Package ‘beachmat’

February 1, 2026

Version 2.27.2
Date 2026-01-11
Title Compiling Bioconductor to Handle Each Matrix Type

Imports methods, DelayedArray (>= 0.27.2), SparseArray, BiocGenerics,
Matrix, Repp

Suggests testthat, BiocStyle, knitr, rmarkdown, remdcheck,
BiocParallel, HDF5Array, beachmat.hdf5

LinkingTo Rcpp, assorthead (>=1.5.4)
biocViews DataRepresentation, Datalmport, Infrastructure

Description Provides a consistent C++ class interface for reading from a variety of com-
monly used matrix types.
Ordinary matrices and several sparse/dense Matrix classes are directly supported,
along with a subset of the delayed operations implemented in the DelayedArray package.
All other matrix-like objects are supported by calling back into R.

License GPL-3
NeedsCompilation yes
VignetteBuilder knitr

SystemRequirements C++17
URL https://github.com/tatami-inc/beachmat

BugReports https://github.com/tatami-inc/beachmat/issues
RoxygenNote 7.3.3

Encoding UTF-8

git_url https://git.bioconductor.org/packages/beachmat

git_branch devel

git_last_commit ddb5c20

git_last_commit_date 2026-01-11

Repository Bioconductor 3.23

Date/Publication 2026-02-01

https://github.com/tatami-inc/beachmat
https://github.com/tatami-inc/beachmat/issues

2 checkMemoryCache

Author Aaron Lun [aut, cre],
Hervé Pages [aut],
Mike Smith [aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents
checkMemoryCache e 2
colBlockApply e e e 4
getExecutor 6
nitializeCpp e e 6
realizeFileBackedMatrix 7
tatami-utils L e e e e 8
tOCSPATSE o e e e e e e 11
whichNonZero e e 12

Index 14

checkMemoryCache Check the in-memory cache for matrix instances
Description

Check the in-memory cache for a pre-existing initialized C++ object, and initialize it if it does not
exist. This is typically used in initializeCpp methods of file-backed representations to avoid
redundant reads of the entire matrix.

Usage

flushMemoryCache()

checkMemoryCache(namespace, key, fun)

Arguments
namespace String containing the namespace, typically the name of the package implement-
ing the method.
key String containing the key for a specific matrix instance.
fun Function that accepts no arguments and returns an external pointer like those

returned by initializeCpp.

checkMemoryCache 3

Details

For representations where data extraction is costly (e.g., from file), initializeCpp methods may
consider realizing the entire matrix into memory. This effectively pays a one-time up-front cost to
improve efficiency for downstream operations that pass through the matrix multiple times.

If such an option is enabled, initializeCpp methods are expected to cache the in-memory in-
stance using checkMemoryCache. This ensures that all subsequent calls to the same initializeCpp
method will return the same instance, avoiding redundant memory loads when the same matrix is
used in multiple functions.

Of course, this process comes at the expense of increased memory usage. If too many instances are
stored in the cache, they can be cleared from memory using the flushMemoryCache function.

Value

For checkMemoryCache, the output of fun (possibly from an existing cache) is returned.

For flushMemoryCache, all existing cached objects are removed and NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

The hdf5.realize= and tiledb.realize= options in the initializeCpp methods of beach-
mat.hdf5 and beachmat.tiledb.

Examples

Mocking up a class with some kind of uniquely identifying aspect.
setClass("UnknownMatrix"”, slots=c(contents="dgCMatrix", uuid="character"))
X <= new("UnknownMatrix",
contents=Matrix::rsparsematrix(10, 10, 0.1),
uuid=as.character(sample(1e8, 1)))

Defining our initialization method.
setMethod("initializeCpp"”, "UnknownMatrix", function(x, ..., memorize=FALSE) {
if (memorize) {
checkMemoryCache("my_package”, x@uuid, function() initializeCpp(x@contents))
} else {
initializeCpp(x@contents)

b

Same pointer is returned multiple times.
initializeCpp(X, memorize=TRUE)
initializeCpp(X, memorize=TRUE)

Flushing the cache.
flushMemoryCache ()

colBlockApply

colBlockApply

Apply over blocks of columns or rows

Description

Apply a function over blocks of columns or rows using DelayedArray’s block processing mecha-

nism.
Usage
colBlockApply(
X,
FUN,
grid = NULL,

coerce.sparse = TRUE,
BPPARAM = getAutoBPPARAM()

)
rowBlockApply(
X’
FUN,
grid = NULL,

coerce.sparse = TRUE,
BPPARAM = getAutoBPPARAM()

Arguments

X

FUN

grid

coerce.sparse

BPPARAM

A matrix-like object to be split into blocks and looped over. This can be of any
class that respects the matrix contract.

A function that operates on columns or rows in X, for colBlockApply and
rowBlockApply respectively. Ordinary matrices, CsparseMatrix or SparseMa-
trix objects may be passed as the first argument.

Further arguments to pass to FUN.

An ArrayGrid object specifying how x should be split into blocks. For colBlockApply
and rowBlockApply, blocks should consist of consecutive columns and rows,
respectively. Alternatively, this can be set to TRUE or FALSE, see Details.

Logical scalar indicating whether blocks of a sparse DelayedMatrix x should be
automatically coerced into CsparseMatrix objects.

A BiocParallelParam object from the BiocParallel package, specifying how par-
allelization should be performed across blocks.

colBlockApply 5

Details

This is a wrapper around blockApply that is dedicated to looping across rows or columns of x. The
aim is to provide a simpler interface for the common task of applying across a matrix, along with
a few modifications to improve efficiency for parallel processing and for natively supported x.

Note that the fragmentation of x into blocks is not easily predictable, meaning that FUN should be
capable of operating on each row/column independently. Users can retrieve the current location of
each block of x by calling currentViewport inside FUN.

If grid is not explicitly set to an ArrayGrid object, it can take several values:

* If TRUE, the function will choose a grid that (i) respects the memory limits in getAutoBlockSize
and (ii) fragments x into sufficiently fine chunks that every worker in BPPARAM gets to do some-
thing. If FUN might make large allocations, this mode should be used to constrain memory
usage.

e The default grid=NULL is very similar to TRUE except that that memory limits are ignored
when x is of any type that can be passed directly to FUN. This avoids unnecessary copies of x
and is best used when FUN itself does not make large allocations.

o If FALSE, the function will choose a grid that covers the entire x. This is provided for com-
pleteness and is only really useful for debugging.

The default of coerce. sparse=TRUE will generate dgCMatrix objects during block processing of a
sparse DelayedMatrix x. This is convenient as it avoids the need for FUN to specially handle Sparse-
Matrix objects from the SparseArray package. If the coercion is not desired (e.g., to preserve
integer values in x), it can be disabled with coerce.sparse=FALSE.

Value

A list of length equal to the number of blocks, where each entry is the output of FUN for the results
of processing each the rows/columns in the corresponding block.

See Also

blockApply, for the original DelayedArray implementation.

toCsparse, to convert SparseMatrix objects to CsparseMatrix objects prior to further processing in
FUN.

Examples

x <= matrix(runif(10000), ncol=10)
str(colBlockApply(x, colSums))
str(rowBlockApply(x, rowSums))

library(Matrix)

y <- rsparsematrix (10000, 10000, density=0.01)
str(colBlockApply(y, colSums))
str(rowBlockApply(y, rowSums))

library(DelayedArray)
z <- DelayedArray(y) + 1
str(colBlockApply(z, colSums))

6 initializeCpp

str(rowBlockApply(z, rowSums))

We can also force multiple blocks:
library(BiocParallel)

BPPARAM <- SnowParam(2)

str(colBlockApply(x, colSums, BPPARAM=BPPARAM))
str(rowBlockApply(x, rowSums, BPPARAM=BPPARAM))

getExecutor Get the parallel executor

Description
Get the executor object for safe execution of R code in parallel sections. This should be set by
Rtatami: :set_executor() in the .onLoad function of downstream packages.

Usage

getExecutor()

Value

An external pointer to be passed to Rtatami: : set_executor.

Author(s)

Aaron Lun

Examples

getExecutor()

initializeCpp Initialize matrix in C++ memory space

Description

Initialize a tatami matrix object in C++ memory space from an abstract numeric R matrix. This
object simply references the R memory space and avoids making any copies of its own, so it can be
cheaply re-created when needed inside each function.

Usage

initializeCpp(x, ...)

realizeFileBackedMatrix 7

Arguments

X

Details

A matrix-like object, typically from the Matrix or DelayedArray packages.
Alternatively, an external pointer from a previous call to initializeCpp, which
is returned without modification.

Further arguments used by specific methods, such as:

* .check.na, a boolean indicating whether to check for NA values in integer
and logical matrices. If TRUE (the default), any NAs are cast to their double-
precision equivalents when reading from the tatami matrix. This can be set
to FALSE to improve performance if the caller knows that x does not contain
NAs.

e .unknown.action, a string specifying the action to take upon encounter-
ing a matrix with no known tatami representation. This should be one of

n on n on

"message"”, "warn”, "error”, or "none”.

If a initializeCpp method accepts additional arguments, the names of those
argument should generally be prefixed by the matrix type to avoid conflicts be-
tween different methods. For example, hdf5.realize can be used in beach-
mat.hdf5 to load a HDF5-backed matrix into memory.

Do not attempt to serialize the return value; it contains a pointer to external memory, and will
not be valid after a save/load cycle. Users should not be exposed to the returned pointers; rather,
developers should call initializeCpp at the start to obtain a C++ object for further processing.
The initialization process should be cheap so there is no downside from just recreating the object
within each function body.

Value

An external pointer to a C++ object containing a tatami matrix.

Examples

Mocking up a count matrix:
X <- Matrix::rsparsematrix(1000, 100, 0.1)
y <- round(abs(x))

stuff <- initializeCpp(y)

stuff

realizeFileBackedMatrix

Realize a file-backed DelayedMatrix

Description

Realize a file-backed DelayedMatrix into its corresponding in-memory format.

8 tatami-utils

Usage

realizeFileBackedMatrix(x)

isFileBackedMatrix(x)

Arguments

X A DelayedMatrix object.

Details

A file-backed matrix representation is recognized based on whether it has a path method for any one
of its seeds. If so, and the "beachmat.realizeFileBackedMatrix" option is not FALSE, we will
load it into memory. This is intended for DelayedMatrix objects that have already been subsetted
(e.g., to highly variable genes), which can be feasibly loaded into memory for rapid calculations.

Value

For realizeFileBackedMatrix, an ordinary matrix or a dgCMatrix, depending on whether is_sparse(x).

For isFileBackedMatrix, a logical scalar indicating whether x has file-backed components.

Author(s)

Aaron Lun

Examples

mat <- matrix(rnorm(50), ncol=5)
realizeFileBackedMatrix(mat) # no effect

library(HDF5Array)
mat2 <- as(mat, "HDF5Array")
realizeFileBackedMatrix(mat2) # realized into memory

tatami-utils Tatami utilities

Description

Utility functions that directly operate on the pointers produced by initializeCpp. Some of these
are used internally by initializeCpp methods operating on DelayedArray classes.

tatami-utils

Usage

tatami.bind(xs, by.row)
tatami.transpose(x)

tatami.subset(x, subset, by.row)
tatami.arith(x, op, val, by.row, right)
tatami.compare(x, op, val, by.row, right)
tatami.logic(x, op, val, by.row)
tatami.round(x)

tatami.log(x, base)

tatami.math(x, op)

tatami.not(x)

tatami.binary(x, y, op)

tatami.dim(x)

tatami.row(x, 1)

tatami.column(x, i)

tatami.row.sums(x, num.threads)
tatami.column.sums(x, num.threads)
tatami.row.nan.counts(x, num.threads)
tatami.column.nan.counts(x, num.threads)
tatami.is.sparse(x)
tatami.prefer.rows(x)

tatami.realize(x, num.threads)

tatami.multiply(x, val, right, num.threads)

10

Arguments

XS

by.row

X

subset

op

val

right

base

num. threads

tatami-utils

A list of pointers produced by initializeCpp. All matrices should have the
same number of rows (if by. row=FALSE) or columns (otherwise).
Logical scalar indicating whether to apply the operation on the rows.
* For tatami.bind, this will combine the matrices by rows, i.e., the output
matrix has a number of rows equal to the sum of the number of rows in xs.
* For tatami.subset, this will subset the matrix by row.
e For tatami.arith, tatami.compare and tatami.logic with a vector val,
the vector should have length equal to the number of rows.k
A pointer produced by initializeCpp.
Integer vector containing the subset of interest. These should be 1-based row or
column indices depending on by . row.
String specifying the operation to perform.
 For tatami.arith, this should be one of the operations in Arith.
 For tatami.compare, this should be one of the operations in Compare.
 For tatami. logic, this should be one of the operations in Logic.
 For tatami.math, this should be one of the operations in Math.
 For tatami.binary, this may be any operation in Arith, Compare or Logic.
For tatami.arith, tatami.compare and tatami.logic, the value to be used
in the operation specified by op. This may be a:
* Numeric scalar, which is used in the operation for all entries of the matrix.
* Numeric vector of length equal to the number of rows, where each value is
used in the operation with the corresponding row when by . row=TRUE.
* Numeric vector of length equal to the number of column, where each value
is used with the corresponding column when by . row=FALSE.
For tatami.multiply, the value to be used in the matrix multiplication. This
may be a:
* Numeric vector of length equal to the number of columns of x (if right=FALSE)
or rows (otherwise).
¢ Numeric matrix with number of rows equal to the number of columns of x
(if right=FALSE) or rows (otherwise).
* Pointer produced by initializeCpp, referencing a matrix with number
of rows equal to the number of columns of x (if right=FALSE) or rows
(otherwise).

For tatami.arith and tatami.compare, a logical scalar indicating that val is
on the right-hand side of the operation.

For tatami.multiply, a logical scalar indicating that val is on the right-hand
side of the multiplication.

Numeric scalar specifying the base of the log-transformation.

A pointer produced by initializeCpp, referencing a matrix of the same di-
mensions as X.

Integer scalar containing the 1-based index of the row (for tatami. row) or col-
umn (for tatami.column) of interest.

Integer scalar specifying the number of threads to use.

toCsparse 11

Value

For tatami.dim, an integer vector containing the dimensions of the matrix.
For tatami.is.sparse, a logical scalar indicating whether the matrix is sparse.
For tatami.prefer.rows, a logical scalar indicating whether the matrix prefers iteration by row.

For tatami.row or tatami.column, a numeric vector containing the contents of row or column i,
respectively.

For tatami.row.sums or tatami.column.sums, a numeric vector containing the row or column
sums, respectively.

For tatami.row.nan.counts or tatami.column.nan.counts, a numeric vector containing the
number of NaNs in each row or column, respectively.

For tatami.realize, a numeric matrix or dgCMatrix with the matrix contents. The exact class
depends on whether x refers to a sparse matrix.

For tatami.multiply, a numeric matrix containing the matrix product of x and other.

For all other functions, a new pointer to a matrix with the requested operations applied to x or xs.

Author(s)

Aaron Lun

Examples

X <- Matrix::rsparsematrix(1000, 100, 0.1)
ptr <- initializeCpp(x)

tatami.dim(ptr)

tatami.row(ptr, 1)

rounded <- tatami.round(ptr)
tatami.row(rounded, 1)

toCsparse Convert a SparseMatrix to a CsparseMatrix

Description

Exactly what it says in the title.

Usage

toCsparse(x)

Arguments

X Any object produced by block processing with colBlockApply or rowBlockApply.
This can be a matrix, sparse matrix or a SparseMatrix object.

12 whichNonZero

Details

This is intended for use inside functions to be passed to colBlockApply or rowBlockApply. The
idea is to pre-process blocks for user-defined functions that don’t know how to deal with Sparse-
Matrix objects, which is often the case for R-defined functions that do not benefit from beachmat’s
C++ abstraction.

Value

x is returned unless it is a SparseMatrix object, in which case an appropriate CsparseMatrix object
is returned instead.

Author(s)

Aaron Lun

Examples

library(SparseArray)

out <- COO_SparseArray(c(10, 10),
nzcoo=cbind(1:10, sample(10)),
nzdata=runif(10))

toCsparse(out)

whichNonZero Find non-zero entries of a matrix

Description

This function is soft-deprecated; users are advised to use nzwhich and nzvals instead.

Usage
whichNonZero(x, ...)
Arguments
X A numeric matrix-like object, usually sparse in content if not in representation.
Further arguments, ignored.
Value

A list containing i, an integer vector of the row indices of all non-zero entries; j, an integer vector
of the column indices of all non-zero entries; and x, a (usually atomic) vector of the values of the
non-zero entries.

whichNonZero

Author(s)

Aaron Lun

See Also

which, obviously.

Examples

X <- Matrix::rsparsematrix(le6, 1e6, 0.000001)
out <- whichNonZero(x)
str(out)

13

Index

apply, 5
Arith, 10
ArrayGrid, 4, 5

blockApply, 5

checkMemoryCache, 2
colBlockApply, 4,11, 12
Compare, 10
currentViewport, 5

DelayedMatrix, 4, 8
flushMemoryCache (checkMemoryCache), 2

getAutoBlockSize, 5
getExecutor, 6

initializeCpp, 2, 3,6, 8, 10
initializeCpp,ANY-method
(initializeCpp), 6
initializeCpp,ConstantArraySeed-method
(initializeCpp), 6
initializeCpp,DelayedAbind-method
(initializeCpp), 6
initializeCpp,DelayedAperm-method
(initializeCpp), 6
initializeCpp,DelayedMatrix-method
(initializeCpp), 6
initializeCpp,DelayedNaryIsoOp-method
(initializeCpp), 6

initializeCpp,DelayedSetDimnames-method

(initializeCpp), 6
initializeCpp,DelayedSubset-method
(initializeCpp), 6

initializeCpp,DelayedUnaryIsoOpStack-method

(initializeCpp), 6

initializeCpp,dgeMatrix-method
(initializeCpp), 6
initializeCpp,dgRMatrix-method
(initializeCpp), 6
initializeCpp,externalptr-method
(initializeCpp), 6
initializeCpp,lgCMatrix-method
(initializeCpp), 6
initializeCpp, lgeMatrix-method
(initializeCpp), 6
initializeCpp,l1gRMatrix-method
(initializeCpp), 6
initializeCpp,matrix-method
(initializeCpp), 6
initializeCpp, SVT_SparseMatrix-method
(initializeCpp), 6
is_sparse, 8
isFileBackedMatrix
(realizeFileBackedMatrix), 7

Logic, 10
Math, 10

nzvals, 12
nzwhich, 12

path, 8§

realizeFileBackedMatrix, 7
rowBlockApply, 11, 12
rowBlockApply (colBlockApply), 4

SparseMatrix, 4, 5,11, 12

tatami-utils, 8
tatami.arith (tatami-utils), 8

initializeCpp,DelayedUnaryIsoOpWithArgs-methotlatami.binary (tatami-utils), 8

(initializeCpp), 6
initializeCpp,dgCMatrix-method
(initializeCpp), 6

tatami.bind (tatami-utils), 8
tatami.column (tatami-utils), 8
tatami.compare (tatami-utils), 8

INDEX

tatami

tatami
tatami

tatami.
tatami.
tatami.

tatami

.dim(tatami-utils), 8
tatami.
tatami.
tatami.
.math (tatami-utils), 8

.multiply (tatami-utils), 8

is.sparse (tatami-utils), 8
log (tatami-utils), 8
logic (tatami-utils), 8

not (tatami-utils), 8
prefer.rows (tatami-utils), 8
realize (tatami-utils), 8

.round (tatami-utils), 8
tatami.
tatami.
tatami.

row (tatami-utils), 8
subset (tatami-utils), 8
transpose (tatami-utils), 8

toCsparse, 5, 11

which, 13
whichNonZero, 12

15

	checkMemoryCache
	colBlockApply
	getExecutor
	initializeCpp
	realizeFileBackedMatrix
	tatami-utils
	toCsparse
	whichNonZero
	Index

