
Package ‘TRONCO’
February 2, 2026

Version 2.43.0

Date 2025-09-10

Title TRONCO, an R package for TRanslational ONCOlogy

Depends R (>= 4.1.0),

Imports bnlearn, Rgraphviz, gtools, parallel, foreach, doParallel,
iterators, RColorBrewer, circlize, igraph, grid, gridExtra,
xtable, gtable, scales, R.matlab, grDevices, graphics, stats,
utils, methods

Suggests BiocGenerics, BiocStyle, testthat, knitr, rWikiPathways,
magick

Name An R package for the inference of cancer progression models from
heterogeneous genomic data

Description The TRONCO (TRanslational ONCOlogy) R package collects algorithms to infer
progression models via the approach of Suppes-Bayes Causal Network, both
from an ensemble of tumors (cross-sectional samples) and within an individual
patient (multi-region or single-cell samples). The package provides parallel
implementation of algorithms that process binary matrices where each row
represents a tumor sample and each column a single-nucleotide or a structural
variant driving the progression; a 0/1 value models the absence/presence of
that alteration in the sample. The tool can import data from plain, MAF or
GISTIC format files, and can fetch it from the cBioPortal for cancer genomics.
Functions for data manipulation and visualization are provided, as well as
functions to import/export such data to other bioinformatics tools for, e.g,
clustering or detection of mutually exclusive alterations. Inferred models can be
visualized and tested for their confidence via bootstrap and cross-validation.
TRONCO is used for the implementation of the Pipeline for Cancer Inference (PICNIC).

Encoding UTF-8

License GPL-3

URL https://sites.google.com/site/troncopackage/

BugReports https://github.com/BIMIB-DISCo/TRONCO

biocViews BiomedicalInformatics, Bayesian, GraphAndNetwork,
SomaticMutation, NetworkInference, Network, Clustering,
DataImport, SingleCell, ImmunoOncology

1

https://sites.google.com/site/troncopackage/
https://github.com/BIMIB-DISCo/TRONCO

2 Contents

RoxygenNote 7.3.3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/TRONCO

git_branch devel

git_last_commit 7420d7e

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Marco Antoniotti [ctb],
Giulio Caravagna [aut],
Luca De Sano [cre, aut] (ORCID:
<https://orcid.org/0000-0002-9618-3774>),

Alex Graudenzi [aut],
Giancarlo Mauri [ctb],
Bud Mishra [ctb],
Daniele Ramazzotti [aut] (ORCID:

<https://orcid.org/0000-0002-6087-2666>)

Maintainer Luca De Sano <luca.desano@gmail.com>

Contents
aCML . 5
AND . 5
annotate.description . 6
annotate.stages . 6
as.adj.matrix . 7
as.alterations . 8
as.bootstrap.scores . 8
as.colors . 9
as.conditional.probs . 10
as.confidence . 10
as.description . 11
as.events . 12
as.events.in.patterns . 12
as.events.in.sample . 13
as.gene . 14
as.genes . 14
as.genes.in.patterns . 15
as.genotypes . 16
as.hypotheses . 16
as.joint.probs . 17
as.kfold.eloss . 18
as.kfold.posterr . 18
as.kfold.prederr . 19
as.marginal.probs . 20

https://orcid.org/0000-0002-9618-3774
https://orcid.org/0000-0002-6087-2666

Contents 3

as.models . 21
as.parameters . 21
as.pathway . 22
as.patterns . 23
as.samples . 23
as.selective.advantage.relations . 24
as.stages . 25
as.types . 25
as.types.in.patterns . 26
change.color . 27
consolidate.data . 27
crc_gistic . 28
crc_maf . 29
crc_plain . 29
delete.event . 30
delete.gene . 31
delete.hypothesis . 31
delete.model . 32
delete.pattern . 33
delete.samples . 33
delete.type . 34
duplicates . 34
ebind . 35
enforce.numeric . 35
enforce.string . 36
events.selection . 36
export.graphml . 37
export.mutex . 38
export.nbs.input . 39
extract.MAF.HuGO.Entrez.map . 39
genes.table.report . 40
has.duplicates . 41
has.model . 41
has.stages . 42
hypothesis.add . 42
hypothesis.add.group . 43
hypothesis.add.homologous . 44
import.genotypes . 45
import.GISTIC . 45
import.MAF . 46
import.model . 48
import.mutex.groups . 48
intersect.datasets . 49
is.compliant . 49
join.events . 50
join.types . 51
keysToNames . 51
maf . 52

4 Contents

muts . 53
nameToKey . 53
nevents . 54
ngenes . 54
nhypotheses . 55
npatterns . 55
nsamples . 56
ntypes . 56
oncoprint . 57
oncoprint.cbio . 59
OR . 60
order.frequency . 60
pathway.visualization . 61
pheatmap . 61
rank.recurrents . 65
rename.gene . 66
rename.type . 67
samples.selection . 67
sbind . 68
ssplit . 68
stage . 69
TCGA.map.clinical.data . 69
TCGA.multiple.samples . 70
TCGA.remove.multiple.samples . 70
TCGA.shorten.barcodes . 71
test_dataset . 71
test_dataset_no_hypos . 72
test_model . 73
test_model_kfold . 73
trim . 74
tronco.bootstrap . 74
tronco.caprese . 75
tronco.capri . 76
tronco.chowliu . 77
tronco.edmonds . 78
tronco.gabow . 80
tronco.kfold.eloss . 81
tronco.kfold.posterr . 82
tronco.kfold.prederr . 83
tronco.pattern.plot . 84
tronco.plot . 84
tronco.prim . 87
view . 88
which.samples . 88
XOR . 89

Index 90

aCML 5

aCML Atypical chronic myeloid leukemia dataset

Description

This file contains a TRONCO compliant dataset

Usage

data(aCML)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

data from http://www.nature.com/ng/journal/v45/n1/full/ng.2495.html

AND AND

Description

AND hypothesis

Usage

AND(...)

Arguments

... Atoms of the co-occurance pattern given either as labels or as partielly lifted
vectors.

Value

Vector to be added to the lifted genotype resolving the co-occurance pattern

6 annotate.stages

annotate.description annotate.description

Description

Annotate a description on the selected dataset

Usage

annotate.description(x, label)

Arguments

x A TRONCO compliant dataset.

label A string

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
annotate.description(test_dataset, 'new description')

annotate.stages annotate.stages

Description

Annotate stage information on the selected dataset

Usage

annotate.stages(x, stages, match.TCGA.patients = FALSE)

Arguments

x A TRONCO compliant dataset.

stages A list of stages. Rownames must match samples list of x
match.TCGA.patients

Match using TCGA notations (only first 12 characters)

as.adj.matrix 7

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
data(stage)
test_dataset = annotate.stages(test_dataset, stage)
as.stages(test_dataset)

as.adj.matrix as.adj.matrix

Description

Extract the adjacency matrix of a TRONCO model. The matrix is indexed with colnames/rownames
which represent genotype keys - these can be resolved with function keysToNames. It is possible to
specify a subset of events to build the matrix, a subset of models if multiple reconstruction have been
performed. Also, either the prima facie matrix or the post-regularization matrix can be extracted.

Usage

as.adj.matrix(x, events = as.events(x), models = names(x$model), type = "fit")

Arguments

x A TRONCO model.

events A subset of events as of as.events(x), all by default.

models A subset of reconstructed models, all by default.

type Either the prima facie (’pf’) or the post-regularization (’fit’) matrix, ’fit’ by de-
fault.

Value

The adjacency matrix of a TRONCO model.

Examples

data(test_model)
as.adj.matrix(test_model)
as.adj.matrix(test_model, events=as.events(test_model)[5:15,])
as.adj.matrix(test_model, events=as.events(test_model)[5:15,], type='pf')

8 as.bootstrap.scores

as.alterations as.alterations

Description

Return a dataset where all events for a gene are merged in a unique event, i.e., a total of gene-level
alterations diregarding the event type. Input ’x’ is checked to be a TRONCO compliant dataset -
see is.compliant.

Usage

as.alterations(x, new.type = "Alteration", new.color = "khaki", silent = FALSE)

Arguments

x A TRONCO compliant dataset.

new.type The types label of the new event type, ’Alteration’ by default.

new.color The color of the event new.type, default ’khaki’.

silent A parameter to disable/enable verbose messages.

Value

A TRONCO compliant dataset with alteration profiles.

Examples

data(muts)
as.alterations(muts)

as.bootstrap.scores as.bootstrap.scores

Description

Returns a dataframe with all the bootstrap score in a TRONCO model. It is possible to specify a
subset of events or models if multiple reconstruction have been performed.

Usage

as.bootstrap.scores(x, events = as.events(x), models = names(x$model))

as.colors 9

Arguments

x A TRONCO model.

events A subset of events as of as.events(x), all by default.

models A subset of reconstructed models, all by default.

Value

All the bootstrap scores in a TRONCO model

Examples

data(test_model)
as.bootstrap.scores(test_model)
as.bootstrap.scores(test_model, events=as.events(test_model)[5:15,])

as.colors as.colors

Description

Return the colors associated to each type of event in ’x’, which should be a TRONCO compliant
dataset - see is.compliant.

Usage

as.colors(x)

Arguments

x A TRONCO compliant dataset.

Value

A named vector of colors.

Examples

data(test_dataset)
as.colors(test_dataset)

10 as.confidence

as.conditional.probs as.conditional.probs

Description

Extract the conditional probabilities from a TRONCO model. The return matrix is indexed with
rownames which represent genotype keys - these can be resolved with function keysToNames. It is
possible to specify a subset of events to build the matrix, a subset of models if multiple reconstruc-
tion have been performed. Also, either the observed or fit probabilities can be extracted.

Usage

as.conditional.probs(
x,
events = as.events(x),
models = names(x$model),
type = "observed"

)

Arguments

x A TRONCO model.
events A subset of events as of as.events(x), all by default.
models A subset of reconstructed models, all by default.
type observed (’observed’)

Details

#’ @examples data(test_model) as.conditional.probs(test_model) as.conditional.probs(test_model,
events=as.events(test_model)[5:15,])

Value

The conditional probabilities in a TRONCO model.

as.confidence as.confidence

Description

Return confidence information for a TRONCO model. Available information are: temporal priority
(tp), probability raising (pr), hypergeometric test (hg), parametric (pb), non parametric (npb) or
statistical (sb) bootstrap, entropy loss (eloss), prediction error (prederr). Confidence is available
only once a model has been reconstructed with any of the algorithms implemented in TRONCO. If
more than one model has been reconstructed - for instance via multiple regularizations - confidence
information is appropriately nested. The requested confidence is specified via vector parameter
conf.

as.description 11

Usage

as.confidence(x, conf, models = names(x$model))

Arguments

x A TRONCO model.

conf A vector with any of ’tp’, ’pr’, ’hg’, ’npb’, ’pb’, ’sb’, ’eloss’, ’prederr’ or
’posterr’.

models The name of the models to extract, all by default.

Value

A list of matrices with the event-to-event confidence.

Examples

data(test_model)
as.confidence(test_model, conf='tp')
as.confidence(test_model, conf=c('tp', 'hg'))

as.description as.description

Description

Return the description annotating the dataset, if any. Input ’x’ should be a TRONCO compliant
dataset - see is.compliant.

Usage

as.description(x)

Arguments

x A TRONCO compliant dataset.

Value

The description annotating the dataset, if any.

Examples

data(test_dataset)
as.description(test_dataset)

12 as.events.in.patterns

as.events as.events

Description

Return all events involving certain genes and of a certain type in ’x’, which should be a TRONCO
compliant dataset - see is.compliant.

Usage

as.events(x, genes = NA, types = NA, keysToNames = FALSE)

Arguments

x A TRONCO compliant dataset.

genes The genes to consider, if NA all available genes are used.

types The types of events to consider, if NA all available types are used.

keysToNames If TRUE return a list of mnemonic name composed by type + gene

Value

A matrix with 2 columns (event type, gene name) for the events found.

Examples

data(test_dataset)
as.events(test_dataset)
as.events(test_dataset, types='ins_del')
as.events(test_dataset, genes = 'TET2')
as.events(test_dataset, types='Missing')

as.events.in.patterns as.events.in.patterns

Description

Return the list of events present in selected patterns

Usage

as.events.in.patterns(x, patterns = NULL)

Arguments

x A TRONCO compliant dataset.

patterns A list of patterns for which the list will be returned

as.events.in.sample 13

Value

A list of events present in patterns which consitute CAPRI’s hypotheses

Examples

data(test_dataset)
as.events.in.patterns(test_dataset)
as.events.in.patterns(test_dataset, patterns='XOR_EZH2')

as.events.in.sample as.events.in.sample

Description

Return a list of events which are observed in the input samples list

Usage

as.events.in.sample(x, sample)

Arguments

x A TRONCO compliant dataset

sample Vector of sample names

Value

A list of events which are observed in the input samples list

Examples

data(test_dataset)
as.events.in.sample(test_dataset, c('patient 1', 'patient 7'))

14 as.genes

as.gene as.gene

Description

Return the genotypes for a certain set of genes and type of events. Input ’x’ should be a TRONCO
compliant dataset - see is.compliant. In this case column names are substituted with events’
types.

Usage

as.gene(x, genes, types = NA)

Arguments

x A TRONCO compliant dataset.

genes The genes to consider, if NA all available genes are used.

types The types of events to consider, if NA all available types are used.

Value

A matrix, subset of as.genotypes(x) with colnames substituted with events’ types.

Examples

data(test_dataset)
as.gene(test_dataset, genes = c('EZH2', 'ASXL1'))

as.genes as.genes

Description

Return all gene symbols for which a certain type of event exists in ’x’, which should be a TRONCO
compliant dataset - see is.compliant.

Usage

as.genes(x, types = NA)

Arguments

x A TRONCO compliant dataset.

types The types of events to consider, if NA all available types are used.

as.genes.in.patterns 15

Value

A vector of gene symbols for which a certain type of event exists

Examples

data(test_dataset)
as.genes(test_dataset)

as.genes.in.patterns as.genes.in.patterns

Description

Return the list of genes present in selected patterns

Usage

as.genes.in.patterns(x, patterns = NULL)

Arguments

x A TRONCO compliant dataset.

patterns A list of patterns for which the list will be returned

Value

A list of genes present in patterns which consitute CAPRI’s hypotheses

Examples

data(test_dataset)
as.genes.in.patterns(test_dataset)
as.genes.in.patterns(test_dataset, patterns='XOR_EZH2')

16 as.hypotheses

as.genotypes as.genotypes

Description

Return all genotypes for input ’x’, which should be a TRONCO compliant dataset see is.compliant.
Function keysToNames can be used to translate colnames to events.

Usage

as.genotypes(x)

Arguments

x A TRONCO compliant dataset.

Value

A TRONCO genotypes matrix.

Examples

data(test_dataset)
as.genotypes(test_dataset)

as.hypotheses as.hypotheses

Description

Return the hypotheses in the dataset which constitute CAPRI’s hypotheses.

Usage

as.hypotheses(x, cause = NA, effect = NA)

Arguments

x A TRONCO compliant dataset.

cause A list of genes to use as causes

effect A list of genes to use as effects

Value

The hypotheses in the dataset which constitute CAPRI’s hypotheses.

as.joint.probs 17

Examples

data(test_dataset)
as.hypotheses(test_dataset)

as.joint.probs as.joint.probs

Description

Extract the joint probabilities from a TRONCO model. The return matrix is indexed with row-
names/colnames which represent genotype keys - these can be resolved with function keysToNames.
It is possible to specify a subset of events to build the matrix, a subset of models if multiple recon-
struction have been performed. Also, either the observed or fit probabilities can be extracted.

Usage

as.joint.probs(
x,
events = as.events(x),
models = names(x$model),
type = "observed"

)

Arguments

x A TRONCO model.

events A subset of events as of as.events(x), all by default.

models A subset of reconstructed models, all by default.

type observed

Value

The joint probabilities in a TRONCO model.

Examples

data(test_model)
as.joint.probs(test_model)
as.joint.probs(test_model, events=as.events(test_model)[5:15,])

18 as.kfold.posterr

as.kfold.eloss as.kfold.eloss

Description

Returns a dataframe with all the average/stdev entropy loss score of a TRONCO model. It is possible
to specify models if multiple reconstruction have been performed.

Usage

as.kfold.eloss(x, models = names(x$model), values = FALSE)

Arguments

x A TRONCO model.

models A subset of reconstructed models, all by default.

values If you want to see also the values

Value

All the bootstrap scores in a TRONCO model

Examples

data(test_model_kfold)
as.kfold.eloss(test_model_kfold)
as.kfold.eloss(test_model_kfold, models='capri_aic')

as.kfold.posterr as.kfold.posterr

Description

Returns a dataframe with all the posterior classification error score in a TRONCO model. It is
possible to specify a subset of events or models if multiple reconstruction have been performed.

Usage

as.kfold.posterr(
x,
events = as.events(x),
models = names(x$model),
values = FALSE,
table = FALSE

)

as.kfold.prederr 19

Arguments

x A TRONCO model.

events A subset of events as of as.events(x), all by default.

models A subset of reconstructed models, all by default.

values If you want to see also the values

table Keep the original table (defaul false)

Value

All the posterior classification error scores in a TRONCO model

Examples

data(test_model_kfold)
data(test_model)
as.kfold.posterr(test_model_kfold)
as.kfold.posterr(test_model_kfold, events=as.events(test_model)[5:15,])

as.kfold.prederr as.kfold.prederr

Description

Returns a dataframe with all the prediction error score in a TRONCO model. It is possible to specify
a subset of events or models if multiple reconstruction have been performed.

Usage

as.kfold.prederr(
x,
events = as.events(x),
models = names(x$model),
values = FALSE,
table = FALSE

)

Arguments

x A TRONCO model.

events A subset of events as of as.events(x), all by default.

models A subset of reconstructed models, all by default.

values If you want to see also the values

table Keep the original table (defaul false)

20 as.marginal.probs

Value

All the bootstrap scores in a TRONCO model

Examples

data(test_model_kfold)
as.kfold.prederr(test_model_kfold)
as.kfold.prederr(test_model_kfold, models='capri_aic')

as.marginal.probs as.marginal.probs

Description

Extract the marginal probabilities from a TRONCO model. The return matrix is indexed with row-
names which represent genotype keys - these can be resolved with function keysToNames. It is
possible to specify a subset of events to build the matrix, a subset of models if multiple reconstruc-
tion have been performed. Also, either the observed or fit probabilities can be extracted.

Usage

as.marginal.probs(
x,
events = as.events(x),
models = names(x$model),
type = "observed"

)

Arguments

x A TRONCO model.

events A subset of events as of as.events(x), all by default.

models A subset of reconstructed models, all by default.

type observed.

Value

The marginal probabilities in a TRONCO model.

Examples

data(test_model)
as.marginal.probs(test_model)
as.marginal.probs(test_model, events=as.events(test_model)[5:15,])

as.models 21

as.models as.models

Description

Extract the models from a reconstructed object.

Usage

as.models(x, models = names(x$model))

Arguments

x A TRONCO model.

models The name of the models to extract, e.g. ’bic’, ’aic’, ’caprese’, all by default.

Value

The models in a reconstructed object.

Examples

data(test_model)
as.models(test_model)

as.parameters as.parameters

Description

Get parameters of a model

Usage

as.parameters(x)

Arguments

x A TRONCO model.

Value

A list of parameters

22 as.pathway

Examples

data(test_model)
as.parameters(test_model)

as.pathway as.pathway

Description

Given a cohort and a pathway, return the cohort with events restricted to genes involved in the path-
way. This might contain a new ’pathway’ genotype with an alteration mark if any of the involved
genes are altered.

Usage

as.pathway(
x,
pathway.genes,
pathway.name,
pathway.color = "yellow",
aggregate.pathway = TRUE,
silent = FALSE

)

Arguments

x A TRONCO compliant dataset.

pathway.genes Gene (symbols) involved in the pathway.

pathway.name Pathway name for visualization.

pathway.color Pathway color for visualization.
aggregate.pathway

If TRUE drop the events for the genes in the pathway.

silent A parameter to disable/enable verbose messages.

Value

Extract the subset of events for genes which are part of a pathway.

Examples

data(test_dataset)
p = as.pathway(test_dataset, c('ASXL1', 'TET2'), 'test_pathway')

as.patterns 23

as.patterns as.patterns

Description

Return the patterns in the dataset which constitute CAPRI’s hypotheses.

Usage

as.patterns(x)

Arguments

x A TRONCO compliant dataset.

Value

The patterns in the dataset which constitute CAPRI’s hypotheses.

Examples

data(test_dataset)
as.patterns(test_dataset)

as.samples as.samples

Description

Return all sample IDs for input ’x’, which should be a TRONCO compliant dataset - see is.compliant.

Usage

as.samples(x)

Arguments

x A TRONCO compliant dataset.

Value

A vector of sample IDs

Examples

data(test_dataset)
as.samples(test_dataset)

24 as.selective.advantage.relations

as.selective.advantage.relations

as.selective.advantage.relations

Description

Returns a dataframe with all the selective advantage relations in a TRONCO model. Confidence is
also shown - see as.confidence. It is possible to specify a subset of events or models if multiple
reconstruction have been performed.

Usage

as.selective.advantage.relations(
x,
events = as.events(x),
models = names(x$model),
type = "fit"

)

Arguments

x A TRONCO model.

events A subset of events as of as.events(x), all by default.

models A subset of reconstructed models, all by default.

type Either Prima Facie (’pf’) or fit (’fit’) probabilities, ’fit’ by default.

Value

All the selective advantage relations in a TRONCO model

Examples

data(test_model)
as.selective.advantage.relations(test_model)
as.selective.advantage.relations(test_model, events=as.events(test_model)[5:15,])
as.selective.advantage.relations(test_model, events=as.events(test_model)[5:15,], type='pf')

as.stages 25

as.stages as.stages

Description

Return the association sample -> stage, if any. Input ’x’ should be a TRONCO compliant dataset -
see is.compliant.

Usage

as.stages(x)

Arguments

x A TRONCO compliant dataset.

Value

A matrix with 1 column annotating stages and rownames as sample IDs.

Examples

data(test_dataset)
data(stage)
test_dataset = annotate.stages(test_dataset, stage)
as.stages(test_dataset)

as.types as.types

Description

Return the types of events for a set of genes which are in ’x’, which should be a TRONCO compliant
dataset - see is.compliant.

Usage

as.types(x, genes = NA)

Arguments

x A TRONCO compliant dataset.

genes A list of genes to consider, if NA all genes are used.

26 as.types.in.patterns

Value

A matrix with 1 column annotating stages and rownames as sample IDs.

Examples

data(test_dataset)
as.types(test_dataset)
as.types(test_dataset, genes='TET2')

as.types.in.patterns as.types.in.patterns

Description

Return the list of types present in selected patterns

Usage

as.types.in.patterns(x, patterns = NULL)

Arguments

x A TRONCO compliant dataset.

patterns A list of patterns for which the list will be returned

Value

A list of types present in patterns which consitute CAPRI’s hypotheses

Examples

data(test_dataset)
as.types.in.patterns(test_dataset)
as.types.in.patterns(test_dataset, patterns='XOR_EZH2')

change.color 27

change.color change.color

Description

Change the color of an event type

Usage

change.color(x, type, new.color)

Arguments

x A TRONCO compliant dataset.

type An event type

new.color The new color (either HEX or R Color)

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
dataset = change.color(test_dataset, 'ins_del', 'red')

consolidate.data consolidate.data

Description

Verify if the input data are consolidate, i.e., if there are events with 0 or 1 probability or indistin-
guishable in terms of observations

Usage

consolidate.data(x, print = FALSE)

Arguments

x A TRONCO compliant dataset.

print A boolean value stating whether to print of not the summary

28 crc_gistic

Value

The list of any 0 probability, 1 probability and indistinguishable.

Examples

data(test_dataset)
consolidate.data(test_dataset)

crc_gistic GISTIC example data

Description

This dataset contains an example of GISTIC input of a crc cohort of patients

Usage

data(crc_gistic)

Format

GISTIC score

Value

A gistic file

Author(s)

Daniele Ramazzotti

Source

data from http://www.nature.com/nature/journal/v487/n7407/full/nature11252.html

crc_maf 29

crc_maf MAF example data

Description

This dataset contains an example of MAF input of a crc cohort of patients

Usage

data(crc_maf)

Format

Manual Annotated Format

Value

A MAF file

Author(s)

Daniele Ramazzotti

Source

data from http://www.nature.com/nature/journal/v487/n7407/full/nature11252.html

crc_plain Plain mutation dataset

Description

This dataset contains an example of plain input of a crc cohort of patients

Usage

data(crc_plain)

Format

plain data

Value

A plain input

30 delete.event

Author(s)

Daniele Ramazzotti

Source

data from http://www.nature.com/nature/journal/v487/n7407/full/nature11252.html

delete.event delete.event

Description

Delete an event from the dataset

Usage

delete.event(x, gene, type)

Arguments

x A TRONCO compliant dataset.

gene The name of the gene to delete.

type The name of the type to delete.

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = delete.event(test_dataset, 'TET2', 'ins_del')

delete.gene 31

delete.gene delete.gene

Description

Delete a gene

Usage

delete.gene(x, gene)

Arguments

x A TRONCO compliant dataset.

gene The name of the gene to delete.

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = delete.gene(test_dataset, 'TET2')

delete.hypothesis delete.hypothesis

Description

Delete an hypothesis from the dataset based on a selected event. Check if the selected event exist in
the dataset and delete his associated hypothesis

Usage

delete.hypothesis(x, event = NA, cause = NA, effect = NA)

Arguments

x A TRONCO compliant dataset.

event Can be an event or pattern name

cause Can be an event or pattern name

effect Can be an event or pattern name

32 delete.model

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
delete.hypothesis(test_dataset, event='TET2')
delete.hypothesis(test_dataset, cause='EZH2')
delete.hypothesis(test_dataset, event='XOR_EZH2')

delete.model delete.model

Description

Delete a reconstructed model from the dataset

Usage

delete.model(x)

Arguments

x A TRONCO compliant dataset.

Value

A TRONCO complian dataset.

Examples

data(test_model)
model = delete.model(test_model)
has.model(model)

delete.pattern 33

delete.pattern delete.pattern

Description

Delete a pattern and every associated hypotheses from the dataset

Usage

delete.pattern(x, pattern)

Arguments

x A TRONCO compliant dataset.

pattern A pattern name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
delete.pattern(test_dataset, pattern='XOR_EZH2')

delete.samples delete.samples

Description

Delete samples from selected dataset

Usage

delete.samples(x, samples)

Arguments

x A TRONCO compliant dataset.

samples An array of samples name

Value

A TRONCO complian dataset.

34 duplicates

Examples

data(test_dataset)
dataset = delete.samples(test_dataset, c('patient 1', 'patient 4'))

delete.type delete.type

Description

Delete an event type

Usage

delete.type(x, type)

Arguments

x A TRONCO compliant dataset.

type The name of the type to delete.

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = delete.type(test_dataset, 'Pattern')

duplicates duplicates

Description

Return the events duplicated in x, if any. Input ’x’ should be a TRONCO compliant dataset - see
is.compliant.

Usage

duplicates(x)

Arguments

x A TRONCO compliant dataset.

ebind 35

Value

A subset of as.events(x) with duplicated events.

Examples

data(test_dataset)
duplicates(test_dataset)

ebind ebind

Description

Binds events from one or more datasets, which must be defined over the same set of samples.

Usage

ebind(..., silent = FALSE)

Arguments

... the input datasets

silent A parameter to disable/enable verbose messages.

Value

A TRONCO complian dataset.

enforce.numeric enforce.numeric

Description

Convert the internal reprensentation of genotypes to numeric, if not.

Usage

enforce.numeric(x)

Arguments

x A TRONCO compliant dataset.

Value

Convert the internal reprensentation of genotypes to numeric, if not.

36 events.selection

Examples

data(test_dataset)
test_dataset = enforce.numeric(test_dataset)

enforce.string enforce.string

Description

Convert the internal representation of genotypes to character, if not.

Usage

enforce.string(x)

Arguments

x A TRONCO compliant dataset.

Value

Convert the internal reprensentation of genotypes to character, if not.

Examples

data(test_dataset)
test_dataset = enforce.string(test_dataset)

events.selection events.selection

Description

select a subset of the input genotypes ’x’. Selection can be done by frequency and gene symbols.

Usage

events.selection(
x,
filter.freq = NA,
filter.in.names = NA,
filter.out.names = NA,
silent = FALSE

)

export.graphml 37

Arguments

x A TRONCO compliant dataset.

filter.freq [0,1] value which constriants the minimum frequence of selected events
filter.in.names

gene symbols which will be included
filter.out.names

gene symbols which will NOT be included

silent A parameter to disable/enable verbose messages.

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
dataset = events.selection(test_dataset, 0.3)

export.graphml export.graphml

Description

Create a graphML object which can be imported in cytoscape This function is based on the tronco.plot
fuction

Usage

export.graphml(x, file, ...)

Arguments

x A TRONCO compliant dataset

file Where to save the output

... parameters for tronco.plot

Examples

data(test_model)
export.graphml(test_model, file='text.xml', scale.nodes=0.3)

38 export.mutex

export.mutex export,mutex

Description

Create an input file for MUTEX (ref: https://code.google.com/p/mutex/)

Usage

export.mutex(
x,
filename = "tronco_to_mutex",
filepath = "./",
label.mutation = "SNV",
label.amplification = list("High-level Gain"),
label.deletion = list("Homozygous Loss")

)

Arguments

x A TRONCO compliant dataset.

filename The name of the file

filepath The path where to save the file

label.mutation The event type to use as mutation

label.amplification

The event type to use as amplification (can be a list)

label.deletion The event type to use as amplification (can be a list)

Value

A MUTEX example matrix

Examples

data(crc_gistic)
dataset = import.GISTIC(crc_gistic)
export.mutex(dataset)

export.nbs.input 39

export.nbs.input export.nbs.input

Description

Create a .mat file which can be used with NBS clustering (ref: http://chianti.ucsd.edu/~mhofree/wordpress/?page_id=26)

Usage

export.nbs.input(x, map_hugo_entrez, file = "tronco_to_nbs.mat")

Arguments

x A TRONCO compliant dataset.
map_hugo_entrez

Hugo_Symbol-Entrez_Gene_Id map

file output file name

extract.MAF.HuGO.Entrez.map

extract.MAF.HuGO.Entrez.map

Description

Extract a map Hugo_Symbol -> Entrez_Gene_Id from a MAF input file. If some genes map to ID
0 a warning is raised.

Usage

extract.MAF.HuGO.Entrez.map(file, sep = "\t")

Arguments

file MAF filename

sep MAF separator, default \’\t\’

Value

A mapHugo_Symbol -> Entrez_Gene_Id.

40 genes.table.report

genes.table.report genes.table.report

Description

Generate PDF and laex tables

Usage

genes.table.report(
x,
name,
dir = getwd(),
maxrow = 33,
font = 10,
height = 11,
width = 8.5,
fill = "lightblue",
silent = FALSE

)

Arguments

x A TRONCO compliant dataset.

name filename

dir working directory

maxrow maximum number of row per page

font document fontsize

height table height

width table width

fill fill color

silent A parameter to disable/enable verbose messages.

Value

LaTEX code

has.duplicates 41

has.duplicates has.duplicates

Description

Return true if there are duplicated events in the TRONCO dataset ’x’, which should be a TRONCO
compliant dataset - see is.compliant. Events are identified by a gene name, e.g., a HuGO_Symbol,
and a type label, e.g., c(’SNP’, ’KRAS’)

Usage

has.duplicates(x)

Arguments

x A TRONCO compliant dataset.

Value

TRUE if there are duplicated events in x.

Examples

data(test_dataset)
has.duplicates(test_dataset)

has.model has.model

Description

Return true if there is a reconstructed model in the TRONCO dataset ’x’, which should be a
TRONCO compliant dataset - see is.compliant.

Usage

has.model(x)

Arguments

x A TRONCO compliant dataset.

Value

TRUE if there is a reconstructed model in x.

42 hypothesis.add

Examples

data(test_dataset)
has.model(test_dataset)

has.stages has stages

Description

Return true if the TRONCO dataset ’x’, which should be a TRONCO compliant dataset - see
is.compliant - has stage annotations for samples. Some sample stages might be annotated as
NA, but not all.

Usage

has.stages(x)

Arguments

x A TRONCO compliant dataset.

Value

TRUE if the TRONCO dataset has stage annotations for samples.

Examples

data(test_dataset)
has.stages(test_dataset)
data(stage)
test_dataset = annotate.stages(test_dataset, stage)
has.stages(test_dataset)

hypothesis.add hypothesis add

Description

Add a new hypothesis by creating a new event and adding it to the compliant genotypes

hypothesis.add.group 43

Usage

hypothesis.add(
data,
pattern.label,
lifted.pattern,
pattern.effect = "*",
pattern.cause = "*"

)

Arguments

data A TRONCO compliant dataset.

pattern.label Label of the new hypothesis.

lifted.pattern Vector to be added to the lifted genotype resolving the pattern related to the new
hypothesis

pattern.effect Possibile effects for the pattern.

pattern.cause Possibile causes for the pattern.

Value

A TRONCO compliant object with the added hypothesis

hypothesis.add.group hypothesis add group

Description

Add all the hypotheses related to a group of events

Usage

hypothesis.add.group(
x,
FUN,
group,
pattern.cause = "*",
pattern.effect = "*",
dim.min = 2,
dim.max = length(group),
min.prob = 0,
silent = FALSE

)

44 hypothesis.add.homologous

Arguments

x A TRONCO compliant dataset.
FUN Type of pattern to be added, e.g., co-occurance, soft or hard exclusivity.
group Group of events to be considered.
pattern.cause Possibile causes for the pattern.
pattern.effect Possibile effects for the pattern.
dim.min Minimum cardinality of the subgroups to be considered.
dim.max Maximum cardinality of the subgroups to be considered.
min.prob Minimum probability associated to each valid group.
silent A parameter to disable/enable verbose messages.

Value

A TRONCO compliant object with the added hypotheses

hypothesis.add.homologous

hypothesis.add.homologous

Description

Add all the hypotheses related to homologou events

Usage

hypothesis.add.homologous(
x,
pattern.cause = "*",
pattern.effect = "*",
genes = as.genes(x),
silent = FALSE

)

Arguments

x A TRONCO compliant dataset.
pattern.cause Possibile causes for the pattern.
pattern.effect Possibile effects for the pattern.
genes List of genes to be considered as possible homologous. For these genes, all the

types of mutations will be considered functionally equivalent.
silent A parameter to disable/enable verbose messages.

Value

A TRONCO compliant object with the added hypotheses

import.genotypes 45

import.genotypes import.genotypes

Description

Import a matrix of 0/1 alterations as a TRONCO compliant dataset. Input "geno" can be either a
dataframe or a file name. In any case the dataframe or the table stored in the file must have a column
for each altered gene and a rows for each sample. Colnames will be used to determine gene names,
if data is loaded from file the first column will be assigned as rownames. For details and examples
regarding the loading functions provided by the package we refer to the Vignette Section 3.

Usage

import.genotypes(geno, event.type = "variant", color = "Darkgreen")

Arguments

geno Either a dataframe or a filename

event.type Any 1 in "geno" will be interpreted as a an observed alteration labeled with type
"event.type"

color This is the color used for visualization of events labeled as of "event.type"

Value

A TRONCO compliant dataset

import.GISTIC import.GISTIC

Description

Transform GISTIC scores for CNAs in a TRONCO compliant object. Input can be either a matrix,
with columns for each altered gene and rows for each sample; in this case colnames/rownames mut
be provided. If input is a character an attempt to load a table from file is performed. In this case the
input table format should be constitent with TCGA data for focal CNA; there should hence be: one
column for each sample, one row for each gene, a column Hugo_Symbol with every gene name and
a column Entrez_Gene_Id with every gene\’s Entrez ID. A valid GISTIC score should be any value
of: "Homozygous Loss" (-2), "Heterozygous Loss" (-1), "Low-level Gain" (+1), "High-level Gain"
(+2). For details and examples regarding the loading functions provided by the package we refer to
the Vignette Section 3.

46 import.MAF

Usage

import.GISTIC(
x,
filter.genes = NULL,
filter.samples = NULL,
silent = FALSE,
trim = TRUE,
rna.seq.data = NULL,
rna.seq.up = NULL,
rna.seq.down = NULL

)

Arguments

x Either a dataframe or a filename

filter.genes A list of genes

filter.samples A list of samples

silent A parameter to disable/enable verbose messages.

trim Remove the events without occurrence

rna.seq.data Either a dataframe or a filename

rna.seq.up TODO

rna.seq.down TODO

Value

A TRONCO compliant representation of the input CNAs.

Examples

data(crc_gistic)
gistic = import.GISTIC(crc_gistic)

import.MAF import.MAF

Description

Import mutation profiles from a Manual Annotation Format (MAF) file. All mutations are ag-
gregated as a unique event type labeled "Mutation" and assigned a color according to the de-
fault of function import.genotypes. If this is a TCGA MAF file check for multiple samples
per patient is performed and a warning is raised if these occurr. Customized MAF files can be
imported as well provided that they have columns Hugo_Symbol, Tumor_Sample_Barcode and
Variant_Classification. Custom filters are possible (via filter.fun) to avoid loading the full MAF
data. For details and examples regarding the loading functions provided by the package we refer to
the Vignette Section 3.

import.MAF 47

Usage

import.MAF(
file,
sep = "\t",
is.TCGA = TRUE,
filter.fun = NULL,
to.TRONCO = TRUE,
irregular = FALSE,
paste.to.Hugo_Symbol = NULL,
merge.mutation.types = TRUE,
silent = FALSE

)

Arguments

file MAF filename

sep MAF separator, default \’\t\’

is.TCGA TRUE if this MAF is from TCGA; thus its sample codenames can be interpreted

filter.fun A filter function applied to each row. This is expected to return TRUE/FALSE.

to.TRONCO If FALSE returns a dataframe with MAF data, not a TRONCO object

irregular If TRUE seeks only for columns Hugo_Symbol, Tumor_Sample_Barcode and
Variant_Classification

paste.to.Hugo_Symbol

If a list of column names, this will be pasted each Hugo_Symbol to yield names
such as PHC2.chr1.33116215.33116215

merge.mutation.types

If TRUE, all mutations are considered equivalent, regardless of their Variant_Classification
value. Otherwise no.

silent A parameter to disable/enable verbose messages.

Value

A TRONCO compliant representation of the input MAF

Examples

data(maf)
mutations = import.MAF(maf)
mutations = annotate.description(mutations, 'Example MAF')
mutations = TCGA.shorten.barcodes(mutations)
oncoprint(mutations)

48 import.mutex.groups

import.model import.model

Description

Add an adjacency matrix as a model to a TRONCO compliant object. Input model can be either a
dataframe or a file name.

Usage

import.model(tronco_object, model, model.name = "imported_model")

Arguments

tronco_object A TRONCO compliant object

model Either a dataframe or a filename

model.name Name of the imported model

Value

A TRONCO compliant object

import.mutex.groups import.mutex.groups

Description

Create a list of unique Mutex groups for a given fdr cutoff current Mutex version is Jan 8, 2015 (ref:
https://code.google.com/p/mutex/)

Usage

import.mutex.groups(file, fdr = 0.2, display = TRUE)

Arguments

file Mutex results ("ranked-groups.txt" file)

fdr cutoff for fdr

display print summary table of extracted groups

intersect.datasets 49

intersect.datasets intersect.datasets

Description

Intersect samples and events of two dataset

Usage

intersect.datasets(x, y, intersect.genomes = TRUE)

Arguments

x A TRONCO compliant dataset.

y A TRONCO compliant dataset.
intersect.genomes

If False -> just samples

Value

A TRONCO complian dataset.

Examples

data(test_dataset)

is.compliant is.compliant

Description

Check if ’x’ is compliant with TRONCO’s input: that is if it has dataframes x$genotypes, x$annotations,
x$types and x$stage (optional)

Usage

is.compliant(
x,
err.fun = "[ERR]",
stage = !(all(is.null(x$stages)) || all(is.na(x$stages)))

)

50 join.events

Arguments

x A TRONCO compliant dataset.

err.fun string which identifies the function which called is.compliant

stage boolean flag to check x$stage datagframe

Value

on error stops the computation

Examples

data(test_dataset)
is.compliant(test_dataset)

join.events join.events

Description

Merge a list of events in an unique event

Usage

join.events(x, ..., new.event, new.type, event.color)

Arguments

x A TRONCO compliant dataset.

... A list of events to merge

new.event The name of the resultant event

new.type The type of the new event

event.color The color of the new event

Value

A TRONCO compliant dataset.

Examples

data(muts)
dataset = join.events(muts, 'G1', 'G2', new.event='test', new.type='banana', event.color='yellow')

join.types 51

join.types join.types

Description

For an input dataset merge all the events of two or more distincit types (e.g., say that missense and
indel mutations are events of a unique "mutation" type)

Usage

join.types(x, ..., new.type = "new.type", new.color = "khaki", silent = FALSE)

Arguments

x A TRONCO compliant dataset.

... type to merge

new.type label for the new type to create

new.color color for the new type to create

silent A parameter to disable/enable verbose messages.

Value

A TRONCO compliant dataset.

Examples

data(test_dataset_no_hypos)
join.types(test_dataset_no_hypos, 'ins_del', 'missense_point_mutations')
join.types(test_dataset_no_hypos, 'ins_del',

'missense_point_mutations', new.type='mut', new.color='green')

keysToNames keysToNames

Description

Convert colnames/rownames of a matrix into intelligible event names, e.g., change a key G23 in
’Mutation KRAS’. If a name is not found, the original name is left unchanged.

Usage

keysToNames(x, matrix)

52 maf

Arguments

x A TRONCO compliant dataset.

matrix A matrix with colnames/rownames which represent genotypes keys.

Value

The matrix with intelligible colnames/rownames.

Examples

data(test_model)
adj_matrix = as.adj.matrix(test_model, events=as.events(test_model)[5:15,])$capri_bic
keysToNames(test_model, adj_matrix)

maf MAF example data

Description

This dataset contains a standard MAF input for TRONCO

Usage

data(maf)

Format

Manual Annotated Format

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data

muts 53

muts Simple mutation dataset

Description

A simple mutation dataset without hypotheses

Usage

data(muts)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data

nameToKey nameToKey

Description

Convert to key an intelligible event names, e.g., change ’Mutation KRAS’ in G23. If a name is not
found, an error is raised!

Usage

nameToKey(x, name)

Arguments

x A TRONCO compliant dataset.

name A intelligible event name

Value

A TRONCO dataset key name

54 ngenes

Examples

data(test_model)
adj_matrix = as.adj.matrix(test_model, events=as.events(test_model)[5:15,])$bic

nevents nevents

Description

Return the number of events in the dataset involving a certain gene or type of event.

Usage

nevents(x, genes = NA, types = NA)

Arguments

x A TRONCO compliant dataset.

genes The genes to consider, if NA all available genes are used.

types The types of events to consider, if NA all available types are used.

Value

The number of events in the dataset involving a certain gene or type of event.

Examples

data(test_dataset)
nevents(test_dataset)

ngenes ngenes

Description

Return the number of genes in the dataset involving a certain type of event.

Usage

ngenes(x, types = NA)

Arguments

x A TRONCO compliant dataset.

types The types of events to consider, if NA all available types are used.

nhypotheses 55

Value

The number of genes in the dataset involving a certain type of event.

Examples

data(test_dataset)
ngenes(test_dataset)

nhypotheses Return the number of hypotheses in the dataset

Description

Return the number of hypotheses in the dataset

Usage

nhypotheses(x)

Arguments

x the dataset.

Examples

data(test_dataset)
nhypotheses(test_dataset)

npatterns Return the number of patterns in the dataset

Description

Return the number of patterns in the dataset

Usage

npatterns(x)

Arguments

x the dataset.

56 ntypes

Examples

data(test_dataset)
npatterns(test_dataset)

nsamples nsamples

Description

Return the number of samples in the dataset.

Usage

nsamples(x)

Arguments

x A TRONCO compliant dataset.

Value

The number of samples in the dataset.

Examples

data(test_dataset)
nsamples(test_dataset)

ntypes ntypes

Description

Return the number of types in the dataset.

Usage

ntypes(x)

Arguments

x A TRONCO compliant dataset.

oncoprint 57

Value

The number of types in the dataset.

Examples

data(test_dataset)
ntypes(test_dataset)

oncoprint oncoprint

Description

oncoPrint : plot a genotype. For details and examples regarding the visualization through onco-
prints, we refer to the Vignette Section 4.4.

Usage

oncoprint(
x,
excl.sort = TRUE,
samples.cluster = FALSE,
genes.cluster = FALSE,
file = NA,
ann.stage = has.stages(x),
ann.hits = TRUE,
stage.color = "YlOrRd",
hits.color = "Purples",
null.color = "lightgray",
border.color = "white",
text.cex = 1,
font.column = NA,
font.row = NA,
title = as.description(x),
sample.id = FALSE,
hide.zeroes = FALSE,
legend = TRUE,
legend.cex = 0.5,
cellwidth = NA,
cellheight = NA,
group.by.label = FALSE,
group.by.stage = FALSE,
group.samples = NA,
gene.annot = NA,
gene.annot.color = "Set1",
show.patterns = FALSE,

58 oncoprint

annotate.consolidate.events = FALSE,
txt.stats = paste(nsamples(x), " samples\n", nevents(x), " events\n", ngenes(x),

" genes\n", npatterns(x), " patterns", sep = ""),
gtable = FALSE,
...

)

Arguments

x A TRONCO compliant dataset

excl.sort Boolean value, if TRUE sorts samples to enhance exclusivity of alterations
samples.cluster

Boolean value, if TRUE clusters samples (columns). Default FALSE

genes.cluster Boolean value, if TRUE clusters genes (rows). Default FALSE

file If not NA write to file the Oncoprint, default is NA (just visualization).

ann.stage Boolean value to annotate stage classification, default depends on x

ann.hits Boolean value to annotate the number of events in each sample, default is TRUE

stage.color RColorbrewer palette to color stage annotations. Default is ’YlOrRd’

hits.color RColorbrewer palette to color hits annotations. Default is ’Purples’

null.color Color for the Oncoprint cells with 0s, default is ’lightgray’

border.color Border color for the Oncoprint, default is white’ (no border)

text.cex Title and annotations cex, multiplied by font size 7

font.column If NA, half of font.row is used

font.row If NA, max(c(15 * exp(-0.02 * nrow(data)), 2)) is used, where data is the data
visualized in the Oncoprint

title Oncoprint title, default is as.name(x) - see as.name

sample.id If TRUE shows samples name (columns). Default is FALSE

hide.zeroes If TRUE trims data - see trim - before plot. Default is FALSE

legend If TRUE shows a legend for the types of events visualized. Defualt is TRUE

legend.cex Default 0.5; determines legend size if legend = TRUE

cellwidth Default NA, sets autoscale cell width

cellheight Default NA, sets autoscale cell height

group.by.label Sort samples (rows) by event label - usefull when multiple events per gene are
available

group.by.stage Default FALSE; sort samples by stage.

group.samples If this samples -> group map is provided, samples are grouped as of groups and
sorted according to the number of mutations per sample - usefull when data
was clustered

gene.annot Genes’groups, e.g. list(RAF=c(’KRAS’,’NRAS’), Wnt=c(’APC’, ’CTNNB1’)).
Default is NA.

oncoprint.cbio 59

gene.annot.color

Either a RColorColorbrewer palette name or a set of custom colors matching
names(gene.annot)

show.patterns If TRUE shows also a separate oncoprint for each pattern. Default is FALSE
annotate.consolidate.events

Default is FALSE. If TRUE an annotation for events to consolidate is shown.
txt.stats By default, shows a summary statistics for shown data (n,m, |G| and |P|)
gtable If TRUE return the gtable object
... other arguments to pass to pheatmap

oncoprint.cbio oncoprint.cbio

Description

export input for cbio visualization at http://www.cbioportal.org/public-portal/oncoprinter.jsp

Usage

oncoprint.cbio(
x,
file = "oncoprint-cbio.txt",
hom.del = "Homozygous Loss",
het.loss = "Heterozygous Loss",
gain = "Low-level Gain",
amp = "High-level Gain"

)

Arguments

x A TRONCO compliant dataset.
file name of the file where to save the output
hom.del type of Homozygous Deletion
het.loss type of Heterozygous Loss
gain type of Gain
amp type of Amplification

Value

A file containing instruction for the CBio visualization Tool

Examples

data(crc_gistic)
gistic = import.GISTIC(crc_gistic)
oncoprint.cbio(gistic)

60 order.frequency

OR OR

Description

OR hypothesis

Usage

OR(...)

Arguments

... Atoms of the soft exclusive pattern given either as labels or as partielly lifted
vectors.

Value

Vector to be added to the lifted genotype resolving the soft exclusive pattern

order.frequency order.frequency

Description

Sort the internal genotypes according to event frequency.

Usage

order.frequency(x, decreasing = TRUE)

Arguments

x A TRONCO compliant dataset.

decreasing Inverse order. Default TRUE

Value

A TRONCO compliant dataset with the internal genotypes sorted according to event frequency.

Examples

data(test_dataset)
order.frequency(test_dataset)

pathway.visualization 61

pathway.visualization pathway.visualization

Description

Visualise pathways informations

Usage

pathway.visualization(
x,
title = paste("Pathways:", paste(names(pathways), collapse = ", ", sep = "")),
file = NA,
pathways.color = "Set2",
aggregate.pathways,
pathways,
...

)

Arguments

x A TRONCO complian dataset

title Plot title

file To generate a PDF a filename have to be given

pathways.color A RColorBrewer color palette
aggregate.pathways

Boolean parameter

pathways Pathways

... Additional parameters

Value

plot information

pheatmap A function to draw clustered heatmaps.

Description

A function to draw clustered heatmaps where one has better control over some graphical parameters
such as cell size, etc.

62 pheatmap

Usage

pheatmap(
mat,
color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100),
kmeans_k = NA,
breaks = NA,
border_color = "grey60",
cellwidth = NA,
cellheight = NA,
scale = "none",
cluster_rows = TRUE,
cluster_cols = TRUE,
clustering_distance_rows = "euclidean",
clustering_distance_cols = "euclidean",
clustering_method = "complete",
cutree_rows = NA,
cutree_cols = NA,
treeheight_row = ifelse(cluster_rows, 50, 0),
treeheight_col = ifelse(cluster_cols, 50, 0),
legend = TRUE,
legend_breaks = NA,
legend_labels = NA,
annotation_row = NA,
annotation_col = NA,
annotation = NA,
annotation_colors = NA,
annotation_legend = TRUE,
drop_levels = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
main = NA,
fontsize = 10,
fontsize_row = fontsize,
fontsize_col = fontsize,
display_numbers = FALSE,
number_format = "%.2f",
number_color = "grey30",
fontsize_number = 0.8 * fontsize,
gaps_row = NULL,
gaps_col = NULL,
labels_row = NULL,
labels_col = NULL,
filename = NA,
width = NA,
height = NA,
silent = FALSE,
legend.cex = 1,
txt.stats = NA,

pheatmap 63

...
)

Arguments

mat numeric matrix of the values to be plotted.

color vector of colors used in heatmap.

kmeans_k the number of kmeans clusters to make, if we want to agggregate the rows before
drawing heatmap. If NA then the rows are not aggregated.

breaks a sequence of numbers that covers the range of values in mat and is one element
longer than color vector. Used for mapping values to colors. Useful, if needed
to map certain values to certain colors, to certain values. If value is NA then the
breaks are calculated automatically.

border_color color of cell borders on heatmap, use NA if no border should be drawn.

cellwidth individual cell width in points. If left as NA, then the values depend on the size
of plotting window.

cellheight individual cell height in points. If left as NA, then the values depend on the size
of plotting window.

scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. Corresponding values are "row",
"column" and "none"

cluster_rows boolean values determining if rows should be clustered,

cluster_cols boolean values determining if columns should be clustered.
clustering_distance_rows

distance measure used in clustering rows. Possible values are "correlation"
for Pearson correlation and all the distances supported by dist, such as "euclidean",
etc. If the value is none of the above it is assumed that a distance matrix is pro-
vided.

clustering_distance_cols

distance measure used in clustering columns. Possible values the same as for
clustering_distance_rows.

clustering_method

clustering method used. Accepts the same values as hclust.

cutree_rows number of clusters the rows are divided into, based on the hierarchical clustering
(using cutree), if rows are not clustered, the argument is ignored

cutree_cols similar to cutree_rows, but for columns

treeheight_row the height of a tree for rows, if these are clustered. Default value 50 points.

treeheight_col the height of a tree for columns, if these are clustered. Default value 50 points.

legend logical to determine if legend should be drawn or not.

legend_breaks vector of breakpoints for the legend.

legend_labels vector of labels for the legend_breaks.

64 pheatmap

annotation_row data frame that specifies the annotations shown on left side of the heatmap.
Each row defines the features for a specific row. The rows in the data and in
the annotation are matched using corresponding row names. Note that color
schemes takes into account if variable is continuous or discrete.

annotation_col similar to annotation_row, but for columns.

annotation deprecated parameter that currently sets the annotation_col if it is missing
annotation_colors

list for specifying annotation_row and annotation_col track colors manually. It
is possible to define the colors for only some of the features. Check examples
for details.

annotation_legend

boolean value showing if the legend for annotation tracks should be drawn.

drop_levels logical to determine if unused levels are also shown in the legend

show_rownames boolean specifying if column names are be shown.

show_colnames boolean specifying if column names are be shown.

main the title of the plot

fontsize base fontsize for the plot

fontsize_row fontsize for rownames (Default: fontsize)

fontsize_col fontsize for colnames (Default: fontsize)
display_numbers

logical determining if the numeric values are also printed to the cells. If this is a
matrix (with same dimensions as original matrix), the contents of the matrix are
shown instead of original values.

number_format format strings (C printf style) of the numbers shown in cells. For example
"%.2f" shows 2 decimal places and "%.1e" shows exponential notation (see
more in sprintf).

number_color color of the text
fontsize_number

fontsize of the numbers displayed in cells

gaps_row vector of row indices that show shere to put gaps into heatmap. Used only if
the rows are not clustered. See cutree_row to see how to introduce gaps to
clustered rows.

gaps_col similar to gaps_row, but for columns.

labels_row custom labels for rows that are used instead of rownames.

labels_col similar to labels_row, but for columns.

filename file path where to save the picture. Filetype is decided by the extension in the
path. Currently following formats are supported: png, pdf, tiff, bmp, jpeg. Even
if the plot does not fit into the plotting window, the file size is calculated so that
the plot would fit there, unless specified otherwise.

width manual option for determining the output file width in inches.

height manual option for determining the output file height in inches.

silent do not draw the plot (useful when using the gtable output)

rank.recurrents 65

legend.cex Default 0.5; determines legend size if legend = TRUE

txt.stats By default, shows a summary statistics for shown data (n,m, |G| and |P|)

... graphical parameters for the text used in plot. Parameters passed to grid.text,
see gpar.

Details

The function also allows to aggregate the rows using kmeans clustering. This is advisable if number
of rows is so big that R cannot handle their hierarchical clustering anymore, roughly more than 1000.
Instead of showing all the rows separately one can cluster the rows in advance and show only the
cluster centers. The number of clusters can be tuned with parameter kmeans_k.

This is a modified version of the original pheatmap (https://cran.r-project.org/web/packages/pheatmap/index.html)
edited in accordance with GPL-2.

Value

Invisibly a list of components

• tree_row the clustering of rows as hclust object

• tree_col the clustering of columns as hclust object

• kmeans the kmeans clustering of rows if parameter kmeans_k was specified

Author(s)

Raivo Kolde <rkolde@gmail.com>

Examples

Create test matrix
test = matrix(rnorm(200), 20, 10)
test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
colnames(test) = paste("Test", 1:10, sep = "")
rownames(test) = paste("Gene", 1:20, sep = "")

Draw heatmaps
pheatmap(test)

rank.recurrents rank.recurrents

Description

Return the first n recurrent events

66 rename.gene

Usage

rank.recurrents(x, n)

Arguments

x A TRONCO compliant dataset.

n The number of events to rank

Value

the first n recurrent events

Examples

data(test_dataset)
dataset = rank.recurrents(test_dataset, 10)

rename.gene rename.gene

Description

Rename a gene

Usage

rename.gene(x, old.name, new.name)

Arguments

x A TRONCO compliant dataset.

old.name The name of the gene to rename.

new.name The new name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = rename.gene(test_dataset, 'TET2', 'gene x')

rename.type 67

rename.type rename.type

Description

Rename an event type

Usage

rename.type(x, old.name, new.name)

Arguments

x A TRONCO compliant dataset.

old.name The type of event to rename.

new.name The new name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = rename.type(test_dataset, 'ins_del', 'deletion')

samples.selection samples.selection

Description

Filter a dataset based on selected samples id

Usage

samples.selection(x, samples)

Arguments

x A TRONCO compliant dataset.

samples A list of samples

Value

A TRONCO compliant dataset.

68 ssplit

Examples

data(test_dataset)
dataset = samples.selection(test_dataset, c('patient 1', 'patient 2'))

sbind sbind

Description

Binds samples from one or more datasets, which must be defined over the same set of events

Usage

sbind(...)

Arguments

... the input datasets

Value

A TRONCO complian dataset.

ssplit ssplit

Description

Split cohort (samples) into groups, return either all groups or a specific group.

Usage

ssplit(x, clusters, idx = NA)

Arguments

x A TRONCO compliant dataset.

clusters A list of clusters. Rownames must match samples list of x

idx ID of a specific group present in stages. If NA all groups will be extracted

Value

A TRONCO compliant dataset.

stage 69

stage Stage information for test_dataset

Description

This dataset contains stage information for patient in test_dataset

Usage

data(stage)

Format

Vector of stages

Value

A list of stages

Author(s)

Luca De Sano

Source

fake data

TCGA.map.clinical.data

TCGA.map.clinical.data

Description

Map clinical data from the TCGA format

Usage

TCGA.map.clinical.data(file, sep = "\t", column.samples, column.map)

Arguments

file A file with the clinical data

sep file delimiter

column.samples Required columns

column.map Map to the required columns

70 TCGA.remove.multiple.samples

Value

a map

TCGA.multiple.samples TCGA.multiple.samples

Description

Check if there are multiple sample in x, according to TCGA barcodes naming

Usage

TCGA.multiple.samples(x)

Arguments

x A TRONCO compliant dataset.

Value

A list of barcodes. NA if no duplicated barcode is found

Examples

data(test_dataset)
TCGA.multiple.samples(test_dataset)

TCGA.remove.multiple.samples

TCGA.remove.multiple.samples

Description

If there are multiple sample in x, according to TCGA barcodes naming, remove them

Usage

TCGA.remove.multiple.samples(x)

Arguments

x A TRONCO compliant dataset.

Value

A TRONCO compliant dataset

TCGA.shorten.barcodes 71

Examples

data(test_dataset)
TCGA.remove.multiple.samples(test_dataset)

TCGA.shorten.barcodes TCGA.shorten.barcodes

Description

Keep only the first 12 character of samples barcode if there are no duplicates

Usage

TCGA.shorten.barcodes(x)

Arguments

x A TRONCO compliant dataset.

Value

A TRONCO compliant dataset

Examples

data(test_dataset)
TCGA.shorten.barcodes(test_dataset)

test_dataset A complete dataset with hypotheses

Description

This dataset contains a complete test dataset

Usage

data(test_dataset)

Format

TRONCO compliant dataset

72 test_dataset_no_hypos

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data

test_dataset_no_hypos A complete dataset

Description

This dataset contains a complete test dataset

Usage

data(test_dataset_no_hypos)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data

test_model 73

test_model A complete dataset with a reconstructed model

Description

This dataset contains a model reconstructed with CAPRI

Usage

data(test_model)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data

test_model_kfold A complete dataset with a reconstructed model and crossvalidation
informations

Description

This dataset contains a model reconstructed with CAPRI

Usage

data(test_model_kfold)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

74 tronco.bootstrap

Author(s)

Luca De Sano

Source

fake data

trim trim

Description

Deletes all events which have frequency 0 in the dataset.

Usage

trim(x)

Arguments

x A TRONCO compliant dataset.

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
test_dataset = trim(test_dataset)

tronco.bootstrap tronco bootstrap

Description

Bootstrap a reconstructed progression model. For details and examples regarding the statistical
assesment of an inferred model, we refer to the Vignette Section 7.

Usage

tronco.bootstrap(
reconstruction,
type = "non-parametric",
nboot = 100,
cores.ratio = 1,
silent = FALSE

)

tronco.caprese 75

Arguments

reconstruction The output of tronco.capri or tronco.caprese

type Parameter to define the type of sampling to be performed, e.g., non-parametric
for uniform sampling.

nboot Number of bootstrap sampling to be performed when estimating the model con-
fidence.

cores.ratio Percentage of cores to use coresRate * (numCores - 1)

silent A parameter to disable/enable verbose messages.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_model)
boot = tronco.bootstrap(test_model, nboot = 1, cores.ratio = 0)

tronco.caprese tronco caprese

Description

Reconstruct a progression model using CAPRESE algorithm. For details and examples regarding
the inference process and on the algorithm implemented in the package, we refer to the Vignette
Section 6.

Usage

tronco.caprese(data, lambda = 0.5, silent = FALSE, epos = 0, eneg = 0)

Arguments

data A TRONCO compliant dataset.

lambda Coefficient to combine the raw estimate with a correction factor into a shrinkage
estimator.

silent A parameter to disable/enable verbose messages.

epos Error rate of false positive errors.

eneg Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

76 tronco.capri

Examples

data(test_dataset_no_hypos)
recon = tronco.caprese(test_dataset_no_hypos)

tronco.capri tronco capri

Description

Reconstruct a progression model using CAPRI algorithm. For details and examples regarding the
inference process and on the algorithm implemented in the package, we refer to the Vignette Section
6.

Usage

tronco.capri(
data,
command = "hc",
regularization = c("bic", "aic"),
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
silent = FALSE,
epos = 0,
eneg = 0,
restart = 100

)

Arguments

data A TRONCO compliant dataset.

command Parameter to define to heuristic search to be performed. Hill Climbing and Tabu
search are currently available.

regularization Select the regularization for the likelihood estimation, e.g., BIC, AIC.

do.boot A parameter to disable/enable the estimation of the error rates give the recon-
structed model.

nboot Number of bootstrap sampling (with rejection) to be performed when estimating
the selective advantage scores.

pvalue Pvalue to accept/reject the valid selective advantage relations.

min.boot Minimum number of bootstrap sampling to be performed.

tronco.chowliu 77

min.stat A parameter to disable/enable the minimum number of bootstrap sampling re-
quired besides nboot if any sampling is rejected.

boot.seed Initial seed for the bootstrap random sampling.

silent A parameter to disable/enable verbose messages.

epos Error rate of false positive errors.

eneg Error rate of false negative errors.

restart An integer, the number of random restarts.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset)
recon = tronco.capri(test_dataset, nboot = 1)

tronco.chowliu Tronco Chow Liu

Description

Reconstruct a progression model using Chow Liu algorithm combined with probabilistic causation.
For details and examples regarding the inference process and on the algorithm implemented in the
package, we refer to the Vignette Section 6.

Usage

tronco.chowliu(
data,
regularization = c("bic", "aic"),
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
silent = FALSE,
epos = 0,
eneg = 0

)

78 tronco.edmonds

Arguments

data A TRONCO compliant dataset.

regularization Select the regularization for the likelihood estimation, e.g., BIC, AIC.

do.boot A parameter to disable/enable the estimation of the error rates give the recon-
structed model.

nboot Number of bootstrap sampling (with rejection) to be performed when estimating
the selective advantage scores.

pvalue Pvalue to accept/reject the valid selective advantage relations.

min.boot Minimum number of bootstrap sampling to be performed.

min.stat A parameter to disable/enable the minimum number of bootstrap sampling re-
quired besides nboot if any sampling is rejected.

boot.seed Initial seed for the bootstrap random sampling.

silent A parameter to disable/enable verbose messages.

epos Error rate of false positive errors.

eneg Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.chowliu(test_dataset_no_hypos, nboot = 1)

tronco.edmonds Tronco Edmonds

Description

Reconstruct a progression model using Edmonds algorithm combined with probabilistic causation.
For details and examples regarding the inference process and on the algorithm implemented in the
package, we refer to the Vignette Section 6.

Usage

tronco.edmonds(
data,
regularization = "no_reg",
score = "pmi",
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,

tronco.edmonds 79

min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
silent = FALSE,
epos = 0,
eneg = 0

)

Arguments

data A TRONCO compliant dataset.

regularization Select the regularization for the likelihood estimation, e.g., BIC, AIC.

score Select the score for the estimation of the best tree, e.g., pointwise mutual infor-
mation (pmi), conditional entropy (entropy).

do.boot A parameter to disable/enable the estimation of the error rates give the recon-
structed model.

nboot Number of bootstrap sampling (with rejection) to be performed when estimating
the selective advantage scores.

pvalue Pvalue to accept/reject the valid selective advantage relations.

min.boot Minimum number of bootstrap sampling to be performed.

min.stat A parameter to disable/enable the minimum number of bootstrap sampling re-
quired besides nboot if any sampling is rejected.

boot.seed Initial seed for the bootstrap random sampling.

silent A parameter to disable/enable verbose messages.

epos Error rate of false positive errors.

eneg Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.edmonds(test_dataset_no_hypos, nboot = 1)

80 tronco.gabow

tronco.gabow Tronco Gabow

Description

Reconstruct a progression model using Gabow algorithm combined with probabilistic causation.
For details and examples regarding the inference process and on the algorithm implemented in the
package, we refer to the Vignette Section 6.

Usage

tronco.gabow(
data,
regularization = "no_reg",
score = "pmi",
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
silent = FALSE,
epos = 0,
eneg = 0,
do.raising = TRUE

)

Arguments

data A TRONCO compliant dataset.
regularization Select the regularization for the likelihood estimation, e.g., BIC, AIC.
score Select the score for the estimation of the best tree, e.g., pointwise mutual infor-

mation (pmi), conditional entropy (entropy).
do.boot A parameter to disable/enable the estimation of the error rates give the recon-

structed model.
nboot Number of bootstrap sampling (with rejection) to be performed when estimating

the selective advantage scores.
pvalue Pvalue to accept/reject the valid selective advantage relations.
min.boot Minimum number of bootstrap sampling to be performed.
min.stat A parameter to disable/enable the minimum number of bootstrap sampling re-

quired besides nboot if any sampling is rejected.
boot.seed Initial seed for the bootstrap random sampling.
silent A parameter to disable/enable verbose messages.
epos Error rate of false positive errors.
eneg Error rate of false negative errors.
do.raising Whether to use or not the raising condition as a prior.

tronco.kfold.eloss 81

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.gabow(test_dataset_no_hypos, nboot = 1)

tronco.kfold.eloss tronco.kfold.eloss

Description

Perform a k-fold cross-validation using the function bn.cv to estimate the entropy loss. For details
and examples regarding the statistical assesment of an inferred model, we refer to the Vignette
Section 7.

Usage

tronco.kfold.eloss(
x,
models = names(as.models(x)),
runs = 10,
k = 10,
silent = FALSE

)

Arguments

x A reconstructed model (the output of tronco.capri or tronco.caprese)

models The names of the selected regularizers (bic, aic or caprese)

runs a positive integer number, the number of times cross-validation will be run

k a positive integer number, the number of groups into which the data will be split

silent A parameter to disable/enable verbose messages.

Examples

data(test_model)
tronco.kfold.eloss(test_model, k = 2, runs = 2)

82 tronco.kfold.posterr

tronco.kfold.posterr tronco.kfold.posterr. For details and examples regarding the statistical
assesment of an inferred model, we refer to the Vignette Section 7.

Description

Perform a k-fold cross-validation using the function bn.cv and scan every node to estimate its pos-
terior classification error.

Usage

tronco.kfold.posterr(
x,
models = names(as.models(x)),
events = as.events(x),
runs = 10,
k = 10,
cores.ratio = 1,
silent = FALSE

)

Arguments

x A reconstructed model (the output of tronco.capri)

models The names of the selected regularizers (bic, aic or caprese)

events a list of event

runs a positive integer number, the number of times cross-validation will be run

k a positive integer number, the number of groups into which the data will be split

cores.ratio Percentage of cores to use. coresRate * (numCores - 1)

silent A parameter to disable/enable verbose messages.

Examples

data(test_model)
tronco.kfold.posterr(test_model, k = 2, runs = 2, cores.ratio = 0)

tronco.kfold.prederr 83

tronco.kfold.prederr tronco.kfold.prederr

Description

Perform a k-fold cross-validation using the function bn.cv and scan every node to estimate its pre-
diction error. For details and examples regarding the statistical assesment of an inferred model, we
refer to the Vignette Section 7.

Usage

tronco.kfold.prederr(
x,
models = names(as.models(x)),
events = as.events(x),
runs = 10,
k = 10,
cores.ratio = 1,
silent = FALSE

)

Arguments

x A reconstructed model (the output of tronco.capri)

models The names of the selected regularizers (bic, aic or caprese)

events a list of event

runs a positive integer number, the number of times cross-validation will be run

k a positive integer number, the number of groups into which the data will be split

cores.ratio Percentage of cores to use. coresRate * (numCores - 1)

silent A parameter to disable/enable verbose messages.

Examples

data(test_model)
tronco.kfold.prederr(test_model, k = 2, runs = 2, cores.ratio = 0)

84 tronco.plot

tronco.pattern.plot tronco.pattern.plot

Description

tronco.pattern.plot : plot a genotype

Usage

tronco.pattern.plot(
x,
group = as.events(x),
to,
gap.cex = 1,
legend.cex = 1,
label.cex = 1,
title = paste(to[1], to[2]),
mode = "barplot"

)

Arguments

x A TRONCO compliant dataset

group A list of events (see as.events() for details)

to A target event

gap.cex cex parameter for gap

legend.cex cex parameter for legend

label.cex cex parameter for label

title title

mode can be ’circos’ or ’barplot’

tronco.plot tronco.plot

Description

Plots a progression model from a recostructed dataset. For details and examples regarding the
visualization of an inferred model, we refer to the Vignette Section 7.

tronco.plot 85

Usage

tronco.plot(
x,
models = names(x$model),
fontsize = NA,
height = 2,
width = 3,
height.logic = 1,
pf = FALSE,
disconnected = FALSE,
scale.nodes = NA,
title = as.description(x),
confidence = NA,
p.min = 0.05,
legend = TRUE,
legend.cex = 1,
edge.cex = 1,
label.edge.size = NA,
expand = TRUE,
genes = NULL,
relations.filter = NA,
edge.color = "black",
pathways.color = "Set1",
file = NA,
legend.pos = "bottom",
pathways = NULL,
lwd = 3,
samples.annotation = NA,
export.igraph = FALSE,
create.new.dev = TRUE,
...

)

Arguments

x A reconstructed model (the output of the inference by a tronco function)

models A vector containing the names of the algorithms used (caprese, capri_bic, etc)

fontsize For node names. Default NA for automatic rescaling

height Proportion node height - node width. Default height 2

width Proportion node height - node width. Default width 2

height.logic Height of logical nodes. Defaul 1

pf Should I print Prima Facie? Default False

disconnected Should I print disconnected nodes? Default False

scale.nodes Node scaling coefficient (based on node frequency). Default NA (autoscale)

title Title of the plot. Default as.description(x)

86 tronco.plot

confidence Should I add confidence informations? No if NA

p.min p-value cutoff. Default automatic

legend Should I visualise the legend?

legend.cex CEX value for legend. Default 1.0

edge.cex CEX value for edge labels. Default 1.0

label.edge.size

Size of edge labels. Default NA for automatic rescaling

expand Should I expand hypotheses? Default TRUE

genes Visualise only genes in this list. Default NULL, visualise all.

relations.filter

Filter relations to dispaly according to this functions. Default NA

edge.color Edge color. Default ’black’

pathways.color RColorBrewer colorser for patways. Default ’Set1’.

file String containing filename for PDF output. If NA no PDF output will be pro-
vided

legend.pos Legend position. Default ’bottom’,

pathways A vector containing pathways information as described in as.patterns()

lwd Edge base lwd. Default 3

samples.annotation

= List of samples to search for events in model

export.igraph If TRUE export the generated igraph object

create.new.dev If TRUE create a new graphical device when calling trono.plot. Set this to
FALSE, e.g., if you do not wish to create a new device when executing the
command with export.igraph = TRUE

... Additional arguments for RGraphviz plot function

Value

Information about the reconstructed model

Examples

data(test_model)
tronco.plot(test_model)

tronco.prim 87

tronco.prim Tronco Prim

Description

Reconstruct a progression model using Prim algorithm combined with probabilistic causation. For
details and examples regarding the inference process and on the algorithm implemented in the
package, we refer to the Vignette Section 6.

Usage

tronco.prim(
data,
regularization = "no_reg",
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
silent = FALSE,
epos = 0,
eneg = 0

)

Arguments

data A TRONCO compliant dataset.

regularization Select the regularization for the likelihood estimation, e.g., BIC, AIC.

do.boot A parameter to disable/enable the estimation of the error rates give the recon-
structed model.

nboot Number of bootstrap sampling (with rejection) to be performed when estimating
the selective advantage scores.

pvalue Pvalue to accept/reject the valid selective advantage relations.

min.boot Minimum number of bootstrap sampling to be performed.

min.stat A parameter to disable/enable the minimum number of bootstrap sampling re-
quired besides nboot if any sampling is rejected.

boot.seed Initial seed for the bootstrap random sampling.

silent A parameter to disable/enable verbose messages.

epos Error rate of false positive errors.

eneg Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

88 which.samples

Examples

data(test_dataset_no_hypos)
recon = tronco.prim(test_dataset_no_hypos, nboot = 1)

view view

Description

Print to console a short report of a dataset ’x’, which should be a TRONCO compliant dataset - see
is.compliant.

Usage

view(x, view = 5)

Arguments

x A TRONCO compliant dataset.

view The firse view events are shown via head.

Examples

data(test_dataset)
view(test_dataset)

which.samples which.samples

Description

Return a list of samples with specified alteration

Usage

which.samples(x, gene, type, neg = FALSE)

Arguments

x A TRONCO compliant dataset.

gene A list of gene names

type A list of types

neg If FALSE return the list, if TRUE return as.samples() - list

XOR 89

Value

A list of sample

Examples

data(test_dataset)
which.samples(test_dataset, 'TET2', 'ins_del')
which.samples(test_dataset, 'TET2', 'ins_del', neg=TRUE)

XOR XOR

Description

XOR hypothesis

Usage

XOR(...)

Arguments

... Atoms of the hard exclusive pattern given either as labels or as partielly lifted
vectors.

Value

Vector to be added to the lifted genotype resolving the hard exclusive pattern

Index

aCML, 5
AND, 5
annotate.description, 6
annotate.stages, 6
as.adj.matrix, 7
as.alterations, 8
as.bootstrap.scores, 8
as.colors, 9
as.conditional.probs, 10
as.confidence, 10
as.description, 11
as.events, 12
as.events.in.patterns, 12
as.events.in.sample, 13
as.gene, 14
as.genes, 14
as.genes.in.patterns, 15
as.genotypes, 16
as.hypotheses, 16
as.joint.probs, 17
as.kfold.eloss, 18
as.kfold.posterr, 18
as.kfold.prederr, 19
as.marginal.probs, 20
as.models, 21
as.parameters, 21
as.pathway, 22
as.patterns, 23
as.samples, 23
as.selective.advantage.relations, 24
as.stages, 25
as.types, 25
as.types.in.patterns, 26

change.color, 27
consolidate.data, 27
crc_gistic, 28
crc_maf, 29
crc_plain, 29

delete.event, 30
delete.gene, 31
delete.hypothesis, 31
delete.model, 32
delete.pattern, 33
delete.samples, 33
delete.type, 34
dist, 63
duplicates, 34

ebind, 35
enforce.numeric, 35
enforce.string, 36
events.selection, 36
export.graphml, 37
export.mutex, 38
export.nbs.input, 39
extract.MAF.HuGO.Entrez.map, 39

genes.table.report, 40
gpar, 65
grid.text, 65

has.duplicates, 41
has.model, 41
has.stages, 42
hclust, 63, 65
hypothesis.add, 42
hypothesis.add.group, 43
hypothesis.add.homologous, 44

import.genotypes, 45
import.GISTIC, 45
import.MAF, 46
import.model, 48
import.mutex.groups, 48
intersect.datasets, 49
is.compliant, 49

join.events, 50
join.types, 51

90

INDEX 91

keysToNames, 51

maf, 52
muts, 53

nameToKey, 53
nevents, 54
ngenes, 54
nhypotheses, 55
npatterns, 55
nsamples, 56
ntypes, 56

oncoprint, 57
oncoprint.cbio, 59
OR, 60
order.frequency, 60

pathway.visualization, 61
pheatmap, 61

rank.recurrents, 65
rename.gene, 66
rename.type, 67

samples.selection, 67
sbind, 68
sprintf, 64
ssplit, 68
stage, 69

TCGA.map.clinical.data, 69
TCGA.multiple.samples, 70
TCGA.remove.multiple.samples, 70
TCGA.shorten.barcodes, 71
test_dataset, 71
test_dataset_no_hypos, 72
test_model, 73
test_model_kfold, 73
trim, 74
tronco.bootstrap, 74
tronco.caprese, 75
tronco.capri, 76
tronco.chowliu, 77
tronco.edmonds, 78
tronco.gabow, 80
tronco.kfold.eloss, 81
tronco.kfold.posterr, 82
tronco.kfold.prederr, 83
tronco.pattern.plot, 84

tronco.plot, 84
tronco.prim, 87

view, 88

which.samples, 88

XOR, 89

	aCML
	AND
	annotate.description
	annotate.stages
	as.adj.matrix
	as.alterations
	as.bootstrap.scores
	as.colors
	as.conditional.probs
	as.confidence
	as.description
	as.events
	as.events.in.patterns
	as.events.in.sample
	as.gene
	as.genes
	as.genes.in.patterns
	as.genotypes
	as.hypotheses
	as.joint.probs
	as.kfold.eloss
	as.kfold.posterr
	as.kfold.prederr
	as.marginal.probs
	as.models
	as.parameters
	as.pathway
	as.patterns
	as.samples
	as.selective.advantage.relations
	as.stages
	as.types
	as.types.in.patterns
	change.color
	consolidate.data
	crc_gistic
	crc_maf
	crc_plain
	delete.event
	delete.gene
	delete.hypothesis
	delete.model
	delete.pattern
	delete.samples
	delete.type
	duplicates
	ebind
	enforce.numeric
	enforce.string
	events.selection
	export.graphml
	export.mutex
	export.nbs.input
	extract.MAF.HuGO.Entrez.map
	genes.table.report
	has.duplicates
	has.model
	has.stages
	hypothesis.add
	hypothesis.add.group
	hypothesis.add.homologous
	import.genotypes
	import.GISTIC
	import.MAF
	import.model
	import.mutex.groups
	intersect.datasets
	is.compliant
	join.events
	join.types
	keysToNames
	maf
	muts
	nameToKey
	nevents
	ngenes
	nhypotheses
	npatterns
	nsamples
	ntypes
	oncoprint
	oncoprint.cbio
	OR
	order.frequency
	pathway.visualization
	pheatmap
	rank.recurrents
	rename.gene
	rename.type
	samples.selection
	sbind
	ssplit
	stage
	TCGA.map.clinical.data
	TCGA.multiple.samples
	TCGA.remove.multiple.samples
	TCGA.shorten.barcodes
	test_dataset
	test_dataset_no_hypos
	test_model
	test_model_kfold
	trim
	tronco.bootstrap
	tronco.caprese
	tronco.capri
	tronco.chowliu
	tronco.edmonds
	tronco.gabow
	tronco.kfold.eloss
	tronco.kfold.posterr
	tronco.kfold.prederr
	tronco.pattern.plot
	tronco.plot
	tronco.prim
	view
	which.samples
	XOR
	Index

