
Package ‘TileDBArray’
February 2, 2026

Version 1.21.0

Date 2025-06-19

Title Using TileDB as a DelayedArray Backend

Description Implements a DelayedArray backend for reading and
writing dense or sparse arrays in the TileDB format. The
resulting TileDBArrays are compatible with all Bioconductor
pipelines that can accept DelayedArray instances.

License MIT + file LICENSE

Depends SparseArray (>= 1.5.20), DelayedArray (>= 0.31.7)

Imports methods, tiledb, S4Vectors

Suggests knitr, Matrix, rmarkdown, BiocStyle, BiocParallel, testthat

biocViews DataRepresentation, Infrastructure, Software

VignetteBuilder knitr

BugReports https://github.com/LTLA/TileDBArray

URL https://github.com/LTLA/TileDBArray

RoxygenNote 7.3.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/TileDBArray

git_branch devel

git_last_commit 4e1f73b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Aaron Lun [aut, cre],
Genentech, Inc. [cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/LTLA/TileDBArray
https://github.com/LTLA/TileDBArray

2 TileDBArray

Contents
TileDBArray . 2
TileDBArray-globals . 3
TileDBArray-pkg . 5
TileDBRealizationSink . 5

Index 8

TileDBArray Delayed TileDB arrays

Description

The TileDBArray class provides a DelayedArray backend for TileDB arrays (sparse and dense).

Constructing a TileDBArray

TileDBArray(x, attr) returns a TileDBArray object given:

• x, a string containing a URI to a TileDB backend, most typically a path to a directory.

• attr, a string specifying the attribute to represent in the array. Defaults to the first attribute.

Alternatively, x can be a TileDBArraySeed object, in which case attr is ignored.

TileDBArraySeed(x, attr) returns a TileDBArraySeed with the same arguments as described for
TileDBArray. If x is already a TileDBArraySeed, it is returned directly without further modifica-
tion.

DelayedArray(x) returns a TileDBArray object given x, a TileDBArraySeed.

In all cases, two-dimensional arrays will automatically generate a TileDBMatrix, a subclass of the
TileDBArray.

Available operations

extract_array(x, index) will return an ordinary array containing values from the TileDBArray-
Seed x, subsetted to the indices specified in index. The latter should be a list of length equal to the
number of dimensions in x, where each entry is an integer vector or NULL (in which case the entirety
of the dimension is used).

extract_sparse_array(x, index) will return a COO_SparseArray representing the subset of x
corresponding to the indices in index. The latter should be a list of the same structure as described
for extract_array.

type(x) will return a string containing the type of the TileDBArraySeed object x. Currently, only
"integer", "logical" and "double"-precision is supported.

is_sparse(x) will return a logical scalar indicating whether the TileDBArraySeed x uses a sparse
format in the TileDB backend.

path(x) will return a string containing the path to the TileDB backend directory.

TileDBArray-globals 3

chunkdim(x) will return an integer vector containing the tile extent in each dimension. This will
be used as the chunk dimensions in methods like chunkGrid.

All of the operations described above are also equally applicable to TileDBArray objects, as their
methods simply delegate to those of the TileDBArraySeed.

All operations supported by DelayedArray objects are also available for TileDBArray objects.

Author(s)

Aaron Lun

Examples

data <- matrix(rpois(10000, 5), nrow=100, ncol=100)
B <- as(data, "TileDBArray")
B

Apply typical DelayedArray operations:
as.matrix(B[1:10,1:10])
B %*% runif(ncol(B))

This also works for sparse arrays:
sdata <- Matrix::rsparsematrix(nrow=100, ncol=100, density=0.1)
C <- as(sdata, "TileDBArray")
C

TileDBArray-globals TileDBArray global options

Description

Global options for writing TileDBArray backends, intended for parameters that cannot be automat-
ically derived from the data.

Usage

getTileDBPath()

setTileDBPath(path = NULL)

getTileDBAttr()

setTileDBAttr(attr = NULL)

getTileDBDimType()

setTileDBDimType(dimtype = NULL)

4 TileDBArray-globals

getTileDBExtent()

setTileDBExtent(extent = NULL)

getTileDBContext()

setTileDBContext(context = NULL)

getTileDBCellOrder()

setTileDBCellOrder(cellorder = NULL)

getTileDBTileOrder()

setTileDBTileOrder(tileorder = NULL)

getTileDBCapacity()

setTileDBCapacity(capacity = NULL)

Arguments

path String containing a path to a TileDB backend.
attr String containing the name of a TileDB attribute.
dimtype String specifying the TileDB datatype to use for the dimensions.
extent Integer scalar specifying the tile extent for all dimensions. Alternatively, an

integer vector of length equal to the number of dimensions, specifying a different
extent for each dimension in the array to be created.

context A TileDB context object, see tiledb_ctx for an example.
cellorder String specifying the desired cell order.
tileorder String specifying the desired tile order.
capacity Integer scalar specifying the data tile capacity for sparse arrays.

Value

All of the getter functions return the current global value, or a default value if the former is NULL:

• path defaults to a temporary file in tempdir.
• attr defaults to "x".
• dimtype defaults to "INT32".
• extent defaults to 100L.
• cellorder defaults to "COL_MAJOR".
• tileorder defaults to "COL_MAJOR".
• capacity defaults to 10000L.
• context defaults to the value of tiledb_ctx().

All setter functions change the global value and return NULL invisibly.

TileDBArray-pkg 5

Author(s)

Aaron Lun

See Also

writeTileDBArray, where these functions are most often used.

Examples

setTileDBPath("my_local_dir")
getTileDBPath()

TileDBArray-pkg The TileDBArray package

Description

Implements the TileDB framework as a DelayedArray backend, with read and write functionality
for both dense and sparse arrays. Currently only integer, logical and double-precision values are
supported.

Author(s)

Aaron Lun

TileDBRealizationSink Write arrays to TileDB

Description

Write array data to a TileDB backend via DelayedArray’s RealizationSink machinery.

Writing a TileDBArray

TileDBRealizationSink(
dim,
dimnames=NULL,
type="double",
path=getTileDBPath(),
attr=getTileDBAttr(),
storagetype=NULL,
dimtype=getTileDBDimType(),

6 TileDBRealizationSink

sparse=FALSE,
extent=getTileDBExtent(),
offset=1L,
cellorder=getTileDBCellOrder(),
tileorder=getTileDBTileOrder(),
capacity=getTileDBCapacity(),
context=getTileDBContext()

)

returns a TileDBRealizationSink object that can be used to write content to a TileDB backend. It
accepts the following arguments:

• dim, an integer vector (usually of length 2) to specify the array dimensions.
• dimnames, a list of length equal to dim, containing character vectors with names for each

dimension. Defaults to NULL, i.e., no dimnames.
• type, a string specifying the R data type for the newly written array. Currently only "double",
"integer" and "logical" arrays are supported.

• path, a string containing the location of the new TileDB backend.
• attr, a string specifying the name of the attribute to store.
• storagetype, a string specifying the TileDB data type for the attribute, e.g., "UINT8", "FLOAT32".

If NULL, this is automatically determined from type using r_to_tiledb_type.
• dimtype, a string specifying the TileDB data type for the dimension.
• sparse, a logical scalar indicating whether the array should be stored in sparse form.
• extent, an integer scalar (or vector of length equal to dim) specifying the tile extent for each

dimension. Larger values improve compression at the cost of unnecessary data extraction
during reads.

• offset, an integer scalar (or vector of length equal to dim) specifying the starting offset for
each dimension’s domain.

• cellorder, a string specifying the ordering of cells within each tile.
• tileorder, a string specifying the ordering of tiles across the array.
• capacity, an integer scalar specifying the size of each data tile in the sparse case.
• context is the TileDB context, defaulting to the output of tiledb_ctx().

writeTileDBArray(x, sparse=is_sparse(x), ...) writes the matrix-like object x to a TileDB
backend, returning a TileDBArray object referring to that backend. Appropriate values for dim,
dimnames and type are determined automatically from x itself. All other arguments described for
TileDBRealizationSink can be passed into ... to configure the representation.

Coercing to a TileDBArray

as(x, "TileDBArray") will coerce a matrix-like object x to a TileDBArray object.

as(x, "TileDBArraySeed") will coerce a matrix-like object x to a TileDBArraySeed object.

as(x, "TileDBMatrix") will coerce a matrix-like object x to a TileDBArraySeed object.

as(x, "TileDBArray") will coerce a TileDBRealizationSink x to a TileDBArray object.

as(x, "TileDBArraySeed") will coerce a TileDBRealizationSink x to a TileDBArraySeed object.

as(x, "DelayedArray") will coerce a TileDBRealizationSink x to a TileDBArray object.

TileDBRealizationSink 7

Sink internals

write_block(sink, viewport, block) will write the subarray block to the TileDBRealization-
Sink sink at the specified viewport, returning sink upon completion. See write_block in De-
layedArray for more details.

type(x) will return a string specifying the type of the TileDBRealizationSink x.

Examples

X <- matrix(rnorm(100000), ncol=200)
path <- tempfile()
out <- writeTileDBArray(X, path=path)

Works for integer matrices.
Xi <- matrix(rpois(100000, 2), ncol=200)
pathi <- tempfile()
outi <- writeTileDBArray(Xi, path=pathi)

Works for logical matrices.
Xl <- matrix(rpois(100000, 0.5) > 0, ncol=200)
pathl <- tempfile()
outl <- writeTileDBArray(Xl, path=pathl)

Works for sparse numeric matrices.
Y <- Matrix::rsparsematrix(1000, 1000, density=0.01)
path2 <- tempfile()
out2 <- writeTileDBArray(Y, path=path2)

And for sparse logical matrices.
path2l <- tempfile()
out2l <- writeTileDBArray(Y > 0, path=path2l)

Works for dimnames.
rownames(X) <- sprintf("GENE_%i", seq_len(nrow(X)))
path3 <- tempfile()
out3 <- writeTileDBArray(X, path=path3)

Index

chunkdim, 3
chunkdim,TileDBArraySeed-method

(TileDBArray), 2
chunkGrid, 3
coerce,ANY,TileDBArray-method

(TileDBRealizationSink), 5
coerce,ANY,TileDBMatrix-method

(TileDBRealizationSink), 5
coerce,ANY,TileDBRealizationSink-method

(TileDBRealizationSink), 5
coerce,TileDBRealizationSink,DelayedArray-method

(TileDBRealizationSink), 5
coerce,TileDBRealizationSink,TileDBArray-method

(TileDBRealizationSink), 5
coerce,TileDBRealizationSink,TileDBMatrix-method

(TileDBRealizationSink), 5
COO_SparseArray, 2

DelayedArray, 2, 3, 5
DelayedArray,TileDBArraySeed-method

(TileDBArray), 2

extract_array, 2
extract_array,TileDBArraySeed-method

(TileDBArray), 2
extract_sparse_array, 2
extract_sparse_array,TileDBArraySeed-method

(TileDBArray), 2

getTileDBAttr (TileDBArray-globals), 3
getTileDBCapacity

(TileDBArray-globals), 3
getTileDBCellOrder

(TileDBArray-globals), 3
getTileDBContext (TileDBArray-globals),

3
getTileDBDimType (TileDBArray-globals),

3
getTileDBExtent (TileDBArray-globals), 3
getTileDBPath (TileDBArray-globals), 3

getTileDBTileOrder
(TileDBArray-globals), 3

is_sparse, 2
is_sparse,TileDBArraySeed-method

(TileDBArray), 2

matrixClass,TileDBArray-method
(TileDBArray), 2

path, 2
path,TileDBArraySeed-method

(TileDBArray), 2

r_to_tiledb_type, 6
RealizationSink, 5

setTileDBAttr (TileDBArray-globals), 3
setTileDBCapacity

(TileDBArray-globals), 3
setTileDBCellOrder

(TileDBArray-globals), 3
setTileDBContext (TileDBArray-globals),

3
setTileDBDimType (TileDBArray-globals),

3
setTileDBExtent (TileDBArray-globals), 3
setTileDBPath (TileDBArray-globals), 3
setTileDBTileOrder

(TileDBArray-globals), 3
show,TileDBArraySeed-method

(TileDBArray), 2

tempdir, 4
tiledb_ctx, 4, 6
TileDBArray, 2, 6
TileDBArray-class (TileDBArray), 2
TileDBArray-globals, 3
TileDBArray-pkg, 5
TileDBArraySeed (TileDBArray), 2
TileDBArraySeed-class (TileDBArray), 2

8

INDEX 9

TileDBMatrix (TileDBArray), 2
TileDBMatrix-class (TileDBArray), 2
TileDBRealizationSink, 5
TileDBRealizationSink-class

(TileDBRealizationSink), 5
type, 2
type,TileDBArraySeed-method

(TileDBArray), 2
type,TileDBRealizationSink-method

(TileDBRealizationSink), 5

write_block, 7
write_block,TileDBRealizationSink-method

(TileDBRealizationSink), 5
writeTileDBArray, 5
writeTileDBArray

(TileDBRealizationSink), 5

	TileDBArray
	TileDBArray-globals
	TileDBArray-pkg
	TileDBRealizationSink
	Index

