
Package ‘beachmat.tiledb’
February 1, 2026

Version 1.3.0

Date 2025-07-13

Title beachmat bindings for TileDB-backed matrices

Description Extends beachmat to initialize tatami matrices from TileDB-backed arrays.
This allows C++ code in downstream packages to directly call the TileDB C/C++ library to ac-
cess array data,
without the need for block processing via DelayedArray.
Developers only need to import this package to automatically extend the capabilities of beach-
mat::initializeCpp to TileDBArray instances.

Imports methods, beachmat, tiledb, TileDBArray, DelayedArray, Rcpp

Suggests testthat, BiocStyle, knitr, rmarkdown, Matrix

LinkingTo Rcpp, assorthead, beachmat

biocViews DataRepresentation, DataImport, Infrastructure

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++17

URL https://github.com/tatami-inc/beachmat.tiledb

BugReports https://github.com/tatami-inc/beachmat.tiledb/issues

RoxygenNote 7.3.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/beachmat.tiledb

git_branch devel

git_last_commit df0fa94

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Aaron Lun [aut, cre]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/tatami-inc/beachmat.tiledb
https://github.com/tatami-inc/beachmat.tiledb/issues

2 initializeCpp

Contents
initializeCpp . 2
initializeOptions . 3
loadIntoMemory . 4

Index 6

initializeCpp Initialize TileDB-backed matrices

Description

Initialize C++ representations of TileDB-backed matrices based on their TileDBArray representa-
tions.

Usage

S4 method for signature 'TileDBArraySeed'
initializeCpp(
x,
tiledb.cache.size = getAutoBlockSize(),
tiledb.realize = initializeOptions("realize"),
tiledb.realize.num.threads = initializeOptions("realize.num.threads"),
tiledb.concurrency.level = initializeOptions("concurrency.level"),
...

)

Arguments

x A TileDBArray seed object.
tiledb.cache.size

Integer scalar specifying the size of the cache in bytes during data extraction
from a TileDB matrix. Larger values reduce disk I/O during random access to
the matrix, at the cost of increased memory usage.

tiledb.realize See the realize option in initializeOptions.
tiledb.realize.num.threads

See the realize.num.threads option in initializeOptions.
tiledb.concurrency.level

See the concurrency.level option in initializeOptions.

... Further arguments, ignored.

Value

An external pointer that can be used in any tatami-compatible function.

initializeOptions 3

Author(s)

Aaron Lun

Examples

library(TileDBArray)
y <- matrix(runif(1000), ncol=20, nrow=50)
z <- as(y, "TileDBArray")
ptr <- initializeCpp(z)

initializeOptions Options for TileDB matrices

Description

Options for initializing TileDB matrices in initializeCpp.

Usage

initializeOptions(option, value)

Arguments

option String specifying the name of the option.

value Value of the option.

Details

The following options are supported:

• realize, a logical scalar specifying whether to load the matrix data from TileDB into memory
with loadIntoMemory, and then cache it for future calls with checkMemoryCache. This avoids
time-consuming disk I/O when performing multiple passes through the matrix, at the expense
of increased memory usage.

• realize.num.threads, an integer scalar specifying the number of threads that can be used
by loadIntoMemory outside of TileDB calls. This is only relevant when realize=TRUE.

• concurrency.level, an integer scalar specifying the number of threads that can be used
by the TileDB library. Alternatively NULL, in which case TileDB’s default (i.e., all available
cores on the machine) are used. Greater performance may be achieved when the product of
realize.num.threads and concurrency.level does not exceed the number of available
cores.

Value

If value is missing, the current setting of option is returned.

If value is supplied, it is used to set the option, and the previous value of the option is invisibly
returned.

4 loadIntoMemory

Author(s)

Aaron Lun

Examples

initializeOptions("realize")
old <- initializeOptions("realize", TRUE) # setting to a new value
initializeOptions("realize") # new option takes affect
initializeOptions("realize", old) # setting it back

loadIntoMemory Load a TileDB matrix into memory

Description

Load a TileDB-backed matrix into memory as an external pointer to a tatami-compatible represen-
tation. This differs from the (default) behavior of initializeCpp, which only loads slices of the
matrix on request.

Usage

loadIntoMemory(
x,
cache.size = getAutoBlockSize(),
num.threads = 1,
concurrency.level = NULL

)

Arguments

x A TileDBArray-derived matrix or seed object.

cache.size Integer scalar specifying the size of the cache in bytes during data extraction
from a TileDB matrix.

num.threads Integer scalar specifying the number of threads to use outside of the TileDB
library.

concurrency.level

Integer scalar specifying the number of threads that can be used by the TileDB
library. See the option of the same name in initializeOptions for details.

Value

An external pointer that can be used in tatami-based functions.

Author(s)

Aaron Lun

loadIntoMemory 5

Examples

library(TileDBArray)
y <- matrix(runif(1000), ncol=20, nrow=50)
z <- as(y, "TileDBArray")
ptr <- loadIntoMemory(z)

Index

checkMemoryCache, 3

initializeCpp, 2, 3, 4
initializeCpp,TileDBArraySeed-method

(initializeCpp), 2
initializeOptions, 2, 3, 4

loadIntoMemory, 3, 4

6

	initializeCpp
	initializeOptions
	loadIntoMemory
	Index

