Package ‘alabaster.base’

February 1, 2026
Title Save Bioconductor Objects to File
Version 1.11.2
Date 2025-02-01
License MIT + file LICENSE

Description Save Bioconductor data structures into file artifacts, and load them back into memory.
This is a more robust and portable alternative to serialization of such objects into RDS files.
Each artifact is associated with metadata for further interpretation;
downstream applications can enrich this metadata with context-specific properties.

Imports alabaster.schemas, methods, utils, S4Vectors, rhdf5 (>=
2.47.6), jsonlite, jsonvalidate, Rcpp

Suggests BiocStyle, rmarkdown, knitr, testthat, digest, Matrix,
alabaster.matrix

LinkingTo Rcpp, assorthead (>= 1.1.2), Rhdf5lib
VignetteBuilder knitr

SystemRequirements C++17, GNU make
RoxygenNote 7.3.3

Encoding UTF-8

biocViews DataRepresentation, Datalmport
URL https://github.com/ArtifactDB/alabaster.base

BugReports https://github.com/ArtifactDB/alabaster.base/issues
git_url https://git.bioconductor.org/packages/alabaster.base

git_branch devel

git_last_commit Oaf5416

git_last_commit_date 2026-01-31

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Aaron Lun [aut, cre]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/ArtifactDB/alabaster.base
https://github.com/ArtifactDB/alabaster.base/issues

2

Contents

Index

Contents

absolutizePath 3
acquireFile 3
altReadObject e e 5
altSaveObject 7
anyMisSIng e e e e e e 8
chooseMissingPlaceholderForHdf5 o L. 9
cloneDirectory e e e e e e 10
cloneFile e e 11
createDedupSession L e 12
createRedirection e 14
getSaveEnvironment L. e 15
hdfS . . e 18
LStObjects o o o e e e e 18
loadDirectory e e e 19
moveODbJect e e e e e e 20
quickLoadObject 22
quickReadCsv L e 23
readAtomicVector e e e e e e e 24
readBaseFactor 25
readBaseList L e e 26
readDataFrame 27
readDataFrameFactor 28
readMetadata L e 29
readObject L 29
readObjectFile e 31
removeObject 32
Rfc3339 . . . e 33
SAVEALOMICVECIOT o o v e e e e e e e e e e e e e e e e 35
saveBaseFactor e 37
saveBaseList L L e e e 38
saveFormats e e e 39
saveMetadata L. e e e e e 40
saveObject L. 41
saveObject,DataFrame-method L oL 43
saveObject,DataFrameFactor-method 44
transformVectorForHdf5 45
validateDirectory 46
validateObject e e e 47
VIS o e e e 49
writeMetadata L. e e e 49
51

absolutizePath 3

absolutizePath Make an absolute file path

Description

Create an absolute file path from a relative file path. All processing is purely lexical; the path itself
does not have to exist on the filesystem.

Usage

absolutizePath(path)

Arguments

path String containing an absolute or relative file path.

Value

An absolute file path corresponding to path. This is cleaned to remove . ., . and ~ components.

Author(s)

Aaron Lun

Examples

absolutizePath("alpha")
absolutizePath("”../alpha")
absolutizePath("../../alpha/./bravo”)
absolutizePath("/alpha/bravo”)

acquireFile Acquire file or metadata

Description

WARNING: these functions are deprecated. Applications are expected to handle acquisition of files
before loaders are called. Acquire a file or metadata for loading. As one might expect, these are
typically used inside a 1load* function.

4 acquireFile
Usage

acquireFile(project, path)

acquireMetadata(project, path)

S4 method for signature 'character'
acquireFile(project, path)

S4 method for signature 'character'
acquireMetadata(project, path)

Arguments
project Any value specifying the project of interest. The default methods expect a string
containing a path to a staging directory, but other objects can be used to control
dispatch.
path String containing a relative path to a resource inside the staging directory.
Details

By default, files and metadata are loaded from the same staging directory that is written to by
stageObject. alabaster applications can define custom methods to obtain the files and metadata
from a different location, e.g., remote databases. This is achieved by dispatching on a different class
of project.

Each custom acquisition method should take two arguments. The first argument is an R object
representing some concept of a “project”. In the default case, this is a string containing a path to the
staging directory representing the project. However, it can be anything, e.g., a number containing
a database identifier, a list of identifiers and versions, and so on - as long as the custom acquisition
method is capable of understanding it, the 1load* functions don’t care.

The second argument is a string containing the relative path to the resource inside that project. This
should be the path to a specific file inside the project, not the subdirectory containing the file. More
concretely, it should be equivalent to the path in the output of stageObject, not the path to the
subdirectory used as the input to the same function.

The return value for each custom acquisition function should be the same as their local counterparts.
That is, any custom file acquisition function should return a file path, and any custom metadata
acquisition function should return a naamed list of metadata.

Value

acquireFile methods return a local path to the file corresponding to the requested resource.

acquireMetadata methods return a named list of metadata for the requested resource.

Author(s)

Aaron Lun

altReadObject 5

Examples

Staging an example DataFrame:
library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:10])
tmp <- tempfile()

dir.create(tmp)

info <- stageObject(df, tmp, path="coldata")
writeMetadata(info, tmp)

Retrieving the metadata:
meta <- acquireMetadata(tmp, "coldata/simple.csv.gz")
str(meta)

Retrieving the file:
acquireFile(tmp, "coldata/simple.csv.gz")

altReadObject Alter the reading function

Description

Allow alabaster applications to specify an alternative reading function in altReadObject.

Usage
altReadObject(path, ...)

altReadObjectFunction(fun)

Arguments

path, ... Further arguments to pass to readObject or its equivalent.

fun Function that can serve as a drop-in replacement for readObject.
Details

By default, altReadObject is just a wrapper around readObject. However, if altReadObjectFunction
is called, altReadObject calls the replacement fun instead. This allows alabaster applications to
inject wholesale or class-specific customizations into the reading process, e.g., to add more meta-
data whenever an instance of a particular class is encountered. Developers of alabaster extensions
should use altReadObject (instead of readObject) to read child objects when writing their own
reading functions, to ensure that application-specific customizations are respected for the children.

To motivate the use of altReadObject, consider the following scenario.
1. We have created a reading function readX function to read an instance of class X in an al-

abaster extension. This function may be called by readObject if instances of X are children
of other objects.

6 altReadObject

2. An alabaster application Y requires the addition of some custom metadata during the reading
process for X. It defines an alternative reading function readObject?2 that, upon encountering
a schema for X, redirects to a application-specific reader readX2. An example implementation
for readX2 would involve calling readX and decorating the result with the extra metadata.

3. When operating in the context of application Y, the readObject2 generic is used to set
altReadObjectFunction. Any calls to altReadObject in Y’s context will subsequently
call readObject2.

4. So, when writing a reading function in an alabaster extension for a class that might contain
instances of X as children, we use altReadObject instead of directly using readObject.
This ensures that, if a child instance of X is encountered and we are operating in the context
of application Y, we correctly call readObject2 and then ultimately readX2.

The application-specific fun is free to do anything it wants as long as it understands the represen-
tation. It is usually most convenient to leverage the existing functionality in readObject, but if the
application-specific saver in altSaveObject does something unusual, then fun is responsible for
the correct interpretation of any custom representation.

Value

For altReadObject, any R object similar to those returned by readObject.

For altReadObjectFunction, the alternative function (if any) is returned if fun is missing. If fun
is provided, it is used to define the alternative, and the previous alternative is returned.

Author(s)

Aaron Lun

Examples

old <- altReadObjectFunction()

Setting it to something.
altReadObjectFunction(function(...) {
print("YAY")
readObject(...)
»

Staging an example DataFrame:
library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:10])
tmp <- tempfile()

saveObject(df, tmp)

And now reading it - this should print our message.
altReadObject(tmp)

Restoring the old reader:
altReadObjectFunction(old)

altSaveObject 7

altSaveObject Alter the saving generic

Description

Allow alabaster applications to divert to a different saving generic instead of saveObject.

Usage

altSaveObject(x, path, ...)

altSaveObjectFunction(generic)

Arguments
X, path, ... Further arguments to pass to saveObject or an equivalent generic.
generic Generic function that can serve as a drop-in replacement for saveObject.
Details

By default, altSaveObject is just a wrapper around saveObject. However, if altSaveObjectFunction
is called, altSaveObject calls the replacement generic instead. This allows alabaster applications

to inject wholesale or class-specific customizations into the saving process, €.g., to save more meta-

data whenever an instance of a particular class is encountered. Developers of alabaster extensions
should use altSaveObject to save child objects when implementing saveObject methods, to en-

sure that application-specific customizations are respected for the children.

To motivate the use of altSaveObject, consider the following scenario.

1. We have created a staging method for class X, defined for the saveObject generic.

2. An alabaster application Y requires the addition of some custom metadata during the staging
process for X. It defines an alternative staging generic saveObject2 that, upon encountering
an instance of X, redirects to an application-specific method (i.e., saveObject2, X-method).
For example, the saveObject2 method for X could call X’s saveObject method and add the
necessary metadata to the result.

3. When operating in the context of application Y, the saveObject2 generic is used to set
altSaveObjectFunction. Any calls to altSaveObject in Y’s context will subsequently
call saveObject2.

4. So, when writing a saveObject method for any objects that might contain an instance of X
as a child, we call altSaveObject on that X object instead of directly using saveObject.
This ensures that, if a child instance of X is encountered and we are operating in the context
of application Y, we correctly call saveObject2 and then ultimately the application-specific
method.

The application-specific generic is free to do anything it wants as long as the custom representation
is understood by the application-specific reader in altReadObject. However, it is usually most
convenient to re-use the existing representations created by saveObject. This means that any

8 anyMissing

customizations should not interfere with the validity of those representations, as defined by the
takane specifications and enforced by validateObject. We recommend that any customizations
should manifest as new files starting with an underscore, as this will not interfere by any takane file
specification.

Value

For altSaveObject, files are created at the specified location, see saveObject for details.

For altSaveObjectFunction, the alternative generic (if any) is returned if generic is missing. If
generic is provided, it is used to define the alternative, and the previous alternative is returned.
Author(s)

Aaron Lun

Examples

old <- altSaveObjectFunction()

Creating a new generic for demonstration purposes:
setGeneric("superSaveObject”, function(x, path, ...)
standardGeneric("superSaveObject”))

setMethod("”superSaveObject”, "ANY"”, function(x, path, ...) {
print("Falling back to the base method!")
saveObject(x, path, ...)

»

altSaveObjectFunction(superSaveObject)

Staging an example DataFrame. This should print our message.
library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:10])

tmp <- tempfile()

altSaveObject(df, tmp)

Restoring the old loader:
altSaveObjectFunction(old)

anyMissing Find missing values

Description

Find missing (NA) values. This is smart enough to distinguish them from NaN values in numeric x.
For all other types, it just calls is.na or anyNA.

chooseMissingPlaceholderForHdf5 9

Usage

anyMissing(x)

is.missing(x)

Arguments

X Vector or array of atomic values.

Value

For anyMissing, a logical scalar indicating whether any NA values were present in X.

For is.missing, a logical vector or array of shape equal to x, indicating whether each value is NA.

Author(s)

Aaron Lun

Examples

anyNA(c(NaN))
anyNA(c(NA))
anyMissing(c(NaN))
anyMissing(c(NA))

is.na(c(NA, NaN))
is.missing(c(NA, NaN))

chooseMissingPlaceholderForHdf5
Choose a missing value placeholder

Description

In the alabaster.* framework, we mark missing entries inside HDF5 datasets with placeholder
values. This function chooses a value for the placeholder that does not overlap with anything else
in a vector.

Usage

chooseMissingPlaceholderForHdf5(x, .version = 3)

Arguments

X An atomic vector to be saved to HDFS5.

.version Internal use only.

10 cloneDirectory

Details

For floating-point datasets, the placeholder will not be NA if there are mixtures of NAs and NaNs.
We do not rely on the NaN payload to distinguish between these two values.

Placeholder values are typically saved as scalar attributes on the HDF5 dataset that they are used in.
The usual name of this attribute is "missing-value-placeholder”, as encoding by missingPlaceholderName.

Value

A placeholder value for missing values in x, guaranteed to not be equal to any non-missing value in
X.

Examples

chooseMissingPlaceholderForHdf5(c(TRUE, NA, FALSE))
chooseMissingPlaceholderForHdf5(c(1L, NA, 2L))
chooseMissingPlaceholderForHdf5(c("aaron”, NA, "barry"))
chooseMissingPlaceholderForHdf5(c("aaron”, NA, "barry"”, "NA"))
chooseMissingPlaceholderForHdf5(c(1.5, NA, 2.6))
chooseMissingPlaceholderForHdf5(c(1.5, NaN, NA, 2.6))

cloneDirectory Clone an existing directory

Description

Clone an existing directory to a new location. This is typically performed inside saveObject after
detecting duplicated objects, see ?createDedupSession for an example use case.

Usage
cloneDirectory(src, dest, action = c("link"”, "copy"”, "symlink”, "relsymlink"))
Arguments
src String containing the path to the source directory, typically generated by a prior
saveObject call.
dest String containing the path to the destination directory, typically the path in a
subsequent saveObject call.
action String specifying the action to use when cloning files from src to dest.

* "copy": copy all files within src to their corresponding locations in dest.

e "link": create a hard link from each file in src to its corresponding loca-
tion in dest. If this fails, we silently fall back to a copy.

e "symlink": create a symbolic link from each file in src to its correspond-
ing location in dest. Each symbolic link contains the absolute path in the
corresponding file in its original directory, which is useful when the con-
tents of dest might be moved (but the original directory will not).

cloneFile 11

* "relsymlink”: create a symbolic link from each file in src to its corre-
sponding location in dest. Each symbolic link contains the minimal rela-
tive path to the corresponding file in the original directory, which is useful
when both src and dest are moved together, e.g., as they are part of the
same parent object like a SummarizedExperiment.

Value
A new directory is created at dest with the contents of src, either copied or linked. NULL is invisibly
returned.

Author(s)

Aaron Lun

See Also

cloneFile, to clone individual files.

Examples

tmp <- tempfile()
dir.create(tmp)

src <- file.path(tmp, "A")
dir.create(src)
write(file=file.path(src, "foobar"), LETTERS)

dest <- file.path(tmp, "B")
cloneDirectory(src, dest)
list.files(dest, recursive=TRUE)

cloneFile Clone an existing file

Description
Clone an existing file to a new location. This is typically performed inside saveObject methods
for objects that contain a reference to a file.

Usage

cloneFile(src, dest, action = c("link", "copy"”, "symlink", "relsymlink"))

12 createDedupSession

Arguments
src String containing the path to the source file.
dest String containing the destination file path, typically within the path supplied to
saveObject.
action String specifying the action to use when cloning src to dest.

* "copy": copy src to dest.

* "link": create a hard link from src to dest. If this fails, we silently fall
back to a copy.

e "symlink": create a symbolic link from src to dest. The symbolic link
contains the absolute path to src, which is useful when dest might be
moved but src will not.

* "relsymlink”: create a symbolic link from src to dest. Each symbolic
link contains the minimal relative path to src, which is useful when both
src and dest are moved together, e.g., as they are part of the same parent
object like a SummarizedExperiment.

Value

A new file/link is created at dest. NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

cloneDirectory, to clone entire directories.

Examples

tmp <- tempfile()
write(file=tmp, LETTERS)

dest <- tempfile()
cloneFile(tmp, dest)
readLines(dest)

createDedupSession Deduplicate objects when saving

Description

Utilities for deduplicating objects inside saveObject to save time and/or storage space.

createDedupSession 13
Usage

createDedupSession()

checkObjectInDedupSession(x, session)

addObjectToDedupSession(x, session, path)

Arguments
X Some object, typically S4.
session Session object created by createDedupSession.
path String containing the absolute path to the directory in which x is to be saved.
This will be used for deduplication if another object is identified as a duplicate
of x. If a relative path is provided, it will be converted to an absolute path.
Details

These utilities allow extension developers to support deduplication of objects in a top-level call to
saveObject. For a given saveObject method, we can:

1. Accept a session object in an optional <PREFIX>.dedup.session= argument. We may also
accept a <PREFIX>.dedup.action= argument to specify how any deduplication should be
performed. Some <PREFIX> prefix should be chosen to avoid conflicts between multiple dedu-
plication sessions.

2. If a session argument is provided, we call checkObjectInDedupSession(x, session) to
see if the x is a duplicate of an existing object in the session. If a path is returned, we call
cloneDirectory and return.

3. Otherwise, we save this object to disk, possibly passing the session argument as <PREFIX>. dedup.session=
in further calls to saveObject for child objects. We call addObjectToDedupSession to add
the current object to the session.

A user can enable deduplication by passing the output of createDedupSession to <PREFIX>.dedup.session=
in the top-level call to saveObject. This is most typically performed when saving SummarizedEx-

periment objects with multiple assays, where one assay consists of delayed operations on another

assay.

Value

createDedupSession will return a deduplication session that can be modified in-place.

If x is a duplicate of an object in session, checkObjectInDedupSession will return a string con-
taining the absolute path to a directory representing that object. Otherwise, it will return NULL.

addObjectToDedupSession will add x to session with the supplied path. It returns NULL invisibly.

Author(s)

Aaron Lun

14 createRedirection

Examples

test <- function(x, path, test.dedup.session=NULL, test.dedup.action="1link") {
if (!is.null(test.dedup.session)) {
original <- checkObjectInDedupSession(x, test.dedup.session)
if (!'is.null(original)) {
cloneDirectory(original, path, test.dedup.action)
return(invisible(NULL))
3
3
dir.create(path)
saveRDS(x, file.path(path, "whee.rds")) # replace this with actual saving code.
if (!is.null(test.dedup.session)) {
addObjectToDedupSession(x, test.dedup.session, path)

library(S4Vectors)

y <- DataFrame(A=1:10, B=1:10)
tmp <- tempfile()
dir.create(tmp)

Saving the first instance of the object, which is now stored in the session.
session <- createDedupSession()

checkObjectInDedupSession(y, session) # no duplicates yet.

test(y, file.path(tmp, "first”), test.dedup.session=session)

Saving it again will trigger the deduplication.
checkObjectInDedupSession(y, session)

test(y, file.path(tmp, "duplicate”), test.dedup.session=session)

list.files(tmp, recursive=TRUE)

createRedirection Create a redirection file

Description

WARNING: this function is deprecated. Redirection is no longer supported in the latest alabaster
framework. Create a redirection to another path in the same staging directory. This is useful for
creating short-hand aliases for resources that have inconveniently long paths.

Usage

createRedirection(dir, src, dest)

getSaveEnvironment 15

Arguments
dir String containing the path to the staging directory.
src String containing the source path relative to dir.
dest String containing the destination path relative to dir. This may be any path that
can also be used in acquireMetadata.
Details

src should not correspond to an existing file inside dir. This avoids ambiguity when attempting to
load src via acquireMetadata. Otherwise, it would be unclear as to whether the user wants the
file at src or the redirection target dest.

src may correspond to existing directories. This is because directories cannot be used in acquireMetadata,
so no such ambiguity exists.

Value

A list of metadata that can be processed by writeMetadata.

Author(s)

Aaron Lun

Examples

Staging an example DataFrame:
library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:10])

tmp <- tempfile()

dir.create(tmp)

info <- stageObject(df, tmp, path="coldata")
writeMetadata(info, tmp)

Creating a redirection:
redirect <- createRedirection(tmp, "foobar”, "coldata/simple.csv.gz")
writeMetadata(redirect, tmp)

We can then use this redirect to pull out metadata:
info2 <- acquireMetadata(tmp, "foobar")
str(info2)

getSaveEnvironment Track the environment used for saving objects

Description

Utilities to write, load and access the R environment used by saveObject for any given object.

16 getSaveEnvironment
Usage

getSaveEnvironment ()

formatSaveEnvironment ()

useSaveEnvironment (use)

registerSaveEnvironment(info = NULL)

loadSaveEnvironment(path)

Arguments
use Logical scalar specifying whether to use a save environment during reading/saving
of objects.
info Named list containing information about the environment used to save each ob-
ject. If NULL, this is created by calling formatSaveEnvironment.
path String containing the path to a directory representing an object, same as that
used by saveObject and readObject.
Details

When saving an object, saveObject will automatically record some details about the current R envi-
ronment. This facilitates trouble-shooting and provides some opportunities for corrective measures
if any bugs are found in older saveObject methods. Information about the save environment is
stored in an _environment. json file inside the directory containing the object. Subdirectories for
child objects may also have separate _environment. json files (e.g., if they were created in a dif-
ferent environment), otherwise it is assumed that they inherit the save environment from the parent
object.

Application or extension developers are expected to call getSaveEnvironment from inside a load-
ing function used by readObject or altReadObject. This wil return the save environment that
was used for the “current” object, i.e., the object that was previously saved at path. By access-
ing the historical save environment, developers can check if buggy versions of the corresponding
saveObject or altSaveObject methods were used. Appropriate corrective measures can then be
applied to recover the correct object, warn users, etc. getSaveEnvironment can also be called
inside saveObject or altSaveObject methods, in which case the current object is the one being
saved.

In most cases, registerSaveEnvironment does not need to be explicitly called by end-users or de-
velopers. It is automatically executed by the top-level calls to the saveObject or altSaveObject
generics. Methods can simply call getSaveEnvironment to access the save environment informa-
tion. Similarly, loadSaveEnvironment does not usually need to be explicitly called by end-users or
developers, as it is automatically executed by each readObject or altReadObject call. Individual
reader functions can simply call getSaveEnvironment to access the save environment information.

Tracking of the save environment can be disabled by setting useSaveEnvironment (FALSE).

getSaveEnvironment 17

Value

getSaveEnvironment returns a named list describing the environment used to save the “current”
object (see Details). The list should have a type field specifying the type of environment, e.g., "R".
For objects created by saveObject, this will typically have the same format as the list returned by
formatSaveEnvironment. Alternatively, NULL is returned if useSaveEnvironment is set to FALSE
or no environment information was recorded for the current object.

formatSaveEnvironment returns a named list containing the current R environment, derived from
the sessionInfo. This records the R version, the platform in which R is running, and the
versions of all packages as a named list.

If use is not supplied, useSaveEnvironment returns a logical scalar indicating whether to use the
save environment information. If use is supplied, it is used to define the save environment usage
policy, and the previous setting of this value is invisibly returned.

registerSaveEnvironment registers the current environment information in memory so that it can
be returned by getSaveEnvironment. It returns a list containing a restore function that should
be called on.exit to (i) restore the previous environment information; and a write function that
accepts a path to a directory in which to create an _environment. json file with the environment
information. Both functions are no-ops if useSaveEnvironment is set to FALSE or if a save envi-
ronment has already been registered.

loadSaveEnvironment loads the environment information from a _environment. json file in path.

It also registers the environment information in memory so that it is returned when getSaveEnvironment
is called. It returns a function that should be called on.exit to restore the previous environment
information. This function is a no-op if useSaveEnvironment is set to FALSE, or if the environment
information is not parsable (in which case a warning will be emitted).

Author(s)

Aaron Lun

Examples

str(formatSaveEnvironment())

prev <- useSaveEnvironment (TRUE)
tmp <- tempfile()
dir.create(tmp)

wfun <- registerSaveEnvironment(tmp)
getSaveEnvironment ()

wfun$restore()

useSaveEnvironment (prev)

18 listObjects

hdf5 HDF5 utilities

Description

Basically just better versions of those in rhdf5, dedicated to alabaster.base and its dependents.
Intended for alabaster.* developers only.

listObjects List objects in a directory

Description

List all objects in a directory, along with their types.

Usage

listObjects(dir, include.children = FALSE)

Arguments

dir String containing a path to a directory containing objects saved by saveObject,
possibly in separate subdirectories.

include.children
Logical scalar indicating whether to include child objects.

Value

A DFrame where each row corresponds to an object. It contains the following columns:

* path, the relative path to the object’s subdirectory inside dir.
* type, the type of the object based on its OBJECT file (see ?readObjectFile).

* child, whether the object is a child of another object.

If include.children=FALSE, metadata is only returned for non-child objects.

Author(s)

Aaron Lun

loadDirectory 19

Examples

tmp <- tempfile()
dir.create(tmp)

library(S4Vectors)
df <- DataFrame(A=1:10, B=LETTERS[1:10])
saveObject(df, file.path(tmp, "whee"))

11 <- list(A=1, B=LETTERS, C=DataFrame(X=1:5))
saveObject(1ll, file.path(tmp, "stuff"))

listObjects(tmp)
listObjects(tmp, include.children=TRUE)

loadDirectory Load all non-child objects in a directory

Description

WARNING: this function is deprecated, use 1istObjects and loop over entries with readObject
instead. As the title suggests, this function loads all non-child objects in a staging directory. All
loading is performed using altLoadObject to respect any application-specific overrides. Children
are used to assemble their parent objects and are not reported here.

Usage

loadDirectory(dir, redirect.action = c("from”, "to", "both"))
Arguments

dir String containing a path to a staging directory.

redirect.action
String specifying how redirects should be handled:

* "to" will report an object at the redirection destination, not the redirection
source.

* "from" will report an object at the redirection source(s), not the destination.

* "both"” will report an object at both the redirection source(s) and destina-
tion.

Value

A named list is returned containing all (non-child) R objects in dir.

Author(s)

Aaron Lun

20 moveObject

Examples

tmp <- tempfile()
dir.create(tmp)

library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:10])
meta <- stageObject(df, tmp, path="whee")
writeMetadata(meta, tmp)

11 <- list(A=1, B=LETTERS, C=DataFrame(X=1:5))
meta <- stageObject(ll, tmp, path="stuff")
writeMetadata(meta, tmp)

redirect <- createRedirection(tmp, "whoop”, "whee/simple.csv.gz")
writeMetadata(redirect, tmp)

all.meta <- loadDirectory(tmp)
str(all.meta)

moveObject Move a non-child object in the staging directory

Description

WARNING: this function is deprecated, as directories of non-child objects can just be moved with
regular methods (e.g., file.rename) in the latest version of alabaster. Pretty much as it says in the
title. This only works with non-child objects as children are referenced by their parents and cannot
be safely moved in this manner.

Usage

moveObject(dir, from, to, rename.redirections = TRUE)

Arguments
dir String containing the path to the staging directory.
from String containing the path to a non-child object inside dir, as used in acquireMetadata.
This can also be a redirection to such an object.
to String containing the new path inside dir.

rename.redirections
Logical scalar specifying whether redirections pointing to from should be re-
named as to.

moveObject 21

Details

This function will look around path for JSON files containing redirections to from, and update them
to point to to. More specifically, if path is a subdirectory, it will search in the same directory con-
taining path; otherwise, it will search in the directory containing dirname (path). Redirections in
other locations will not be removed automatically - these will be caught by checkValidDirectory
and should be manually updated.

If rename.redirections=TRUE, this function will additionally move the redirection files so that
they are named as to. In the unusual case where from is the target of multiple redirection files, the
renaming process will clobber all of them such that only one of them will be present after the move.

Value

The object represented by path is moved, along with any redirections to it. A NULL is invisibly
returned.

Safety of moving operations

In general, alabaster.* representations are safe to move as only the parent object’s resource.path
metadata properties will contain links to the children’s paths. These links are updated with the new
to path after running moveObject on the parent from.

However, alabaster applications may define custom data structures where the paths are present else-
where, e.g., in the data file itself or in other metadata properties. If so, applications are reponsible
for updating those paths to reflect the naming to to.

Author(s)

Aaron Lun

Examples

tmp <- tempfile()
dir.create(tmp)

library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:10])
meta <- stageObject(df, tmp, path="whee")
writeMetadata(meta, tmp)

11 <- list(A=1, B=LETTERS, C=DataFrame(X=1:5))
meta <- stageObject(ll, tmp, path="stuff")
writeMetadata(meta, tmp)

redirect <- createRedirection(tmp, "whoop”, "whee/simple.csv.gz")
writeMetadata(redirect, tmp)

list.files(tmp, recursive=TRUE)
moveObject(tmp, "whoop”, "YAY")
list.files(tmp, recursive=TRUE)

22 quickLoadObject

quickLoadObject Convenience helpers for handling local directories

Description

WARNING: these functions are deprecated as the saving/reading functions are already simple
enough in the newer versions of the alabaster framework. Read and write objects from a lo-
cal staging directory. These are just convenience wrappers around functions like loadObject,
stageObject and writeMetadata.

Usage
quickLoadObject(dir, path, ...)
quickStageObject(x, dir, path, ...)
Arguments
dir String containing a path to the directory.
path String containing a relative path to the object of interest inside dir.
Further arguments to pass to loadObject (for quickLoadObject) or stageObject
(for quickStageObject).
X Object to be saved.
Value

For quickLoadObject, the object at path.

For quickStageObject, the object is saved to path inside dir. All necessary directories are created
if they are not already present. A NULL is returned invisibly.
Author(s)

Aaron Lun

Examples

local <- tempfile()
Creating a slightly complicated object:
library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:101)
df$C <- DataFrame(D=letters[1:10], E=runif(10))

Saving it:
quickStageObject(df, local, "FOOBAR")

Reading it back:

quickReadCsv 23

quickLoadObject(local, "FOOBAR")

quickReadCsv Quickly read and write a CSV file

Description

Quickly read and write a CSV file, usually as a part of staging or loading a larger object. This
assumes that all files follow the comservatory specification.

Usage

quickReadCsv (
path,
expected.columns,
expected.nrows,
compression,
row.names,
parallel = TRUE

)

quickWriteCsv(
df,
path,

L

row.names = FALSE,

compression = "gzip",
validate = TRUE
)
Arguments
path String containing a path to a CSV to read/write.

expected.columns
Named character vector specifying the type of each column in the CSV (exclud-
ing the first column containing row names, if row. names=TRUE).

expected.nrows Integer scalar specifying the expected number of rows in the CSV.

compression String specifying the compression that was/will be used. This should be either
“none”, Ilgzipﬁl-

row.names For .quickReadCsv, a logical scalar indicating whether the CSV contains row
names.

For .quickWriteCsv, a logical scalar indicating whether to save the row names
of df.

parallel Whether reading and parsing should be performed concurrently.

https://github.com/ArtifactDB/comservatory

24 readAtomic Vector

df A DFrame or data.frame object, containing only atomic columns.
Further arguments to pass to write.csv.

validate Whether to double-check that the generated CSV complies with the comserva-
tory specification.
Value

For . quickReadCsv, a DFrame containing the contents of path.

For .quickWriteCsv, df is written to path and a NULL is invisibly returned.

Author(s)

Aaron Lun

Examples

library(S4Vectors)
df <- DataFrame(A=1, B="Aaron")

temp <- tempfile()
.quickWriteCsv(df, path=temp, row.names=FALSE, compression="gzip")

.quickReadCsv(temp, c(A="numeric"”, B="character”), 1, "gzip", FALSE)

readAtomicVector Read an atomic vector from disk

Description

Read a vector consisting of atomic elements from its on-disk representation. This is usually not
directly called by users, but is instead called by dispatch in readObject.

Usage
readAtomicVector(path, metadata, ...)
Arguments
path Path to a directory created with any of the vector methods for saveObject.
metadata Named list containing metadata for the object, see readObjectFile for details.
Further arguments, ignored.
Value

The vector described by info.

readBaseFactor 25

Author(s)

Aaron Lun

See Also

"saveObject,integer-method”, for one of the staging methods.

Examples

tmp <- tempfile()
saveObject(setNames(runif(26), letters), tmp)
readObject (tmp)

readBaseFactor Read a factor from disk

Description

Read a base R factor from its on-disk representation. This is usually not directly called by users,
but is instead called by dispatch in readObject.

Usage
readBaseFactor(path, metadata, ...)
Arguments
path String containing a path to a directory, itself created with the saveObject method
for factors.
metadata Named list containing metadata for the object, see readObjectFile for details.
Further arguments, ignored.
Value

The vector described by info.

Author(s)

Aaron Lun

See Also

"saveObject, factor-method", for the staging method.

26 readBaseList

Examples

tmp <- tempfile()
saveObject(factor(letters[1:10], letters), tmp)
readObject (tmp)

readBaselist Read a base list from disk

Description

Read a list from its on-disk representation. This is usually not directly called by users, but is instead
called by dispatch in readObject.

Usage
readBaselList(path, metadata, simple_list.parallel = TRUE, ...)
Arguments
path String containing a path to a directory, itself created with the list method for
stageObject.
metadata Named list containing metadata for the object, see readObjectFile for details.

simple_list.parallel
Whether to perform reading and parsing in parallel for greater speed. Only
relevant for lists stored in the JSON format.

Further arguments to be passed to altReadObject for complex child objects.

Details

The uzuki2 specification (see https://github.com/ArtifactDB/uzuki?) allows length-1 vec-
tors to be stored as-is or as a scalar. If the file stores a length-1 vector as-is, readBaseList will
read the list element as a length-1 vector with the Asls class. If the file stores a length-1 vector as a
scalar, readBaselList will read the list element as a length-1 vector without this class. This allows
downstream users to distinguish between the storage modes in the rare cases that it is necessary.

Value

The list represented by path.

Author(s)

Aaron Lun

See Also

"stageObject,list-method", for the staging method.

https://github.com/ArtifactDB/uzuki2

readDataFrame 27

Examples

library(S4Vectors)
11 <- list(A=1, B=LETTERS, C=DataFrame(X=letters))

tmp <- tempfile()
saveObject(1l, tmp)
readObject (tmp)

readDataFrame Read a DataFrame from disk

Description

Read a DFrame from its on-disk representation. This is usually not directly called by users, but is
instead called by dispatch in readObject.

Usage
readDataFrame(path, metadata, ...)
Arguments
path String containing a path to the directory, itself created with saveObject method
for DFrames.
metadata Named list containing metadata for the object, see readObjectFile for details.
Further arguments, passed to altLoadObject for complex nested columns.
Value

The DFrame represented by path.

Author(s)

Aaron Lun

See Also

"saveObject,DataFrame-method”, for the staging method.

Examples

library(S4Vectors)
df <- DataFrame(A=1:10, B=LETTERS[1:101)

tmp <- tempfile()
saveObject(df, tmp)
readObject (tmp)

28 readDataFrameFactor

readDataFrameFactor Read a DataFrame factor from disk

Description

Read a DataFrameFactor from its on-disk representation. This is usually not directly called by
users, but is instead called by dispatch in readObject.

Usage
readDataFrameFactor(path, metadata, ...)
Arguments
path String containing a path to a directory, itself created with the saveObject method
for DataFrameFactors.
metadata Named list containing metadata for the object, see readObjectFile for details.
Further arguments to pass to internal altSaveObject calls.
Value

A DataFrameFactor represented by path.

Author(s)

Aaron Lun

See Also

"saveObject,DataFrameFactor-method”, for the staging method.

Examples

library(S4Vectors)
df <- DataFrame(X=LETTERS[1:5], Y=1:5)
out <- DataFrameFactor(df[sample(5, 100, replace=TRUE),,drop=FALSE])

tmp <- tempfile()
saveObject(out, tmp)
readObject (tmp)

readMetadata 29

readMetadata Read R-level metadata

Description

Read metadata and mcols for a Annotated or Vector object, respectively. This is typically used
inside loading functions for concrete subclasses.

Usage

readMetadata(x, metadata.path, mcols.path, ...)
Arguments

X An Vector or Annotated object.

metadata.path String containing a path to a directory, itself containing an on-disk representation
of a base R list to be used as the metadata. Alternatively NULL to skip loading.

mcols.path String containing a path to a directory, itself containing an on-disk representation
of a DataFrame to be used as the mcols. Alternatively NULL to skip loading.

Further arguments to be passed to altReadObject.

Value

x is returned, possibly with mcols and metadata added to it.

Author(s)

Aaron Lun

See Also

saveMetadata, which does the staging.

readObject Read an object from disk

Description

Read an object from its on-disk representation. This is done by dispatching to an appropriate loading
function based on the type in the OBJECT file.

30 readObject

Usage

readObject(path, metadata = NULL, ...)

readObjectFunctionRegistry()

registerReadObjectFunction(type, fun, existing = c("old”, "new”, "error"))
Arguments
path String containing a path to a directory, itself created with a saveObject method.
metadata Named list containing metadata for the object - most importantly, the type field
that controls dispatch to the correct loading function. If NULL, this is automati-
cally read by readObjectFile(path).
Further arguments to pass to individual methods.
type String specifying the name of type of the object.
fun A loading function that accepts path, metadata and ... (in that order), and
returns the associated object. This may also be NULL to delete an existing entry
in the registry.
existing Logical scalar indicating the action to take if a function has already been regis-
tered for type - keep the old or new function, or throw an error.
Value

For readObject, an object created from the on-disk representation in path.
For readObjectFunctionRegistry, a named list of functions used to load each object type.

For registerReadObjectFunction, the function is added to the registry.

Comments for extension developers

readObject uses an internal registry of functions to decide how an object should be loaded into
memory. Developers of alabaster extensions can add extra functions to this registry, usually in the
.onLoad function of their packages. Alternatively, extension developers can request the addition of
their packages to default registry.

If a loading function makes use of additional arguments in . . ., those arguments should be prefixed
by the name of the object type for each method, e.g., simple_list.parallel. This avoids prob-
lems with conflicts in the interpretation of identically named arguments between different functions.
Unlike the . .. arguments in saveObject, we prefix by the object type instead of the output class,
as the former is used for dispatch here.

When writing loading functions for complex classes, extension developers may need to load child
objects to compose the output object. In such cases, developers should use altReadObject on the
child subdirectories, rather than calling readObject directly. This ensures that any application-
level overrides of the loading functions are respected. It is also expected that arguments in . .. are
forwarded to internal altReadObject calls.

Developers can manually control readObject dispatch by suppling a metadata list where metadata$type
is set to the desired object type. This pattern is commonly used inside the loading function for a

readObjectFile 31

subclass - an instance of the base class is first constructed by an internal readObject call with
the modified metadata$type, after which the subclass-specific slots are added. (In practice, base
construction should be done using altReadObject so as to respect application-specific overrides.)

Comments for application developers

Application developers can override readObject by specifying a custom function in altReadObject.
This can be used to point to a different registry of reading functions, to perform pre- or post-reading
actions, etc. If customization is type-specific, the custom altReadObject function can read the
type from the OBJECT file to determine the most appropriate course of action; the OBJECT metadata
can then be passed to the metadata argument of any internal readObject calls to avoid a redundant
read from the same file.

Author(s)

Aaron Lun

Examples

library(S4Vectors)
df <- DataFrame(A=1:10, B=LETTERS[1:101)

tmp <- tempfile()
saveObject(df, tmp)
readObject (tmp)

readObjectFile Utilities to read and save the object file

Description

The OBJECT file inside each directory provides some high-level metadata of the object represented
by that directory. It is guaranteed to have a type property that specifies the object type; individual
objects may add their own information to this file. These methods are intended for developers to
easily read and load information in the OBJECT file.

Usage

readObjectFile(path)

saveObjectFile(path, type, extra = list())

Arguments
path Path to the directory representing an object.
type String specifying the type of the object.
extra Named list containing extra metadata to be written to the OBJECT file in path.

Names should be unique, and any element named "type” will be overwritten by
type.

32 removeObject

Value

readObjectFile returns a named list of metadata for path.
saveObjectFile saves metadata to the OBJECT file inside path

Author(s)

Aaron Lun

Examples

tmp <- tempfile()

dir.create(tmp)

saveObjectFile(tmp, "foo", list(bar=list(version="1.0")))
readObjectFile(tmp)

removeObject Remove a non-child object from the staging directory

Description

WARNING: this function is deprecated, as directories of non-child objects can just be deleted with
regular methods (e.g., file.rename) in the latest version of alabaster. Pretty much as it says in the
title. This only works with non-child objects as children are referenced by their parents and cannot
be safely removed in this manner.

Usage

removeObject(dir, path)

Arguments
dir String containing the path to the staging directory.
path String containing the path to a non-child object inside dir, as used in acquireMetadata.
This can also be a redirection to such an object.
Details

This function will search around path for JSON files containing redirections to path, and remove
them. More specifically, if path is a subdirectory, it will search in the same directory containing
path; otherwise, it will search in the directory containing dirname(path). Redirections in other
locations will not be removed automatically - these will be caught by checkValidDirectory and
should be manually removed.

Value

The object represented by path is removed, along with any redirections to it. A NULL is invisibly
returned.

Rfc3339 33

Author(s)

Aaron Lun

Examples

tmp <- tempfile()
dir.create(tmp)

library(S4Vectors)

df <- DataFrame(A=1:10, B=LETTERS[1:10])
meta <- stageObject(df, tmp, path="whee")
writeMetadata(meta, tmp)

11 <- list(A=1, B=LETTERS, C=DataFrame(X=1:5))
meta <- stageObject(ll, tmp, path="stuff")
writeMetadata(meta, tmp)

redirect <- createRedirection(tmp, "whoop"”, "whee/simple.csv.gz")
writeMetadata(redirect, tmp)

list.files(tmp, recursive=TRUE)
removeObject(tmp, "whoop")
list.files(tmp, recursive=TRUE)

Rfc3339 Representing Internet date/times

Description

The Rfc3339 class is a character vector that stores Internet Date/time timestamps, formatted as
described in RFC3339. It provides a faithful representation of any RFC3339-compliant string in an
R session.

Usage
as.Rfc3339(x)

S3 method for class 'character'
as.Rfc3339(x)

Default S3 method:
as.Rfc3339(x)

S3 method for class 'POSIXt'
as.Rfc3339(x)

S3 method for class 'Rfc3339'

34

Rfc3339

as.character(x, ...)
is.Rfc3339(x)

S3 method for class 'Rfc3339'
as.POSIXct(x, tz = "", ...)

S3 method for class 'Rfc3339'
as.POSIX1t(x, tz ="", ...)

S3 method for class 'Rfc3339'
x[i]

S3 method for class 'Rfc3339'
x[[il]

S3 replacement method for class 'Rfc3339'
x[i] <- value

S3 replacement method for class 'Rfc3339'
x[[i1] <- value

S3 method for class 'Rfc3339'
c(..., recursive = TRUE)

S4 method for signature 'Rfc3339'

saveObject(x, path, ...)
Arguments
X For as.Rfc3339 methods, object to be coerced to an Rfc3339 instance.

For the subset and combining methods, an Rfc3339 instance.

For as.character, as.POSIX1t and as.POSIXct methods, an Rfc3339 in-
stance.

For is.Rfc3339, any object to be tested for Rfc3339-ness.

tz, recursive, ...
Further arguments to be passed to individual methods.

i Indices specifying elements to extract or replace.

value Replacement values, either as another Rfc3339 instance, a character vector or
something that can be coerced into one.

path String containing the path to a directory in which to save x.

Details

This class is motivated by the difficulty in using the various POSIXt classes to faithfully represent
any RFC3339-compliant string. In particular:

saveAtomic Vector 35

* The POSIXt classes do not automatically capture the string’s timezone offset, instead convert-
ing all times to the local timezone. This is problematic as it discards information about the
original timezone. Technically, the POSIXIt class is capable of holding this information in the
gmtoff field but it is not clear how to set this.

* There is no way to distinguish between the timezones Z and +00:00. These are functionally
the same but will introduce differences in the checksums of saved files and thus interfere with
deduplication mechanisms in storage backends.

* Coercion of POSIXt classes to strings may print more or fewer digits in the fractional seconds
than what was present in the original string. Functionally, this is probably unimportant but
will still introduce differences in the checksums.

By comparison, the Rfc3339 class preserves all information in the original string, avoiding unex-
pected modifications from a roundtrip through readObject and saveObject. This is especially
relevant for strings that were created from other languages, e.g., Node.js Date’s ISO string conver-
sion uses Z by default.

That said, users should not expect too much from this class. It is only used to provide a faithful
representation of RFC3339 strings, and does not support any time-related arithmetic. Users are
advised to convert to POSIXct or similar if such operations are required.

Value

For as.Rfc3339, the subset and combining methods, an Rfc3339 instance is returned.

For the other as.* methods, an instance of the corresponding type generated from an Rfc3339
instance.

Author(s)

Aaron Lun

Examples

out <- as.Rfc3339(Sys.time() + 1:10)

out
out[2:5]
out[2] <- "2"

c(out, out)

as.character(out)
as.POSIXct(out)

saveAtomicVector Save atomic vectors to disk

Description

Save vectors containing atomic elements (or values that can be cast as such, e.g., dates and times)
to an on-disk representation.

36 saveAtomic Vector

Usage

S4 method for signature 'integer'
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'character'
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'logical'’
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'double'
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'numeric'
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'Date’
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'POSIX1t'
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'POSIXct'
saveObject(x, path, character.vls = FALSE, ...)

S4 method for signature 'numeric_version'

saveObject(x, path, ...)

Arguments
X Any of the atomic vector types, or Date objects, or time objects, e.g., POSIXct.
path String containing the path to a directory in which to save x.

character.vls Logical scalar indicating whether to save character vectors in the custom vari-
able length string (VLS) array format. If NULL, this is determined based on a
comparison of the expected storage against a fixed length array.

Further arguments that are ignored.

Value

x is saved inside path. NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

readAtomicVector, to read the files back into the session.

saveBaseFactor

Examples

tmp <- tempfile()

dir.create(tmp)

saveObject (LETTERS, file.path(tmp, "foo"))
saveObject(setNames(runif(26), letters), file.path(tmp, "bar"))
list.files(tmp, recursive=TRUE)

37

saveBaseFactor Save a factor to disk

Description

Pretty much as it says, let’s save a base R factor to an on-disk representation.

Usage
S4 method for signature 'factor'
saveObject(x, path, ...)
Arguments
X A factor.
path String containing the path to a directory in which to save x.

Further arguments that are ignored.

Value

x is saved inside path. NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

readBaseFactor, to read the files back into the session.

Examples

tmp <- tempfile()
saveObject(factor(1:10, 1:30), tmp)
list.files(tmp, recursive=TRUE)

38 saveBaseList

saveBaselist Save a base list to disk

Description

Save a list or List to a JSON or HDFS file, with extra files created for any of the more complex list

elements (e.g., DataFrames, arrays). This uses the uzuki2 specification to ensure that appropriate
types are declared.

Usage

S4 method for signature 'list'
saveObject(
X,
path,
list.format = saveBaselListFormat(),
list.character.vls = NULL,

)

S4 method for signature 'List'
saveObject(x, path, list.format = saveBaselListFormat(), ...)

saveBaselListFormat(list.format)

Arguments
X An ordinary R list, named or unnamed. Alternatively, a List to be coerced into a
list.
path String containing the path to a directory in which to save x.
list.format String specifying the format in which to save the list.

list.character.vls

Logical scalar indicating whether to save character vectors in the custom vari-
able length string (VLS) array format. If NULL, this is determined based on a

comparison of the expected storage against a fixed length array. Only used if
list.format="hdf5".

Further arguments, passed to altSaveObject for complex child objects.

Value

For the saveObject method, x is saved inside dir. NULL is invisibly returned.

For saveBaselListFormat; if list.format is missing, a string containing the current format is

returned. If list.format is supplied, it is used to define the current format, and the previous
format is returned.

https://github.com/ArtifactDB/uzuki2

saveFormats 39

File formats

Iflist.format="json.gz" (default), the list is saved to a Gzip-compressed JSON file (the default).
This is an easily parsed format with low storage overhead.

If list.format="hdf5", x is saved into a HDFS5 file instead. This format is most useful for random
access and for preserving the precision of numerical data.

Storing scalars

The uzuki2 specification (see https://github.com/ArtifactDB/uzuki?) allows length-1 vec-
tors to be stored as-is or as a scalar. If a list element is of length 1, saveBaseList will store it
as a scalar on-disk, effectively “unboxing” it for languages with a concept of scalars. Users can
override this behavior by adding the Asls class to the affected list element, which will force storage
as a length-1 vector. This reflects the decisions made by readBaselList and mimics the behavior of
packages like jsonlite.

Author(s)

Aaron Lun

See Also

https://github.com/ArtifactDB/uzuki?2 for the specification.

readBaselist, to read the list back into the R session.

Examples

library(S4Vectors)
11 <- list(A=1, B=LETTERS, C=DataFrame(X=1:5))

tmp <- tempfile()
saveObject(1l, tmp)
list.files(tmp, recursive=TRUE)

saveFormats Choose the format for certain objects

Description

Alter the format used to save DataFrames in its stageObject methods.

Usage

saveDataFrameFormat(format)

https://github.com/ArtifactDB/uzuki2
https://github.com/ArtifactDB/uzuki2

40 saveMetadata

Arguments
format String containing the format to use. Tbe "csv”, "csv.gz" (default) or "hdf5".
Alternatively NULL, to use the default format.
Details

stageObject methods will treat a format=NULL in the same manner as the default format. The
distinction exists to allow downstream applications to set their own defaults while still responding
to user specification. For example, an application can detect if the existing format is NULL, and if
so, apply another default via . saveDataFrameFormat. On the other hand, if the format is not NULL,
this is presumably specified by the user explicitly and should be respected by the application.

Value

If format is missing, a string containing the current format is returned, or NULL to use the default
format.

If format is supplied, it is used to define the current format, and the previous format is returned.

Author(s)

Aaron Lun

Examples

(old <- .saveDataFrameFormat())

.saveDataFrameFormat ("hdf5")
.saveDataFrameFormat ()

Setting it back.
.saveDataFrameFormat (old)

saveMetadata Save R-level metadata to disk

Description

Save metadata and mcols for Annotated or Vector objects, respectively, to disk. These are typically
used inside saveObject methods for concrete subclasses.

Usage

saveMetadata(x, metadata.path, mcols.path, ...)

saveObject 41

Arguments
X A Vector or Annotated object.
metadata.path String containing the path in which to save the metadata. If NULL, no metadata
is saved.
mcols.path String containing the path in which to save the mcols. If NULL, no mcols is
saved.

Further arguments to be passed to altSaveObject.

Details

If mcols(x) has no columns, nothing is saved by saveMcols. Similarly, if metadata(x) is an empty
list, nothing is saved by saveMetadata. This avoids creating unnecessary files with no meaningful
content.

If mcols(x) has non-NULL row names, these are removed prior to staging. These names are usually
redundant with the names associated with elements of x itself.

Value

The metadata for x is saved to metadata.path, and similarly for the mcols.

Author(s)

Aaron Lun

See Also

readMetadata, which restores metadata to the object.

saveObject Save objects to disk

Description

Generic to save assorted R objects into appropriate on-disk representations. More methods may be
defined by other packages to extend the alabaster.base framework to new classes.

Usage
saveObject(x, path, ...)
Arguments
X A Bioconductor object of the specified class.
path String containing the path to a directory in which to save x.

Additional named arguments to pass to specific methods.

42 saveObject

Value

dir is created and populated with files containing the contents of x. NULL should be invisibly
returned.

Comments for extension developers

Methods for the saveObject generic should create a directory at path in which the contents of x
are to be saved. The files may consist of any format, though language-agnostic formats like HDF5,
CSV, JSON are preferred. For more complex objects, multiple files and subdirectories may be
created within path. The only strict requirements are:

* There must be an OBJECT file inside path, containing a JSON object with a " type"” string prop-
erty that specifies the class of the object, e.g., "data_frame"”, "summarized_experiment”.
This will be used by loading functions to determine how to load the files into memory.

e The names of files and subdirectories should not start with _ or .. These are reserved for
applications, e.g., to build manifests or to store additional metadata.

Callers can pass optional parameters to specific saveObject methods via Any options rec-
ognized by a method should be prefixed by the name of the class used in the method’s signature,
e.g., any options for saveObject,DataFrame-method should start with DataFrame.. This scoping
avoids conflicts between otherwise identically-named options of different methods.

When developing saveObject methods of complex objects, a simple approach is to decompose x
into its “child” components. Each component can then be saved into a subdirectory of path, lev-
ering the existing saveObject methods for the component classes. In such cases, extension devel-
opers should actually call altSaveObject on each child component, rather than calling saveObject
directly. This ensures that any application-level overrides of the loading functions are respected.
It is expected that each method will forward ... (possibly after modification) to any internal
altSaveObject calls.

Comments for application developers

Application developers can override saveObject by specifying a custom function in altSaveObject.
This can be used to point to a different function to handle the saving process for each class. The
custom function can be as simple as a wrapper around saveObject with some additional actions
(e.g., to save more metadata), or may be as complex as a full-fledged generic with its own methods
for class-specific customizations.

Author(s)

Aaron Lun

Examples

library(S4Vectors)
X <- DataFrame(X=LETTERS, Y=sample(3, 26, replace=TRUE))

tmp <- tempfile()
saveObject (X, tmp)
list.files(tmp, recursive=TRUE)

saveObject,DataFrame-method 43

saveObject,DataFrame-method
Save a DataFrame to disk

Description

Stage a DataFrame by saving it to a HDFS5 file.

Usage

S4 method for signature 'DataFrame’
saveObject(x, path, DataFrame.character.vls = NULL, ...)

S4 method for signature 'data.frame'

saveObject(x, path, DataFrame.character.vls = NULL, ...)
Arguments

X A DataFrame or data.frame.

path String containing the path to a directory in which to save x.

DataFrame.character.vls

Logical scalar indicating whether to save character vectors in the custom vari-
able length string (VLS) array format. If NULL, this is determined based on a
comparison of the expected storage against a fixed length array.

Additional named arguments to pass to specific methods.

Details

This method creates a basic_columns.h5 file that contains columns for atomic vectors, factors,
dates and date-times. Dates and date-times are converted to character vectors and saved as such
inside the file. Factors are saved as a HDF5 group with both the codes and the levels as separate
datasets.

Any non-atomic columns are saved to a other_columns subdirectory inside path via saveObject,
named after its zero-based positional index within x.

If metadata or mcols are present, they are saved to the other_annotations and column_annotations
subdirectories, respectively, via saveObject.

In the on-disk representation, no distinction is made between DataFrame and data.frame instances
of x. Calling readDataFrame will always produce a DFrame regardless of the class of x.

Value

A named list containing the metadata for x. x itself is written to a HDF?5 file inside path. Additional
files may also be created inside path and referenced from the metadata.

Author(s)

Aaron Lun

44 saveObject,DataFrameFactor-method

Examples

library(S4Vectors)
df <- DataFrame(A=1:10, B=LETTERS[1:10])

tmp <- tempfile()
saveObject(df, tmp)
list.files(tmp, recursive=TRUE)

saveObject,DataFrameFactor-method
Stage a DataFrameFactor object

Description

Stage a DataFrameFactor object, a generalization of the base factor where each level is a row of a

DataFrame.
Usage
S4 method for signature 'DataFrameFactor'’
saveObject(x, path, ...)
Arguments
X A DataFrameFactor object.
path String containing the path to a directory in which to save x.

Further arguments, to pass to internal altSaveObject calls.

Value

x is saved to an on-disk representation inside path.

Author(s)

Aaron Lun

Examples

library(S4Vectors)
df <- DataFrame(X=LETTERS[1:5], Y=1:5)
out <- DataFrameFactor(df[sample(5, 100, replace=TRUE),,drop=FALSE])

tmp <- tempfile()
saveObject(out, tmp)
list.files(tmp, recursive=TRUE)

transform VectorForHdf5 45

transformVectorForHdf5
Transform a vector to save in a HDF file

Description

This handles type casting and missing placeholder value selection/substitution. It is primarily in-
tended for developers of alabaster.® extensions.

Usage

transformVectorForHdf5(x, .version = 3)

Arguments
X An atomic vector to be saved to HDFS5.
.version Internal use only.

Value

A list containing:
* transformed, the transformed vector. This may be the same as x if no NA values were de-
tected. Note that logical vectors are cast to integers.

* placeholder, the placeholder value used to represent NA values. This is NULL if no NA values
were detected in x, otherwise it is the same as the output of chooseMissingPlaceholderForHdf5.

Author(s)

Aaron Lun

Examples

transformVectorForHdf5(c(TRUE, NA, FALSE))
transformVectorForHdf5(c (1L, NA, 2L))
transformVectorForHdf5(c(1L, NaN, 2L))
transformVectorForHdf5(c("F00", NA, "BAR"))
transformVectorForHdf5(c("FO0", NA, "NA"))

46 validateDirectory

validateDirectory Validate a directory of objects

Description

Check whether each object in a directory is valid by calling validateObject on each non-child

object.
Usage
validateDirectory(dir, legacy = NULL, ...)
Arguments
dir String containing the path to a directory with subdirectories populated by saveObject.
legacy Logical scalar indicating whether to validate a directory with legacy objects (cre-
ated by the old stageObject). If NULL, this is auto-detected from the contents
of dir.
Further arguments to use when legacy=TRUE, for back-compatibility only.
Details

We assume that the process of validating an object will call validateObject on any child objects.
This allows us to skip explicit calls to validateObject on each component of a complex object.

Value

Character vector of the paths inside dir that were validated, invisibly. If any validation failed, an
error is raised.

Author(s)

Aaron Lun

Examples

Mocking up an object:

library(S4Vectors)

ncols <- 123

df <- DataFrame(
X = rep(LETTERS[1:3], length.out=ncols),
Y = runif(ncols)

)
df$Z <- DataFrame(AA = sample(ncols))

Mocking up the directory:
tmp <- tempfile()
dir.create(tmp, recursive=TRUE)

validateObject 47

saveObject(df, file.path(tmp, "foo"))

Checking that it's valid:
validateDirectory(tmp)

Adding an invalid object:

dir.create(file.path(tmp, "bar"))
write(file=file.path(tmp, "bar", "OBJECT"), '["WHEEE" 1')
try(validateDirectory(tmp))

validateObject Validate an object’s on-disk representation

Description

Validate an object’s on-disk representation against the takane specifications. This is done by dis-
patching to an appropriate validation function based on the type in the OBJECT file.

Usage

validateObject(path, metadata = NULL)
registerValidateObjectFunction(type, fun, existing = c("old"”, "new”, "error"))

registerValidateObjectHeightFunction(

type,
fun,
existing = c("old", "new", "error")
)
registerValidateObjectDimensionsFunction(
type,
fun,
existing = c("old", "new", "error")
)
registerValidateObjectSatisfiesInterface(
type,
interface,
action = c("add"”, "remove")

)

registerValidateObjectDerivedFrom(type, parent, action = c("add", "remove"))

48 validateObject

Arguments

path String containing a path to a directory, itself created with a saveObject method.

metadata List containing metadata for the object. If this is not supplied, it is automatically
read from the OBJECT file inside path.

type String specifying the name of type of the object.

fun For registerValidateObjectFunction, a function that accepts path and metadata,
and raises an error if the object at path is invalid. It can be assumed that
metadata is a list created by reading OBJECT.
For registerValidateObjectHeightFunction, a function that accepts path
and metadata, and returns an integer specifying the “height” of the object. This
is usually the length for vector-like or 1-dimensional objects, and the extent of
the first dimension for higher-dimensional objects.
For registerValidateObjectDimensionsFunction, a function that accepts
path and metadata, and returns an integer vector specifying the dimensions of
the object.
This may also be NULL to delete an existing registry from any of the functions
mentioned above.

existing Logical scalar indicating the action to take if a function has already been regis-
tered for type - keep the old or new function, or throw an error.

interface String specifying the name of the interface that is represented by type.

action String specifying whether to add or remove type from the list of types that
implements interface or is derived from parent.

parent String specifying the parent object from which type is derived.

Value

For validateObject, NULL is returned invisibly upon success, otherwise an error is raised.

For the registerValidObject*Function functions, the supplied fun is added to the correspond-
ing registry for type. If fun =NULL, any existing entry for type is removed; a logical scalar is
returned indicating whether removal was performed.

Forthe registerValidateObjectSatisfiesInterface and registerValidateObjectDerivedFrom
functions, type is added to or removed from relevant list of types. A logical scalar is returned indi-
cating whether the type was added or removed - this may be FALSE if type was already present or
absent, respectively.

Author(s)

Aaron Lun

See Also

https://github.com/ArtifactDB/takane, for detailed specifications of the on-disk representa-
tion for various Bioconductor objects.

https://github.com/ArtifactDB/takane

vis 49

Examples

library(S4Vectors)
df <- DataFrame(A=1:10, B=LETTERS[1:10])

tmp <- tempfile()
saveObject(df, tmp)
validateObject(tmp)

vls VLS saving utilities

Description

Utilities for saving our custom variable length string array format in HDFS5. Intended for alabaster.*
developers only.

writeMetadata Saving the metadata

Description

WARNING: this function is deprecated as newer versions of alabaster do not need to write meta-
data. Helper function to write metadata from a named list to a JSON file. This is commonly used
inside stageObject methods to create the metadata file for a child object.

Usage

writeMetadata(meta, dir, ignore.null = TRUE)

Arguments
meta A named list containing metadata. This should contain at least the "$schema”
and "path” elements.
dir String containing a path to the staging directory.
ignore.null Logical scalar indicating whether NULL values should be ignored during coercion

to JSON.

50 writeMetadata

Details

Any NULL values in meta are pruned out prior to writing when ignore.null=TRUE. This is done
recursively so any NULL values in sub-lists of meta are also ignored.

Any scalars are automatically unboxed so array values should be explicitly specified as such with
I10).
Any starting "./" in meta$path will be automatically removed. This allows staging methods to

save in the current directory by setting path=".", without the need to pollute the paths witha "./"
prefix.

The JSON-formatted metadata is validated against the schema in metal["$schema”]] using json-
validate. The location of the schema is taken from the package attribute in that string, if one exists;
otherwise, it is assumed to be in the alabaster.schemas package. (All schemas are assumed to live
in the inst/schemas subdirectory of their indicated packages.)

We also use the schema to determine whether meta refers to an actual artifact or is a metadata-only
document. If it refers to an actual file, we compute its MDS5 sum and store it in the metadata for
saving. We also save its associated metadata into a JSON file at a location obtained by appending
".json" to meta$path.

For artifacts, the MD5 sum calculation will be skipped if the meta already contains a md5sum field.
This can be useful on some occasions, e.g., to improve efficiency when the MDS5 sum was already
computed during staging, or if the artifact does not actually exist in its full form on the file system.

Value

A JSON file containing the metadata is created at path. A list of resource metadata is returned, e.g.,
for inclusion as the "resource” property in parent schemas.

Author(s)

Aaron Lun

Examples

library(S4Vectors)
df <- DataFrame(A=1:10, B=LETTERS[1:10])

tmp <- tempfile()

dir.create(tmp)

info <- stageObject(df, tmp, path="coldata")

writeMetadata(info, tmp)

cat(readLines(file.path(tmp, "coldata/simple.csv.gz.json")), sep="\n")

Index

.addMissingStringPlaceholderAttribute
(chooseMissingPlaceholderForHdf5)
9
.altlLoadObject (altReadObject), 5
.altStageObject (altSaveObject), 7
.chooseMissingStringPlaceholder
(chooseMissingPlaceholderForHdf5)
9
.createRedirection (createRedirection),
14
.loadObject (altReadObject), 5
.loadObjectInternal (readObject), 29
.onLoad, 30
.processMcols (saveMetadata), 40
.processMetadata (saveMetadata), 40
.quickReadCsv (quickReadCsv), 23
.quickWriteCsv (quickReadCsv), 23
.restoreMetadata (readMetadata), 29
.saveBaselListFormat (saveBaselist), 38
.saveDataFrameFormat (saveFormats), 39
.searchForMethods (saveObject), 41
.stageObject (altSaveObject), 7
.writeMetadata (writeMetadata), 49

s

s

addObjectToDedupSession
(createDedupSession), 12

altLoadObject, 19, 27

altlLoadObject (altReadObject), 5

altlLoadObjectFunction (altReadObject), 5

altReadObject, 5, 5, 6, 7, 16, 26, 29-31

altReadObjectFunction (altReadObject), 5

altSaveObject, 6, 7,7, 16, 28, 38, 41, 42, 44

altSaveObjectFunction (altSaveObject), 7

altStageObject (altSaveObject), 7

altStageObjectFunction (altSaveObject),
7

Annotated, 29, 40, 41

anyMissing, 8

anyNA, 8

as.character.Rfc3339 (Rfc3339), 33

as.POSIXct.Rfc3339 (Rfc3339), 33

as.POSIX1t.Rfc3339 (Rfc3339), 33

as.Rfc3339 (Rfc3339), 33

AsIs, 26, 39

c.Rfc3339 (Rfc3339), 33
checkObjectInDedupSession

(createDedupSession), 12
checkValidDirectory, 21, 32
checkValidDirectory

(validateDirectory), 46
chooseMissingPlaceholderForHdf5, 9, 45
cloneDirectory, 10, 12, 13
cloneFile, 11,11
createDedupSession, 10, 12, 13
createRedirection, 14
customloadObjectHelper (readObject), 29

[.Rfc3339 (Rfc3339), 33
[<-.Rfc3339 (Rfc3339), 33
[[.Rfc3339 (RFc3339), 33
[[<-.Rfc3339 (RFc3339), 33

absolutizePath, 3

acquireFile, 3

acquireFile,character-method
(acquireFile), 3

acquireMetadata, 15, 20, 32

acquireMetadata (acquireFile), 3

acquireMetadata, character-method
(acquireFile), 3

addMissingPlaceholderAttributeForHdf5
(chooseMissingPlaceholderForHdf5),
9 factor, 25, 37

DataFrame, 29, 43, 44
DataFrameFactor, 28, 44
Date, 36
DFrame, 18, 24, 27,43

51

52

file.rename, 20, 32
formatSaveEnvironment
(getSaveEnvironment), 15

getSaveEnvironment, 15, 16

h5_cast (hdf5), 18
h5_create_vector (hdf5), 18
h5_guess_vector_chunks (hdf5), 18
h5_object_exists (hdf5), 18
h5_read_attribute (hdf5), 18
h5_read_vector (hdf5), 18
h5_read_vls_array (vls), 49
h5_use_vls (vls), 49
h5_write_attribute (hdf5), 18
h5_write_vector (hdf5), 18
h5_write_vls_array (vls), 49
hdf5, 18

1,50

is.missing (anyMissing), 8
is.na, 8

is.Rfc3339 (Rfc3339), 33

List, 38

list, 26, 38

listDirectory (listObjects), 18

listLocalObjects (listObjects), 18

listObjects, 18, 19

loadAtomicVector (readAtomicVector), 24

loadBaseFactor (readBaseFactor), 25

loadBaselList (readBaselist), 26

loadDataFrame (readDataFrame), 27

loadDataFrameFactor
(readDataFrameFactor), 28

loadDirectory, 19

loadObject, 22

loadObject (readObject), 29

loadSaveEnvironment
(getSaveEnvironment), 15

mcols, 29, 40, 41, 43

metadata, 29, 40, 41, 43

missingPlaceholderName
(chooseMissingPlaceholderForHdf5),
9

moveObject, 20

on.exit, 17

INDEX

POSIXct, 35, 36

POSIX1t, 35

POSIXt, 34

processMcols (saveMetadata), 40
processMetadata (saveMetadata), 40

quickLoadObject, 22

quickReadCsv, 23

quickStageObject (quickLoadObject), 22
quickWriteCsv (quickReadCsv), 23

readAtomicVector, 24, 36
readBaseFactor, 25, 37
readBaselist, 26, 39
readDataFrame, 27
readDataFrameFactor, 28
readLocalObject (quickLoadObject), 22
readMetadata, 29, 41/
readObject, 5, 6, 16, 19, 24-28, 29, 35
readObjectFile, I8, 24-28, 30, 31
readObjectFunctionRegistry
(readObject), 29
registerReadObjectFunction
(readObject), 29
registerSaveEnvironment
(getSaveEnvironment), 15
registerValidateObjectDerivedFrom
(validateObject), 47
registerValidateObjectDimensionsFunction
(validateObject), 47
registerValidateObjectFunction
(validateObject), 47
registerValidateObjectHeightFunction
(validateObject), 47
registerValidateObjectSatisfiesInterface
(validateObject), 47
removeObject, 32
restoreMetadata (readMetadata), 29
Rfc3339, 33

saveAtomicVector, 35
saveBaseFactor, 37

saveBaselist, 38

saveBaselistFormat (saveBaselist), 38
saveDataFrameFormat (saveFormats), 39
saveFormats, 39

savelLocalObject (quickLoadObject), 22
saveMetadata, 29, 40

INDEX

saveObject, 7, 8, 10-13, 15-18, 24, 25, 27,
28, 30, 35,40, 41,42, 43, 46, 48
saveObject,character-method
(saveAtomicVector), 35
saveObject,data.frame-method
(saveObject,DataFrame-method),
43
saveObject,DataFrame-method, 43
saveObject,DataFrameFactor-method, 44
saveObject,Date-method
(saveAtomicVector), 35
saveObject,double-method
(saveAtomicVector), 35
saveObject, factor-method
(saveBaseFactor), 37
saveObject,integer-method
(saveAtomicVector), 35
saveObject,List-method (saveBaselList),
38
saveObject,list-method (saveBaselist),
38
saveObject,logical-method
(saveAtomicVector), 35
saveObject,numeric-method
(saveAtomicVector), 35
saveObject,numeric_version-method
(saveAtomicVector), 35
saveObject,POSIXct-method
(saveAtomicVector), 35
saveObject,POSIX1t-method
(saveAtomicVector), 35
saveObject,Rfc3339-method (Rfc3339), 33
saveObjectFile (readObjectFile), 31
schemalocations (readObject), 29
searchForMethods (saveObject), 41
sessionInfo, 17
stageObject, 4, 22, 26, 39, 40, 49
stageObject (saveObject), 41
stageObject,ANY-method (saveObject), 41
stageObject, character-method
(saveAtomicVector), 35
stageObject,DataFrame-method
(saveObject,DataFrame-method),
43
stageObject,DataFrameFactor-method
(saveObject,DataFrameFactor-method),
44
stageObject,Date-method

53

(saveAtomicVector), 35
stageObject,double-method
(saveAtomicVector), 35
stageObject,factor-method
(saveBaseFactor), 37
stageObject, integer-method
(saveAtomicVector), 35
stageObject,List-method (saveBaselist),
38
stageObject,list-method (saveBaselList),
38
stageObject,logical-method
(saveAtomicVector), 35
stageObject,numeric-method
(saveAtomicVector), 35
stageObject,POSIXct-method
(saveAtomicVector), 35
stageObject,POSIX1t-method
(saveAtomicVector), 35

transformVectorForHdf5, 45

useSaveEnvironment
(getSaveEnvironment), 15

validateDirectory, 46
validateObject, 8, 46, 47
Vector, 29, 40, 41

vls, 49

write.csv, 24
writeMetadata, /5, 22, 49

	absolutizePath
	acquireFile
	altReadObject
	altSaveObject
	anyMissing
	chooseMissingPlaceholderForHdf5
	cloneDirectory
	cloneFile
	createDedupSession
	createRedirection
	getSaveEnvironment
	hdf5
	listObjects
	loadDirectory
	moveObject
	quickLoadObject
	quickReadCsv
	readAtomicVector
	readBaseFactor
	readBaseList
	readDataFrame
	readDataFrameFactor
	readMetadata
	readObject
	readObjectFile
	removeObject
	Rfc3339
	saveAtomicVector
	saveBaseFactor
	saveBaseList
	saveFormats
	saveMetadata
	saveObject
	saveObject,DataFrame-method
	saveObject,DataFrameFactor-method
	transformVectorForHdf5
	validateDirectory
	validateObject
	vls
	writeMetadata
	Index

