Package ‘bandle’

February 1, 2026

Type Package

Title An R package for the Bayesian analysis of differential
subcellular localisation experiments

Version 1.15.0

Description The Bandle package enables the analysis and visualisation of
differential localisation experiments using mass-spectrometry data.
Experimental methods supported include dynamic LOPIT-DC, hyperLOPIT,
Dynamic Organellar Maps, Dynamic PCP. It provides Bioconductor infrastructure
to analyse these data.

License Artistic-2.0
Encoding UTF-8
Depends R (>=4.1), S4Vectors, Biobase, MSnbase, pRoloc

Imports Rcpp (>=1.0.4.6), pRolocdata, Ibfgs, ggplot2, dplyr, plyr,
knitr, methods, BiocParallel, robustbase, BiocStyle,
ggalluvial, ggrepel, tidyr, circlize, graphics, stats, utils,
grDevices, rlang, RColorBrewer, gtools, gridExtra, coda (>=
0.19-4)

Suggests testthat, interp, fields, pheatmap, viridis, rmarkdown,
spelling

VignetteBuilder knitr

LinkingTo Rcpp, ReppArmadillo, BH

Roxygen list(markdown=TRUE)

RoxygenNote 7.3.2

biocViews Bayesian, Classification, Clustering, ImmunoOncology,
QualityControl,Datalmport, Proteomics, MassSpectrometry

BugReports https://github.com/ococrook/bandle/issues

URL http://github.com/ococrook/bandle
Language en-US

git_url https://git.bioconductor.org/packages/bandle
git_branch devel

https://github.com/ococrook/bandle/issues
http://github.com/ococrook/bandle

2 Contents

git_last_commit 36c7c56

git_last commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Oliver M. Crook [aut, cre] (ORCID:

<https://orcid.org/0000-0001-5669-8506>),
Lisa Breckels [aut] (ORCID: <https://orcid.org/0000-0001-8918-7171>)

Maintainer Oliver M. Crook <oliver.crook@stats.ox.ac.uk>

Contents
bandle-package e 3
bandle e 3
bandleChains-class 7
bandlePredict 10
bandleProcess L 11
bandle_get_outliers 12
besselK_boost 12
calculateGelman e e e 16
diffLocalisationProb 17
EFDR e 18
fitGP . . . e e e e e 19
gpParams-class 22
gradientGP 22
KIdirpg o e e e 25
meme_plot_probs e 27
meanOrganelle 28
plotConvergence e 28
plotOutliers e e e e 29
plotTable e 31
plotTranslocations L 32
proteinAllocation e e e 34
robustMahalanobis 36
sSim_dynamic 37
spatial2D . . L. L e e 38
StatStratum L e e e e e e 40

Index 41

https://orcid.org/0000-0001-5669-8506
https://orcid.org/0000-0001-8918-7171

bandle-package 3

bandle-package An R package for the Bayesian analysis of differential subcellular lo-
calisation experiments

Description

The Bandle package enables the analysis and visualisation of differential localisation experiments
using mass-spectrometry data. Experimental methods supported include dynamic LOPIT-DC, hy-
perLOPIT, Dynamic Organellar Maps, Dynamic PCP. It provides Bioconductor infrastructure to
analyse these data.

Details
The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.
~~ An overview of how to use the package, including the most important functions ~~

Author(s)

Oliver M. Crook [aut, cre] (ORCID: <https://orcid.org/0000-0001-5669-8506>), Lisa Breckels [aut]
(ORCID: <https://orcid.org/0000-0001-8918-7171>)

Maintainer: Oliver M. Crook <oliver.crook @stats.ox.ac.uk>

References

~~ Literature or other references for background information ~~

bandle Differential localisation experiments using the bandle method

Description

These function implement the bandle model for dynamic mass spectrometry based spatial pro-
teomics datasets using MCMC for inference

These functions implement the bandle model for dynamic mass spectrometry based spatial pro-
teomics datasets using MCMC for inference, this is an internal sampling function

Usage

bandle(
objectCond1,
objectCond2,

fcol = "markers”,
hyperLearn = "LBFGS",
numlter = 1000,
burnin = 100L,

thin = 5L,
u-= 2,
v =10,
lambda = 1,
gpParams = NULL,
hyperIter = 20,
hyperMean = c(@, 0, 0),
hyperSd = c(1, 1, 1),
seed = NULL,
pg = FALSE,
pgPrior = NULL,
tau = 0.2,
dirPrior = NULL,
maternCov = TRUE,
PC = TRUE,
pcPrior = matrix(c(@.5, 3, 100), nrow
nu= 2,
propSd = c(0.3, 0.1, 0.05),
numChains = 4L,
BPPARAM = BiocParallel: :bpparam()
)
diffLoc(
objectCond1,
objectCond2,
fcol = "markers”,

hyperLearn = "MH",
numlter = 1000,
burnin = 100L,

thin = 5L,
u=2,

v =10,
lambda = 1,
gpParams =
hyperIter =
hyperMean =

NULL,

20,
c(o, o, @,

hyperSd = c(1, 1, 1),

seed = NULL,
pg = TRUE,

pgPrior = NULL,

D,

bandle

bandle 5

tau = 0.2,

dirPrior = NULL,

maternCov = TRUE,

PC = TRUE,

nu= 2,

pcPrior = NULL,

propSd = c(0.3, 0.1, 0.05)

)
Arguments

objectCond1 A list of MSnbase: :MSnSets where each is an experimental replicate for the first
condition, usually a control

objectCond2 A list of MSnbase: :MSnSets where each is an experimental replicate for the
second condition, usually a treatment

fcol The feature meta-data containing marker definitions. Default is markers

hyperLearn Algorithm to learn posterior hyperparameters of the Gaussian processes. Default
is LBFGS and MH for metropolis-hastings is also implemented.

numlter The number of iterations of the MCMC algorithm. Default is 1000. Though
usually much larger numbers are used

burnin The number of samples to be discarded from the begining of the chain. Default
is 100.

thin The thinning frequency to be applied to the MCMC chain. Default is 5.

u The prior shape parameter for Beta(u, v). Default is 2

v The prior shape parameter for Beta(u, v). Default is 10.

lambda Controls the variance of the outlier component. Default is 1.

gpParams Object of class gpParams. parameters from prior fitting of GPs to each niche to
accelerate inference. Default is NULL.

hyperIter The frequency of MCMC interation to update the hyper-parameters default is 20

hyperMean The prior mean of the log normal prior of the GP parameters. Default is O for
each. Order is length-scale, amplitude and noise variance

hypersd The prior standard deviation of the log normal prior fo the GP parameters. De-
fault is 1 for each. Order is length-scale, ampliture and noise variance.

seed The random number seed.

pg logical indicating whether to use polya-gamma prior. Default is FALSE.

pgPrior A matrix generated by pgPrior function. If param pg is TRUE but pgPrior is
NULL then a pgPrior is generated on the fly.

tau The tau parameter for the polya-Gamma prior (is used). Defaults to 0.2

dirPrior A matrix generated by dirPrior function. Default is NULL and dirPrior is gen-
erated on the fly.

maternCov logical indicated whether to use a matern or gaussian covariance. Default is

True and matern covariance is used

6 bandle

PC logical indicating whether to use a penalised complexity prior. Default is
TRUE.
pcPrior matrix with 3 columns indicating the lambda paramters for the penalised com-

plexity prior. Default is null which internally sets the penalised complexity prior
to c(0.5, 3, 100) for each organelle and the order is length-scale, amplitude
and variance. See vignette for more details.

nu integer indicating the smoothness of the matern prior. Default is 2.
propSd If MH is used to learn posterior hyperparameters then the proposal standard
deviations. A Gaussian random-walk proposal is used.
numChains integer indicating the number of parallel chains to run. Defaults to 4.
BPPARAM BiocParallel parameter. Defaults to machine default backend using bpparam()
Details

The bandle function generate the sample from the posterior distributions (object or class bandleParams)
based on an annotated quantitative spatial proteomics datasets (object of class MSnbase: :MSnSet).
Both are then passed to the bandlePredict function to predict the sub-cellular localisation and
compute the differential localisation probability of proteins. See the vignette for examples

The diffloc function generate the sample from the posterior distributions (object or class bandleParam)
based on an annotated quantitative spatial proteomics datasets (object of class MSnbase: :MSnSet).
Both are then passed to the bandlePredict function to predict the sub-cellular localisation and
compute the differential localisation probability of proteins. See the vignette for examples

Value

bandle returns an instance of class bandleParams

bandle returns an instance of class bandleParams

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mcmcl <- bandle(objectCondl = controll,
objectCond2 = treatmentl, gpParams = gpParams,
fcol = "markers”, numIter = 5L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))

library(pRolocdata)
data("tan2009r1")
set.seed(1)

bandleChains-class 7

tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep,
function(x) fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mcmel <- diffLoc(objectCondl = controll, objectCond2 = treatmentl, gpParams = gpParams,
fcol = "markers”, numlIter = 5L, burnin = 1L, thin = 2L)

bandleChains-class Infrastructure to to store and process MCMC results

Description
The bandleParams infrastructure is used to store and process MCMC results for bandle model from
Crook et al 2021

Usage
chains(object)

S4 method for signature 'bandleParams'
show(object)

S4 method for signature 'nicheParam'’
show(object)

S4 method for signature 'bandleChain'
show(object)

S4 method for signature 'bandleChains'
length(x)

S4 method for signature 'bandleParams'
length(x)

S4 method for signature 'bandleSummaries'
length(x)

S4 method for signature 'nicheParams'
length(x)

S4 method for signature 'nicheParams'
length(x)

posteriorEstimates(object)

S4 method for signature 'bandleSummary'

posteriorEstimates(object)
summaries(object)
params(object)

bandleJoint(object)

S4 method for signature 'bandleSummary'

bandleJoint(object)

S4 method for signature 'bandleChains,ANY,ANY'
x[[i, j = "missing"”, drop = "missing"]]

S4 method for signature 'bandleParams,ANY,ANY'
x[[i, j = "missing"”, drop = "missing”]]

S4 method for signature 'bandleChains,ANY,ANY,ANY'
x[i, j = "missing”, drop = "missing”]

S4 method for signature 'bandleParams,ANY,ANY,ANY'
x[i, j = "missing”, drop = "missing"]

S4 method for signature 'bandleChains'

show(object)

S4 method for signature 'bandleSummaries'

show(object)

S4 method for signature 'bandleSummaries,ANY,ANY'
x[[i, j = "missing”, drop = "missing”]]

S4 method for signature 'bandleSummaries,ANY,ANY'
x[[i, j = "missing"”, drop = "missing”]]

S4 method for signature 'bandleSummaries,ANY,ANY,ANY'
x[i, j = "missing”, drop = "missing"]

S4 method for signature 'nicheParams,ANY,ANY'
x[[i, j = "missing"”, drop = "missing"]]

S4 method for signature 'nicheParams,ANY,ANY'
x[[i, j = "missing"”, drop = "missing”]]

S4 method for signature 'nicheParams,ANY,ANY,ANY'

bandleChains-class

bandleChains-class 9

x[i, j = "missing”, drop = "missing"”]

S4 method for signature 'nicheParams'

show(object)
Arguments
object object of class nicheParams.
X Object to be subset.
i An integer (). Should be of length 1 for [[.
j Missing.
drop Missing.
Details

Objects of the bandleParams class are created with the bandle() function These objects store
the priors for the model and the results of the MCMC chains, which themselves are stored as an
instance of class bandleChains and can be accessed with the chains() function. A summary of
the bandleChains (or class bandleSummary) can be further computed with the bandleProcess
function.

see the bandle vignette for examples

Value

An object of class bandleParams which stores the main results for the analysis when using bandle

Slots

chains 1ist() containing the individual full MCMC chain results in an bandleChains instance.
Each element must be a valid bandleChain instance.

posteriorEstimates A DataFrame documenting the posteriors in an bandleSummary instance

diagnostics A matrix of dimensions 1 by 2 containing the bandleSummary diagnostics.

bandle. joint A matrix of dimensions N by K storing the joint probability in an bandleSummary
instance for each of the first condition

chains list() containing the individual bandle Summaries for different conditions results in an
bandleSummaries instance. Each element must be a valid bandleSummary instance.

method A character() storing the bandle method name
priors A list() with the priors for the parameters
seed An integer() with the random number generation seed.

summary Object of class bandleSummary the summarised MCMC results available in the bandleParams
instance.

chains Object of class bandleChains containing the full MCMC results in the bandleParams
instance

datset character indicating which dataset i.e control or treatment

10 bandlePredict

replicate integer an integer indicating which replicate

K integer(1) indicating the number of components.

D integer(1) indicating the number of samples.

method character (1) defining the method used. Currently bandle
mk matrix(K, D)

lambdak numeric(K)

nuk numeric(K)

sk array(K, D, D)

params list() containing the individual nicheParam objects results in an bandleParams in-
stance. Each element must be a valid bandleParam instance.

dataset character indicating the dataset usaully control or treatment

replicate integer indicating the number of dataset replicate

n integer(1) indicating the number of MCMC interactions. Stored in an bandleChain instance.
K integer (1) indicating the number of components. Stored in an bandleChain instance.

N integer (1) indicating the number of proteins. Stored in an bandleChain instance.

niche matrix(N, n) component allocation results of an bandleChain instance.

nicheProb matrix(N, n, K) component allocation probabilities of an bandleChain instance.
outlier matrix (N, n) outlier allocation results.

outlierProb matrix(N, n, 2) outlier allocation probabilities of an bandleChain instance.

bandlePredict Make predictions from a bandle analysis

Description

Make predictions from a bandle analysis

Usage

bandlePredict(objectCondl, objectCond2, params, fcol = "markers"”)

Arguments
objectCond1 A list of instances of class MSnbase: :MSnSets where each is an experimental
replicate for the first condition, usually a control
objectCond2 A list of instance of class MSnbase: :MSnSets where each is an experimental
replicate for the second condition, usually a treatment
params An instance of class bandleParams, as generated by bandle().

fcol A feature column indicating the markers. Defaults to "markers"

bandleProcess 11

Value

bandlePredict returns an instance of class MSnbase: :MSnSet containing the localisation predic-

tions as a new bandle.allocation feature variable. The allocation probability is encoded as
bandle.probability (corresponding to the mean of the distribution probability). In addition the

upper and lower quantiles of the allocation probability distribution are available as bandle.probability.lowerquantile
and bandle.probability.upperquantile feature variables. The Shannon entropy is available in

the bandle.mean. shannon feature variable, measuring the uncertainty in the allocations (a high

value representing high uncertainty; the highest value is the natural logarithm of the number of

classes). An additional variable indicating the differential localization probability is also added as
bandle.differential.localisation

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mcmcl <- bandle(objectCondl = controll, objectCond2 = treatmentl, gpParams = gpParams,
fcol = "markers”, numlter = 5L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmcl <- bandleProcess(mcmc1)
out <- bandlePredict(objectCondl = controll, objectCond2 = treatmentl, params = mcmcl)

bandleProcess process bandle results

Description

process bandle results

Usage

bandleProcess(params)

Arguments

params An object of class bandleParams

Value

bandleProcess returns an instance of class bandleParams with its summary slot populated.

12 besselK boost

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mcmc1 <- bandle(objectCondl = controll, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers"”, numlIter = 5L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmcl <- bandleProcess(mcmc1)

bandle_get_outliers Number of outliers at each iteration of MCMC

Description

Helper function to get the number of outliers at each MCMC iteration for each chain

Usage

bandle_get_outliers(params)

Arguments

X Object of class bandleParams

Value

A list of length length(x).

besselK_boost bessel function of the second kind from boost library

Description

Leapfrog routine

Leapfrog routine

besselK_boost 13

Usage

besselK_boost(x, V)

besselK(x, V)

matern(nu, a, rho, tau, D)

trenchDetcpp(c)

trenchInvcpp(v)

loglikeGPcpp(Y, Z, A, logcovDet, sigmak, nk, D, Y2)
likelihoodGPcpp(Xk, tau, h, nk, D, materncov = @L, nu = 2)
gradientrhomatern(Y, drvrhomatern, nk, D, Z, A, sigmak)
gradientamatern(Y, amatern, nk, D, Z, A, sigmak)
gradientGPcppmatern(Xk, tau, h, nk, D, nu)

LeapfrogGPcppPC(Xk, lambda, tau, p, x, m, nk, D, L, delta, nu)
sampleGPmeanmaterncpp(Xk, tau, h, nk, D, nu)

makeComponent (X, BX, Y, BY, j)

sampleGPmeancpp(Xk, tau, h, nk, D)

normalisedData(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, j)
normalisedDatamatern(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, j, nu)
centeredDatamatern(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, K, nu)
componentloglike(centereddata, sigmak)

comploglike(centereddata, sigmak)

comploglikelist(centereddata, sigmak)

sampleDirichlet(numSamples, alpha)
sampleQOutliercpp(allocoutlierprob)

sampleAlloccpp(allocprob)

centeredData(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, K)

14 besselK boost

mahaInt(X, mu, sigma, isChol = FALSE)
dmvtInt(X, mu, cholDec, log, df)

dmvtCpp(X_, mu_, sigma_, df_, log_, isChol_)
gradientGPcpp(Xk, tau, h, nk, D)
LeapfrogGPcpp(Xk, tau, p, x, m, nk, D, L, delta)

rcpp_pgdraw(b, c)

Arguments
X position
v argument of trench algorithm
nu smoothness parameter of matern covariance
a amplitude
rho length-scale
tau indexing term
D number of samples
c parameter of PG distribution
Y pointer to data to be subset. X and Y will be joined
Z special matrix from trench algorithm (see Crook et al arxiv 2019)
A special matrix from trench algorithm (see Crook et al arxiv 2019)
logcovDet log determine of the covariancematrix
sigmak variance term
nk number of observations
Y2 vectorised data (see Crook et al arxiv 2019)
Xk The data
h vector of hyperparamters
materncov logical indicating whether to use matern or gaussian covariance. Defaults to

Guassian covariance

drvrhomatern deterivate of matern covariance wrt to rho

amatern deterivate of matern covariance wrt to amplitude
lambda parameters of penalised complexity prior

p momentum

m mass

L iterations

delta stepsize

besselK_boost

X data
BX indexing set to make component
BY pointer to subsetting matrix
b indicator of localisations i.e. niche j
Xknown data with known localisations
Xunknown data with unknown localisations
BXun indexing set for unknown localisations
hypers vector of hyperparameters
K number of components
centereddata pointer to centered data
numSamples The number of samples desired
alpha The concentration parameter
allocoutlierprob
The probabilities of being allocated to the outlier component
allocprob probability of being allocated to particular component
mu mean
sigma variance matrix
isChol boolen indicated whether sigma is cholesky decomposition
cholDec Cholesky decomposition of variance matrix
log boolen of log density
df degrees of freedom for t distribution
X_ the data
mu_ the mean
sigma_ the variance matrix
df_ the degrees of freedom
log_ return log density (boolean).
isChol_ is variance matrix in cholesky decomposition
b parameter of PG distribution
Value

A numeric indicating the density of the t-distribution

Examples

dmvtCpp(diag(1,1,1), 1, diag(1,1,1), 1, TRUE, TRUE)

15

16 calculateGelman

calculateGelman Calculate the Gelman and Rubin diagnostic for bandle output

Description

This function is a wrapper function for the gelman.diag function from the coda package. It takes
a bandleParams object and calculates the Gelman and Rubin’s convergence diagnostic (otherwise
known as the potential scale reduction factor) for all pairwise MCMC chain combinations, together
with upper and lower confidence limits.

Usage

calculateGelman(params)

Arguments

params An instance of class bandleParams

Value

A list of 2 matrix array’s, one for each condition containing the point estimates of the potential
scale reduction factor (labelled Point est.) and their upper confidence limits (labelled Upper C.I.).

Examples

Generate some example data

library("pRolocdata”)

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,
numRep = 4L,
numDyn = 100L)

data <- tansim$lopitrep

control <- data[1:2]

treatment <- data[3:4]

fit GP params
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))

run bandle

res <- bandle(objectCondl = control,
objectCond2 = treatment,
gpParams = gpParams,
fcol = "markers”,
numIter = 20L,
burnin = 1L,
thin = 2L,
numChains = 2,

diffLocalisationProb 17

BPPARAM = SerialParam(RNGseed = 1),
seed = 1)

Process the results
calculateGelman(res)

diffLocalisationProb Compute differential localisation probabilities from ms-based experi-
ments using the bandle method

Description

These functions implement helper functions for the bandle method

Usage

difflLocalisationProb(params)
bootstrapdifflLocprob(params, top = 20, Bootsample = 5000, decreasing = TRUE)

binomialDiffLocProb(params, top = 20, nsample = 5000, decreasing = TRUE)

Arguments
params An instance of bandleParams
top The number of proteins for which to sample from the binomial distribution
Bootsample Number of Bootstramp samples. Default is 5000
decreasing Starting at protein most likely to be differentially localization
nsample how many samples to return from the binomial distribution
Value

returns a named vector of differential localisation probabilities
returns a matrix of size Bootsample * top containing bootstrap

returns a list containing empirical binomial samples

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep

18 EFDR

controll <- d1[1:3]
treatmentl <- d1[4:6]
mcme1 <- bandle(objectCondl = controll, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers”, numIter = 10L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmcl <- bandleProcess(mcmc1)
dp <- difflLocalisationProb(mcmc1)

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep,
function(x) fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mcmel <- bandle(objectCondl = controll, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers”, numIter = 10L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcme1 <- bandleProcess(mcmc1)
bdp <- bootstrapdifflLocprob(mcmc1)
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep,
function(x) fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mcmc1 <- bandle(objectCondl = controll, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers”, numIter = 10L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmel <- bandleProcess(mcmc1)
dp <- binomialDifflLocProb(mcmc1)

EFDR Compute the expected False Discovery Rate

Description

The EFDR for a given threshold is equal to the sum over all proteins that exceed that threshold
of one minus the posterior probability of differential localisations, divides by the total number of
proteins with probabilities of differential localisation greater than that threshold.

fitGP 19

Usage

EFDR(prob, threshold = 0.9)

Arguments
prob A numeric indicating probabilities of differential localisation
threshold A numeric indicating the probability threshold. The default is 0.90.
Value

The expected false discovery rate for a given threshold

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mcmc1 <- bandle(objectCondl = controll, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers”, numIter = 10L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmel <- bandleProcess(mcmc1)
dp <- difflLocalisationProb(mcmc1)
EFDR(dp, threshold = 0.5)

fitGP Fit a Gaussian process to spatial proteomics data

Description

The f1itGP function is a helper function to fit GPs with squared exponential co-variances, maximum
marginal likelihood

The fitGPmaternPC function is a helper function to fit matern GPs to data with penalised complex-
ity priors on the hyperparameters.

The fitGPmatern function fits matern GPs to data.

The plotGPmatern function plots matern GPs

20 fitGP

Usage

fitGP(object = object, fcol = "markers")

fitGPmaternPC(
object = object,
fcol = "markers”,
materncov = TRUE,
nu= 2,
hyppar = matrix(c(10, 6@, 250), nrow = 1)
)
fitGPmatern(object = object, fcol = "markers”, materncov = TRUE, nu = 2)
plotGPmatern(object = object, params = params, fcol = "markers")
Arguments
object A instance of class MSnSet
fcol feature column to indicate markers. Default is "markers”.
materncov logical indicating whether matern covariance is used.
nu matern smoothness parameter. Default is 2.
hyppar The vector of penalised complexity hyperparameters, you must provide a ma-

trix with 3 columns and 1 row. The order is hyperparameters on length-scale,
amplitude, variance.

params The output of running fitGPmatern, fitGPmaternPC or fitGP which is of class
gpParams

Details

This set of functions allow users to fit GPs to their data. The fitGPmaternPC function allows
users to pass a vector of penalised complexity hyperparameters using the hyppar argument. You
must provide a matrix with 3 columns and 1 row. The order of these 3 columns represent the
hyperparameters length-scale, amplitude, variance. We have found that the matrix(c(10, 60,
250), nrow = 1) worked well for the spatial proteomics datasets tested in Crook et al (2021). This
was visually assessed by passing these values and visualising the GP fit using the plotGPmatern
function (please see vignette for an example of the output). Generally, (1) increasing the lengthscale
parameter (the first column of the hyppar matrix) increases the spread of the covariance i.e. the
similarity between points, (2) increasing the amplitude parameter (the second column of the hyppar
matrix) increases the maximum value of the covariance and lastly (3) decreasing the variance (third
column of the hyppar matrix) reduces the smoothness of the function to allow for local variations.
We strongly recommend users start with the recommended parameters and change and assess them
as necessary for their dataset by visually evaluating the fit of the GPs using the plotGPmatern
function. Please see the vignettes for more details and examples.

Value

Returns an object of class gpParams which stores the posterior predictive means, standard devia-
tions, variances and also the MAP hyperparamters for the GP.

fitGP 21

The functions plotGPmatern plot the posterior predictives overlayed with the markers for each
subcellular class.

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x) fitGP(x))

====== fitGPmaternPC =====
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
Please note that hyppar should be chosen carefully and tested
by checking the GP fit with the plotGPmatern function
(please see details above)
gpParams <- lapply(tansim$lopitrep,
function(x) fitGPmaternPC(x, hyppar = matrix(c(1@, 60, 100), nrow = 1)))

====== fitGPmatern =====
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x) fitGPmaternPC(x))

====== plotGPmatern =====
generate example data
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
fit a GP
gpParams <- lapply(tansim$lopitrep, function(x) fitGP(x))

Overlay posterior predictives onto profiles
Datasetl 1

par(mfrow = c(2, 3))
plotGPmatern(tansim$lopitrep[[1]], gpParams[[1]1])

Dataset 2, etc.
par(mfrow = c(2, 3))

22 gradientGP

plotGPmatern(tansim$lopitrep[[2]], gpParams[[2]1])

gpParams-class Container for GP results

Description

The gpParams infrastructure is used to store and process the GP results for output from using the
fitGP functions in bandle

Details

Objects of the gpParams class are created with the fitGP, fitGPmaternPC or fitGPmatern func-
tions

These objects a list of posterior predictive means and standard deviations. As well as maximum
marginal likelihood for the GP

Slots

method character indicating the GP method used

M A list of the posterior predictive means for each K components of GPs fitted to the data
sigma A numeric of length K standard deviations fitted to the data

V A list of the variance fitted to the data

params A matrix array of the MAP hyperparameters for the GP

gradientGP Compute GP gradient

Description

Internal R function to pass R to C++, not for external use.
Internal R function to pass R to C++, not for external use.

Function to perform Metropolis-Hastings for GP hyperparameters with different priors

gradientGP

Usage

gradientGP(Xk, tau, h, nk, D)

gradientGPmatern(Xk, tau, h, nk, D, materncov, nu)
posteriorgradientGPmatern(Xk, tau, h, nk, D, materncov, nu, hyppar)
gradientlogprior(h, hyppar)

likelihoodGP(Xk, tau, h, nk, D)

likelihoodGPmatern(Xk, tau, h, nk, D, materncov, nu)
posteriorGPmatern(Xk, tau, h, nk, D, materncov, nu, hyppar)
Gumbel(x, lambda, log = TRUE)

PCrhomvar(rho, a, lambdal, lambda2, log = TRUE)

metropolisGP(
inith,
X,
tau,
nk,
D,
niter,
hyperMean = c(@, 0, 0),
hyperSd = c(1, 1, 1)
)

metropolisGPmatern(
inith,
X,
tau,
nk,
D,
niter,
nu = 2,
hyppar = c(1, 1, 1),
propSd = c(0.3, 0.1, 0.1)
)

Gumbel(x, lambda, log = TRUE)

PCrhomvar(rho, a, lambdal, lambda2, log = TRUE)

24 gradientGP
Arguments
Xk The data
tau The indexing parameters
h GP hyperparameters
nk Number of observations
D number of samples
materncov logical indicating whether matern covariance is used
nu Smoothness of the matern covariance
hyppar A vector indicating the penalised complexity prior hyperparameters. Default is
c(1,1,1)
X observation
lambda scale parameter of the type-2 Gumbel distribution
log logical indicating whether to return log. Default is TRUE
rho length-scale parameter
a amplitude
lambda1l first parameter of distribution
lambda?2 second parameter of distribution
inith initial hyperparamters
X The data
niter Number of MH iteractions
hyperMean A vector indicating the log-normal means. Default is ¢(0,9,0).
hypersSd A vector indicating the log-normal standard deviations. Default is ¢(1,1,1)
propSd The proposal standard deviation. Default is ¢(0.3,0.1,0.1). Do not change
unless you know what you are doing.
Value

Returns gp gradient

Returns gp gradient

Returns the gradient of the posterior

return the gradient of the log prior, length-scale, aamplitude and noise
Returns gp negative log likelihood

Returns gp negative log likelihood

Returns the negative log posterior of the GP

Returns the likelihood of the type-2 GUmbel distribution
Returns the likelihood of the bivariate penalised complexity prior
Returns new hyperparamters and the acceptance rate

Returns the likelihood of the type-2 GUmbel distribution

Returns the likelihood of the bivariate penalised complexity prior

kldirpg

Examples

Gumbel (3, lambda

25

:'])

kldirpg

Computes the Kullback-Leibler divergence between Polya-Gamma
and Dirichlet priors

Description

Computes the Kullback-Leibler divergence between Polya-Gamma and Dirichlet priors

Compute the KL divergence between two Dirichlet distributions

A function to compute the prior predictive distribution of the Dirichlet prior.

A function to compute the prior predictive distribution of the Polya-Gamma prior.

Usage

kldirpg(sigma =

diag(1, 1, 1), mu = c(@, @, @), alpha = c(1))

kldir(alpha, beta)

prior_pred_dir(object, fcol = "markers"”, iter = 5000, dirPrior = NULL, g = 15)

prior_pred_pg(

objectCond1,
objectCond2,
fcol = "markers”,
tau = 0.2,
lambda = 0.01,
mu_prior = NULL,
iter = 10000,
q =15
)
Arguments
sigma the sigma parameter of the Polya-Gamma prior. A positive-definite symmetric
matrix.
mu the mu parameter of the Polya-Gamma prior. A vector of means
alpha The concentration parameter of the first Dirichlet distribution
beta The concentration parameter of the second Dirichlet distribution
object An instance of class MSnSet
fcol The feature column indiating the markers. Default is "markers"
iter Number of sample to use from prior predictive distribution. Default is 10000

26

dirPrior

objectCond1
objectCond2
tau

lambda

mu_prior

Value

kldirpg

The Dirichlet prior used. If NULL (default) will generate a a default Dirich-
let prior. This should be a matrix with the same dimensions as the number of
subcellular niches. The diagonal terms correspond to the prior probability of
not differentially localising. The (i,j) term corresponds to prior probability of
differntially localising between niche i and j.

The upper tail value. That is the prior probability of having more than q differ-
ential localisations. Default is 15.

An instance of class MSnSet, usually the control dataset

An instance of class MSnSet, usually the treatment dataset

The tau parameter of the Polya-Gamma prior. Default is 0.2.

The lambda ridge parameter used for numerical stability. Default is 0.01

The mean of the Polya-Gamma prior. Default is NULL which generates a de-
fault Polya-Gamma prior.

returns a numeric indicating the KL divergence

a numeric indicating the KL divergence

A list contain the prior predictive distribution of differential localisations, the mean number of
differential localised proteins and the probability than more than q are differentially localised

A list contain the prior predictive distribution of differential localisations, the mean number of
differential localised proteins and the probability than more than q are differentially localised

Examples

kldirpg(sigma = diag(c(1,1,1)), mu = c(0,0,0), alpha = 1)

kldir(c(1,1), c(3,1))

library(pRolocdata)

data("tan2009r1")

out <- prior_pred_dir(object = tan2009r1)

library(pRolocdata)

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,

numRep = 6L,
numDyn = 100L)

dl <- tansim$lopitrep

controll <- d1[1:3]

treatmentl <- d1[4:6]

out <- prior_pred_pg(objectCondl = controll1[[1]],
objectCond2 = treatment1[[1]])

mcmc_plot_probs 27

mcmc_plot_probs Generate a violin plot showing the probabilitiy of protein localisation
to different organelles

Description

These functions implement plotting functions for bandle objects

Usage
mcmc_plot_probs(
params,
fname,
cond = 1,
n=1,
bw = 0.05,
scale = "width",
trim = TRUE
)
Arguments
params An instance of class bandleParams
fname The name of the protein to plot
cond Which conditions do we want to plot. Must be 1 or 2. Default is 1
n The chain from which we plot the probability distribution. Default is 1.
bw The bandwidth use in probability distribution smoothing of geom_violin Default
is 0.05.
scale Scaling of geom_violin. Defaults to width.
trim trim parameter of geom_violin. Defaults to true.
Value

returns a named vector of differential localisation probabilities

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))
dl <- tansim$lopitrep

28 plotConvergence

controll <- d1[1:3]

treatmentl <- d1[4:6]
mcmc1 <- bandle(objectCondl = controll,

objectCond2 = treatmentl, gpParams = gpParams,

fcol = "markers”, numIter = 5L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmc_plot_probs(params = mcmc1, fname = rownames(tan2009r1)[1])

meanOrganelle Computes Organelle means and variances using markers

Description

Computes Organelle means and variances using markers

Usage

meanOrganelle(object, fcol = "markers")
Arguments

object a instance of class MSnset

fcol a feature column indicating which feature define the markers
Value

returns a list of means and variances for each

Examples

library(pRolocdata)
data("tan2009r1")
meanOrganelle(object = tan2009r1)

plotConvergence Generates a histogram of ranks (a rank plot) for convergence

Description

Produces a rank plot to analyse convergence of MCMC algorithm

Usage

plotConvergence(params)

plotOutliers 29

Arguments

params An instance of class bandleParams

Value

Returns the ranks of the number of outliers in each chain. The side effect returns rank plots. Number
of rank plots is equal to the number of chains

Examples

Generate some example data

library(”"pRolocdata")

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,
numRep 4L,
numDyn = 100L)

data <- tansim$lopitrep

control <- data[1:2]

treatment <- data[3:4]

fit GP params
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))

run bandle

res <- bandle(objectCondl = control,
objectCond2 = treatment,
gpParams = gpParams,
fcol = "markers”,
numIter = 5L,
burnin = 1L,
thin = 2L,
numChains = 2,
BPPARAM = SerialParam(RNGseed = 1),
seed = 1)

Process bandle results
bandleres <- bandleProcess(res)

Convergence plots
par(mfrow = c(1, 2))
plotConvergence(bandleres)

plotOutliers Generate trace and density plots for all chains

30 plotOutliers

Description

This function takes the output from running bandle i.e. a bandleParams object and generates trace
and density plots for each MCMC chain in each condition. The output plots can be used to help
assess convergence of MCMC chains.

Usage

plotOutliers(params, auto.layout = TRUE)

Arguments
params An instance of class bandleParams
auto.layout A logical specifying whether to automatically determine the arrangement of
each plot. Default is TRUE.
Value

Generates trace and density plots for each chain for each condition/experiment.

Examples

Generate some example data

library("pRolocdata”)

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,
numRep = 4L,
numDyn = 100L)

data <- tansim$lopitrep

control <- data[1:2]

treatment <- data[3:4]

fit GP params
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))

run bandle

res <- bandle(objectCondl = control,
objectCond2 = treatment,
gpParams = gpParams,
fcol = "markers”,
numIter = 20L,
burnin = 1L,
thin = 2L,
numChains = 2,
BPPARAM = SerialParam(RNGseed = 1),
seed = 1)

Process the results
plotOutliers(res)

plotTable 31

plotTable Generate a table of differential localisations

Description

This function produces a table summarising differential localisation results between two experi-
ments

Usage
plotTable(params, all = FALSE, fcol)

Arguments
params An instance of class bandleParams or an instance of class MSnSetList of length
2.
all A logical specifying whether to count all proteins or only show those that have
changed in location between conditions. Default is FALSE.
fcol If paramsisalist of MSnSets. Then fcol must be defined. This is a character
vector of length 2 to set different labels for each dataset. If only one label is
specified, and the character is of length 1 then this single label will be used to
identify the annotation column in both datasets.
Value

Returns a summary table of translocations of proteins between conditions.

Examples

Generate some example data
library(”"pRolocdata")
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep 4L,
numDyn = 100L)
data <- tansim$lopitrep
control <- data[1:2]
treatment <- data[3:4]

fit GP params
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))

run bandle

res <- bandle(objectCondl = control,
objectCond2 = treatment,
gpParams = gpParams,

32

plotTranslocations

fcol = "markers”,

numlter =
burnin =
thin = 2L
numChains
BPPARAM =
seed = 1)

5L,

1L,

’

= 2’
SerialParam(RNGseed = 1),

Process bandle results
bandleres <- bandleProcess(res)

Tabulate results
plotTable(bandleres)

plotTranslocations

Plot changes in localisation between two conditions/datasets

Description

This function produces a chord diagram (also known as a circos plot) or an alluvial plot (also known
as a Sankey diagram) to show changes in location between two conditions or datasets.

Usage
plotTranslocations(
params,
type = "alluvial”,
all = FALSE,
fcol,
col,

labels = TRUE,
labels.par = "adj",

cex =1,
spacer = 4,
)
Arguments
params An instance of class bandleParams or an instance of class MSnSetList of length
2.
type A character specifying the type of visualisation to plot. One of "alluvial”
(default) or "chord".
all A logical specifying whether to count all proteins or only show those that have

changed in location between conditions. Default is FALSE.

plotTranslocations

fcol

col

labels

labels.par

cex

spacer

Value

33

If paramsisalist of MSnSets. Then fcol must be defined. This is a character
vector of length 2 to set different labels for each dataset. If only one label is
specified, and the character is of length 1 then this single label will be used to
identify the annotation column in both datasets.

A list of colours to define the classes in the data. If not defined then the default
pRoloc colours in getStockCol() are used.

A logical indicating whether to display class/organelle labels for the chord
segments or alluvial stratum. Default is TRUE.

snon

If type is "alluvial”. Label style can be specified as one of "adj", "repel”.
Default is "adj".

Text size. Default is 1.

A numeric. Default is 4. Controls the white space around the circos plotting
region.

Additional arguments passed to the chordDiagram function.

Returns a directional circos/chord diagram showing the translocation of proteins between condi-
tions. If type = "alluvial” ouput is a ggplot object.

Examples

Generate some example data
library("pRolocdata”)

data("tan2009r1")
set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,

numRep = 4L,
numDyn = 100L)

data <- tansim$lopitrep

control <- datal1

:2]

treatment <- data[3:4]

fit GP params

gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))

run bandle

res <- bandle(objectCondl = control,
objectCond2 = treatment,
gpParams = gpParams,
fcol = "markers”,
numIter = 5L,
burnin = 1L,
thin = 2L,
numChains = 1,
BPPARAM = SerialParam(RNGseed = 1),
seed = 1)

34 proteinAllocation

Process the results
bandleres <- bandleProcess(res)

plot the results
plotTranslocations(bandleres)

plotTranslocations(bandleres, type = "chord")
proteinAllocation sample allocations, probabilities and compute loglikilihoods
Description

Internal sampling function, not for outside use documented for completness
Usage
proteinAllocation(loglikelihoods, currentweights, alloctemp, cond)
outlierAllocationProbs(
outlierlikelihood,
loglikelihoods,
epsilon,
alloctemp,
cond
sampleQutlier(allocoutlierprob)
covOrganelle(object, fcol = "markers")
pg_prior(object_condl, object_cond2, K, pgPrior = NULL, fcol = "markers")
sample_weights_pg(nk_mat, pgPrior, w, K, tau = 0.2)
sample_weights_dir(nk_mat, dirPrior)
Arguments

loglikelihoods the log likelihoods

currentweights the current allocations weights

alloctemp the current protein allocations
cond the control = 1, treatment = 2
outlierlikelihood

the outlier log likelihoods

epsilon the outlier component weight

proteinAllocation 35

allocoutlierprob
the outlier probabilities

object An instance of class MSnSet
fcol The feature column containing the markers.
object_cond1 A list of instance of class MSnSets usually control

object_cond2 A list of instance of class MSnSets usually treatment

K The number of organelle classes
pgPrior The Polya-Gamma prior
nk_mat The summary matrix of allocations
w The Polya-Gamma auxiliary variable
tau The empirical bayes parameter for the Polya-Gamma variable. Defaults to 0.2.
dirPrior The Dirichlet prior
Value

returns samples for protein allocations, log likelihoods and probabilities
returns outlier probabilities

returns outlier allocations

returns covariance of organelles using marker proteins

returns the Polya-Gamma prior

returns A sample of the weights using Polya-Gamma priors.

returns A sample of the weights using Dirichlet prior.

Examples

library(pRolocdata)
data("tan2009r1")
covOrganelle(object = tan2009r1)

library(pRolocdata)

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)

dl <- tansim$lopitrep

controll <- d1[1:3]

treatmentl <- d1[4:6]

out <- pg_prior(object_condl = controll,

object_cond2 = treatmentl, K = 11)

36 robustMahalanobis

robustMahalanobis robust Mahalanobis distance

Description

These function implement the MR method of Itzhak et al

Usage

robustMahalanobis(delta)
reprodScore(x, y, method = c("pearson”))

mrMethod(objectCond1, objectCond2, method = "2017")

Arguments
delta The difference profile to compute the squared mahalanobis distance
X Numeric vector to compute reproducibility score
y Numeric vector to compute reproducibility score
method Correlation method. Default is Pearson
objectCond1 A list of MSnbase: :MSnSets where each is an experimental replicate for the first
condition, usually a control
objectCond?2 A list of MSnbase: :MSnSets where each is an experimental replicate for the
second condition, usually a treatment
Value

The squared Mahalanobis distance
The R score
The MR score of the Ithzak et al. 2016/2017

Examples

Generate some example data

library("pRolocdata”)

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,
numRep = 4L,
numDyn = 100L)

data <- tansim$lopitrep

control <- data[1:2]

treatment <- data[3:4]

compute delta matrix

sim_dynamic 37

deltaMatrix <- exprs(control[[1]]) - exprs(treatment[[1]])
res <- bandle:::robustMahalanobis(deltaMatrix)
##' Q@examples
Generate some example data
library("”pRolocdata”)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 4L,
numDyn = 100L)
data <- tansim$lopitrep
control <- data[1:2]
treatment <- data[3:4]

compute delta matrix
deltaMatrix1 <- exprs(control[[1]]) - exprs(treatment[[1]])
deltaMatrix2 <- exprs(control[[2]]) - exprs(treatment[[2]])
mr_score <- bandle:::reprodScore(deltaMatrix1, deltaMatrix2)
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
dl <- tansim$lopitrep
controll <- d1[1:3]
treatmentl <- d1[4:6]
mr1 <- mrMethod(objectCondl = controll, objectCond2 = treatment1)
plot(mr1$Mscore, mri1$Rscore, pch = 21,
xlab = "MScore”, ylab = "RScore")

sim_dynamic Generate a dynamic spatial proteomics experiment

Description

A function to simulate dynamic spatial proteomics data using a bootstrap method

Usage

sim_dynamic(
object,
subsample = NULL,
knn_par = 10L,
fcol = "markers”,
numRep = 6L,
method = "wild",
batch = FALSE,
frac_perm = FALSE,

38 spatial2D

nu= 2,
numDyn = 20L
)
Arguments

object A instance of class MSnSet from which to generate a spatial proteomics dataset.

subsample how many proteins to subsample to speed up analysis. Default is NULL.

knn_par the number of nearest neighbours to use in KNN classification to simulate dataset.
Default is 10

fcol feature column to indicate markers. Default is "markers". Proteins with un-
known localisations must be encoded as "unknown".

numRep The total number of datasets to generate. Default is 6. An integer must be
provided

method The bootstrap method to use to simulate dataset. Default is "wild". refer to
BANDLE paper for more details.

batch Whether or not to include batch effects. Default is FALSE.

frac_perm whether or not to permute the fractions. Default is FALSE

nu parameter to generate residual inflated noise. Default is 2. See BANDLE paper
for more details

numDyn An integer number of protein to simulate dynamic transitions. Default is 20

Value

returns simulate dynamic lopit datasets and the name of the relocalated protein.

Examples

library(pRolocdata)

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1, numRep = 6L, numDyn = 100L)

spatial2D Generate a PCA plot with smoothed probability contours

Description

Generate a PCA plot with smoothed probability contours

spatial2D

Usage

spatial2D(
object,
params,
fcol = "markers”,
dims = c(1, 2),
cov.function = NULL,
theta = 2,
derivative = 2,
k=1,
cond = 1,
n=1,
breaks
aspect

c(0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7),
0.5

Arguments

39

object
params

fcol

dims

cov. function

theta

An instance of class MSnSet to provide the pca coordinates

An instance of class bandleParams

Feature columns that defines the markers. Defaults to "markers".

The PCA dimensions to plot. Defaults to c(1, 2)

The covariance function for the smoothing kernel. Defaults to wendland.cov

The theta parameter of the wendland.cov. Defaults to 2.

derivative The derivative paramter of the wendland.cov. Defaults to 2.
k The k parameter of the wendland.cov
cond Which conditions do we want to plot. Must be 1 or 2. Default is 1
n The chain from which we plot the probability distribution. Default is 1.
breaks The levels at which to plot the contours. Defaults to ¢(0.99, 0.95, 0.9, 0.85, 0.8,
0.75,0.7)
aspect The aspect ratio of the pca plots. Defaults to 0.5.
Value

returns a named vector of differential localisation probabilities

Examples

Not run:

Generate some example data

library("pRolocdata”)

data("tan2009r1")

set.seed(1)

tansim <- sim_dynamic(object = tan2009r1,
numRep 4L,
numDyn = 100L)

40 StatStratum

data <- tansim$lopitrep
control <- data[1:2]
treatment <- data[3:4]

fit GP params
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(@.5, 1, 100), nrow = 1)))

run bandle

res <- bandle(objectCondl = control,
objectCond2 = treatment,
gpParams = gpParams,
fcol = "markers”,
numIter = 5L,
burnin = 1L,
thin = 2L,
numChains = 1,
BPPARAM = SerialParam(RNGseed = 1),
seed = 1)

Process the results
bandleres <- bandleProcess(res)

plot the results
spatial2D(control[[1]], bandleres)

End(Not run)

StatStratum inherits StatSratum

Description

inherits StatSratum

Usage

StatStratum

Format

An object of class StatStratum (inherits from Stat, ggproto, gg) of length 5.

Index

+ datasets
StatStratum, 40
+ package
bandle-package, 3
.bandleChain (bandleChains-class), 7
.bandleChains (bandleChains-class), 7
.bandleParams (bandleChains-class), 7
.bandleSummaries (bandleChains-class), 7
.bandleSummary (bandleChains-class), 7
.gpParams (gpParams-class), 22
.nicheParam (bandleChains-class), 7
.nicheParams (bandleChains-class), 7
[,bandleChains, ANY,ANY,ANY-method
(bandleChains-class), 7
[,bandleParams, ANY,ANY, ANY-method
(bandleChains-class), 7
[,bandleSummaries, ANY,ANY, ANY-method
(bandleChains-class), 7
[,nicheParams, ANY,ANY,ANY-method
(bandleChains-class), 7
[[,bandleChains,ANY,ANY-method
(bandleChains-class), 7
[[,bandleParams, ANY,ANY-method
(bandleChains-class), 7
[[,bandleSummaries,ANY,ANY-method
(bandleChains-class), 7
[[,nicheParams, ANY, ANY-method
(bandleChains-class), 7

bandle, 3

bandle(), 10

bandle-package, 3

bandle_get_outliers, 12

bandleChain-class (bandleChains-class),
7

bandleChains-class, 7

bandleJoint (bandleChains-class), 7

bandleJoint,bandleSummary-method
(bandleChains-class), 7

41

bandleParams-class
(bandleChains-class), 7
bandlePredict, 10
bandleProcess, 11
bandleSummaries-class
(bandleChains-class), 7
bandleSummary-class
(bandleChains-class), 7
besselK (besselK_boost), 12
besselK_boost, 12
binomialDiffLocProb
(difflLocalisationProb), 17
bootstrapdiffLocprob
(diffLocalisationProb), 17

calculateGelman, 16

centeredData (besselK_boost), 12
centeredDatamatern (besselK_boost), 12
chains (bandleChains-class), 7
comploglike (besselK_boost), 12
comploglikelist (besselK_boost), 12
componentloglike (besselK_boost), 12
covOrganelle (proteinAllocation), 34

diffLoc (bandle), 3
difflLocalisationProb, 17
dmvtCpp (besselK_boost), 12
dmvtInt (besselK_boost), 12

EFDR, 18

fitGP, 19
fitGPmatern (fitGP), 19
fitGPmaternPC (fitGP), 19

gpParams-class, 22

gradientamatern (besselK_boost), 12
gradientGP, 22

gradientGPcpp (besselK_boost), 12
gradientGPcppmatern (besselK_boost), 12
gradientGPmatern (gradientGP), 22

42

gradientlogprior (gradientGP), 22
gradientrhomatern (besselK_boost), 12
Gumbel (gradientGP), 22

kldir (kldirpg), 25
kldirpg, 25

LeapfrogGPcpp (besselK_boost), 12
LeapfrogGPcppPC (besselK_boost), 12
length,bandleChains-method
(bandleChains-class), 7
length,bandleParams-method
(bandleChains-class), 7
length,bandleSummaries-method
(bandleChains-class), 7
length,nicheParams-method
(bandleChains-class), 7
likelihoodGP (gradientGP), 22
likelihoodGPcpp (besselK_boost), 12
likelihoodGPmatern (gradientGP), 22
loglikeGPcpp (besselK_boost), 12

mahalnt (besselK_boost), 12
makeComponent (besselK_boost), 12
matern (besselK_boost), 12
mcmc_plot_probs, 27
meanOrganelle, 28

metropolisGP (gradientGP), 22
metropolisGPmatern (gradientGP), 22
mrMethod (robustMahalanobis), 36
MSnbase: :MSnSet, 5, 6, 10, 11, 36

nicheParam-class (bandleChains-class), 7

nicheParams-class (bandleChains-class),
7

normalisedData (besselK_boost), 12

normalisedDatamatern (besselK_boost), 12

outlierAllocationProbs
(proteinAllocation), 34

params (bandleChains-class), 7
PCrhomvar (gradientGP), 22
pg_prior (proteinAllocation), 34
plotConvergence, 28
plotGPmatern (fitGP), 19
plotOutliers, 29

plotTable, 31
plotTranslocations, 32

INDEX

posteriorEstimates
(bandleChains-class), 7
posteriorEstimates,bandleSummary-method
(bandleChains-class), 7
posteriorGPmatern (gradientGP), 22
posteriorgradientGPmatern (gradientGP),
22
prior_pred_dir (kldirpg), 25
prior_pred_pg (kldirpg), 25
proteinAllocation, 34

rcpp_pgdraw (besselK_boost), 12
reprodScore (robustMahalanobis), 36
robustMahalanobis, 36

sample_weights_dir (proteinAllocation),
34

sample_weights_pg (proteinAllocation),
34

sampleAlloccpp (besselK_boost), 12

sampleDirichlet (besselK_boost), 12

sampleGPmeancpp (besselK_boost), 12

sampleGPmeanmaterncpp (besselK_boost),
12

sampleQutlier (proteinAllocation), 34

sampleQOutliercpp (besselK_boost), 12

show, bandleChain-method
(bandleChains-class), 7

show, bandleChains-method
(bandleChains-class), 7

show, bandleParams-method
(bandleChains-class), 7

show, bandleSummaries-method
(bandleChains-class), 7

show, nicheParam-method
(bandleChains-class), 7

show, nicheParams-method
(bandleChains-class), 7

sim_dynamic, 37

spatial2D, 38

StatStratum, 40

summaries (bandleChains-class), 7

trenchDetcpp (besselK_boost), 12
trenchInvcpp (besselK_boost), 12

	bandle-package
	bandle
	bandleChains-class
	bandlePredict
	bandleProcess
	bandle_get_outliers
	besselK_boost
	calculateGelman
	diffLocalisationProb
	EFDR
	fitGP
	gpParams-class
	gradientGP
	kldirpg
	mcmc_plot_probs
	meanOrganelle
	plotConvergence
	plotOutliers
	plotTable
	plotTranslocations
	proteinAllocation
	robustMahalanobis
	sim_dynamic
	spatial2D
	StatStratum
	Index

