 'broadenrich’.

Value

A data.frame with columns for peak_id, chr, peak_start, peak_end, gene_locus_start,
gene_locus_end, gene_id, overlap_start, overlap_end, peak_overlap. The result is used
in num_peaks_per_gene().

Examples

data('locusdef.hg19.nearest_tss', package = 'chipenrich.data')
data('tss.hg19', package = 'chipenrich.data')

file = system.file('extdata', 'test_assign.bed', package = 'chipenrich')
peaks = read_bed(file)

broadenrich 5

assigned_peaks = assign_peak_segments(
peaks = peaks,
locusdef = locusdef.hgl19.nearest_tss)

broadenrich Run Broad-Enrich on broad genomic regions

Description

Broad-Enrich is designed for use with broad peaks that may intersect multiple gene loci, and cu-
mulatively cover greater than 5% of the genome. For example, ChIP-seq experiments for histone
modifications. For more details, see the ’Broad-Enrich Method’ section below. For help choosing a
method, see the ’Choosing A Method’ section below, or see the vignette.

Usage

broadenrich(
peaks,
out_name = "broadenrich”,
out_path = getwd(),
genome = supported_genomes(),
genesets = c("GOBP", "GOCC", "GOMF"),
locusdef = "nearest_tss”,
mappability = NULL,
qc_plots = TRUE,
min_geneset_size = 15,
max_geneset_size = 2000,
randomization = NULL,
n_cores =1

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y style data.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

out_name Prefix string to use for naming output files. This should not contain any charac-
ters that would be illegal for the system being used (Unix, Windows, etc.) The
default value is "broadenrich”, and a file "broadenrich_results.tab" is produced.
If gc_plots is set, then a file "broadenrich_qcplots.png" is produced containing
a number of quality control plots. If out_name is set to NULL, no files are writ-
ten, and results then must be retrieved from the list returned by broadenrich.

6 broadenrich

out_path Directory to which results files will be written out. Defaults to the current work-
ing directory as returned by getwd.
genome One of the supported_genomes().
genesets A character vector of geneset databases to be tested for enrichment. See supported_genesets().

Alternately, a file path to a a tab-delimited text file with header and first column
being the geneset ID or name, and the second column being Entrez Gene IDs.
For an example custom gene set file, see the vignette.

locusdef One of: ’nearest_tss’, 'nearest_gene’, ’exon’, ’intron’, *1kb’, *1kb_outside’,
"1kb_outside_upstream’, *5kb’, *Skb_outside’, *Skb_outside_upstream’, *10kb’,
’10kb_outside’, *10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns
“chr’, ’start’, ’end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

mappability One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and *mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from O and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

gc_plots A logical variable that enables the automatic generation of plots for quality con-
trol.

min_geneset_size
Sets the minimum number of genes a gene set may have to be considered for
enrichment testing.

max_geneset_size
Sets the maximum number of genes a gene set may have to be considered for
enrichment testing.

randomization One of NULL, ’complete’, *bylength’, or bylocation’. See the Randomizations
section below.

n_cores The number of cores to use for enrichment testing. We recommend using only
up to the maximum number of physical cores present, as virtual cores do not
significantly decrease runtime. Default number of cores is set to 1. NOTE:
Windows does not support multicore enrichment.

Value

A list, containing the following items:

opts A data frame containing the arguments/values passed to broadenrich.

peaks A data frame containing peak assignments to genes. Peaks which do not overlap
a gene locus are not included. Each peak that was assigned to a gene is listed,
along with the peak midpoint or peak interval coordinates (depending on which
was used), the gene to which the peak was assigned, the locus start and end
position of the gene, and the distance from the peak to the TSS.

The columns are:

broadenrich 7

peak_id an ID given to unique combinations of chromosome, peak start, and
peak end.

chr the chromosome the peak originated from.

peak_start start position of the peak.

peak_end end position of the peak.

gene_id the Entrez ID of the gene to which the peak was assigned.
gene_symbol the official gene symbol for the gene_id (above).

gene_locus_start the start position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

gene_locus_end the end position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

overlap_start the start position of the peak overlap with the gene locus.
overlap_end the end position of the peak overlap with the gene locus.
peak_overlap the base pair overlap of the peak with the gene locus.

peaks_per_gene A data frame of the count of peaks per gene. The columns are:

gene_id the Entrez Gene ID.

length the length of the gene’s locus (depending on which locus definition you
chose.)

log10_length the log10(locus length) for the gene.

num_peaks the number of peaks that were assigned to the gene, given the cur-
rent locus definition.

peak whether or not the gene is considered to have a peak, as defined by num_peak_threshold.
peak_overlap the number of base pairs of the gene covered by a peak.
ratio the proportion of the gene covered by a peak.

results A data frame of the results from performing the gene set enrichment test on each

geneset that was requested (all genesets are merged into one final data frame.)
The columns are:

Geneset.ID the identifier for a given gene set from the selected database. For
example, GO:0000003.

Geneset.Type specifies from which database the Geneset.ID originates. For
example, "Gene Ontology Biological Process."

Description gives a definition of the geneset. For example, "reproduction.”

P.Value the probability of observing the degree of enrichment of the gene set
given the null hypothesis that peaks are not associated with any gene sets.

FDR the false discovery rate proposed by Bejamini \& Hochberg for adjusting
the p-value to control for family-wise error rate.

Odds.Ratio the estimated odds that peaks are associated with a given gene set
compared to the odds that peaks are associated with other gene sets, after
controlling for locus length and/or mappability. An odds ratio greater than
1 indicates enrichment, and less than 1 indicates depletion.

N.Geneset.Genes the number of genes in the gene set.

N.Geneset.Peak.Genes the number of genes in the genes set that were assigned
at least one peak.

8 broadenrich

Geneset.Avg.Gene.Length the average length of the genes in the gene set.

Geneset.Avg.Gene.Coverage the mean proportion of the gene loci in the gene
set covered by a peak.

Geneset.Peak.Genes the list of genes from the gene set that had at least one
peak assigned.

Broad-Enrich Method

The Broad-Enrich method uses the cumulative peak coverage of genes in its model for enrichment:
GO ~ ratio + s(log10@_length). Here, GO is a binary vector indicating whether a gene is in the gene
set being tested, ratio is a numeric vector indicating the ratio of the gene covered by peaks, and
s(log10@_length) is a binomial cubic smoothing spline which adjusts for the relationship between
gene coverage and locus length.

Choosing A Method
The following guidelines are intended to help select an enrichment function:

broadenrich(): is designed for use with broad peaks that may intersect multiple gene loci, and
cumulatively cover greater than 5% of the genome. For example, ChIP-seq experiments for
histone modifications.

chipenrich(): is designed for use with 1,000s or 10,000s of narrow peaks which results in fewer
gene loci containing a peak overall. For example, ChIP-seq experiments for transcription
factors.

polyenrich(): is also designed for narrow peaks, for experiments with 100,000s of peaks, or in
cases where the number of binding sites per gene affects its regulation. If unsure whether to
use chipenrich or polyenrich, then we recommend hybridenrich.

hybridenrich(): is a combination of chipenrich and polyenrich, to be used when one is unsure
which is the optimal method.

Randomizations

Randomization of locus definitions allows for the assessment of Type I Error under the null hypoth-
esis. The randomization codes are:

NULL: No randomizations, the default.

’complete’: Shuffle the gene_id and symbol columns of the locusdef together, without regard
for the chromosome location, or locus length. The null hypothesis is that there is no true gene
set enrichment.

’bylength’: Shuffle the gene_id and symbol columns of the locusdef together within bins of 100
genes sorted by locus length. The null hypothesis is that there is no true gene set enrichment,
but with preserved locus length relationship.

’bylocation’: Shuffle the gene_id and symbol columns of the locusdef together within bins of
50 genes sorted by genomic location. The null hypothesis is that there is no true gene set
enrichment, but with preserved genomic location.

The return value with a selected randomization is the same list as without. To assess the Type I
error, the alpha level for the particular data set can be calculated by dividing the total number of
gene sets with p-value < alpha by the total number of tests. Users may want to perform multiple
randomizations for a set of peaks and take the median of the alpha values.

calc_peak gene_overlap 9

See Also

Other enrichment functions: chipenrich(), polyenrich()

Examples

Run Broad-Enrich using an example dataset, assigning peaks to the nearest TSS,
and on a small custom geneset
data(peaks_H3K4me3_GM12878, package = 'chipenrich.data')
peaks_H3K4me3_GM12878 = subset(peaks_H3K4me3_GM12878,
peaks_H3K4me3_GM12878%chrom == 'chril')
gs_path = system.file('extdata', 'vignette_genesets.txt', package='chipenrich"')
results = broadenrich(peaks_H3K4me3_GM12878, locusdef='nearest_tss',

genome = 'hgl19', genesets=gs_path, out_name=NULL)

Get the list of peaks that were assigned to genes.
assigned_peaks = results$peaks

Get the results of enrichment testing.
enrich = results$results

calc_peak_gene_overlap
Add peak overlap and ratio to result of num_peaks_per_gene()

Description

In particular, for method = 'broadenrich’' in chipenrich(), when using assign_peak_segments().
This function will add aggregated peak_overlap (in base pairs) and ratio (relative to length)
columns to the result of num_peaks_per_gene() so the right data is present for the method =
"broadenrich' model.

Usage

calc_peak_gene_overlap(assigned_peaks, ppg)

Arguments

assigned_peaks A data.frame resulting from assign_peak_segments().

ppg The aggregated peak assignments over gene_id from num_peaks_per_gene().

Details

Typically, this function will not be used alone, but inside chipenrich() withmethod = 'broadenrich’.

10 chipenrich

Value

A data.frame with columns gene_id, length, log1@_length, num_peaks, peak, peak_overlap,
ratio. The result is used directly in the gene set enrichment tests in chipenrich() when method
= 'broadenrich’'.

Examples

data('locusdef.hg19.nearest_tss', package = 'chipenrich.data')
data('tss.hg19', package = 'chipenrich.data')

file = system.file('extdata', 'test_assign.bed', package = 'chipenrich')
peaks = read_bed(file)

assigned_peaks = assign_peak_segments(
peaks = peaks,
locusdef = locusdef.hgl9.nearest_tss)

ppg = num_peaks_per_gene(
assigned_peaks = assigned_peaks,
locusdef = locusdef.hgl9.nearest_tss,
mappa = NULL)

ppg = calc_peak_gene_overlap(
assigned_peaks = assigned_peaks,
pPg = ppg)

chipenrich Run ChIP-Enrich on narrow genomic regions

Description

ChIP-Enrich is designed for use with 1,000s or 10,000s of narrow peaks which results in fewer gene
loci containing a peak overall. For example, ChIP-seq experiments for transcription factors. For
more details, see the ’ChIP-Enrich Method’ section below. For help choosing a method, see the
’Choosing A Method’ section below, or see the vignette.

Usage
chipenrich(
peaks,
out_name = "chipenrich”,
out_path = getwd(),

genome = supported_genomes(),
genesets = c("GOBP", "GOCC", "GOMF"),
locusdef = "nearest_tss”,

method = "chipenrich”,

mappability = NULL,

chipenrich 11

fisher_alt = "two.sided",
qc_plots = TRUE,
min_geneset_size = 15,
max_geneset_size = 2000,
num_peak_threshold = 1,
randomization = NULL,
n_cores = 1

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y styledata.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

out_name Prefix string to use for naming output files. This should not contain any charac-
ters that would be illegal for the system being used (Unix, Windows, etc.) The
default value is "chipenrich", and a file "chipenrich_results.tab" is produced. If
gc_plots is set, then a file "chipenrich_qcplots.png" is produced containing a
number of quality control plots. If out_name is set to NULL, no files are written,
and results then must be retrieved from the list returned by chipenrich.

out_path Directory to which results files will be written out. Defaults to the current work-
ing directory as returned by getwd.

genome One of the supported_genomes().

genesets A character vector of geneset databases to be tested for enrichment. See supported_genesets().
Alternately, a file path to a a tab-delimited text file with header and first column
being the geneset ID or name, and the second column being Entrez Gene IDs.
For an example custom gene set file, see the vignette.

locusdef One of: ’nearest_tss’, ’nearest_gene’, ’exon’, ’intron’, ’1kb’, ’1kb_outside’,
’1kb_outside_upstream’, *5kb’, *Skb_outside’, ’5kb_outside_upstream’, *10kb’,
”10kb_outside’, *10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns
“chr’, start’, ’end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

method A character string specifying the method to use for enrichment testing. Must be
one of ChIP-Enrich (’chipenrich’) (default), or Fisher’s exact test ("fet’).

mappability One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and "mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from 0 and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

chipenrich

If method is ’fet’, this option indicates the alternative for Fisher’s exact test, and
must be one of "two-sided’ (default), *greater’, or ’less’.

A logical variable that enables the automatic generation of plots for quality con-

Sets the minimum number of genes a gene set may have to be considered for
enrichment testing.

Sets the maximum number of genes a gene set may have to be considered for
enrichment testing.

Sets the threshold for how many peaks a gene must have to be considered as
having a peak. Defaults to 1. Only relevant for Fisher’s exact test and ChIP-
Enrich methods.

One of NULL, ’complete’, ’bylength’, or ’bylocation’. See the Randomizations
section below.

The number of cores to use for enrichment testing. We recommend using only
up to the maximum number of physical cores present, as virtual cores do not
significantly decrease runtime. Default number of cores is set to 1. NOTE:
Windows does not support multicore enrichment.

12
fisher_alt
qgc_plots

trol.

min_geneset_size
max_geneset_size
num_peak_threshold
randomization
n_cores

Value

A list, containing the following items:

opts

peaks

A data frame containing the arguments/values passed to chipenrich.

A data frame containing peak assignments to genes. Peaks which do not overlap
a gene locus are not included. Each peak that was assigned to a gene is listed,
along with the peak midpoint or peak interval coordinates (depending on which
was used), the gene to which the peak was assigned, the locus start and end
position of the gene, and the distance from the peak to the TSS.

The columns are:

peak_id an ID given to unique combinations of chromosome, peak start, and
peak end.

chr the chromosome the peak originated from.

peak_start start position of the peak.

peak_end end position of the peak.

peak_midpoint the midpoint of the peak.

gene_id the Entrez ID of the gene to which the peak was assigned.

gene_symbol the official gene symbol for the gene_id (above).

gene_locus_start the start position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

gene_locus_end the end position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

nearest_tss the closest TSS to this peak (for any gene, not necessarily the gene
this peak was assigned to.)

chipenrich 13

nearest_tss_gene the gene having the closest TSS to the peak (should be the
same as gene_id when using the nearest TSS locus definition.)

nearest_tss_gene_strand the strand of the gene with the closest TSS.
peaks_per_gene A data frame of the count of peaks per gene. The columns are:

gene_id the Entrez Gene ID.

length the length of the gene’s locus (depending on which locus definition you
chose.)

log10_length the logl10(locus length) for the gene.

num_peaks the number of peaks that were assigned to the gene, given the cur-
rent locus definition.

peak whether or not the gene is considered to have a peak, as defined by num_peak_threshold.
results A data frame of the results from performing the gene set enrichment test on each

geneset that was requested (all genesets are merged into one final data frame.)
The columns are:

Geneset.ID the identifier for a given gene set from the selected database. For
example, GO:0000003.

Geneset. Type specifies from which database the Geneset.ID originates. For
example, "Gene Ontology Biological Process."

Description gives a definition of the geneset. For example, "reproduction.”

P.Value the probability of observing the degree of enrichment of the gene set
given the null hypothesis that peaks are not associated with any gene sets.

FDR the false discovery rate proposed by Bejamini \& Hochberg for adjusting
the p-value to control for family-wise error rate.

Odds.Ratio the estimated odds that peaks are associated with a given gene set
compared to the odds that peaks are associated with other gene sets, after
controlling for locus length and/or mappability. An odds ratio greater than
1 indicates enrichment, and less than 1 indicates depletion.

N.Geneset.Genes the number of genes in the gene set.

N.Geneset.Peak.Genes the number of genes in the genes set that were assigned
at least one peak.

Geneset.Avg.Gene.Length the average length of the genes in the gene set.

Geneset.Peak.Genes the list of genes from the gene set that had at least one
peak assigned.

ChIP-Enrich Method

The ChIP-Enrich method uses the presence of a peak in its model for enrichment: peak ~ GO +
s(logl@_length). Here, GO is a binary vector indicating whether a gene is in the gene set being
tested, peak is a binary vector indicating the presence of a peak in a gene, and s(log10_length)
is a binomial cubic smoothing spline which adjusts for the relationship between the presence of a
peak and locus length.

Choosing A Method

The following guidelines are intended to help select an enrichment function:

14 chipenrich

broadenrich(): is designed for use with broad peaks that may intersect multiple gene loci, and
cumulatively cover greater than 5% of the genome. For example, ChIP-seq experiments for
histone modifications.

chipenrich(): is designed for use with 1,000s or 10,000s of narrow peaks which results in fewer
gene loci containing a peak overall. For example, ChIP-seq experiments for transcription
factors.

polyenrich(): is also designed for narrow peaks, for experiments with 100,000s of peaks, or in
cases where the number of binding sites per gene affects its regulation. If unsure whether to
use chipenrich or polyenrich, then we recommend hybridenrich.

hybridenrich(): is a combination of chipenrich and polyenrich, to be used when one is unsure
which is the optimal method.

Randomizations

Randomization of locus definitions allows for the assessment of Type I Error under the null hypoth-
esis. The randomization codes are:

NULL: No randomizations, the default.

’complete’: Shuffle the gene_id and symbol columns of the locusdef together, without regard
for the chromosome location, or locus length. The null hypothesis is that there is no true gene
set enrichment.

’bylength’: Shuffle the gene_id and symbol columns of the locusdef together within bins of 100
genes sorted by locus length. The null hypothesis is that there is no true gene set enrichment,
but with preserved locus length relationship.

’bylocation’: Shuffle the gene_id and symbol columns of the locusdef together within bins of
50 genes sorted by genomic location. The null hypothesis is that there is no true gene set
enrichment, but with preserved genomic location.

The return value with a selected randomization is the same list as without. To assess the Type 1
error, the alpha level for the particular data set can be calculated by dividing the total number of
gene sets with p-value < alpha by the total number of tests. Users may want to perform multiple
randomizations for a set of peaks and take the median of the alpha values.

See Also

Other enrichment functions: broadenrich(), polyenrich()

Examples

Run ChipEnrich using an example dataset, assigning peaks to the nearest TSS,

and on a small custom geneset

data(peaks_E2F4, package = 'chipenrich.data')

peaks_E2F4 = subset(peaks_E2F4, peaks_E2F4$chrom == 'chri1')

gs_path = system.file('extdata', 'vignette_genesets.txt', package='chipenrich')

results = chipenrich(peaks_E2F4, method='chipenrich', locusdef='nearest_tss',
genome = 'hgl19', genesets=gs_path, out_name=NULL)

Get the list of peaks that were assigned to genes.
assigned_peaks = results$peaks

chipenrich_package 15

Get the results of enrichment testing.
enrich = results$results

chipenrich_package chipenrich: Gene Set Enrichment For ChIP-seq Peak Data and Other
Genomic Regions

Description

The chipenrich package includes three classes of methods that adjust for potential confounders
of gene set enrichment testing (locus length and mappability of the sequence reads). The first,
chipenrich, is designed for use with transcription-factor (TF) based ChIP-seq experiments and
other DNA sequencing experiments with narrow genomic regions. The second, polyenrich, is
similarly designed for TF based ChIP-seq, but where the number of peaks present in gene loci
may be important. The third, broadenrich, is designed for use with histone modification based
ChIP-seq experiments and other DNA sequencing experiments with broad genomic regions.

filter_genesets Function to filter genesets by locus definition and size

Description

This function filters gene sets based on the genes that are present in a particular locus definition.
After determining which genes are present in both the GeneSet, gs_obj, and the LocusDefinition
ldef_obj, gene sets are filtered by size with min_geneset_size and max_geneset_size.

Usage

filter_genesets(
gs_obj,
ldef_obj,
min_geneset_size = 15,
max_geneset_size = 2000

)

Arguments
gs_obj A valid GeneSet object
ldef_obj A valid LocusDefinition object

min_geneset_size

An integer indicating the floor for genes in a geneset. Default 15.
max_geneset_size

An integer indicating the ceiling for genes in a geneset. Default 2000.

16 genome_to_orgdb

Value

An altered gs_obj with changed set.gene and all. genes slots reflecting min_geneset_size and
max_geneset_size after intersecting with the genes present in the particular locus definition.

genome_to_organism Get the correct organism code based on genome

Description
Data from chipenrich.data uses three letter organism codes for the GeneSet objects. This func-
tion ensures the correct objects are loaded.

Usage

genome_to_organism(genome = supported_genomes())

Arguments

genome One of the supported_genomes().

Value

A string for the three letter organism code. Convention is first letter of the first word in the binomial
name, and first two letters of the second word in the binomial name. "Homo sapiens’ is then "hsa’,
for example.

genome_to_orgdb Get Entrez ID to gene symbol mappings for custom locus definitions

Description
If a custom locus definition is one of the supported_genomes(), then the gene symbol column of
the custom locus definition is populated using the appropriate orgDb package.

Usage

genome_to_orgdb(genome = supported_genomes())

Arguments

genome One of the supported_genomes().

Value

A data. frame with gene_id and symbol columns.

get_test_method 17

get_test_method Get the test function name from the method name

Description

The method comes from what is used in chipenrich() orin polyenrich().

Usage

get_test_method(method)

Arguments
method A character for the method used. One of the supported_methods or one of the
HIDDEN_METHODS in constants.R.
Value

A singleton named character vector with value of the test function and name of the method.

hybridenrich Running Hybrid test, either from scratch or using two results files

Description

Hybrid test is designed for people unsure of which test between ChIP-Enrich and Poly-Enrich to
use, so it takes information of both and gives adjusted P-values. For more about ChIP- and Poly-
Enrich, consult their corresponding documentation.

Usage

hybridenrich(
peaks,
out_name = "hybridenrich”,
out_path = getwd(),
genome = supported_genomes(),
genesets = c("GOBP", "GOCC", "GOMF"),
locusdef = "nearest_tss”,
methods = c("chipenrich”, "polyenrich”),
weighting = NULL,
mappability = NULL,
qc_plots = TRUE,
min_geneset_size = 15,
max_geneset_size = 2000,
num_peak_threshold = 1,
randomization = NULL,
n_cores = 1

18 hybridenrich

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y style data. frame. See GenomicRanges: :makeGRangesFromDataFrame
for acceptable column names.

out_name Prefix string to use for naming output files. This should not contain any charac-
ters that would be illegal for the system being used (Unix, Windows, etc.) The
default value is "chipenrich", and a file "chipenrich_results.tab" is produced. If
gc_plots is set, then a file "chipenrich_qcplots.pdf” is produced containing a
number of quality control plots. If out_name is set to NULL, no files are written,
and results then must be retrieved from the list returned by chipenrich.

out_path Directory to which results files will be written out. Defaults to the current work-
ing directory as returned by getwd.

genome One of the supported_genomes().

genesets A character vector of geneset databases to be tested for enrichment. See supported_genesets().
Alternately, a file path to a a tab-delimited text file with header and first column
being the geneset ID or name, and the second column being Entrez Gene IDs.
For an example custom gene set file, see the vignette.

locusdef One of: ’nearest_tss’, ’nearest_gene’, ’exon’, ’intron’, ’1kb’, ’1kb_outside’,
’1kb_outside_upstream’, ’5kb’, *Skb_outside’, *5kb_outside_upstream’, *10kb’,
’10kb_outside’, * 10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns

) LI

chr’, ’start’, end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

methods A character string array specifying the method to use for enrichment testing.
Currently actually unused as the methods are forced to be one chipenrich and
one polyenrich.

weighting A character string specifying the weighting method. Method name will auto-
matically be "polyenrich_weighted" if given weight options. Current options
are: ’signalValue’, ’logsignal Value’, and 'multiAssign’.

mappability One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and *mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from 0 and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

gc_plots A logical variable that enables the automatic generation of plots for quality con-
trol.

min_geneset_size
Sets the minimum number of genes a gene set may have to be considered for
enrichment testing.

hybridenrich 19

max_geneset_size
Sets the maximum number of genes a gene set may have to be considered for
enrichment testing.

num_peak_threshold
Sets the threshold for how many peaks a gene must have to be considered as
having a peak. Defaults to 1. Only relevant for Fisher’s exact test and ChIP-
Enrich methods.

randomization One of NULL, ’complete’, *bylength’, or bylocation’. See the Randomizations
section below.

n_cores The number of cores to use for enrichment testing. We recommend using only
up to the maximum number of physical cores present, as virtual cores do not
significantly decrease runtime. Default number of cores is set to 1. NOTE:
Windows does not support multicore enrichment.

Value

A data.frame containing:

results A data frame of the results from performing the gene set enrichment test on each
geneset that was requested (all genesets are merged into one final data frame.)
The columns are:

Geneset.ID is the identifier for a given gene set from the selected database. For
example, GO:0000003.

P.Value.x is the probability of observing the degree of enrichment of the gene
set given the null hypothesis that peaks are not associated with any gene
sets, for the first test.

P.Value.y is the same as above except for the second test.
P.Value.Hybrid The calculated Hybrid p-value from the two tests

FDR.Hybrid is the false discovery rate proposed by Bejamini \& Hochberg for
adjusting the p-value to control for family-wise error rate. Other variables
given will also be included, see the corresponding methods’ documentation
for their details.

Hybrid p-values

Given n tests that test for the same hypothesis, same Type I error rate, and converted to p-values:
p_1, ..., p_n, the Hybrid p-value is computed as: n*min(p_1, ..., p_n). This hybrid test will
have at most the same Type I error as any individual test, and if any of the tests have 100% power
as sample size goes to infinity, then so will the hybrid test.

Function inputs

Every input in hybridenrich is the same as in chipenrich and polyenrich. Inputs unique to chipenrich
are: num_peak_threshold; and inputs unique to polyenrich are: weighting. Currently the test only
supports running chipenrich and polyenrich, but future plans will allow you to run any number of
different support tests.

20 load_peaks

Joining two results files

Combines two existing results files and returns one results file with hybrid p-values and FDR in-
cluded. Current allowed inputs are objects from any of the supplied enrichment tests or a dataframe
with at least the following columns: P.value, Geneset.ID. Optional columns include: Status.
Currently we only allow for joining two results files, but future plans will allow you to join any
number of results files.

load_peaks Convert a BEDX+Y data.frame and into GRanges

Description

Given adata. frame in BEDX+Y format, use the built-in function GenomicRanges: : makeGRangesFromDataFrame ()
to convert to GRanges.

Usage

load_peaks(dframe, keep.extra.columns = TRUE)

Arguments

dframe A BEDX+Y style data.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names for appropriate conversion to GRanges.
keep.extra.columns
Keep extra columns parameter from GenomicRanges: :makeGRangesFromDataFrame().

Details

Typically, this function will not be used alone, but inside chipenrich().

Value

A GRanges that may or may not keep.extra.columns, and that may or may not be stranded,
depending on whether there is strand column in the dframe.

Examples

Example with just chr, start, end
peaks_df = data.frame(

chr = c('chr1','chr2', 'chr3'),
start = c(35,74,235),

end = c(46,83,421),
stringsAsFactors = FALSE)

peaks = load_peaks(peaks_df)

Example with extra columns
peaks_df = data.frame(
chr = ¢('chr1', 'chr2','chr3"),

num_peaks_per_gene 21

start = c(35,74,235),

end = c(46,83,421),

strand = c('+','=-","'+"),

score = c(36, 747, 13),

stringsAsFactors = FALSE)

peaks = load_peaks(peaks_df, keep.extra.columns = TRUE)

num_peaks_per_gene Aggregate peak assignments over the gene_id column

Description

For each gene_id, determine the locus length and the number of peaks.

Usage

num_peaks_per_gene(assigned_peaks, locusdef, mappa = NULL)

Arguments

assigned_peaks A data.frame resulting from assign_peaks() or assign_peak_segments().

locusdef A locus definition object from chipenrich.data.
mappa A mappability object from chipenrich.data.
Details

Typically, this function will not be used alone, but inside chipenrich().

Value

A data.frame with columns gene_id, length, log1@_length, num_peaks, peak. The result is
used directly in the gene set enrichment tests in chipenrich().

Examples

data('locusdef.hgl9.nearest_tss', package = 'chipenrich.data')
data('tss.hg19', package = 'chipenrich.data')

file = system.file('extdata', 'test_assign.bed', package = 'chipenrich')
peaks = read_bed(file)

assigned_peaks = assign_peaks(

peaks = peaks,

locusdef = locusdef.hgl9.nearest_tss,
tss = tss.hgl9)

ppg = num_peaks_per_gene(
assigned_peaks = assigned_peaks,

22 peaks2genes

locusdef = locusdef.hgl9.nearest_tss,
mappa = NULL)

peaks2genes Run the test process up to, but not including the enrichment tests.

Description

This function is used to create the *_peaks and *_peaks-per-gene files This way one does not need
to remake these files whenever one just wants to test enrichment methods.

Usage

peaks2genes(
peaks,
out_name = "readyToEnrich”,
out_path = getwd(),
genome = supported_genomes(),
locusdef = "nearest_tss”,
weighting = NULL,
mappability = NULL,
qc_plots = TRUE,
num_peak_threshold = 1,
randomization = NULL

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .ff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y styledata.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

out_name Prefix string to use for naming output files. This should not contain any charac-
ters that would be illegal for the system being used (Unix, Windows, etc.) The
default value is "polyenrich", and a file "polyenrich_results.tab" is produced. If
gc_plots is set, then a file "polyenrich_qcplots.pdf" is produced containing a
number of quality control plots. If out_name is set to NULL, no files are written,
and results then must be retrieved from the list returned by polyenrich.

out_path Directory to which results files will be written out. Defaults to the current work-
ing directory as returned by getwd.

genome One of the supported_genomes().

peaks2genes

locusdef

weighting

mappability

gc_plots

23

One of: ’nearest_tss’, ’nearest_gene’, ’exon’, ’intron’, ’1kb’, ’1kb_outside’,
’1kb_outside_upstream’, ’5kb’, *Skb_outside’, *5kb_outside_upstream’, *10kb’,
’10kb_outside’, * 10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns
“chr’, ’start’, “end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

(Poly-Enrich only) character string specifying the weighting method if method is
chosen to be "polyenrich_weighted’. Current options are: ’signalValue’, ’logsig-
nalValue’, and multiAssign’.

One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and *mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from O and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

A logical variable that enables the automatic generation of plots for quality con-
trol.

num_peak_threshold

randomization

Value

(ChIP-Enrich only) Sets the threshold for how many peaks a gene must have to
be considered as having a peak. Defaults to 1. Only relevant for Fisher’s exact
test and ChIP-Enrich methods.

One of NULL, ’complete’, *bylength’, or ’bylocation’. See the Randomizations
section below.

A list, containing the following items:

opts

peaks

A data frame containing the arguments/values passed to polyenrich.

A data frame containing peak assignments to genes. Peaks which do not overlap
a gene locus are not included. Each peak that was assigned to a gene is listed,
along with the peak midpoint or peak interval coordinates (depending on which
was used), the gene to which the peak was assigned, the locus start and end
position of the gene, and the distance from the peak to the TSS.

The columns are:

peak_id is an ID given to unique combinations of chromosome, peak start, and
peak end.

chr is the chromosome the peak originated from.

peak_start is start position of the peak.

peak_end is end position of the peak.

peak_midpoint is the midpoint of the peak.

gene_id is the Entrez ID of the gene to which the peak was assigned.

gene_symbol is the official gene symbol for the gene_id (above).

gene_locus_start is the start position of the locus for the gene to which the
peak was assigned (specified by the locus definition used.)

24

peaks2genes

gene_locus_end is the end position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

nearest_tss is the closest TSS to this peak (for any gene, not necessarily the
gene this peak was assigned to.)

nearest_tss_gene is the gene having the closest TSS to the peak (should be the
same as gene_id when using the nearest TSS locus definition.)

nearest_tss_gene_strand is the strand of the gene with the closest TSS.
peaks_per_gene A data frame of the count of peaks per gene. The columns are:

gene_id is the Entrez Gene ID.

length is the length of the gene’s locus (depending on which locus definition
you chose.)

log10_length is the log10(locus length) for the gene.

num_peaks is the number of peaks that were assigned to the gene, given the
current locus definition.

peak is whether or not the gene has a peak.

Randomizations

Randomization of locus definitions allows for the assessment of Type I Error under the null hypoth-
esis. The randomization codes are:

NULL: No randomizations, the default.

’complete’: Shuffle the gene_id and symbol columns of the locusdef together, without regard
for the chromosome location, or locus length. The null hypothesis is that there is no true gene
set enrichment.

’bylength’: Shuffle the gene_id and symbol columns of the locusdef together within bins of 100
genes sorted by locus length. The null hypothesis is that there is no true gene set enrichment,
but with preserved locus length relationship.

’bylocation’: Shuffle the gene_id and symbol columns of the locusdef together within bins of
50 genes sorted by genomic location. The null hypothesis is that there is no true gene set
enrichment, but with preserved genomic location.

The return value with a selected randomization is the same list as without. To assess the Type 1
error, the alpha level for the particular data set can be calculated by dividing the total number of
gene sets with p-value < alpha by the total number of tests. Users may want to perform multiple
randomizations for a set of peaks and take the median of the alpha values.

Poly-Enrich Weighting Options

Poly-Enrich also allows weighting of individual peaks. Currently the options are:
’signalValue:” weighs each peak based on the Signal Value given in the narrowPeak format or a
user-supplied column, normalized to have mean 1.

’logsignal Value:’ weighs each peak based on the log Signal Value given in the narrowPeak format
or a user-supplied column, normalized to have mean 1.

’multiAssign:’ weighs each peak by the inverse of the number of genes it is assigned to.

plot_chipenrich_spline 25

Examples

Run peaks2genes using an example dataset, assigning peaks to the nearest TSS
data(peaks_E2F4, package = 'chipenrich.data')
peaks_E2F4 = subset(peaks_E2F4, peaks_E2F4$chrom == 'chri1')
gs_path = system.file('extdata', package='chipenrich')
results = peaks2genes(peaks_E2F4, locusdef='nearest_tss',
genome = 'hgl19', out_name=NULL)

Get the list of peaks that were assigned to genes.
assigned_peaks = results$peaks

plot_chipenrich_spline
QC plot for ChIP-Enrich

Description

A plot showing an approximation of the empirical spline used to model the relationship between a
gene having a peak and the locus length. For visual clarity, genes are binned into groups of 25 after
sorting by locus length. Expected fits assuming independence of locus length and presence of a
peak, and assuming proportionality of locus length and presence of a peak are given to demonstrate
deviation from either for the dataset.

Usage
plot_chipenrich_spline(
peaks,
locusdef = "nearest_tss”,

genome = supported_genomes(),
mappability = NULL,

legend = TRUE,

xlim = NULL

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y styledata.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

26

locusdef

genome

mappability

legend

x1lim

Value

plot_dist_to_tss

One of: ’nearest_tss’, ’nearest_gene’, ’exon’, ’intron’, ’1kb’, ’1kb_outside’,
’1kb_outside_upstream’, ’5kb’, *Skb_outside’, *5kb_outside_upstream’, *10kb’,
’10kb_outside’, * 10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns
“chr’, ’start’, “end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

One of the supported_genomes().

One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and *mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from 0 and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

If true, a legend will be drawn on the plot.

Set the x-axis limit. NULL means select x-lim automatically.

A trellis plot object.

Examples

Spline plot for E2F4 example peak dataset.

data(peaks_E2F4,

package = 'chipenrich.data')

Create the plot for a different locus definition

to compare the

effect.

plot_chipenrich_spline(peaks_E2F4, locusdef = 'nearest_gene', genome = 'hgl9')

plot_dist_to_tss

Plot histogram of distance from peak to nearest TSS

Description

Create a histogram of the distance from each peak to the nearest transcription start site (TSS) of any

gene.

Usage

plot_dist_to_tss(peaks, genome = supported_genomes())

plot_gene_coverage 27

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .ff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y style data.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

genome One of the supported_genomes().

Value

A trellis plot object.

Examples

Create histogram of distance from peaks to nearest TSS.
data(peaks_E2F4, package = 'chipenrich.data')

peaks_E2F4 = subset(peaks_E2F4, peaks_E2F4$chrom == 'chril')
plot_dist_to_tss(peaks_E2F4, genome = 'hgl9')

plot_gene_coverage QC plot for Broad-Enrich

Description

Create a plot showing the relationship between locus length and the proportion of gene loci covered
by peaks.

Usage
plot_gene_coverage(
peaks,
locusdef = "nearest_tss”,

genome = supported_genomes(),
mappability = NULL,

legend = TRUE,

xlim = NULL

28 plot_polyenrich_spline

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to "chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y styledata.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

locusdef One of: ’nearest_tss’, 'nearest_gene’, ’exon’, ’intron’, *1kb’, *1kb_outside’,
’1kb_outside_upstream’, ’5kb’, ’Skb_outside’, *5kb_outside_upstream’, *10kb’,
’10kb_outside’, * 10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns
“chr’, ’start’, ’end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

genome One of the supported_genomes().

mappability One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and *mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from O and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

legend If true, a legend will be drawn on the plot.
x1lim Set the x-axis limit. NULL means select x-lim automatically.
Value

A trellis plot object.

Examples

Spline plot for E2F4 example peak dataset.
data(peaks_H3K4me3_GM12878, package = 'chipenrich.data')

Create the plot for a different locus definition
to compare the effect.
plot_gene_coverage(peaks_H3K4me3_GM12878, locusdef = 'nearest_gene', genome = 'hgl9')

plot_polyenrich_spline
QC plot for Poly-Enrich

Description

Create a plot the relationship between number of peaks assigned to a gene and locus length. The
plot shows an empirical fit to the data using a binomial smoothing spline.

plot_polyenrich_spline 29

Usage
plot_polyenrich_spline(
peaks,
locusdef = "nearest_tss”,

genome = supported_genomes(),
mappability = NULL,

legend = TRUE,

xlim = NULL,

ylim = NULL

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y style data.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

locusdef One of: ’nearest_tss’, ’nearest_gene’, ’exon’, ’intron’, ’1kb’, ’1kb_outside’,
’1kb_outside_upstream’, *5kb’, ’Skb_outside’, ’5kb_outside_upstream’, *10kb’,
”10kb_outside’, *10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns
“chr’, start’, ’end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

genome One of the supported_genomes().

mappability One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and *mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from 0 and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

legend If true, a legend will be drawn on the plot.

x1lim Set the x-axis limit. NULL means select x-lim automatically.

ylim Set the y-axis limit. NULL means select y-lim automatically.
Value

A trellis plot object.

Examples

Spline plot for E2F4 example peak dataset.
data(peaks_E2F4, package = 'chipenrich.data')

30 polyenrich

Create the plot for a different locus definition
to compare the effect.
plot_polyenrich_spline(peaks_E2F4, locusdef = 'nearest_gene', genome = 'hgl9')

polyenrich Run Poly-Enrich on narrow genomic regions

Description

Poly-Enrich is also designed for narrow peaks, for experiments with 100,000s of peaks, or in cases
where the number of binding sites per gene affects its regulation. If unsure whether to use chipenrich
or polyenrich, then we recommend hybridenrich. For more details, see the Poly-Enrich Method’
section below. For help choosing a method, see the ’Choosing A Method’ section below, or see the
vignette.

Usage

polyenrich(
peaks,
out_name = "polyenrich”,
out_path = getwd(),
genome = supported_genomes(),
genesets = c("GOBP", "GOCC", "GOMF"),
locusdef = "nearest_tss”,
method = "polyenrich”,
multiAssign = NULL,
weighting = NULL,
mappability = NULL,
qc_plots = TRUE,
min_geneset_size = 15,
max_geneset_size = 2000,
randomization = NULL,
n_cores = 1

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y styledata.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

polyenrich 31

out_name Prefix string to use for naming output files. This should not contain any charac-
ters that would be illegal for the system being used (Unix, Windows, etc.) The
default value is "polyenrich", and a file "polyenrich_results.tab" is produced. If
gc_plots is set, then a file "polyenrich_qcplots.pdf" is produced containing a
number of quality control plots. If out_name is set to NULL, no files are written,
and results then must be retrieved from the list returned by polyenrich.

out_path Directory to which results files will be written out. Defaults to the current work-
ing directory as returned by getwd.
genome One of the supported_genomes().
genesets A character vector of geneset databases to be tested for enrichment. See supported_genesets().

Alternately, a file path to a a tab-delimited text file with header and first column
being the geneset ID or name, and the second column being Entrez Gene IDs.
For an example custom gene set file, see the vignette.

locusdef One of: ’nearest_tss’, ’nearest_gene’, ’exon’, ’intron’, ’1kb’, ’1kb_outside’,
’1kb_outside_upstream’, *5kb’, ’Skb_outside’, *5kb_outside_upstream’, *10kb’,
’10kb_outside’, * 10kb_outside_upstream’. For a description of each, see the vi-
gnette or supported_locusdefs. Alternately, a file path for a custom locus
definition. NOTE: Must be for a supported_genome (), and must have columns
“chr’, ’start’, ’end’, and ’gene_id’ or ’geneid’. For an example custom locus
definition file, see the vignette.

method A character string specifying the method to use for enrichment testing. Current
options are polyenrich and polyenrich_weighted.

multiAssign A boolean value for performing a multiassignment of peaks. Default is NULL.
When selecting polyenrich_weighted method and locusdef equals to enhancer
or enhancer_plus5kb, this multiAssign will be automatically set as TRUE.

weighting A character string specifying the weighting method if method is chosen to be
"polyenrich_weighted’. Current options are: ’signalValue’ and ’logsignal Value’.

mappability One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from 0 and 1. For an example
custom mappability file, see the vignette. Default value is NULL.

gc_plots A logical variable that enables the automatic generation of plots for quality con-
trol.

min_geneset_size
Sets the minimum number of genes a gene set may have to be considered for
enrichment testing.

max_geneset_size
Sets the maximum number of genes a gene set may have to be considered for
enrichment testing.

randomization One of NULL, ’complete’, ’bylength’, or ’bylocation’. See the Randomizations
section below.

n_cores The number of cores to use for enrichment testing. We recommend using only
up to the maximum number of physical cores present, as virtual cores do not
significantly decrease runtime. Default number of cores is set to 1. NOTE:
Windows does not support multicore enrichment.

32

Value

polyenrich

A list, containing the following items:

opts

peaks

peaks_per_gene

results

A data frame containing the arguments/values passed to polyenrich.

A data frame containing peak assignments to genes. Peaks which do not overlap
a gene locus are not included. Each peak that was assigned to a gene is listed,
along with the peak midpoint or peak interval coordinates (depending on which
was used), the gene to which the peak was assigned, the locus start and end
position of the gene, and the distance from the peak to the TSS.

The columns are:

peak_id is an ID given to unique combinations of chromosome, peak start, and
peak end.

chr is the chromosome the peak originated from.

peak_start is start position of the peak.

peak_end is end position of the peak.

peak_midpoint is the midpoint of the peak.

gene_id is the Entrez ID of the gene to which the peak was assigned.

gene_symbol is the official gene symbol for the gene_id (above).

gene_locus_start is the start position of the locus for the gene to which the
peak was assigned (specified by the locus definition used.)

gene_locus_end is the end position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

nearest_tss is the closest TSS to this peak (for any gene, not necessarily the
gene this peak was assigned to.)

nearest_tss_gene is the gene having the closest TSS to the peak (should be the
same as gene_id when using the nearest TSS locus definition.)

nearest_tss_gene_strand is the strand of the gene with the closest TSS.
A data frame of the count of peaks per gene. The columns are:

gene_id is the Entrez Gene ID.

length is the length of the gene’s locus (depending on which locus definition
you chose.)

log10_length is the logl10(locus length) for the gene.

num_peaks is the number of peaks that were assigned to the gene, given the
current locus definition.

peak is whether or not the gene has a peak.
A data frame of the results from performing the gene set enrichment test on each

geneset that was requested (all genesets are merged into one final data frame.)
The columns are:

Geneset.ID is the identifier for a given gene set from the selected database. For
example, GO:0000003.

Geneset.Type specifies from which database the Geneset.ID originates. For
example, "Gene Ontology Biological Process."

Description gives a definition of the geneset. For example, "reproduction.”

polyenrich 33

P.Value is the probability of observing the degree of enrichment of the gene set
given the null hypothesis that peaks are not associated with any gene sets.

FDR is the false discovery rate proposed by Bejamini \& Hochberg for adjust-
ing the p-value to control for family-wise error rate.

Odds.Ratio is the estimated odds that peaks are associated with a given gene
set compared to the odds that peaks are associated with other gene sets,
after controlling for locus length and/or mappability. An odds ratio greater
than 1 indicates enrichment, and less than 1 indicates depletion.

N.Geneset.Genes is the number of genes in the gene set.

N.Geneset.Peak.Genes is the number of genes in the genes set that were as-
signed at least one peak.

Geneset.Avg.Gene.Length is the average length of the genes in the gene set.

Geneset.Peak.Genes is the list of genes from the gene set that had at least one
peak assigned.

Poly-Enrich Method

The Poly-Enrich method uses the number of peaks in genes in its model for enrichment: num_peaks
~ GO + s(logl@_length). Here, GO is a binary vector indicating whether a gene is in the gene set
being tested, num_peaks is a numeric vector indicating the number of peaks in each gene, and
s(logl@_length) is a negative binomial cubic smoothing spline which adjusts for the relationship
between the number of peaks in a gene and locus length.

Poly-Enrich Weighting Options
Poly-Enrich also allows weighting of individual peaks. Currently the options are:
’signalValue:” weighs each peak based on the Signal Value given in the narrowPeak format or a
user-supplied column, normalized to have mean 1.

’logsignal Value:’ weighs each peak based on the log Signal Value given in the narrowPeak format
or a user-supplied column, normalized to have mean 1.

Choosing A Method

The following guidelines are intended to help select an enrichment function:

broadenrich(): is designed for use with broad peaks that may intersect multiple gene loci, and
cumulatively cover greater than 5% of the genome. For example, ChIP-seq experiments for
histone modifications.

chipenrich(): is designed for use with 1,000s or 10,000s of narrow peaks which results in fewer
gene loci containing a peak overall. For example, ChIP-seq experiments for transcription
factors.

polyenrich(): is also designed for narrow peaks, for experiments with 100,000s of peaks, or in
cases where the number of binding sites per gene affects its regulation. If unsure whether to
use chipenrich or polyenrich, then we recommend hybridenrich.

hybridenrich(): is a combination of chipenrich and polyenrich, to be used when one is unsure
which is the optimal method.

34 postprocess_peak_grs

Randomizations

Randomization of locus definitions allows for the assessment of Type I Error under the null hypoth-
esis. The randomization codes are:

NULL: No randomizations, the default.

’complete’: Shuffle the gene_id and symbol columns of the locusdef together, without regard
for the chromosome location, or locus length. The null hypothesis is that there is no true gene
set enrichment.

’bylength’: Shuffle the gene_id and symbol columns of the locusdef together within bins of 100
genes sorted by locus length. The null hypothesis is that there is no true gene set enrichment,
but with preserved locus length relationship.

’bylocation’: Shuffle the gene_id and symbol columns of the locusdef together within bins of
50 genes sorted by genomic location. The null hypothesis is that there is no true gene set
enrichment, but with preserved genomic location.

The return value with a selected randomization is the same list as without. To assess the Type 1
error, the alpha level for the particular data set can be calculated by dividing the total number of
gene sets with p-value < alpha by the total number of tests. Users may want to perform multiple
randomizations for a set of peaks and take the median of the alpha values.

See Also

Other enrichment functions: broadenrich(), chipenrich()

Examples

Run Poly-Enrich using an example dataset, assigning peaks to the nearest TSS,

and on a small custom geneset

data(peaks_E2F4, package = 'chipenrich.data')

peaks_E2F4 = subset(peaks_E2F4, peaks_E2F4$chrom == 'chri1')

gs_path = system.file('extdata', 'vignette_genesets.txt', package='chipenrich')

results = polyenrich(peaks_E2F4, method='polyenrich', locusdef='nearest_tss',
genome = 'hgl19', genesets=gs_path, out_name=NULL)

Get the list of peaks that were assigned to genes.
assigned_peaks = results$peaks

Get the results of enrichment testing.
enrich = results$results

postprocess_peak_grs A helper function to post-process peak GRanges

Description

Check for overlapping input regions, sort peaks, and force peak names

post_process_enrichments 35

Usage

postprocess_peak_grs(gr)

Arguments

gr A GRanges of input peaks.

Value

A GRanges that is sorted if the seqinfo is set, and has named peaks.

post_process_enrichments
Post process the data. frame of enrichment results

Description

Post process the data. frame of enrichment results

Usage

post_process_enrichments(enrich)

Arguments
enrich A data. frame of the enrichment results from broadenrich(), chipenrich(),
or polyenrich() created by rbinding the list of enrichment results for each of
the genesets.
Value

A reformatted data. frame with columns in a specific order, filtered of enrichment tests that failed,
and ordered first by enrichment *Status’ (if present) and then ’P.value’.

proxReg Run Proximity Regulation test on a set of narrow genomic regions

Description

This method is designed for a set of narrow genomic regions (e.g. TF peaks) and is used to test
whether the genomic regions assigned to genes in a gene set are closer to regulatory locations (i.e.
promoters or enhancers) than by chance.

36 proxReg

Usage

proxReg(
peaks,
out_name = "proxReg",
out_path = getwd(),
genome = supported_genomes(),
reglocation = "tss”,
genesets = c("GOBP", "GOCC", "GOMF"),
randomization = NULL,
qc_plots = TRUE,
min_geneset_size = 15,
max_geneset_size = 2000,
n_cores = 1

Arguments

peaks Either a file path or a data. frame of peaks in BED-like format. If a file path, the
following formats are fully supported via their file extensions: .bed, .broadPeak,
.narrowPeak, .gff3, .gff2, .gff, and .bedGraph or .bdg. BED3 through BEDG6 files
are supported under the .bed extension. Files without these extensions are sup-
ported under the conditions that the first 3 columns correspond to ’chr’, ’start’,
and ’end’ and that there is either no header column, or it is commented out. If a
data.frame A BEDX+Y styledata.frame. See GenomicRanges: : makeGRangesFromDataFrame
for acceptable column names.

out_name Prefix string to use for naming output files. This should not contain any char-
acters that would be illegal for the system being used (Unix, Windows, etc.)
The default value is "proxReg", and a file "proxReg_results.tab" is produced.
If gc_plots is set, then a file "proxReg_qcplots.pdf" is produced containing a
number of quality control plots. If out_name is set to NULL, no files are written,
and results then must be retrieved from the list returned by proxReg.

out_path Directory to which results files will be written out. Defaults to the current work-
ing directory as returned by getwd.

genome One of the supported_genomes(). If reglocation = enhancer, genome MUST
be ’hgl9’.
reglocation One of: ’tss’, ’enhancer’. Details in the "Regulatory locations" section

genesets A character vector of geneset databases to be tested for enrichment. See supported_genesets().
Alternately, a file path to a tab-delimited text file with header and first column
being the geneset ID or name, and the second column being Entrez Gene IDs.
For an example custom gene set file, see the vignette.

randomization One of: ’shuffle’, 'unif’, ’bylength’, "byenh’. These were used to test for Type I
error under the null hypothesis. A general user will never have to use these.

gc_plots A logical variable that enables the automatic generation of plots for quality con-
trol.

min_geneset_size
Sets the minimum number of genes a gene set may have to be considered for
testing.

proxReg

37

max_geneset_size

n_cores

Value

Sets the maximum number of genes a gene set may have to be considered for
testing.

The number of cores to use for testing. We recommend using only up to the
maximum number of physical cores present, as virtual cores do not significantly
decrease runtime. Default number of cores is set to 1. NOTE: Windows does
not support multicore testing.

A list, containing the following items:

opts

peaks

A data frame containing the arguments/values passed to polyenrich.

A data frame containing peak assignments to genes. Peaks which do not overlap
a gene locus are not included. Each peak that was assigned to a gene is listed,
along with the peak midpoint or peak interval coordinates (depending on which
was used), the gene to which the peak was assigned, the locus start and end
position of the gene, and the distance from the peak to the TSS.

The columns are:

peak_id an ID given to unique combinations of chromosome, peak start, and
peak end.

chr the chromosome the peak originated from.

peak_start start position of the peak.

peak_end end position of the peak.

gene_id the Entrez ID of the gene to which the peak was assigned.

gene_symbol the official gene symbol for the gene_id (above).

gene_locus_start the start position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

gene_locus_end the end position of the locus for the gene to which the peak
was assigned (specified by the locus definition used.)

nearest_tss the closest TSS to this peak (for any gene, not necessarily the gene
this peak was assigned to.)

dist_to_tss the distance in bp to the closest TSS to this peak.

nearest_tss_gene the gene having the closest TSS to the peak (should be the
same as gene_id when using the nearest TSS locus definition.)

nearest_tss_gene_strand the strand of the gene with the closest TSS.

log_dtss log of dist_to_tss

log_gene_ll the log of length of the gene locus in bp

scaled_dtss the adjusted distance to TSS, used in the calculations. Shown if
reglocation = "tss"

dist_to_enh the distance to the nearest enhancer. Shown if reglocation = "en-
hancer"

avg_denh the empirical average for distance to the nearest enhancer for the
gene the peak is assigned to. Shown if reglocation = enhancer

scaled_denh the adjusted distance to the nearest enhancer. Shown if regloca-
tion = enhancer

38

results

Regulatory locations

proxReg

A data frame of the results from performing the proxReg test on each geneset
that was requested (all genesets are merged into one final data frame.) The
columns are:

Geneset.ID the identifier for a given gene set from the selected database. For
example, GO:0000003.

Geneset.Type specifies from which database the Geneset.ID originates. For
example, "Gene Ontology Biological Process."

Description gives a definition of the geneset. For example, "reproduction.”

P.Value the probability of observing the proxmity of genomic regions in the

gene set given the null hypothesis that peaks are not closer or farther in the
gene set.

FDR the false discovery rate proposed by Bejamini \& Hochberg for adjusting
the p-value to control for family-wise error rate.

Effect the signed Wilcoxon statistic, with positive values meaning the gene set
has closer genomic regions than expected by chance.

Status specifies if the peaks in the gene set tend to be closer or farther than
those not in the gene set.

Odds.Ratio the estimated odds that peaks are associated with a given gene set
compared to the odds that peaks are associated with other gene sets, after
controlling for locus length and/or mappability. An odds ratio greater than
1 indicates enrichment, and less than 1 indicates depletion.

N.Geneset.Genes the number of genes in the gene set.

N.Geneset.Peak.Genes the number of genes in the genes set that were assigned
at least one peak.

Geneset.Peak.Genes the list of genes from the gene set that had at least one
peak assigned.

Current supported regulatory locations are gene transcription start sites (tss) or enhancer locations

(hg19 only)

Method

ProxReg first calculates the distance between each peak midpoint and regulatory location in base
pairs. For gene transcription start sites, since parts of the chromosome are more sparse than oth-
ers, there is an association with gene locus length that needs to be adjusted for. When using tss
as the regulatory location, the peak distances are adjusted for this confounding variable based on
an average of 90 ENCODE ChIP-seq experiments (details in citation pending). Similarly, for en-
hancers, distances depend on the density of enhancers within a gene locus, so distance to enhancer
is adjusted using an empirical average of 90 ChIP-seq ENCODE experiments.

For each gene set of interest, the genomic regions are divided into two groups indicating the gene
with the nearest tss is in the gene set or not. A Wilcoxon Rank-Sum test is then done to test for a
difference in the adjusted distances (either to tss or enhancer).

read_bed 39

Examples

Run proxReg using an example dataset, assigning peaks to the nearest TSS,
and on a small custom geneset
data(peaks_E2F4, package = 'chipenrich.data')

peaks_E2F4 = subset(peaks_E2F4, peaks_E2F4$chrom == 'chri1')
gs_path = system.file('extdata', 'vignette_genesets.txt', package='chipenrich')
results = proxReg(peaks_E2F4, reglocation = 'tss',

genome = 'hgl19', genesets=gs_path, out_name=NULL)

Get the list of peaks that were assigned to genes and their distances to
regulatory regions.
assigned_peaks = results$peaks

Get the results of enrichment testing.
enrich = results$results

read_bed Read files containing peaks or genomic regions

Description

The following formats are fully supported via their file extensions: .bed, .broadPeak, .narrowPeak,
.gff3, .gff2, .eff, and .bedGraph or .bdg. BED3 through BEDG files are supported under the .bed
extension. Files without these extensions are supported under the conditions that the first 3 columns
correspond to chr, start, and end and that there is either no header column, or it is commented out.
Files may be compressed with gzip, and so might end in .narrowPeak.gz, for example. For files
with extension support, the rtracklayer: :import() function is used to read peaks, so adherence
to the mentioned file formats is necessary.

Usage
read_bed(file_path)

Arguments
file_path A path to a file with input peaks/regions. See extended description above for
details about file support.
Details

NOTE: Header rows must be commented with # to be ignored. Otherwise, an error may result.

NOTE: A warning is given if any input regions overlap. In the case of enrichment testing with
method = 'broadenrich’, regions should be disjoint.

Typically, this function will not be used alone, but inside chipenrich().

40 read_geneset

Value

A GRanges with mcols matching any extra columns.

Examples

Example of generic .txt file with peaks
file = system.file('extdata', 'test_header.txt', package = 'chipenrich')
peaks = read_bed(file)

Example of BED3
file = system.file('extdata', 'test_assign.bed', package = 'chipenrich')
peaks = read_bed(file)

Example of narrowPeak
file = system.file('extdata', 'test.narrowPeak', package = 'chipenrich')
peaks = read_bed(file)

Example of gzipped broadPeak
file = system.file('extdata', 'test.broadPeak.gz', package = 'chipenrich')
peaks = read_bed(file)

Example of gzipped gff3 Fly peaks
file = system.file('extdata', 'test.gff3.gz', package = 'chipenrich')
peaks = read_bed(file)

read_geneset Function to read custom gene sets from file

Description

This function reads a two-columned tab-delimited text file (with header). Column names are ig-
nored, but the first column should be geneset names or IDs and the second column should be Entrez
Gene IDs.

Usage

read_geneset(file_path)

Arguments

file_path A file path for the custom gene set.

Value

A GeneSet class object.

read_ldef 41

read_ldef Function to read custom locus definition from file

Description

This function reads a tab-delimited text (with a header) file that should have columns ’chr’, ’start’,
’end’, and a column named ’gene_id’ (or geneid’) with the Entrez Gene ID. If a supported_genomes ()
is given, then a column of gene symbols named ’symbol’, will be added. If an unsupported genome

is used there are two options: 1) Have a column named ’symbols’ with the gene symbols in the cus-
tom locus definition, and leave genome = NA, or 2) leave genome = NA, do not provide gene symbols,
and NAs will be used.

Usage
read_ldef (file_path, genome = NA)

Arguments

file_path A file path for the custom locus definition.

genome A genome from supported_genomes (), default NA.
Value

A LocusDefinition class object with slots dframe, granges, genome.build, and organism.

read_mappa Function to read custom mappability files

Description

This function reads a two-columned tab-delimited text file (with header). Expected column names
are 'mappa’ and ’gene_id’. Each line is for a unique ’gene_id’ and contains the mappability (be-
tween 0 and 1) for that gene.

Usage

read_mappa(file_path)

Arguments

file_path A file path for the custom mappability.

Value

A data. frame containing gene_id and mappa columns.

42 reset_ncores_for_windows

recode_peaks Recode a vector of number of peaks to binary based on threshold

Description

Recode a vector of number of peaks to binary based on threshold

Usage

recode_peaks(num_peaks, threshold = 1)

Arguments

num_peaks An integer vector representing numbers of peaks per gene.

threshold An integer specifying the minimum number of peaks required to code as 1.
Value

An binary vector where an entry is 1 if the corresponding entry of num_peaks is >= threshold and
is otherwise 0.

reset_ncores_for_windows
Reset n_cores for Windows

Description

We use parallel: :mclapply for multicore geneset enrichment testing, but this function supports
more than one core if the OS is not Windows. If the OS is windows, the number of cores (mc. cores)
must be set to 1.

Usage

reset_ncores_for_windows(n_cores)

Arguments
n_cores An integer passed to broadenrich(), chipenrich(), or polyenrich() indi-
cating the number of cores to use for enrichment testing.
Value

Either the original n_cores if the OS is not Windows, or 1 if the OS is Windows.

setup_genesets 43

setup_genesets Function to setup genesets

Description

Function to setup genesets

Usage

setup_genesets(gs_codes, ldef_obj, genome, min_geneset_size, max_geneset_size)

Arguments
gs_codes A character vector of geneset databases to be tested for enrichment. See supported_genesets().
Alternately, a file path to a a tab-delimited text file with header and first column
being the geneset ID or name, and the second column being Entrez Gene IDs.
ldef_obj A LocusDefinition object to use for filtering gene sets based on which genes
are defined in the locus defintion.
genome One of the supported_genomes().

min_geneset_size
Sets the minimum number of genes a gene set may have to be considered for
enrichment testing.

max_geneset_size
Sets the maximum number of genes a gene set may have to be considered for
enrichment testing.

Value

A list with components consisting of GeneSet objects for each of the elements of genesets. NOTE:
Custom genesets must be run separately from built in gene sets.

setup_locusdef Function to setup locus definitions

Description

Function to setup locus definitions

Usage

setup_locusdef (ldef_code, genome, randomization = NULL)

44 setup_mappa

Arguments
ldef_code One of 'nearest_tss’, ‘nearest_gene’, exon’, "intron’, *1kb’, *1kb_outside’, ’ 1kb_outside_upstream’,
’5kb’, ’5kb_outside’, *Skb_outside_upstream’, > 10kb’, *10kb_outside’, *10kb_outside_upstream’.
Alternately, a file path for a custom locus definition. NOTE: Must be for a
supported_genome (), and must have columns ’chr’, ’start’, ’end’, and ’gene_id’,
or ’geneid’.
genome One of the supported_genomes().

randomization One of NULL, ’complete’, ’bylength’, or ’bylocation’. See the Randomizations
section in ?chipenrich. Default NULL.

Value

A list with components 1def and tss.

setup_mappa Function to setup mappability

Description

Function to setup mappability

Usage

setup_mappa(mappa_code, genome, ldef_code, ldef_obj)

Arguments
mappa_code One of NULL, a file path to a custom mappability file, or an integer for a valid
read length given by supported_read_lengths. If a file, it should contain a
header with two column named ’gene_id’ and 'mappa’. Gene IDs should be
Entrez IDs, and mappability values should range from 0 and 1. Default value is
NULL.
genome One of the supported_genomes().
ldef_code One of 'nearest_tss’, ‘nearest_gene’, ’exon’, "intron’, *1kb’, ’1kb_outside’, ’ 1kb_outside_upstream’,
’5kb’, ’5kb_outside’, ’Skb_outside_upstream’, *10kb’, *10kb_outside’, *10kb_outside_upstream’.
Alternately, a file path for a custom locus definition. NOTE: Must be for a
supported_genome (), and must have columns ’chr’, ’start’, ’end’, and ’gene_id’,
or 'geneid’.
ldef_obj A LocusDefinition object.
Value

A data. frame with columns gene_id and mappa.

supported_genesets

supported_genesets Display supported genesets for gene set enrichment.

Description

Display supported genesets for gene set enrichment.

Usage

supported_genesets()

Value

A data. frame with columns geneset, organism.

Examples

supported_genesets()

supported_genomes Display supported genomes.

Description

Display supported genomes.

Usage

supported_genomes ()

Value

A vector indicating supported genomes.

Examples

supported_genomes ()

46

supported_locusdefs

supported_locusdefs Display supported locus definitions

Description

The locus definitions are defined as below. For advice on selecting a locus definition, see the
’Selecting A Locus Definition’ section below.

nearest_tss: The locus is the region spanning the midpoints between the TSSs of adjacent genes.

nearest_gene: The locus is the region spanning the midpoints between the boundaries of each
gene, where a gene is defined as the region between the furthest upstream TSS and furthest
downstream TES for that gene. If two gene loci overlap each other, we take the midpoint of
the overlap as the boundary between the two loci. When a gene locus is completely nested
within another, we create a disjoint set of 3 intervals, where the outermost gene is separated
into 2 intervals broken apart at the endpoints of the nested gene.

1kb: The locus is the region within 1kb of any of the TSSs belonging to a gene. If TSSs from two
adjacent genes are within 2 kb of each other, we use the midpoint between the two TSSs as
the boundary for the locus for each gene.

1kb_outside_upstream: The locus is the region more than 1kb upstream from a TSS to the mid-
point between the adjacent TSS.

1kb_outside: The locus is the region more than 1kb upstream or downstream from a TSS to the
midpoint between the adjacent TSS.

Skb: The locus is the region within 5kb of any of the TSSs belonging to a gene. If TSSs from two
adjacent genes are within 10 kb of each other, we use the midpoint between the two TSSs as
the boundary for the locus for each gene.

5kb_outside_upstream: The locus is the region more than 5kb upstream from a TSS to the mid-
point between the adjacent TSS.

5kb_outside: The locus is the region more than 5kb upstream or downstream from a TSS to the
midpoint between the adjacent TSS.

10kb: The locus is the region within 10kb of any of the TSSs belonging to a gene. If TSSs from
two adjacent genes are within 20 kb of each other, we use the midpoint between the two TSSs
as the boundary for the locus for each gene.

10kb_outside_upstream: The locus is the region more than 10kb upstream from a TSS to the
midpoint between the adjacent TSS.

10kb_outside: The locus is the region more than 10kb upstream or downstream from a TSS to the
midpoint between the adjacent TSS.

exon: Each gene has multiple loci corresponding to its exons. Overlaps between different genes
are allowed.

intron: Each gene has multiple loci corresponding to its introns. Overlaps between different genes
are allowed.

Usage

supported_locusdefs()

supported_methods 47

Value

A data. frame with columns genome, locusdef.

Selecting A Locus Definition

For a transcription factor ChIP-seq experiment, selecting a particular locus definition for use in
enrichment testing can have implications relating to how the TF regulates genes. For example,
selecting the *1kb’ locus definition will imply that the biological processes found enriched are a
result of TF regulation near the promoter. In contrast, selecting the ’*Skb_outside’ locus definition
will imply that the biological processes found enriched are a result of TF regulation distal from the
promoter.

Selecting a locus definition can also help reduce the noise in the enrichment tests. For example, if
a TF is known to primarily regulate genes by binding around the promoter, then selecting the *1kb’
locus definition can help to reduce the noise from TSS-distal peaks in the enrichment testing.

The plot_dist_to_tss QC plot displays where genomic regions fall relative to TSSs genome-
wide, and can help inform the choice of locus definition. For example, if many peaks fall far from
the TSS, the ’nearest_tss’ locus definition may be a good choice because it will capture all input
genomic regions, whereas the ’1kb’ locus definition may not capture many of the input genomic
regions and adversely affect the enrichment testing.

Examples

supported_locusdefs()

supported_methods Display supported gene set enrichment methods.

Description

Display supported gene set enrichment methods.

Usage

supported_methods ()

Value

A vector indicating supported methods for gene set enrichment.

Examples

supported_methods ()

48 supported_read_lengths

supported_read_lengths
Display supported read lengths for mappability

Description

Display supported read lengths for mappability

Usage

supported_read_lengths()

Value

A data. frame with columns genome, locusdef, read_length.

Examples

supported_read_lengths()

Index

+ enrichment functions recode_peaks, 42
broadenrich, 5 reset_ncores_for_windows, 42
chipenrich, 10
polyenrich, 30 setup_genesets, 43

setup_locusdef, 43

assign_peak_segments, 4 setup_mappa, 44

assign_peaks, 3 supported_genesets, 45

supported_genomes, 45
broadenrich, 5, 14, 34 supported_locusdefs, 6, 11, 18, 23, 26, 28
29, 31, 46
calc_peak_gene_overlap, 9 supported_methods, 47
chipenrich, 9, 10, 34 supported_read_lengths, 48

chipenrich_package, 15
filter_genesets, 15

genome_to_organism, 16
genome_to_orgdb, 16
get_test_method, 17
getwd, 6, 11, 18, 22, 31, 36

hybridenrich, 17
load_peaks, 20
num_peaks_per_gene, 21

peaks2genes, 22
plot_chipenrich_spline, 25
plot_dist_to_tss, 26,47
plot_gene_coverage, 27
plot_polyenrich_spline, 28
polyenrich, 9, 14, 30
post_process_enrichments, 35
postprocess_peak_grs, 34
proxReg, 35

read_bed, 39
read_geneset, 40
read_ldef, 41
read_mappa, 41

49

	assign_peaks
	assign_peak_segments
	broadenrich
	calc_peak_gene_overlap
	chipenrich
	chipenrich_package
	filter_genesets
	genome_to_organism
	genome_to_orgdb
	get_test_method
	hybridenrich
	load_peaks
	num_peaks_per_gene
	peaks2genes
	plot_chipenrich_spline
	plot_dist_to_tss
	plot_gene_coverage
	plot_polyenrich_spline
	polyenrich
	postprocess_peak_grs
	post_process_enrichments
	proxReg
	read_bed
	read_geneset
	read_ldef
	read_mappa
	recode_peaks
	reset_ncores_for_windows
	setup_genesets
	setup_locusdef
	setup_mappa
	supported_genesets
	supported_genomes
	supported_locusdefs
	supported_methods
	supported_read_lengths
	Index

